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Introduction
The IMSL Fortran Numerical Library

The IMSL Fortran Numerical Library consists of two separate but coordinated Libraries that allow easy user 
access. These Libraries are organized as follows: 

 MATH/LIBRARY general applied mathematics and special functions 

The User’s Guide for IMSL MATH/LIBRARY has two parts:

a. MATH LIBRARY

b. MATH LIBRARY Special Functions

 STAT LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines for linear solv-
ers and eigensystems are also available for complex and complex-double precision arithmetic. The same user 
interface is found on the many hardware versions that span the range from personal computer to 
supercomputer. 

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and IMSL Fortran 90 
Library.

User Background

Vendor Supplied Libraries Usage

The IMSL Fortran Numerical Library contains functions which may take advantage of functions in vendor 
supplied libraries such as Intel’s® Math Kernel Library (MKL) or Sun’s High Performance Library. Functions 
in the vendor supplied libraries are finely tuned for performance to take full advantage of the environment 
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for which they are supplied. For these functions, the user of the IMSL Fortran Numerical Library has the 
option of linking to code which is based on either the IMSL legacy functions or the functions in the vendor 
supplied library. The following icon in the function documentation alerts the reader when this is the case:

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in 
the online README file of the product distribution.

Getting Started

The IMSL STAT LIBRARY is a collection of FORTRAN subroutines and functions useful in research and sta-
tistical analysis. Each routine is designed and documented to be used in research activities as well as by 
technical specialists.

To use any of these routines, you must write a program in FORTRAN (or possibly some other language) to 
call the STAT LIBRARY routine. Each routine conforms to established conventions in programming and doc-
umentation. We give first priority in development to efficient algorithms, clear documentation, and accurate 
results. The uniform design of the routines makes it easy to use more than one routine in a given application. 
Also, you will find that the design consistency enables you to apply your experience with one 
STAT LIBRARY routine to all other IMSL routines that you use.

Finding the Right Routine

The STAT LIBRARY is organized into chapters; each chapter contains routines with similar computational or 
analytical capabilities. To locate the right routine for a given problem, you may use either the table of con-
tents located in each chapter introduction, or one of the indexes at the end of this manual.

Often the quickest way to use the STAT LIBRARY is to find an example similar to your problem and then to 
mimic the example. Each routine document has at least one example demonstrating its application. The 
example for a routine may be created simply for illustration, it may be from a textbook (with reference to the 
source) or it may be from the statistical literature, in which case IMSL routine GDATA retrieves the data set.
          Introduction      2



Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated example of each 
routine, including sample input and results. You will find all information pertaining to the STAT LIBRARY in 
this manual. Moreover, all information pertaining to a particular routine is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines included in 
the chapter. Documentation of the routines consists of the following information:

 IMSL Routine’s Generic Name 

 Purpose: a statement of the purpose of the routine. If the routine is a function rather than a 
subroutine the purpose statement will reflect this fact.

 Function Return Value: a description of the return value (for functions only).

 Required Arguments: a description of the required arguments in the order of their occurrence. 
Input arguments usually occur first, followed by input/output arguments, with output 
arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this argument; cannot 
be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input or output. See individ-
ual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine returns output 
through this argument.

 Optional Arguments: a description of the optional arguments in the order of their occurrence.

 Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

 Fortran 77 Style Interfaces: an optional section, which describes Fortran 77 style interfaces, is 
supplied for backwards compatibility with previous versions of the Library.

 Description: a description of the algorithm and references to detailed information. In many 
cases, other IMSL routines with similar or complementary functions are noted.

 Comments: details pertaining to code usage.

 Programming notes: an optional section that contains programming details not covered 
elsewhere.

 Example: at least one application of this routine showing input and required dimension and 
type statements.

 Output: results from the example(s). Note that unique solutions may differ from platform to 
platform.

 Additional Examples: an optional section with additional applications of this routine showing 
input and required dimension and type statements.
Organization of the Documentation          Introduction      3



Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single precision 
and a double precision version, with names of the two versions sharing a common root. The root name is also 
the generic interface  name. The name of the double precision specific version begins with a “D_.” The single 
precision specific version begins with an “S_”. For example, the following pairs are precision specific names 
of routines in the two different precisions: S_UVSTA/D_UVSTA (the root is “UVSTA ,” for “Basic Univariate 
Statistics”) and S_TWFRQ/D_TWFRQ (the root is “TWFRQ,” for “Two-Way Frequency Table”). Of course the 
generic name can be used as an entry point for all precisions supported.

Except when expressly stated otherwise, the names of the variables in the argument lists follow the 
FORTRAN default type for integer and floating point. In other words, a variable whose name begins with 
one of the letters “I” through “N” is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION, 
depending on the precision of the routine.

An assumed size array with more than one dimension that is used as a FORTRAN argument can have an 
assumed-size declarator for the last dimension only. In the MATH/LIBRARY routines, the information about 
the first dimension is passed by a variable with the prefix “LD” and with the array name as the root. For 
example, the argument LDA contains the leading dimension of array A. In most cases, information about the 
dimensions of arrays is obtained from the array through the use of  Fortran 90’s size function. Therefore, 
arguments carrying this type of information are usually defined as optional arguments. 

Where appropriate, the same variable name is used consistently throughout a chapter in the STAT LIBRARY. 
For example, in the routines for random number generation, NR denotes the number of random numbers to 
be generated, and R or IR denotes the array that stores the numbers.

When writing programs accessing the STAT LIBRARY, the user should choose FORTRAN names that do not 
conflict with names of IMSL subroutines, functions, or named common blocks. The careful user can avoid 
any conflicts with IMSL names if, in choosing names, the following rules are observed:

 Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the 
User’s Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.

 Do not choose a name consisting of more than three characters with a numeral in the second or 
third position.

For further details, see the section on Reserved Names in the Reference Material section of this manual.

Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the entire suite of 
routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this principle, 
note the OWFRQ  documentation (see Chapter 1, “Basic Statistics”), for tallying observation into a one-way fre-
quency table. A description is provided for just one data type. There are two documented routines in this 
subject area: S_OWFRQ and D_OWFRQ.
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These routines constitute single-precision and double-precision versions of the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with the rou-
tines. The naming convention for modules joins the suffix “_int” to the generic routine name. Thus, the line 
“use OWFRQ_INT” is inserted near the top of any routine that calls the subprogram “OWFRQ”. More inclusive 
modules are also available. For example, the module named “imsl_libraries” contains the interface 
modules for all routines in the library. 

Programming Conventions

In general, the IMSL STAT LIBRARY codes are written so that computations are not affected by underflow, 
provided the system (hardware or software) places a zero value in the register. In this case, system error mes-
sages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages indicating 
overflow should be examined for programming errors such as incorrect input data, mismatch of argument 
types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure of the 
algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly. This error-
handling capability provides automatic protection for the user without requiring the user to make any spe-
cific provisions for the treatment of error conditions. See the section on User Errors in the Reference Material 
for further details.

Module Usage

Users are required to incorporate a “use” statement near the top of their program for the IMSL routine being 
called when writing new code that uses this library. However, legacy code which calls routines in the previ-
ous version of the library without the use of a “use” statement will continue to work as before. Also, code 
which employed the “use numerical_libraries” statement from the previous version of the library 
will continue to work properly with this version of the library.

Users wishing to update existing programs so as to call other routines from this library should incorporate a 
use statement for the specific new routine being called. (Here, the term “new routine” implies any routine in 
the library, only “new” to the user’s program.) Use of the more encompassing “imsl_libraries” module 
in this case could result in argument mismatches for the “old” routine(s) being called. (This would be caught 
by the compiler.)

Users wishing to update existing programs so as to call the new generic versions of the routines must change 
their calls to the existing routines so as to match the new calling sequences and use either the routine specific 
interface modules or the all encompassing “imsl_libraries” module. 
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Programming Tips

It is strongly suggested that users force all program variables to be explicitly typed. This is done by including 
the line “IMPLICIT NONE” as close to the first line as possible. Study some of the examples accompanying 
an IMSL Fortran Library routine early on. These examples are available online as part of the product.

Each subject routine called or otherwise referenced requires the “use” statement for an interface block 
designed for that subject routine. The contents of this interface block are the interfaces to the separate rou-
tines available for that subject. Packaged descriptive names for option numbers that modify documented 
optional data or internal parameters might also be provided in the interface block. Although this seems like 
an additional complication, many typographical errors are avoided at an early stage in development through 
the use of these interface blocks. The “use” statement is required for each routine called in the user’s 
program.

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then the “use” 
statements are not required.

Optional Subprogram Arguments

IMSL Fortran Library routines have required arguments and may have optional arguments. All arguments are 
documented for each routine. For example, consider the routine ORDST that determines order statistics. The 
required arguments are X, NOS, OS, and NMISS. The input data for the problem are the X array and NOS, the 
number of order statistics; the output is returned in the OS array. The number of missing values is returned in 
NMISS. This routine has as optional arguments NOBS, IOPT, and IOS. If one wishes to calculate a different set 
of order statistics than the default (the first NOS order statistics) then the optional argument given by the 
“IOPT=” keyword should be used in the argument list. See Example 2 of ORDST in Chapter 1, “Basic Statistics” 
for an example of this functionality.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES interface mod-
ule includes backwards compatible positional argument interfaces to all routines which existed in the 
Fortran 77 version of the Library. Note that it is not necessary to use “use” statements when calling these rou-
tines by themselves. Existing programs which called these routines will continue to work in the same manner 
as before.

Error Handling

The routines in the IMSL STAT LIBRARY attempt to detect and report errors and invalid input. Errors are 
classified and are assigned a code number. By default, errors of moderate or worse severity result in mes-
sages being automatically printed by the routine. Moreover, errors of worse severity cause program 
execution to stop. The severity level as well as the general nature of the error is designated by an “error type” 
with numbers from 0 to 5. An error type 0 is no error; types 1 through 5 are progressively more severe. In 
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most cases, you need not be concerned with our method of handling errors. For those interested, a complete 
description of the error-handling system is given in the Reference Material, which also describes how you 
can change the default actions and access the error code numbers.

Printing Results

Several routines in the IMSL STAT LIBRARY have an option for printing results. These routines have an 
optional argument, IPRINT, to control the printing. In any routine that allows printing, if IPRINT = 0, (the 
default) then no printing is done (except possibly error messages). Some routines allow various amounts of 
printing; one value of IPRINT might result in printing only summary statistics, while another value might 
cause more detailed statistics or intermediate results to be printed. Other routines in the STAT LIBRARY do 
not print any of the results. In all routines, of course, the output is returned in FORTRAN variables, so if the 
routine does not do printing, or if you use the default IPRINT value, you can print the results yourself. The 
STAT LIBRARY contains some special routines just for printing arrays. For example, WRRRN and WRRRL are 
two convenient routines for printing matrices. See Chapter 19, “Utilities” for detailed descriptions of these 
routines.

A commonly used routine in the examples is the IMSL routine UMACH, which retrieves the FORTRAN device 
unit number for printing the results. Because this routine obtains device unit numbers, it can be used to redi-
rect the input or output. The section on Machine-Dependent Constants in the Reference Material contains a 
description of the routine UMACH.

Shared-Memory Multiprocessors and Thread Safety

The IMSL Fortran Numerical Library allows users to leverage the high-performance technology of shared 
memory parallelism (SMP) when their environment supports it.  Support for SMP systems within the IMSL 
Library is delivered through various means, depending upon the availability of technologies such as 
OpenMP, high performance LAPACK and BLAS, and hardware-specific IMSL algorithms. Use of the IMSL 
Fortran Numerical Library on SMP systems can be achieved by using the appropriate link environment vari-
able when building your application.  Details on the available link environment variables for your 
installation of the IMSL Fortran Numerical Library can be found in the online README file of the product 
distribution. 
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The IMSL Fortran Numerical Library is thread-safe in those environments that support OpenMP. This was 
achieved by using OpenMP directives that define global variables located in the code so they are private to 
the individual threads. Thread safety allows users to create instances of routines running on multiple threads 
and to include any routine in the IMSL Fortran Numerical Library in these threads.

Missing Values

Many of the routines in the IMSL STAT LIBRARY allow the data to contain missing values. These routines 
recognize as a missing value the special value referred to as ‘not a number,’ or NaN. The actual value is dif-
ferent on different computers, but it can be obtained by reference to the IMSL routines AMACH or DMACH, 
described in the  Machine-Dependent Constants section of the Reference Material. In routines that allow miss-
ing values, two common arguments are NMISS and NRMISS. The definitions of these arguments vary 
somewhat depending on the specific routine. However, in a data structure where the rows represent observa-
tions and the columns represent variables, NRMISS is the number of rows containing missing values and 
NMISS is the total number of missing values.

The way that missing values are treated depends on the individual routine, and is described in the documen-
tation for the routine.

Routines that Accumulate Results over Several Calls

Often in statistical analyses, not all of the data are available in computer memory at once. Many of the rou-
tines in the STAT LIBRARY accept a part of the data, accumulate some statistics, and continue accepting data 
and accumulating statistics until all of the data have been processed. The routines that allow the data to be 
processed a little at a time have an argument called “IDO.” 

Using IMSL Fortran Library on Shared-Memory 
Multiprocessors

The IMSL Fortran Library allows users to leverage the high-performance technology of shared memory par-
allelism  (SMP) when their environment supports it. Support for SMP systems within the IMSL Library is 
delivered through various means, depending upon the availability of technologies such as OpenMP,  high 
performance BLAS, and hardware-specific IMSL algorithms. Use of the IMSL Fortran Library on SMP sys-
tems can be achieved by using the appropriate link environment variable when building your application. 
Details on the available link environment variables for your installation of the IMSL Fortran Library can be 
found in the online README file of the product distribution. 
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This introduction has acquainted you with a few general characteristics of IMSL STAT LIBRARY. If you are 
using the STAT LIBRARY at a computer center, the computer center consultant will provide the details neces-
sary to use the IMSL routines on your computer system.
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Usage Notes

Frequency Tabulations

The routines for frequency tabulations accept raw data in the form of vectors or matrices and produce counts. 
Two of these routines assume generally that the data are continuous and tally the observations into groups 
based on grouping information that the user supplies. Another routine for frequency tabulations assumes 
basically that the data are discrete and counts the number of observations with each value. Other analyses of 
discrete data or count data can be performed using IMSL routines in Chapter 5, “Categorical and Discrete Data 
Analysis.”

Univariate Summary Statistics

The routine UVSTA computes the sample mean, variance, minimum, maximum, and other basic statistics for 
each variable in a data set. It also computes confidence intervals for the mean and variance if the sample is 
assumed to be from a normal distribution.

Ranks and Order Statistics

The routines for ranks and order statistics accept data from a single sample stored in a vector. Ranks, order 
statistics, and sample quantiles form the basis for many nonparametric and robust statistical techniques (see 
Conover 1980 and Hoaglin et al. 1983). Letter values, computed by the routine LETTR, are a special set of 
order statistics particularly useful in exploratory data analysis (see Hoaglin 1983).

Parametric Estimates and Tests

The routines described in this section compute statistics for simple inferences about the parameters in nor-
mal, binomial, and Poisson distributions. General discussions of estimation techniques for these 
distributions can be found in Johnson and Kotz (1969, 1970a, 1970b). The routine UVSTA, for univariate sum-
mary statistics, also computes statistics for simple inferences about the parameters in a single normal 
distribution.

Grouped Data

The routine GRPES computes several basic statistics, such as arithmetic means, geometric means, harmonic 
means, and moments about the arithmetic mean for grouped data. The second, third, and fourth moments 
are computed both with and without Sheppard’s corrections.

Continuous Data in a Table

The routine CSTAT accepts data sets with both classification variables and response variables. The classifica-
tion variables define cells in a table. Within each cell, means and sums of squares are computed for the 
response variables. Further analysis of the response variables, in particular, assessment of the effects of the 
classification variables, may be performed using the routines described in Chapter 4 on analysis of variance. 
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An alternative for two-way tables is median polish, which is more resistant to outliers, but which is more 
exploratory. That is, no test is performed to confirm statistically that row and/or column effects are present. 
The routine MEDPL in this section performs median polish. (See Tukey, 1977; Velleman and Hoaglin, 1981; 
and Emerson and Hoaglin, 1983.) For count data (frequencies), the routines described in Chapter 5: Categorical 
and Discrete Data Analysis,” are appropriate for determining the amount of association among the rows and 
columns.
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OWFRQ

Tallies observations into a one-way frequency table.

Required Arguments
X — Vector of length NOBS containing the data.  (Input)
K — Number of intervals.  (Input)
TABLE — Vector of length K containing the counts.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
IOPT — Tallying option.  (Input)

Default: IOPT = 0.

XLO — If IOPT = 1, XLO is the lower bound at which to begin forming the class intervals.  (Input) 
XLO is used only if IOPT = 1.

XHI — If IOPT = 1, XHI is the upper bound to use in forming the class intervals.  (Input)
XHI is used only if IOPT = 1.

CLHW — If IOPT = 3, CLHW is the half-width of the class intervals.  (Input) 
CLHW is not used if IOPT is not equal to 3.

IOPT Action

0 Intervals of equal length, determined from the data, are used. Let XMIN and XMAX be the 
minimum and maximum values in X, respectively. Then, TABLE(1) is the tally of obser-
vations less than or equal to XMIN + (XMAX - XMIN)/K, TABLE(2) is the tally of 
observations greater than XMIN + (XMAX - XMIN)/K and less than or equal to XMIN + 2 * 
(XMAX - XMIN)/K, and so on. TABLE(K) is the tally of observations greater than 
XMAX - (XMAX - XMIN)/K.

1 Intervals of equal length are used just as in the case of IOPT = 0, except the upper and 
lower bounds are taken as the user supplied variables XLO and XHI, instead of the actual 
minimum and maximum in the data. Therefore, the first and the last intervals are semi-
infinite in length. K must be greater than 2.

2 K-1 cutpoints are input in DIV. The tally in TABLE(1) is the number of observations less 
than or equal to DIV(1). For I greater than 1 and less than K, the tally in TABLE(I) is the 
number of observations greater than DIV(I - 1) and less than or equal to DIV(I). The 
tally in TABLE(K) is the number of observations greater than DIV(K - 1). K must be 
greater than 1.

3 Class marks are input in DIV and a constant class half-width is input in CLHW. The total 
of the elements in TABLE may be less than NOBS. The tally in TABLE(I) is the number of 
observations between DIV(I) - CLHW and DIV(I) + CLHW.
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DIV — Vector of varying length and contents depending on IOPT.  (Input if IOPT= 2 or 3; output if 
IOPT = 0 or 1.) 
The contents of DIV are in ascending order.

FORTRAN 90 Interface
Generic: CALL OWFRQ (X, K, TABLE [, …])
Specific: The specific interface names are S_OWFRQ and D_OWFRQ.

FORTRAN 77 Interface
Single: CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE) 
Double: The double precision name is DOWFRQ.

Description

The routine OWFRQ groups numerical data into categories, which can be defined in any of four different ways 
as chosen by IOPT. If IOPT = 0, K intervals of equal length are formed between the minimum and maximum 
values in the data, and then the data are tallied in these intervals. The midpoints of the intervals are output in 
DIV.

If IOPT = 1, K - 2 intervals of equal length are formed between XLO and XHI, and then the data are tallied in 
these intervals. In this option, there is one group that consists of data less than XLO and one group of data 
greater than XHI. This option is similar to IOPT = 0, except with this option, the midpoints of the classes are 
under control of the user. The midpoints of the intervals are output in DIV. The first and last values of DIV, 
respectively, contain XLO minus half the class width and XHI plus half the class width.

For IOPT = 2 or 3, the intervals need not be equally spaced. If IOPT = 2, the intervals need not be equal in 
length. In this case, the intervals are defined by their boundaries, the “cutpoints”, which are input in DIV. 
The number of cutpoints is one less than the number of intervals. The first cutpoint defines the upper bound 
of the first interval, and the last cutpoint defines the lower bound of the last interval.

If IOPT= 3, the intervals are all of length twice CLHW, and they are centered on the class marks input in DIV. 
This option can be used to exclude portions of the data.

The examples use all of these options with the same data set.

IOPT Contents

0 DIV is of length K containing interval midpoints. (DIV is output.)

1 DIV is of length K containing interval midpoints. Since the first and last intervals are 
semi-infinite in length, DIV(1) contains XLO minus half the interval length, and DIV(K) 
contains XHI plus half the interval length. (DIV is output.)

2 DIV is a vector of length K - 1 containing cutpoints. (DIV is input.)

3 DIV is of length K containing classmarks. (DIV is input.)
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Examples

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the mea-
surements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive 
years. In the first example, we set IOPT = 0. This option may be appropriate if we do not know the range of 
the data. Notice that the midpoints of the class intervals, output in DIV, are not “pretty” numbers.

      USE OWFRQ_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
! 
      INTEGER    NOUT
      REAL       DIV(K), TABLE(K), X(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
           2.05/
! 
      CALL UMACH (2, NOUT)
! 
      CALL OWFRQ (X, K, TABLE, DIV=DIV)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT ('  Midpoints: ', 10F5.2, /, '     Counts: ', 10F5.0)
      END

Output

Midpoints:  0.54 0.98 1.43 1.87 2.31 2.76 3.20 3.64 4.09 4.53
   Counts:    4.   8.   5.   5.   3.   1.   3.   0.   0.   1.

Example 2

In this example, we set IOPT = 1 and choose XLO and XHI so that the intervals will be 0.0 to 0.5, 0.5 to 1.0, 
and so on. This means that the midpoints of the class intervals, output in DIV, will be 0.25, 0.75, and so on.

      USE OWFRQ_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
! 
      INTEGER    IOPT, NOUT
      REAL       DIV(K), TABLE(K), X(NOBS), XHI, XLO
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
OWFRQ         Chapter 1: Basic Statistics      16



          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
! 
      CALL UMACH (2, NOUT)
      IOPT = 1
      XLO  = 0.5
      XHI  = 4.5
! 
      CALL OWFRQ (X, K, TABLE, iopt=iopt, xlo=xlo, xhi=xhi, div=div)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT ('  Midpoints:  ', 10F5.2, /, '     Counts: ', 10F5.0)
      END

Output

Midpoints:   0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
   Counts:    2.   7.   6.   6.   4.   2.   2.   0.   0.   1.

Example 3

In this example, we input class boundaries in DIV. We choose the same intervals as in the example above: 0.0 
to 0.5, 0.5 to 1.0, and so on. DIV begins with the first cutpoint between classes.

      USE OWFRQ_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
! 
      INTEGER    IOPT, NOUT
      REAL       DIV(K-1), TABLE(K), X(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
      DATA DIV/0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5/
! 
      CALL UMACH (2, NOUT)
      IOPT = 2
! 
      CALL OWFRQ (X, K, TABLE, IOPT=IOPT, DIV=DIV)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT ('  Cutpoints:    ', 9F5.1, /, '     Counts: ', 10F5.0)
      END

Output

Cutpoints:      0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5
   Counts:    2.   7.   6.   6.   4.   2.   2.   0.   0.   1.
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Example 4

In this example, we set IOPT = 3, and set the values in DIV and CLHW so that the intervals will be the same as 
in the previous two examples.

      USE OWFRQ_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    K, NOBS
      PARAMETER  (K=10, NOBS=30)
! 
      INTEGER    IOPT, NOUT
      REAL       CLHW, DIV(K), TABLE(K), X(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,&
          2.05/
      DATA DIV/0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25,&
          4.75/
! 
      CALL UMACH (2, NOUT)
      IOPT = 3
      CLHW = 0.25
! 
      CALL OWFRQ (X, K, TABLE, IOPT=IOPT, CLHW=CLHW, DIV=DIV)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (' Class marks: ', 10F5.2, /, '      Counts: ', 10F5.0)
      END

Output

Class marks:  0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
     Counts:    2.   7.   6.   6.   4.   2.   2.   0.   0.   1.
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TWFRQ

Tallies observations into a two-way frequency table.

Required Arguments
X — Vector of length NOBS containing the data for one variable.  (Input)
Y — Vector of length NOBS containing the data for the other variable.  (Input)
KX — Number of intervals for the variable X.  (Input)
KY — Number of intervals for the variable Y.  (Input)
TABLE — KX by KY matrix containing the counts.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
IOPT — Tallying option.  (Input) 

Default: IOPT = 0.

XLO — If IOPT = 1, XLO is the lower bound at which to begin forming the class intervals for X.  (Input) 
XLO is only used if IOPT = 1.

YLO — If IOPT = 1, YLO is the lower bound at which to begin forming the class intervals for Y.  (Input) 
YLO is only used if IOPT = 1.

IOPT Action

0 Intervals of equal lengths for each variable, determined from the data, are used. Let 
XMIN and XMAX be the minimum and maximum values in X, respectively, with similar 
meanings for YMIN and YMAX. Then, TABLE(1, 1) is the tally of observations with the X 
value less than or equal to XMIN + (XMAX - XMIN)/KX, and the Y value less than or equal 
to YMIN + (YMAX - YMIN)/KY. The other table entries are determined similarly.

1 Intervals of equal lengths are used just as in the case of IOPT = 0, except the upper and 
lower bounds are taken as the user-supplied variables XLO, XHI, YLO, and YHI instead of 
the actual minima and maxima in the data. Therefore, the first and the last intervals for 
both variables are semi-infinite in length. KX and KY must be greater than 2.

2 KX - 1 cutpoints are input in DIVX, and KY - 1 cutpoints are input in DIVY. The tally in 
TABLE(1, 1) is the number of observations for which the X value is less than or equal to 
DIVX(1), and the Y value is less than or equal to DIVY(1). For I greater than 1 and less 
than KX and J greater than 1 and less than KY, the tally in TABLE(I, J) is the number of 
observations with X greater than DIVX(I - 1) and less than or equal to DIVX(I) and with 
Y greater than DIVY(J - 1) and less than or equal to DIVY(J). The tally in TABLE(KX, KY) 
is the number of observations for which the X value is greater than DIVX(KX - 1) and the 
Y value is greater than DIVY(KY - 1). KX and KY must be greater than 1.

3 Class marks are input in DIVX and DIVY and a constant class half-width are input in 
CLHWX and CLHWY. The total of the elements in TABLE may be less than NOBS. The tally in 
TABLE(I, J) is the number of observations with X value between DIVX(I) - CLHWX and 
DIVX(I) + CLHWX, and with Y value between DIVY(J) - CLHWY and DIVY(J) + CLHWY.
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XHI — If IOPT = 1, XHI is the upper bound to use in forming the class intervals for X.  (Input) 
XHI is only used if IOPT = 1.

YHI — If IOPT = 1,  is the upper bound to use in forming the class intervals for Y.  (Input) 
YHI is only used if  IOPT = 1.

CLHWX — If IOPT = 3, CLHWX is the half-width of the class intervals for X.  (Input) 
CLHWX is only used if IOPT = 3.

CLHWY —If IOPT = 3, CLHWY is the half-width of the class intervals for Y.  (Input) 
CLHWY is only used if IOPT = 3.

DIVX — Vector of varying length and contents depending on IOPT.   (Input if IOPT= 2 or 3; output if 
IOPT = 0 or 1) 
The contents of DIVX are in ascending order. 

DIVY — Vector of varying length and contents depending on IOPT.   (Input if IOPT= 2 or 3; output if 
IOPT = 0 or 1) 
The contents of DIVY are in ascending order. See DIVX.

LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDTABL = size (TABLE,1).

FORTRAN 90 Interface
Generic: CALL TWFRQ (X, Y, KX, KY, TABLE [, …])
Specific: The specific interface names are S_TWFRQ and D_TWFRQ.

FORTRAN 77 Interface
Single: CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI, CLHWX, CLHWY, DIVX, DIVY, 

TABLE, LDTABL)
Double: The double precision name is DTWFRQ.

Description

The routine TWFRQ groups bivariate numerical data into categories, which can be defined in any of four dif-
ferent ways as chosen by IOPT. This routine is very similar to routine OWFRQ for univariate data. If IOPT= 0, 
KX intervals of equal length are formed for the first variable (in X) between the minimum and maximum val-
ues in X and similarly KY intervals are formed for the second variable (in Y). The data are then tallied in these 
intervals. The midpoints of the intervals for the first variable are output in DIVX and those of the second in 
DIVY.

IOPT Contents

0 DIV is of length KX containing interval midpoints for the X variable. (DIVX is output.)

1 DIV is of length KX containing interval midpoints for the X variable. Since the first and 
last intervals are semi-infinite in length, DIVX(1) contains XLO - half the interval length, 
and DIV(KX) contains XHI + half the interval length. (DIVX is output.)

2 DIVX is a vector of length KX - 1 containing cutpoints. (DIVX is input.)

3 DIVX is of length KX containing classmarks. (DIVX is input.)
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If IOPT = 1, K - 2 intervals of equal length are formed between XLO and XHI for the data in X and likewise 
for Y. The data are then tallied in these intervals. In this option, there is one group that consists of data less 
than XLO and one group of data greater than XHI. This option is similar to IOPT = 0, except in this case, the 
midpoints of the classes are under control of the user. The midpoints of the intervals are output in DIVX and 
DIVY.

For IOPT = 2 or 3, the intervals need not be equally spaced. If IOPT = 2, the intervals need not be equal in 
length. In this case, the intervals are defined by their boundaries, the “cutpoints”, which are input in DIVX 
and DIVY. The number of cutpoints is one less than the number of intervals. The first cutpoint defines the 
upper bound of the first interval, and the last cutpoint defines the lower bound of the last interval.

If IOPT = 3, the intervals are all of length twice CLHWX for X and twice CLHWY for Y, and they are centered on 
the class marks input in DIVX and DIVY. This option can be used to exclude portions of the data. The exam-
ples use all of these options with the same data set.

Examples

Example 1

The data for X in these examples are the same as those used in the routine for one-way frequency tabulation, 
OWFRQ. The data for Y were created by adding small integers to the data in X. In the first example, we set 
IOPT = 0. This option may be appropriate if we do not know the range of the data. Notice that the midpoints 
of the class intervals, output in DIVX and DIVY, are not “pretty” numbers. Routine WRRRN, (see Chapter 19, 
“Utilities”) is used to print the frequencies. This printing routine puts column and row numbers above and to 
the left of the matrix being printed. For example, the “4” in the second row and second column of the output 
is the first number that represents a frequency. That frequency is the number of occurrences of pairs of obser-
vations in which both values are in the lowest groups.

      USE TWFRQ_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
! 
      INTEGER    NOUT
      REAL       DIVX(KX), DIVY(KY), TABLE(LDTABL,KY), X(NOBS), Y(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
          3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59, &
          2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &
          5.05/
! 
      CALL UMACH (2, NOUT)
! 
      CALL TWFRQ (X, Y, KX, KY, TABLE, DIVX=DIVX, DIVY=DIVY)
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      WRITE (NOUT,99999) DIVX, DIVY
99999 FORMAT ('  Midpoints for X (Rows):    ', 5F5.2, /, '  Midpoints ' &
            , 'for Y (Columns): ', 6F5.2)
      CALL WRRRN ('Frequencies', TABLE)
      END

Output

Midpoints for X (Rows):     0.76 1.65 2.53 3.42 4.31
Midpoints for Y (Columns):  1.88 2.69 3.51 4.33 5.14 5.96

                  Frequencies
        1       2       3       4       5       6
1   4.000   2.000   4.000   2.000   0.000   0.000
2   0.000   4.000   3.000   2.000   1.000   0.000
3   0.000   0.000   1.000   2.000   0.000   1.000
4   0.000   0.000   0.000   0.000   1.000   2.000
5   0.000   0.000   0.000   0.000   0.000   1.000

Example 2

In this example, we set IOPT = 1 and choose XLO, XHI, YLO, and YHI so that the intervals will be 0 to 1, 1 to 2, 
and so on for X, and 1 to 2, 2 to 3, and so on for Y. This means that the midpoints of the class intervals, output 
in DIVX and DIVY, will be 0.5, 1.5, 2.5, and so on. The “5” in the third row and fourth column of the printed 
output below, (i.e., the second row and the third column of the frequencies TABLE) represents five pairs of 
observations with the X value between 1.0 and 2.0 and the Y value between 3.0 and 4.0.

      USE TWFRQ_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
! 
      INTEGER    IOPT, NOUT
      REAL       DIVX(KX), DIVY(KY), TABLE(LDTABL,KY), &
                 X(NOBS), XHI, XLO, Y(NOBS), YHI, YLO
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
          3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,&
          2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &
          5.05/
! 
      CALL UMACH (2, NOUT)
      IOPT = 1
      XLO  = 1.0
      XHI  = 4.0
      YLO  = 2.0
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      YHI  = 6.0
! 
      CALL TWFRQ (X, Y, KX, KY, TABLE, iopt=iopt, xlo=xlo, ylo=ylo,  &
                  xhi=xhi, yhi=yhi, divx=divx, divy=divy)
      WRITE (NOUT,99999) DIVX, DIVY
99999 FORMAT ('  Midpoints for X (Rows):    ', 5F5.2, /, '  Midpoints ' &
            , 'for Y (Columns): ', 6F5.2)
      CALL WRRRN ('Frequencies', TABLE)
      END

Output

Midpoints for X (Rows):     0.50 1.50 2.50 3.50 4.50
Midpoints for Y (Columns):  1.50 2.50 3.50 4.50 5.50 6.50

                  Frequencies
        1       2       3       4       5       6
1   3.000   2.000   4.000   0.000   0.000   0.000
2   0.000   5.000   5.000   2.000   0.000   0.000
3   0.000   0.000   1.000   3.000   2.000   0.000
4   0.000   0.000   0.000   0.000   0.000   2.000
5   0.000   0.000   0.000   0.000   1.000   0.000

Example 3

In this example, we input class boundaries in DIVX and DIVY. We choose the same intervals as in the exam-
ple above: 0 to 1, 1 to 2, and so on. DIVX and DIVY begins with the first cutpoint between classes.
      USE TWFRQ_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
! 
      INTEGER    IOPT, NOUT
      REAL       DIVX(4), DIVY(5), TABLE(LDTABL,KY), X(NOBS), Y(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
          3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59, &
          2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &
          5.05/
      DATA DIVX/1.0, 2.0, 3.0, 4.0/
      DATA DIVY/2.0, 3.0, 4.0, 5.0, 6.0/
! 
      CALL UMACH (2, NOUT)
      IOPT = 2
! 
      CALL TWFRQ (X, Y, KX, KY, TABLE, IOPT=IOPT, DIVX=DIVX, DIVY=DIVY)
      WRITE (NOUT,99999) DIVX, DIVY
TWFRQ         Chapter 1: Basic Statistics      23



99999 FORMAT ('  Cutpoints for X (Rows):    ', 4F5.2, /, '  Cutpoints ' &
            , 'for Y (Columns): ', 5F5.2)
      CALL WRRRN ('Frequencies', TABLE)
      END

Output

Cutpoints for X (Rows):     1.00 2.00 3.00 4.00
Cutpoints for Y (Columns):  2.00 3.00 4.00 5.00 6.00

                  Frequencies
        1       2       3       4       5       6
1   3.000   2.000   4.000   0.000   0.000   0.000
2   0.000   5.000   5.000   2.000   0.000   0.000
3   0.000   0.000   1.000   3.000   2.000   0.000
4   0.000   0.000   0.000   0.000   0.000   2.000
5   0.000   0.000   0.000   0.000   1.000   0.000

Example 4

In this example, we set IOPT = 3, and set the values in DIVX, DIVY, CLHWX, and CLHWY so that the intervals 
will be the same as in the previous two examples.

      USE TWFRQ_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    KX, KY, LDTABL, NOBS
      PARAMETER  (KX=5, KY=6, LDTABL=5, NOBS=30)
! 
      INTEGER    IOPT, NOUT
      REAL       CLHWX, CLHWY, DIVX(KX), DIVY(KY), TABLE(LDTABL,KY), &
                X(NOBS), Y(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
      DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
          3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59, &
          2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &
          5.05/
      DATA DIVX/0.5, 1.5, 2.5, 3.5, 4.5/
      DATA DIVY/1.5, 2.5, 3.5, 4.5, 5.5, 6.5/
! 
      CALL UMACH (2, NOUT)
      IOPT  = 3
      CLHWX = 0.5
      CLHWY = 0.5
! 
      CALL TWFRQ (X, Y, KX, KY, TABLE, IOPT=IOPT, CLHWX=CLHWX,  &
                 CLHWY=CLHWY, DIVX=DIVX, DIVY=DIVY)
      WRITE (NOUT,99999) DIVX, DIVY
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99999 FORMAT ('  Class marks for X (Rows):    ', 5F5.2, /, '  Class ', &
            'marks for Y (Columns): ', 6F5.2)
      CALL WRRRN ('Frequencies', TABLE)
      END

Output

Class marks for X (Rows):     0.50 1.50 2.50 3.50 4.50
Class marks for Y (Columns):  1.50 2.50 3.50 4.50 5.50 6.50

                  Frequencies
        1       2       3       4       5       6
1   3.000   2.000   4.000   0.000   0.000   0.000
2   0.000   5.000   5.000   2.000   0.000   0.000
3   0.000   0.000   1.000   3.000   2.000   0.000
4   0.000   0.000   0.000   0.000   0.000   2.000
5   0.000   0.000   0.000   0.000   1.000   0.000
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FREQ

Tallies multivariate observations into a multiway frequency table.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
INDCL — Index vector of length NCLVAR containing the column numbers in X that are the classification 

variables.  (Input)
MAXTAB — An upper bound for the total number of cells in the frequency table.  (Input) 

This is the product of the number of distinct values taken by all of the classification variables since the 
table includes the empty cells.

MAXCL — An upper bound for the sum of the number of distinct values taken by all of the classification 
variables.  (Input)

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels or categories of 
the i-th classification variable.  (Output, if IDO = 1; Input/Output, if IDO = 2.) 
Each variable must have more than one level.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the values of the 
classification variables.  (Output, if IDO= 1; input/output, if
IDO = 2.) 
Since in general the length of CLVAL will not be known in advance, MAXCL is an upper bound for this 
length. The first NCLVAL(1) elements of CLVAL contain the values for the first classification variable. 
The next NCLVAL(2) contain the values for the second variable. The last NCLVAL(NCLVAR) positions 
contain the values for the last classification variable.

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the frequencies in 
the cells of the table to be fit.  (Output, if IDO = 1; input/output, if IDO = 2) Since, in general, the length 
of TABLE will not be known in advance, MAXTAB is an upper bound for this length. Empty cells are 
included in TABLE, and each element of TABLE is nonnegative. The cells of TABLE are sequenced so 
that the first variable cycles from 1 to NCLVAL(1) one time, the second variable cycles from 1 to 
NCLVAL(2) NCLVAL(1) times, and so on, up to the NCLVAR-th variable, which cycles from 1 to 
NCLVAL(NCLVAR) most rapidly (NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR - 1) times). That is 
to say, the second element of TABLE is the count for the first value for each classification variable 
except the last one and the second value of the last classification variable (assuming that variable takes 
more than one distinct value).

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 1.

NOBS — Number of observations.  (Input)
Default: NOBS = size (X,1).

IDO Action

1 This is the first (or the only) invocation of FREQ for this data set. Initialization and updat-
ing for the data in X are performed.

2 This is an additional invocation of FREQ, and updating for the data in X is performed.
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NCOL — Number of columns in X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies.
Default: IFRQ = 0.

NCLVAR — Number of classification variables.  (Input) 
NCLVAR must be greater than one.
Default: NCLVAR = size (INDCL,1).

FORTRAN 90 Interface
Generic: CALL FREQ (X, INDCL, MAXTAB, MAXCL, NCLVAL, CLVAL, TABLE [, …])
Specific: The specific interface names are S_FREQ and D_FREQ.

FORTRAN 77 Interface
Single: CALL FREQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR, INDCL, MAXTAB, MAXCL, NCLVAL, 

CLVAL, TABLE)
Double: The double precision name is DFREQ.

Description

The routine FREQ determines the distinct values in multivariate data and computes frequencies for the data. 
The routine accepts the data in the matrix X, but performs computations only for the variables (columns) in X 
specified in INDCL. In general, the variables for which frequencies should be computed are discrete; that is, 
they should take on a relatively small number of different values. Variables that are continuous can be 
grouped first. 

The routine OWFRQ or TWFRQ can be used to group variables and determine the frequencies of groups. The 
routine FREQ fills the vector CLVAL with the unique values of the variables and tallies the number of unique 
values of each variable in the vector NCLVAL. Each combination of one value from each variable forms a cell 
in a multiway table. The frequencies of these cells are entered in TABLE so that the first variable cycles 
through its values exactly once and the last variable cycles through its values most rapidly. Some cells may 
not correspond to any observation in the data; that is, “missing cells” are included and have 0’s in TABLE.

The length of the vectors CLVAL and TABLE depend on the data. The parameters MAXCL and MAXTAB are 
used as checks that the arrays sizes are not exceeded.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2EQ/DF2EQ. The reference is

CALL F2EQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR, INDCL, MAXTAB, MAXCL, 
NCLVAL, CLVAL, TABLE, IWK, WK)
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The additional arguments are as follows:

IWK — Workspace of length NCLVAR.

WK — Workspace of length NCLVAR.
2. Informational errors 

Example

The data for this example are taken from the examples used in routine TWFRQ, but modified so that the val-
ues of all points within a given interval of Example 2 for TWFRQ are exactly equal to the class mark for that 
interval. The results from this example, therefore, are the same as for Example 2 for TWFRQ, except that 
TABLE is a vector. (The elements of the vector are sequenced as the columns of the matrix.)

      USE FREQ_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LDX, MAXCL, MAXTAB, NCLVAR, NCOL, J
      PARAMETER  (LDX=30, MAXCL=15, MAXTAB=40, NCLVAR=2, NCOL=2)
! 
      INTEGER    I, INDCL(NCLVAR), NCLVAL(NCLVAR), NOUT, &
                          NVAL1, NVAL2
      REAL       CLVAL(MAXCL), TABLE(MAXTAB), X(LDX,NCOL)
! 
      DATA X/0.50, 1.50, 0.50, 1.50, 1.50, 1.50, 0.50, 1.50, 3.50, &
            2.50, 2.50, 3.50, 1.50, 2.50, 0.50, 1.50, 1.50, 0.50, &
            0.50, 0.50, 2.50, 1.50, 1.50, 1.50, 4.50, 2.50, 0.50, &
            1.50, 0.50, 2.50, &
            1.50, 3.50, 3.50, 2.50, 3.50, 4.50, 1.50, 3.50, 6.50, &
            3.50, 4.50, 6.50, 2.50, 4.50, 3.50, 2.50, 3.50, 3.50, &
            1.50, 2.50, 5.50, 2.50, 3.50, 4.50, 5.50, 4.50, 3.50, &
            2.50, 2.50, 5.50/
! 
      CALL UMACH (2, NOUT)
      INDCL(1) = 1
      INDCL(2) = 2
      CALL FREQ (X, INDCL, MAXTAB, MAXCL, NCLVAL, CLVAL, TABLE)
      NVAL1 = NCLVAL(1)
      NVAL2 = NCLVAL(2)
      WRITE (NOUT,99999) (CLVAL(J),J=NVAL1+1,NVAL1+NVAL2), &
        (CLVAL(I),(TABLE((I-1)*NVAL2+J),J=1,NVAL2),I=1,NVAL1)
99999 FORMAT ('     Frequencies for All Combinations of Values', /, &
             8X,6F7.2,/,5(F7.2,6F7.0,/))
      END

Type Code Description

4 1 MAXCL is too small. Increase the length of CLVAL.

4 2 MAXTAB is too small. Increase the length of TABLE.
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Output

Frequencies for All Combinations of Values
        1.50   2.50   3.50   4.50   5.50   6.50
0.50     3.     2.     4.     0.     0.     0.
1.50     0.     5.     5.     2.     0.     0.
2.50     0.     0.     1.     3.     2.     0.
3.50     0.     0.     0.     0.     0.     2.
4.50     0.     0.     0.     0.     1.     0.
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UVSTA

Computes basic univariate statistics.

Required Arguments
X — ∣NROW∣ by NVAR + m matrix containing the data, where m is 0, 1, or 2 depending on whether any col-

umn(s) of X correspond to weights and/or frequencies.  (Input)
STAT — 15 by NVAR matrix containing in each row statistics on all of the variables.  (Output, if IDO = 0 or 

1; input/output, if IDO = 2 or 3.) 
The columns of STAT correspond to the columns of X, except for the columns of X containing weights 
or frequencies. (The columns beyond the weights or frequencies column are shifted to the left.)

I STAT(I, *)

1 contains means.

2 contains variances.

3 contains standard deviations.

4 contains coefficients of skewness.

5 contains coefficients of excess (kurtosis).

6 contains minima.

7 contains maxima.

8 contains ranges.

9 contains coefficients of variation, when they are defined. If the coefficient of 
variation is not defined for a given variable, STAT(9, *) contains a zero in the 
corresponding position.

10 contains numbers (counts) of nonmissing observations.

11 is used only when CONPRM is positive, and, in this case, contains the lower 
confidence limit for the mean (assuming normality).

12 is used only when CONPRM is positive, and, in this case, contains the upper 
confidence limit for the mean (assuming normality).

13 is used only when CONPRV is positive, and, in this case, contains the lower 
confidence limit for the variance (assuming normality).

14 is used only when CONPRV is positive, and, in this case, contains the upper 
confidence limit for the variance (assuming normality).

15 is used only when weighting is used (IWT is nonnegative), and, in this case, 
contains the sums of the weights.
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Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NROW — The absolute value of NROW is the number of rows of data currently input in X.  (Input) 
Default: NROW = size (X,1).
NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be 
deleted from some aspects of the analysis, and this should be done only if IDO is 2 or 3 and the wrap-
up computations for STAT have not been performed. When a negative value is input for NROW, it is 
assumed that each of the -NROW rows of X has been input (with positive NROW) in a previous invoca-
tion of UVSTA. Use of negative values of NROW should be made with care and with the understanding 
that some quantities in STAT cannot be updated properly in this case. In particular, the minima, max-
ima, and ranges are not updated because of deletion. It is also possible that a constant variable in the 
remaining data will not be recognized as such.

NVAR — Number of variables (not including the weight or frequency variable, if used).  (Input)
Default: NVAR = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X contains the weights.
Default: IWT = 0.

MOPT — Missing value option.  (Input) 
NaN (not a number from routine AMACH(6)) is interpreted as the missing value code and any value in 
X equal to NaN is excluded from the computations.
Default: MOPT = 0.

IDO Action

0 This is the only invocation of UVSTA for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to UVSTA will be made. Initialization and 
updating for the data in X are performed. The means are output correctly, but the other 
quantities output in STAT are intermediate quantities.

2 This is an intermediate invocation of UVSTA, and updating for the data in X is 
performed.

3 This is the final invocation of this routine. If NROW is not zero, updating is performed. 
The wrap-up computations for STAT are performed.

MOPT Action

0 The exclusion is listwise. (The entire row of X is excluded if any of the values of the row 
is equal to the missing value code.)

1 The exclusion is elementwise. (Statistics for variables with nonmissing values are 
updated.)
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CONPRM — Confidence level for two-sided interval estimate of the means (assuming normality), in per-
cent.  (Input) 
If CONPRM ≤ 0, no confidence interval for the mean is computed; otherwise, a CONPRM percent confi-
dence interval is computed, in which case CONPRM must be between 0.0 and 100.0. CONPRM is often 
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level ONECL, set 
CONPRM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPRM = .95.0.

CONPRV — Confidence level for two-sided interval estimate of the variances (assuming normality), in 
percent.  (Input) 
The confidence intervals are symmetric in probability (rather than in length). See also the description 
of CONPRM.
Default: CONPRV = .95.0.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSTAT = size (STAT,1).

NRMISS — Number of rows of data encountered in calls to UVSTA that contain any missing values.  (Out-
put, if IDO = 0 or 1; input/output, if IDO = 2 or 3.) 
Rows with a frequency of zero are not counted.

FORTRAN 90 Interface
Generic: CALL UVSTA (X, STAT [, …])
Specific: The specific interface names are S_UVSTA and D_UVSTA.

FORTRAN 77 Interface
Single: CALL UVSTA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, CONPRM, CONPRV, IPRINT, 

STAT, LDSTAT, NRMISS)
Double: The double precision name is DUVSTA.

Description

For the data in each column of X, except the columns containing frequencies or weights, UVSTA computes the 
sample mean, variance, minimum, maximum, and other basic statistics. It also computes confidence inter-
vals for the mean and variance if the sample is assumed to be from a normal population.

IPRINT Action

1 No printing is performed.

2 Statistics in STAT are printed if IDO = 0 or 3.

3 Intermediate means, sums of squares about the mean, minima, 
maxima, and counts are printed when IDO = 1 or 2, and all sta-
tistics in STAT are printed when IDO = 0 or 3.
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Missing values, that is, values equal to NaN (not a number, the value returned by routine AMACH(6)), are 
excluded from the computations. If MOPT is positive, the exclusion is listwise; that is, the entire observation is 
excluded and no computations are performed even for the variables with valid values. If frequencies or 
weights are specified, any observation whose frequency or weight is missing is excluded from the 
computations.

Frequencies are interpreted as multiple occurrences of the other values in the observations. That is, a row of X 
with a frequency variable having a value of 2 has the same effect as two rows with frequencies of 1. The total 
of the frequencies is used in computing all of the statistics based on moments (mean, variance, skewness, and 
kurtosis). Weights are not viewed as replication factors. The sum of the weights is used only in computing 
the mean (of course, then the weighted mean is used in computing the central moments). Both weights and 
frequencies can be zero, but neither can be negative. In general, a zero frequency means that the row is to be 
eliminated from the analysis; no further processing, counting of missing values, or error checking is done on 
the row. Although it is not required that frequencies be integers, the logic of their treatment implicitly 
assumes that they are. Weights, on the other hand, are allowed to be continuous. A weight of zero results in 
the row being counted, and updates are made of statistics and of the number of missing values. A missing 
value for the frequency or a missing value for the weight when the frequency is nonzero results in the row 
being deleted from the analysis; but even in that case, if one is nonmissing, it is an error for that nonmissing 
weight or frequency to be negative.

The definitions of some of the statistics are given below in terms of a single variable x. The i-th datum is xi, 
with corresponding frequency fi and weight wi. If either frequencies or weights are not specified, fi and/or wi 
are identically one. The summation in each case is over the set of valid observations, based on the setting of 
MOPT and the presence of missing values in the data.

Number of nonmissing observations, STAT(10, ∗)

Mean, STAT(1, ∗)

Variance, STAT(2, ∗)
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Skewness, STAT(4, ∗)

Excess or Kurtosis, STAT(5, ∗)

Minimum, STAT(6, ∗)

Maximum, STAT(7, ∗)

Range, STAT(8, ∗)

Coefficient of Variation, STAT(9, ∗)

The arguments IDO and NROW allow data to be input a few at a time and even to be deleted after having been 
included in the analysis. The minima, maxima, and ranges are not updated when observations are deleted.

Comments
Workspace may be explicitly provided, if desired, by use of U2STA/DU2STA. The reference is

CALL U2STA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, CONPRM, CONPRV, 
IPRINT, STAT, LDSTAT, NRMISS, WK)

The additional argument is

WK — Real work vector of length specified above. WK should not be changed between calls to 
U2STA.
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Examples

Example 1

This example uses data from Draper and Smith (1981). There are 5 variables and 13 observations.

      USE UVSTA_INT
      USE GDATA_INT

      IMPLICIT   NONE
      INTEGER    LDSTAT, LDX, NVAR
      PARAMETER  (LDSTAT=15, LDX=13, NVAR=5)
! 
      INTEGER    IPRINT, NR, NROW, NV
      REAL       CONPRM, CONPRV, STAT(LDSTAT,NVAR), X(LDX,NVAR)
!                                 Get data for example.
      CALL GDATA (5, X, NR, NV)
!                                 All data are input at once.
      NROW = NR
!                                 No unequal frequencies or weights
!                                 are used.
!                                 Get 95% confidence limits.
!                                 Delete any row containing a missing
!                                 value.
!                                 Print results.
      IPRINT = 1
      CALL UVSTA (X, STAT, NROW=NROW, IPRINT=IPRINT)
      END

Output

Univariate Statistics from UVSTA 

Variable      Mean       Variance    Std. Dev.       Skewness      Kurtosis
   1        7.4615        34.6026      5.8824         0.68768       0.07472
   2       48.1538       242.1410      15.5609       -0.04726      -1.32257
   3       11.7692        41.0256       6.4051        0.61064      -1.07916
   4       30.0000       280.1667      16.7382        0.32960      -1.01406
   5       95.4231       226.3136      15.0437       -0.19486      -1.34244

Variable    Minimum       Maximum        Range       Coef. Var.       Count
   1         1.0000       21.0000      20.0000          0.7884      13.0000
   2        26.0000       71.0000      45.0000          0.3231      13.0000
   3         4.0000       23.0000      19.0000          0.5442      13.0000 
   4         6.0000       60.0000      54.0000          0.5579      13.0000
   5        72.5000      115.9000      43.4000          0.1577      13.0000

Variable  Lower CLM     Upper CLM    Lower CLV      Upper CLV
   1         3.9068       11.0162      17.7930        94.2894
   2        38.7505       57.5572     124.5113       659.8163
   3         7.8987       15.6398      21.0958       111.7918
   4        19.8852       40.1148     144.0645       763.4335
   5        86.3322      104.5139     116.3726       616.6877
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Example 2

In this example, we use some simple data to illustrate the use of frequencies, missing values, and the param-
eters IDO and NROW. In the data below, “NaN” represents a missing value.

We bring in the data one observation at a time in this example. Also, we bring in one false datum and then 
delete it on a subsequent call to UVSTA.
      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDSTAT, NVAR
      PARAMETER  (LDSTAT=15, NVAR=2)
! 
      INTEGER    IDO, IFRQ, IPRINT, MOPT, NRMISS, NROW
      REAL       STAT(LDSTAT,NVAR), X1(1,NVAR+1)
!                                 All data are input one observation
!                                 at a time in the vector X1.
      NROW = 1
!                                 Frequencies are in the first
!                                 position.  No weights are used.
      IFRQ = 1
!                                 Get 95% confidence limits.
!                                 Elementwise deletion of missing
!                                 values.
      MOPT = 1
!                                 Print results, intermediate as well.
      IPRINT = 2
!                                 Bring in the first observation.
      IDO   = 1
      X1(1,1) = 2.0
      X1(1,2) = 3.0
      X1(1,3) = 5.0
      CALL UVSTA (X1, STAT, IDO=IDO, NVAR=NVAR, IFRQ=IFRQ, MOPT=MOPT, &
                 IPRINT=IPRINT, NRMISS=NRMISS)
!                                 Bring in the second observation.
      IDO   = 2
      X1(1,1) = 1.0
      X1(1,2) = 9.0
      X1(1,3) = 2.0
      CALL UVSTA (X1, STAT, IDO=IDO, NVAR=NVAR, IFRQ=IFRQ, MOPT=MOPT, &
                 IPRINT=IPRINT, NRMISS=NRMISS)
!                                 Bring in a false observation.
      X1(1,1) = 3.0
      X1(1,2) = 6.0
      X1(1,3) = 3.0
      CALL UVSTA (X1, STAT, IDO=IDO, NVAR=NVAR, IFRQ=IFRQ, MOPT=MOPT, &
                 IPRINT=IPRINT, NRMISS=NRMISS)
!                                 Delete the false observation.

f x y

2 3.0 5.0

1 9.0 2.0

3 1.0 NaN
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!                                 This may make the mimina, maxima,
!                                 and range incorrect.
      NROW  = -1
      X1(1,1) = 3.0
      X1(1,2) = 6.0
      X1(1,3) = 3.0
      CALL UVSTA (X1, STAT, IDO=IDO, NROW=NROW, NVAR=NVAR, IFRQ=IFRQ, &
                 MOPT=MOPT, IPRINT=IPRINT, NRMISS=NRMISS)
      NROW = 1
!                                 Bring in the final observation.
      IDO   = 3
      X1(1,1) = 3.0
      X1(1,2) = 1.0
      X1(1,3) = AMACH(6)
      CALL UVSTA (X1, STAT, IDO=IDO, NROW=NROW, NVAR=NVAR, IFRQ=IFRQ, &
                 MOPT=MOPT, IPRINT=IPRINT, NRMISS=NRMISS)
      END

Output

                   Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           3.0000        0.0000        3.0000        3.0000      2.0000
   2           5.0000        0.0000        5.0000        5.0000      2.0000

                       Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           5.0000       24.0000        3.0000        9.0000      3.0000
   2           4.0000        6.0000        2.0000        5.0000      3.0000

                       Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           5.5000       25.5000        3.0000        9.0000      6.0000
   2           3.5000        7.5000        2.0000        5.0000      6.0000

                       Intermediate Statistics from UVSTA
Variable         Mean      Sum Sqs.       Minimum       Maximum       Count
   1           5.0000       24.0000        3.0000        9.0000      3.0000
   2           4.0000        6.0000        2.0000        5.0000      3.0000

                        Univariate Statistics from UVSTA
Variable         Mean      Variance     Std. Dev.      Skewness    Kurtosis
   1           3.0000        9.6000        3.0984        1.4142      0.5000
   2           4.0000        3.0000        1.7321       -0.7071     -1.5000

Variable      Minimum       Maximum         Range    Coef. Var.       Count
   1           1.0000        9.0000        8.0000        1.0328      6.0000
   2           2.0000        5.0000        3.0000        0.4330      3.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1          -0.2516        6.2516        3.7405       57.7470
    2          -0.3027        8.3027        0.8133      118.4935
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RANKS

Computes the ranks, normal scores, or exponential scores for a vector of observations.

Required Arguments
X — Vector of length NOBS containing the observations to be ranked.  (Input)
SCORE — Vector of length NOBS containing the rank or a transformation of that rank of each observation.  

(Output) 
X and SCORE may occupy the same memory.

Optional Arguments
NOBS — Number of observations.  (Input) 

Default: NOBS = size (X,1).
FUZZ — Value used to determine ties.  (Input) 

If ∣X(I) - X(J)∣ is less than or equal to FUZZ, then X(I) and X(J) are said to be tied.
Default: FUZZ = 0.0.

ITIE — Option for determining the method used to assign a score to tied observations.  (Input) 
Default: ITIE = 0.

ISCORE — Option for specifying the type of values returned in SCORE.  (Input)
Default: ISCORE = 0.

FORTRAN 90 Interface
Generic: CALL RANKS (X, SCORE [, …])
Specific: The specific interface names are S_RANKS and D_RANKS.

ITIE Method

0 The average of the scores of the tied observations is used.

1 The highest score in the group of ties is used.

2 The lowest score in the group of ties is used.

3 The tied observations are to be randomly untied using an IMSL 
random number generator.

ISCORE Type

0 Ranks

1 Blom version of normal scores

2 Tukey version of normal scores

3 Van der Waerdan version of normal scores

4 Expected value of normal order statistics (For tied observa-
tions, the average of the expected normal scores are used.)

5 Savage scores (the expected value of exponential order 
statistics)
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FORTRAN 77 Interface
Single: CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
Double: The double precision name is DRANKS.

Description

The routine RANKS determines the ranks, or various transformations of the ranks of the data in X. Ties in the 
data can be resolved in four different ways, as specified in ITIE.

ISCORE = 0: Ranks

For this option, the values output in SCORE are the ordinary ranks of the data in X. If X(I) has the smallest 
value among those in X and there is no other element in X with this value, then 
SCORE(I) = 1. If both X(I) and X(J) have the same smallest value, then

if ITIE = 0, SCORE(I) = SCORE(J) = 1.5
if ITIE = 1, SCORE(I) = SCORE(J) = 2.0
if ITIE = 2, SCORE(I) = SCORE(J) = 1.0
if ITIE = 3, SCORE(I) = 1.0 and SCORE(J) = 2.0

or SCORE(I) = 2.0 and SCORE(J) = 1.0.

When the ties are resolved by use of routine RNUNF (see Chapter 18, “Random Number Generation”) to generate 
random numbers, different results may occur when running the same program at different times unless the 
“seed” of the random number generator is set explicitly by use of the routine RNSET (see Chapter 18, “Random 
Number Generation”). Ordinarily, there is no need to call the routine to set the seed, even if there are ties in the 
data.

ISCORE = 1: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of order statistics from a nor-
mal distribution. The simplest approximations are obtained by evaluating the inverse cumulative normal 
distribution function (routine ANORIN, see Chapter 18, “Random Number Generation”) at the ranks scaled into 
the open interval (0, 1). In the Blom version (see Blom 1958), the scaling transformation for the rank 
ri(1 ≤ ri ≤ n, where n is the sample size, NOBS) is (ri - 3/8)/(n + 1/4). The Blom normal score corresponding 
to the observation with rank ri is

where Φ( ) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if X(I) equals X(J) (within 
FUZZ) and their value is the k-th smallest in the data set, the Blom normal scores are determined for ranks of 
k and k + 1, and then these normal scores are averaged or selected in the manner specified by ITIE. (Whether 
the transformations are made first or ties are resolved first makes no difference except when averaging is 
done.)
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ISCORE = 2: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank ri is (ri - 1/3)/(n + 1/3). The 
Tukey normal score corresponding to the observation with rank ri is

Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 3: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling transformation for the rank ri is 
ri / (n + 1). The Van der Waerden normal score corresponding to the observation with rank ri is 

Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 4: Expected Value of Normal Order Statistics

For this option, the values output in SCORE are the expected values of the normal order statistics from a sam-
ple of size NOBS. If the value in X(I) is the k-th smallest, then the value output in SCORE(I) is E(Zk), where E( ) 
is the expectation operator and Zk is the k-th order statistic in a sample of size NOBS from a standard normal 
distribution. Such expected values are computed by the routine ENOS (see Chapter 20, “Mathematical Sup-
port”). Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 5: Savage Scores

For this option, the values output in SCORE are the expected values of the exponential order statistics from a 
sample of size NOBS. These values are called Savage scores because of their use in a test discussed by Savage 
(1956) (see Lehman 1975). If the value in X(I) is the k-th smallest, then the value output in SCORE(I) is E(Yk), 
where Yk is the k-th order statistic in a sample of size NOBS from a standard exponential distribution. The 
expected value of the k-th order statistic from an exponential sample of size n (NOBS) is

Ties are handled in the same way as discussed above for the Blom normal scores. 

The example uses all of these options with the same data set, which contains some ties. The ties are handled 
different ways in this example.

Comments
1. Workspace may be explicitly provided, if desired, by use R2NKS/DR2NKS. The reference is:
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CALL R2NKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE, IWK)

The additional argument is:

IWK — Integer work vector of length NOBS.
2. The routine RNSET (see Chapter 18, “Random Number Generation”) can be used to initialize the seed of 

the random number generator used to break ties. If the seed is not initialized by RNSET; different runs 
of the same program can yield different results if there are tied observations and ITIE = 3.

Example

The data for this example, from Hinkley (1977), are the same used in several examples in this chapter. There 
are 30 observations. Note that the fourth and sixth observations are tied and that the third and twentieth are 
tied.

      USE RANKS_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=30)
! 
      INTEGER    ISCORE, ISEED, ITIE, NOUT
      REAL       FUZZ, SCORE(NOBS), X(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,&
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
! 
      CALL UMACH (2, NOUT)
!                                 Ranks.
      ISCORE = 0
!                                 Average ties.
      ITIE = 0
      FUZZ = 0.0
! 
      CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
      WRITE (NOUT,99994) SCORE
99994 FORMAT ('   Ranks', /, (1X,10F7.1))
!                                 Blom normal scores.
      ISCORE = 1
!                                 Take largest ranks for ties.
      ITIE = 1
      FUZZ = 0.0
! 
      CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
      WRITE (NOUT,99995) SCORE
99995 FORMAT (/, '   Blom normal scores', /, (1X,10F7.3))
!                                 Tukey normal scores.
      ISCORE = 2
!                                 Take smallest ranks for ties.
      ITIE = 2
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      FUZZ = 0.0
! 
      CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
      WRITE (NOUT,99996) SCORE
99996 FORMAT (/, '   Tukey normal scores', /, (1X,10F7.3))
!                                 Van der Waerden scores.
      ISCORE = 3
!                                 Randomly resolve ties.
      ISEED = 123457
      CALL RNSET (ISEED)
      ITIE = 3
      FUZZ = 0.0
! 
      CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
      WRITE (NOUT,99997) SCORE
99997 FORMAT (/, '   Van der Waerden scores', /, (1X,10F7.3))
!                                 Expected value of normal O. S.
      ISCORE = 4
!                                 Average ties.
      ITIE = 0
      FUZZ = 0.0
! 
      CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
      WRITE (NOUT,99998) SCORE
99998 FORMAT (/, '   Expected values of normal order statistics', /,&
            (1X,10F7.3))
!                                 Savage scores.
      ISCORE = 5
!                                 Average ties.
      ITIE = 0
      FUZZ = 0.0
! 
      CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
      WRITE (NOUT,99999) SCORE
99999 FORMAT (/, '   Expected values of exponential order statistics', &
            /, (1X,10F7.2))
      END

Output

Ranks
  5.0   18.0    6.5   11.5   21.0   11.5    2.0   15.0   29.0   24.0
 27.0   28.0   16.0   23.0    3.0   17.0   13.0    1.0    4.0    6.5
 26.0   19.0   10.0   14.0   30.0   25.0    9.0   20.0    8.0   22.0

Blom normal scores
-1.024  0.209 -0.776 -0.294  0.473 -0.294 -1.610 -0.041  1.610  0.776
 1.176  1.361  0.041  0.668 -1.361  0.125 -0.209 -2.040 -1.176 -0.776
 1.024  0.294 -0.473 -0.125  2.040  0.893 -0.568  0.382 -0.668  0.568

Tukey normal scores
-1.020  0.208 -0.890 -0.381  0.471 -0.381 -1.599 -0.041  1.599  0.773
 1.171  1.354  0.041  0.666 -1.354  0.124 -0.208 -2.015 -1.171 -0.890
 1.020  0.293 -0.471 -0.124  2.015  0.890 -0.566  0.381 -0.666  0.566
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 Van der Waerden scores
-0.989  0.204 -0.753 -0.287  0.460 -0.372 -1.518 -0.040  1.518  0.753
 1.131  1.300  0.040  0.649 -1.300  0.122 -0.204 -1.849 -1.131 -0.865
 0.989  0.287 -0.460 -0.122  1.849  0.865 -0.552  0.372 -0.649  0.552
 Expected values of normal order statistics
-1.026  0.209 -0.836 -0.338  0.473 -0.338 -1.616 -0.041  1.616  0.777
 1.179  1.365  0.041  0.669 -1.365  0.125 -0.209 -2.043 -1.179 -0.836
 1.026  0.294 -0.473 -0.125  2.043  0.894 -0.568  0.382 -0.669  0.568

Expected values of exponential order statistics
 0 18   0.89   0.24   0.47   1.17   0.47   0.07   0.68   2.99   1.54
 2.16   2.49   0.74   1.40   0.10   0.81   0.56   0.03   0.14   0.24
 1.91   0.98   0.40   0.61   3.99   1.71   0.35   1.07   0.30   1.28
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LETTR

Produces a letter value summary.

Required Arguments
X — Vector of length NOBS containing the data.  (Input)
SUMRY — Vector of length NUM containing the summary letter values.  (Output)

If NUM is 5, for example, SUMRY contains the minimum, the lower hinge (quartile), the median, the 
upper hinge, and the maximum, in that order.

NMISS — Number of missing values.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NUM — Number of summary values.  (Input) 

NUM must be an odd integer greater than or equal to 3. A common value for NUM is 5.
Default: NUM = 5.

FORTRAN 90 Interface
Generic: CALL LETTR (X, SUMRY, NMISS [, …])
Specific: The specific interface names are S_LETTR and D_LETTR.

FORTRAN 77 Interface
Single: CALL LETTR (NOBS, X, NUM, SUMRY, NMISS)
Double: The double precision name is DLETTR.

Description

The routine LETTR computes the median (“M”), the minimum, the maximum, and other depths or “letter 
values”—hinges (“H”), eighths (“E”), sixteenths (“D”), etc.—as specified by NUM. If 
NUM = 9, for example, the values in SUMRY correspond to min, D, E, H, M, H, E, D, and max, in that order. The 
use of letter values in summarizing a set of data is due to Tukey. Examples and discussion of the use of letter 
values are given by Tukey (1977, Chapter 2) and by Velleman and Hoaglin (1981, Chapter 2).

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TTR/DL2TTR. The reference is:

CALL L2TTR (NOBS, X, NUM, SUMRY, NMISS, WK)
The additional argument is:

WK — Work vector of length NOBS.
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2. Informational errors

Example

In this example, LETTR is used to compute a letter value summary of the measurements (in inches) of precip-
itation in Minneapolis/St. Paul during the month of March for 30 consecutive years. These data were studied 
by Hinkley (1977) and by Velleman and Hoaglin (1981), pages 50 - 53.

      USE LETTR_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    I, NMISS, NOBS, NOUT, NUM
      REAL       SUMRY(11), X(30)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,&
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
! 
      CALL UMACH (2, NOUT)
      NOBS = 30
      NUM  = 11
! 
      CALL LETTR (X, SUMRY, NMISS, NUM=NUM)
      WRITE (NOUT,99998) SUMRY(6), (SUMRY(6-I),SUMRY(6+I),I=1,5)
99998 FORMAT ('         Letter Values', /, '       Lower      Upper', &
            /, '  M         ', F6.3, /, '  H  ', F6.3, 6X, F6.3, /, &
            '  E  ', F6.3, 6X, F6.3, /, '  D  ', F6.3, 6X, F6.3, /, &
            '  !  ', F6.3, 6X, F6.3, /, ' m/M ', F6.3, 6X, F6.3)
      WRITE (NOUT,99999) NMISS
99999 FORMAT ('  There are ', I2, ' missing values.')
      END

Output

    Letter Values
     Lower       Upper
 M          1.470
 H   0.900       2.100
 E   0.680       2.905
 D   0.495       3.230
 !   0.395       4.060
m/M  0.320       4.750
There are  0 missing values.

Type Code Description

3 3 The results are likely not to be meaningful if NUM is larger than the number of 
valid observations, (NOBS - NMISS).

4 4 The number of valid observations (NOBS - NMISS) is not greater than zero.
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ORDST

Determines order statistics.

Required Arguments
X — Vector of length NOBS containing the data.  (Input)
NOS — Number of order statistics.  (Input) 

NOS must be greater than or equal to one and less than or equal to NOBS.
OS — Vector of length NOS containing the order statistics.  (Output)
NMISS — Number of missing values.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input) 

NOBS must be greater than or equal to one.
Default: NOBS = size (X,1).

IOPT — Option to choose the order statistics to be calculated.  (Input) 
Default: IOPT = 1.

IOS — If IOPT = 0, IOS is a vector of length NOS containing the ranks of the order statistics.  (Input) 
The elements of IOS must be greater than or equal to one and less than or equal to NOBS. If IOPT = 1 
or 2, IOS is unreferenced and can be defined as a vector of length 1.

FORTRAN 90 Interface
Generic: CALL ORDST (X, NOS, OS, NMISS [, …])
Specific: The specific interface names are S_ORDST and D_ORDST.

FORTRAN 77 Interface
Single: CALL ORDST (NOBS, X, NOS, IOPT, IOS, OS, NMISS)
Double: The double precision name is DORDST.

Description

The routine ORDST determines order statistics from the data in X and returns them in the vector OS. The rou-
tine ORDST first checks to see if X is sorted, in which case the order statistics are merely picked from X. If X is 
not sorted, ORDST does either a complete or partial sort, depending on how many order statistics are 
requested. Since either the largest few order statistics or the smallest few are often of interest, the option 

IOPT Action

0 Calculate the NOS order statistics listed in IOS.

1 Calculate the first NOS order statistics.

2 Calculate the last NOS order statistics.
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parameter IOPT allows the user to obtain the largest or the smallest order statistics easily; otherwise (when 
IOPT is set to 0), the user specifies in the vector IOS exactly which order statistics are to be returned. If IOS is 
used, the order statistics returned in OS are in the same order as the indicators in IOS.

Comments
1. Workspace may be explicitly provided, if desired, by use of O2DST/DO2DST. The reference is:

CALL O2DST (NOBS, X, NOS, IOPT, IOS, OS, NMISS, WK)
The additional argument is as follows:

WK — Work vector of length NOBS.
2. Informational errors

3. Missing values (NaN) are excluded from the analysis. Order statistics are based on the NOBS — NMISS 
nonmissing elements of X.

Examples

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the mea-
surements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive 
years. In the first example, the first five order statistics from a sample of size 30 are obtained. Since IOPT is 
set to 1, IOS is not used.

      USE ORDST_INT
      USE UMACH_INT
      USE WRRRN_INT
      USE AMACH_INT

      IMPLICIT    NONE
      INTEGER     NOBS, NOS
      PARAMETER  (NOBS=30, NOS=5)
! 
      INTEGER    NMISS, NOUT
      REAL       OS(NOS), X(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &

Type Code Description

3 1 All of the observations are missing values. The elements of OS have been set 
to NaN (not a number).

3 2 NOS order statistics have been requested, but there are only 
NOBS - NMISS valid observations. Order statistics greater than 
NOBS - NMISS have been set to NaN (not a number).

3 3 Each value of IOS must be greater than 0 and less than or equal to the num-
ber of valid observations. The values of OS that are not defined have been set 
to NaN.
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          2.05/
! 
      CALL UMACH (2, NOUT)
      CALL ORDST (X, NOS, OS, NMISS)
      CALL WRRRN ('First five order statistics:', OS, 1, NOS, 1)
      WRITE (NOUT,99999) NMISS
99999 FORMAT ('   There are', I2, ' missing values.')
      END

Output

First five order statistics:
     1        2        3        4        5
0.3200   0.4700   0.5200   0.5900   0.7700
There are 0 missing values.

Example 2

In the second example, the last five order statistics from a sample of size 30 are obtained. This example uses 
the same data as in the first example, but this time the first two observations have been set to a missing value 
indicator (AMACH(6)). Note that since there are two missing values in the data set, the indices of the last five 
order statistics are numbers 24, 25, 26, 27, and 28. In this example, NMISS will be returned with a value of 2. 
The index of the last order statistic can be determined by NOBS - NMISS.

      USE ORDST_INT
      USE UMACH_INT
      USE WRRRN_INT
      USE AMACH_INT

      IMPLICIT   NONE
      INTEGER    IOPT, NOBS, NOS
      PARAMETER  (IOPT=2, NOBS=30, NOS=5)
! 
      INTEGER    NMISS, NOUT
      REAL       OS(NOS), X(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
! 
      CALL UMACH (2, NOUT)
      X(1) = AMACH(6)
      X(2) = AMACH(6)
      CALL ORDST (X, NOS, OS, NMISS, IOPT=IOPT)
      CALL WRRRN ('Last five order statistics:', OS, 1, NOS, 1)
      WRITE (NOUT,99999) NMISS
99999 FORMAT ('   There are', I2, ' missing values.')
      END
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Output

Last five order statistics:
    1       2       3       4       5
2.810   3.000   3.090   3.370   4.750
There are 2 missing values.

Example 3

In this example, we illustrate the use of IOS to specify exactly which order statistics are to be computed. We 
request what would be the last five order statistics from a sample of size 30, that is, order statistics 
26, 27, 28, 29, and 30. As in example two, the data set has two missing values. Order statistics 29 and 30 are 
not defined, but since they are specifically requested, a warning message is issued and OS contains two miss-
ing values on return.

      USE ORDST_INT
      USE UMACH_INT
      USE WRRRN_INT
      USE AMACH_INT

      IMPLICIT   NONE
      INTEGER    IOPT, NOBS, NOS
      PARAMETER  (IOPT=0, NOBS=30, NOS=5)
! 
      INTEGER    IOS(NOS), NMISS, NOUT
      REAL       OS(NOS), X(NOBS)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
      DATA IOS/26, 27, 28, 29, 30/
! 
      CALL UMACH (2, NOUT)
      X(1) = AMACH(6)
      X(2) = AMACH(6)
      CALL ORDST (X, NOS, OS, NMISS, IOS=IOS, IOPT=IOPT)
      CALL WRRRN ('Last five order statistics:', OS, 1, NOS, 1)
      WRITE (NOUT,99999) NMISS
99999 FORMAT ('   There are', I2, ' missing values.')
      END

Output

*** WARNING  ERROR 3 from ORDST.  Each value of IOS must be greater than 0
***          and less than or equal to the number of valid observations,
***          NOBS-NMISS, which is 28.  IOS contains 2 values outside of 
***          this range. The corresponding values of OS have been set to 
***          NaN (not a number).

Last five order statistics:
    1       2       3       4       5
3.090   3.370   4.750     NaN     NaN
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There are 2 missing values.
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EQTIL

Computes empirical quantiles.

Required Arguments
X — Vector of length NOBS containing the data.  (Input)
NQPROP — Number of quantiles.  (Input) 

NQPROP must be greater than or equal to one.
QPROP — Vector of length NQPROP containing the quantile proportions.  (Input) 

The elements of QPROP must lie in the interval (0, 1).
Q — Vector of length NQPROP containing the empirical quantiles.  (Output) 

Q(i) corresponds to the empirical quantile at proportion QPROP(i). The quantiles are determined by lin-
ear interpolation between adjacent ordered sample values.

XLO — Vector of length NQPROP containing the largest element of X less than or equal to the desired quan-
tile.  (Output)

XHI — Vector of length NQPROP containing the smallest element of X greater than or equal to the desired 
quantile.  (Output)

NMISS — Number of missing values.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input) 

NOBS must be greater than or equal to one.
Default: NOBS = size (X,1).

FORTRAN 90 Interface
Generic: CALL EQTIL (X, NQPROP, QPROP, Q, XLO, XHI, NMISS [, …])
Specific: The specific interface names are S_EQTIL and D_EQTIL.

FORTRAN 77 Interface
Single: CALL EQTIL (NOBS, X, NQPROP, QPROP, Q, XLO, XHI, NMISS)
Double: The double precision name is DEQTIL.

Description

The routine EQTIL determines the empirical quantiles, as indicated in the vector QPROP, from the data in X. 
The routine EQTIL first checks to see if X is sorted; if X is not sorted, the routine does either a complete or 
partial sort, depending on how many order statistics are required to compute the quantiles requested.

The routine EQTIL returns the empirical quantiles and, for each quantile, the two order statistics from the 
sample that are at least as large and at least as small as the quantile. For a sample of size n, the quantile corre-
sponding to the proportion p is defined as

Q(p) = (1 -  f )xj + f xj + 1
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where j = ⌊p(n + 1)⌋, f = p(n + 1) - j, and xj is the j-th order statistic, if 1 ≤ j < n; otherwise, the empirical quan-
tile is the smallest or largest order statistic.

Comments
1. Workspace may be explicitly provided, if desired, by use of E2TIL/DE2TIL. The reference is:

CALL E2TIL (NOBS, X, NQPROP, QPROP, Q, XLO, XHI, NMISS, WK)
The additional argument is:

WK — Workspace of length NOBS containing the sorted data.  (Output) 
If X is sorted in ascending order with all missing values at the end of X, then X and WK may share the 
same storage location.

2. Informational error 

3. Missing values (NaN) are excluded from the analysis. Empirical quantiles are based on the 
NOBS - NMISS nonmissing elements of X.

Example

In this example, five empirical quantiles from a sample of size 30 are obtained. Notice that the 0.5 quantile 
corresponds to the sample median. The data are from Hinkley (1977) and Velleman and Hoaglin (1981). They 
are the measurements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 
consecutive years.

      USE EQTIL_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS, NQPROP
      PARAMETER  (NOBS=30, NQPROP=5)
! 
      INTEGER    I, NMISS, NOUT
      REAL       QPROP(NQPROP), X(NOBS), XEMP(NQPROP), XHI(NQPROP),&
                XLO(NQPROP)
! 
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
      DATA QPROP/0.01, 0.50, 0.90, 0.95, 0.99/
! 
      CALL UMACH (2, NOUT)
      CALL EQTIL (X, NQPROP, QPROP, XEMP, XLO, XHI, NMISS)
      WRITE (NOUT,99997)
99997 FORMAT ('              Smaller     Empirical     Larger', /, &
            '  Quantile     Datum      Quantile      Datum')
      DO 10  I=1, NQPROP

Type Code Description

3 1 All of the observations are missing values. The elements of Q, XLO, and XHI 
have been set to NaN (not a number).
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         WRITE (NOUT,99998) QPROP(I), XLO(I), XEMP(I), XHI(I)
   10 CONTINUE
99998 FORMAT (4X, F4.2, 8X, F4.2, 8X, F4.2, 8X, F4.2)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (/, ' There are ', I2, ' missing values.')
      END

Output

           Smaller     Empirical     Larger
Quantile     Datum      Quantile      Datum
  0.01        0.32        0.32        0.32
  0.50        1.43        1.47        1.51
  0.90        3.00        3.08        3.09
  0.95        3.37        3.99        4.75
  0.99        4.75        4.75        4.75

There are  0 missing values.
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TWOMV

Computes statistics for mean and variance inferences using samples from two normal populations.

Required Arguments
X — Vector of length NROWX containing observations from the first sample.  (Input)
Y — Vector of length NROWY containing observations from the second sample.  (Input)
STAT — Vector of length 25 containing the statistics.

(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.) These are:

(STAT(7) through STAT(14) depend on the assumption of equal variances.)

 (STAT(15) through STAT(19) use approximations that do not depend on an assumption of equal 
variances.)

I STAT(I)

1 Mean of the first sample

2 Mean of the second sample

3 Variance of the first sample

4 Variance of the second sample

5 Number of observations in the first sample

6 Number of observations in the second sample

I STAT(I)

7 Pooled variance

8 t value, assuming equal variances

9 Probability of a larger t in absolute value, assuming normality, 
equal means, and equal variance

10 Degrees of freedom assuming equal variances

11 Lower confidence limit for the mean of the first population minus 
the mean of the second, assuming equal variances

12 Upper confidence limit for the mean of the first population minus 
the mean of the second, assuming equal variances

13 Lower confidence limit for the common variance

14 Upper confidence limit for the common variance
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Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

NROWX — Absolute value of NROWX is the number of observations currently input in X.  (Input) 
Default: NROWX = size (X,1).
NROWX may be positive, zero, or negative. Negative NROWX means delete the -NROWX observations in X 
from the analysis.

NROWY — Absolute value of NROWY is the number of observations currently input in Y.  (Input) 
Default: NROWY = size (Y,1).
NROWY may be positive, zero, or negative. Negative NROWY means delete the -NROWY observations in Y 
from the analysis.

I STAT(I)

15 t value, assuming unequal variances.

16 Approximate probability of a larger t in absolute value, assuming 
normality, equal means, and unequal variances

17 Degrees of freedom assuming unequal variances, for Satterth-
waite’s approximation

18 Approximate lower confidence limit for the mean of the first popu-
lation minus the mean of the second, assuming equal variances

19 Approximate upper confidence limit for the mean of the first popu-
lation minus the mean of the second, assuming equal variances

20 F value (greater than or equal to 1.0)

21 Probability of a larger F in absolute value, assuming normality and 
equal variances

22 Lower confidence limit for the ratio of the variance of the first pop-
ulation to the second

23 Upper confidence limit for the ratio of the variance of the first pop-
ulation to the second

24 Number of missing values of first sample

25 Number of missing values of second sample

IDO Action

0 This is the only invocation of TWOMV for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to TWOMV will be made. Initialization and 
updating are performed. The means are output correctly, but most of the other quanti-
ties output in STAT are intermediate quantities.

2 This is an intermediate invocation of TWOMV, and updating for the data in X and Y is 
performed.

3 This is the final invocation of this routine. Updating for the data in X and Y and wrap-up 
computations are performed.
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CONPRM — Confidence level for two-sided interval estimate of the mean of X minus the mean of Y 
(assuming normality of both populations), in percent.  (Input) 
Default: CONPRM = 95.0.
 If CONPRM = 0, no confidence interval for the difference in the means is computed; otherwise, a 
CONPRM percent confidence interval is computed, in which case CONPRM must be between 0.0 and 
100.0. CONPRM is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level 
ONECL, set CONPRM = 100.0 - 2.0 * (100.0 - ONECL). 

CONPRV — Confidence level for inference on variances.  (Input) 
Default: CONPRV = 95.0.
Under the assumption of equal variances, the pooled variance is used to obtain a two-sided CONPRV 
percent confidence interval for the common variance in STAT(13) and STAT(14). Without making the 
assumption of equal variances, the ratio of the variances is of interest. A two-sided CONPRV percent 
confidence interval for the ratio of the variance of the first population (X) to that of the second popula-
tion (assuming normality of both populations) is computed and stored in STAT(22) and STAT(23). The 
confidence intervals are symmetric in probability. See also the description of CONPRM.

IPRINT — Printing option.  (Input) 
If IPRINT = 0, no printing is performed; otherwise, various statistics in STAT are printed when 
IDO = 0 or 3.
Default: IPRINT = 0.

FORTRAN 90 Interface
Generic: CALL TWOMV (X, Y, STAT [, …])
Specific: The specific interface names are S_TWOMV and D_TWOMV.

FORTRAN 77 Interface
Single: CALL TWOMV (IDO, NROWX, X, NROWY, Y, CONPRM, CONPRV, IPRINT, STAT)
Double: The double precision name is DTWOMV.

Description

The routine TWOMV computes the statistics for making inferences about the means and variances of two nor-
mal populations, using independent samples in X and Y. For inferences concerning parameters of a single 
normal population, see routine UVSTA. For two samples that are paired, see routine ATWOB (see Chapter 3, 
“Correlation”), since the pairs can be considered to be blocks.

Let μX and

IPRINT Action

0 No printing.

1 Simple statistics (STAT (1) to STAT(6), STAT(24), and STAT(25)).

2 Statistics for means, assuming equal variances.

3 Statistics for means, not assuming equal variances.

4 Statistics for variances.

5 All statistics.
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be the mean and variance, respectively, of the first population, and μY and 

be the corresponding quantities of the second population. The routine TWOMV is used for testing μX = μY and 

or for setting confidence intervals for μX - μY and

The basic quantities in STAT(1) through STAT(4) are

where nx and ny are the respective sample sizes (in STAT(5) and STAT(6)).

Inferences about the Means

The test for the equality of means of two normal populations depends on whether or not the variances of the 
two populations can be considered equal. If the variances are equal, the test is the two-sample t test, which is 
equivalent to an analysis of variance test see (Chapter 4, “Analysis of Variance”). In this case, the statistics 
returned in STAT(7) through STAT(12) are appropriate for testing μX = μY. The pooled variance (in STAT(7)) 
is

The t statistic (in STAT(8)) is

For testing μX = μY + c, for some constant c, the confidence interval for μ X - μY can be used. (If the confi-
dence interval includes c, the null hypothesis would not be rejected at the significance level 
1 - CONPRM/100.)
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If the population variances are not equal, the ordinary t statistic does not have a t distribution; and several 
approximate tests for the equality of means have been proposed. (See, for example, Anderson and Bancroft 
1952, and Kendall and Stuart 1979.) The name Fisher-Behrens is associated with this problem, and one of the 
earliest tests devised for this situation is the Fisher-Behrens test, based on Fisher’s concept of fiducial probabil-
ity. Another test is called Satterthwaite’s procedure. The routine TWOMV computes the statistics for this 
approximation, which was suggested by H.F. Smith and modified by F.E. Satterthwaite (Anderson and 
Bancroft 1952, page 83). The test statistic is 

where 

Under the null hypothesis of equal population means, this quantity has an approximate t distribution with 
degrees of freedom f (in STAT(17)), given by

Inferences about the Variances

The F statistic for testing the equality of variances is given by 

is the larger of 

is the smaller. If the variances are equal, this quantity has an F distribution with nx - 1 and ny - 1 degrees of 
freedom.

It is generally not recommended that the results of the F test be used to decide whether to use the regular t 
test or the modified tʹ on a single set of data. The more conservative approach is to use the modified tʹ 
(Satterthwaite’s procedure) if there is doubt about the equality of the variances.
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Examples

Example 1

This example is taken from Conover and Iman (1983, page 294). It involves scores on arithmetic tests of two 
grade school classes. The question is whether a group taught by an experimental method has a higher mean 
score. The data are shown below.

It is assumed that the variances of the two populations are equal so the statistics of interest are in STAT(8) 
and STAT(9). It is seen from the output below that there is strong reason to believe that the two means are dif-
ferent (t-value of -4.804). Since the lower 97.5% confidence limit does not include zero, the null hypothesis 
that μx ≤ μy would be rejected at the 0.05 significance level. (The closeness of the values of the sample vari-
ances provides some qualitative substantiation of the assumption of equal variances.)

      USE TWOMV_INT

      IMPLICIT   NONE
      INTEGER    IPRINT
      REAL       CONPRV, STAT(25), X(7), Y(9)
! 
      DATA X/72., 75., 77., 80., 104., 110., 125./Y/111., 118., 128., &
          138., 140., 150., 163., 164., 169./
! 

      IPRINT = 2
      CONPRV = 0.0
      CALL TWOMV (X, Y, STAT, IPRINT=IPRINT, CONPRV=CONPRV)
      END

Output

Mean Inferences Assuming Equal Variances
Pooled Variance                               434.633
t Value                                        -4.804
Probability of a Larger t in Abs. Value         0.000

Scores for 
Standard Group

Scores for 
Experimental Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

164

169
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Degrees of Freedom                             14.000
Lower Confidence Limit Difference in Means    -73.010
Upper Confidence Limit Difference in Means    -27.942

Example 2

For a second example, the same data set is used to illustrate the use of the IDO parameter to bring in the data 
one observation at a time. Since there are more “Y” values than “X” values, NROWX is set to zero on the later 
calls to TWOMV.

      USE TWOMV_INT

      IMPLICIT   NONE
      INTEGER    I, IDO, IPRINT, NROWX, NROWY
      REAL       STAT(25), X(7), Y(9)
! 
      DATA X/72., 75., 77., 80., 104., 110., 125./Y/111., 118., 128., &
          138., 140., 150., 163., 164., 169./
! 
      IPRINT = 5
      IDO    = 1
      NROWX  = 1
      NROWY  = 1
      DO 10  I=1, 7
!                                 Bring in first seven observations
!                                 on X and Y, one at a time.
         CALL TWOMV (X(I:), Y(I:), STAT, IDO=IDO, NROWX=NROWX,  &
                    NROWY=NROWY, IPRINT=IPRINT)
         IDO = 2
   10 CONTINUE
!                                 Now bring in remaining observations
!                                 on Y.
      NROWX = 0
      CALL TWOMV (X(1:), Y(8:), STAT, IDO=IDO, NROWX=NROWX,  &
                 NROWY=NROWY, IPRINT=IPRINT)
!                                 Set IDO to indicate last observation.
      IDO = 3
      CALL TWOMV (X(1:), Y(9:), STAT, IDO=IDO, NROWX=NROWX,  &
                 NROWY=NROWY, IPRINT=IPRINT)
      END

Output

               Statistics from TWOMV
First Sample Mean                               91.857
Second Sample Mean                             142.333
First Sample Variance                          435.810
Second Sample Variance                         433.750
First Sample Valid Observations                  7.000
Second Sample Valid Observations                 9.000
First Sample Missing Values                      0.000
Second Sample Missing Values                     0.000
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       Mean Inferences Assuming Equal Variances
Pooled Variance                                 434.63
t Value                                          -4.80
Probability of a Larger t in Abs. Value           0.00
Degrees of Freedom                               14.00
Lower Confidence Limit Difference in Means      -73.01
Upper Confidence Limit Difference in Means      -27.94
Lower Confidence Limit for Common Variance      232.97
Upper Confidence Limit for Common Variance     1081.04

       Mean Inferences Assuming Unequal Variances
t Value                                        -4.8028
Approx. Prob. of a Larger t in Abs. Value       0.0003
Degrees of Freedom                             13.0290
Lower Confidence Limit                        -73.1758
Upper Confidence Limit                        -27.7766

              Variance Inferences
F Value                                        1.00475
Probability of a Larger F in Abs. Value        0.96571
Lower Confidence Limit for Variance Ratio      0.21600
Upper Confidence Limit for Variance Ratio      5.62621
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BINES

Estimates the parameter p of the binomial distribution.

Required Arguments
N — Total number of Bernoulli trials.  (Input) 

N is the parameter N in the binomial distribution from which one observation (K) has been drawn.
K — Number of successes in the N trials.  (Input)
CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 

An approximate CONPER percent confidence interval is computed, hence, CONPER must be between 
0.0 and 100.0. CONPER often will be 90.0, 95.0, or 99.0. For a one-sided confidence interval with confi-
dence level ONECL, set 
CONPER = 100.0 - 2.0 * (100.0 - ONECL).

PHAT — Estimate of p.  (Output)
PLOWER — Lower confidence limit for p.  (Output)
PUPPER — Upper confidence limit for p.  (Output)

FORTRAN 90 Interface
Generic: CALL BINES (N, K, CONPER, PHAT, PLOWER, PUPPER)
Specific: The specific interface names are S_BINES and D_BINES.

FORTRAN 77 Interface
Single: CALL BINES (N, K, CONPER, PHAT, PLOWER, PUPPER)
Double: The double precision name is DBINES.

Description

The routine BINES computes a point estimate and a confidence interval for the parameter, p, of a binomial 
distribution, using the number of “successes”, K, in a sample of size N from a binomial distribution with 
probability function

The point estimate for p is merely K/N. 

The routine BINES makes use of the relationship between the binomial distribution and the beta distribution 
(see Johnson and Kotz 1969, Chapter 3) by solving the following equations equivalent to those in Comment 2:
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where βa, b,τ is the beta  critical value with parameters a and b (that is, the inverse beta distribution func-

tion evaluated at 1 - ). The routine BETIN see (Chapter 17, “Probability Distribution Function and Inverses”) is 
used to evaluate the critical values.

Comments
1. Informational errors

2. Since the binomial is a discrete distribution, it is not possible to construct an exact CONPER% confi-
dence interval for all values of CONPER. Let α = 1 - CONPER/100. Then, the approximate lower and 
upper confidence limits pL and pU (PLOWER and PUPPER) are solutions to the equations

These approximations are not just computational devices. Approximations to the confidence limits are 
necessary because the binomial distribution is discrete.

Example

In this example, we assume that the number of defective microchips in a given lot follows a binomial distri-
bution. We estimate the proportion defective by taking a sample of 50. In this sample, 3 microchips were 
found to be defective. The routine BINES is used to estimate p and to compute a 95% confidence interval.

      USE BINES_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    K, N, NOUT
      REAL       CONPER, PHAT, PLOWER, PUPPER
! 
      CALL UMACH (2, NOUT)
      N      = 50

Type Code Description

3 1 CONPER is 100.0 or too large for accurate computations. The confidence limits 
are set to 0.0 and 1.0.

3 2 CONPER is 0.0 or too small for accurate computations. The confidence limits 
are both set to PHAT.
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      K      = 3
      CONPER = 95.0
      CALL BINES (N, K, CONPER, PHAT, PLOWER, PUPPER)
      WRITE (NOUT,99999) PHAT, PLOWER, PUPPER
99999 FORMAT ('  Point estimate of the proportion:   ', F5.3, /, &
            '  95% confidence interval:   (', F5.3, ',', F5.3, &
            ')')
      END

Output

Point estimate of the proportion:    .060
95% confidence interval:   ( .013, .165)
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POIES

Estimates the parameter of the Poisson distribution.

Required Arguments
IX — Vector of length NOBS containing the data.  (Input) 

The data are assumed to be a random sample from a Poisson distribution; hence, all elements of IX 
must be nonnegative.

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 
An approximate CONPER percent confidence interval is computed; hence, CONPER must be between 
0.0 and 100.0. CONPER often will be 90.0, 95.0, or 99.0. For a one sided confidence interval with confi-
dence level ONECL, set 
CONPER = 100.0 -  2.0 * (100.0 - ONECL).

THAT — Estimate of the parameter, theta (the mean).  (Output)
TLOWER — Lower confidence limit for theta.  (Output)
TUPPER — Upper confidence limit for theta.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (IX,1).

FORTRAN 90 Interface
Generic: CALL POIES (IX, CONPER, THAT, TLOWER, TUPPER [, …])
Specific: The specific interface names are S_POIES and D_POIES.

FORTRAN 77 Interface
Single: CALL POIES (NOBS, IX, CONPER, THAT, TLOWER, TUPPER)
Double: The double precision name is DPOIES.

Description

The routine POIES computes a point estimate and a confidence interval for the parameter, θ, of a Poisson 
distribution. It is assumed that the vector IX contains a random sample of size NOBS from a Poisson distribu-
tion with probability function

The point estimate for θ corresponds to the sample mean.

By exploiting the relationship between the Poisson distribution and the chi-squared distribution (see Johnson 
and Kotz, 1969, Chapter 4), the equations in Comment 2 can be written as 
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where

is the chi-squared  critical value with degrees ν of freedom (that is, the inverse chi-squared distribution 

function evaluated at 1 -  ). The routine CHIIN (see Chapter 17, “Probability Distribution Functions and 
Inverses”) is used to evaluate the critical values.

For more than one observation, the estimates are obtained as above and then divided by the number of 
observations, NOBS.

Comments
1. Informational error 

2. Since the Poisson is a discrete distribution, it is not possible to construct an exact CONPER% confidence 
interval for all values of CONPER. Let α = 1 - CONPER/100, and let k be a single observation. Then, the 
approximate lower and upper confidence limits θ L and θ U (TLOWER and TUPPER) are solutions to the 
equations

Example

It is assumed that flight arrivals at a major airport during the middle of the day follow a Poisson distribution. 
It is desired to estimate the mean number of arrivals per minute and to obtain an upper one-sided 95% confi-
dence interval for the mean. During a half-hour period, the number of arrivals each minute was recorded. 
These data are stored in IX, and POIES is used to obtain the estimates.

      USE POIES_INT
      USE UMACH_INT

      IMPLICIT   NONE

Type Code Description

3 1 CONPER is 0.0 or too small for accurate computations. The confidence limits 
are both set to THAT.
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      INTEGER    NOBS
      PARAMETER  (NOBS=30)
! 
      INTEGER    IX(NOBS), NOUT
      REAL       CONPER, THAT, TLOWER, TUPPER
! 
      DATA IX/2, 0, 1, 1, 2, 0, 3, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, &
          0, 1, 2, 0, 2, 0, 0, 1, 2, 0, 2/
! 
      CALL UMACH (2, NOUT)
!                                 For a 95 percent one-sided ! .I.,
!                                 CONPER = 100.0 - 2.0*(100.0-95.0)
      CONPER = 90.0
      CALL POIES (IX, CONPER, THAT, TLOWER, TUPPER)
      WRITE (NOUT,99999) THAT, TUPPER
99999 FORMAT ('  Point estimate of the Poisson mean:   ', F5.3, /, &
             '  Upper one-sided 95% confidence limit: ', F5.3)
      END

Output

Point estimate of the Poisson mean: 0.800 
Upper one-sided 95% confidence limit: 1.125
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NRCES

Computes maximum likelihood estimates of the mean and variance from grouped and/or censored normal 
data.

Required Arguments
XRT — Vector of length NOBS containing either the exact value of the data or the right endpoint of the cen-

soring interval for interval-censored or right-censored data.  (Input) 
See the argument ICEN.

XLT — Vector of length NOBS containing the left endpoint of the censoring interval for interval-censored or 
left-censored data.  (Input) 
See the argument ICEN. XLT is not used if there is no left censoring.

ICEN — Vector of length NOBS containing the censoring codes.  (Input) 
The values in ICEN indicate the meaning of the values in XRT and/or XLT.

XMEAN — Estimate of the mean.  (Input/Output if INIT = 0; output otherwise)
XSIGMA — Estimate of the standard deviation.  (Input/Output if INIT = 0; output otherwise)
VXM — Estimate of the variance of the mean estimate.  (Output)
VXS — Estimate of the variance of the variance estimate.  (Output)
COVXMS — Estimate of the covariance of the mean and the variance estimates.  (Output)
NUMBER — Vector of length 4 containing the numbers of observations having the various censoring 

properties.  (Output) 
NUMBER(1) is the number of exact observations. NUMBER(2) is the number of observations specified by 
a lower bound (right censored). NUMBER(3) is the number of observations specified by a upper bound 
(left censored). NUMBER(4) is the number of observations specified by an interval.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (XRT,1).
EPSM — Convergence criterion for the mean estimate.  (Input) 

See the argument EPSSIG. If EPSM is not positive, EPSM = 0.00001 is assumed.
Default: EPSM = .00001.

EPSSIG — Convergence criterion for the variance estimate.  (Input) 
Convergence is assumed when the relative change in the mean estimate is less than EPSM and the rela-
tive change in the variance estimate is less than EPSSIG . If EPSSIG is not positive, EPSSIG = 0.00001 
is assumed.
Default: EPSSIG = .00001.

ICEN(I) Censoring

0 Exact response at XRT(I).

1 Right censored. The response is greater than XRT(I).

2 Left censored. The response is less than or equal to XLT(I).

3 Interval censored. The response is greater than XRT(I), but less than or equal to XLT(I).
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MAXITS — Maximum number of iterations allowed.  (Input) 
A typical value of MAXITS is 25.
Default: MAXITS = 25.

INIT — Initialization option.  (Input)
Default: INIT = 1. 

FORTRAN 90 Interface
Generic: CALL NRCES (XRT, XLT, ICEN, XMEAN, XSIGMA, VXM, VXS, COVXMS, 

NUMBER [, …])
Specific: The specific interface names are S_NRCES and D_NRCES.

FORTRAN 77 Interface
Single: CALL NRCES (NOBS, XRT, XLT, ICEN, EPSM, EPSSIG, MAXITS, INIT, XMEAN, XSIGMA, 

VXM, VXS, COVXMS, NUMBER)
Double: The double precision name is DNRCES.

Description

The routine NRCES computes maximum likelihood estimates of the mean and variance of a normal popula-
tion, using a sample that may be censored. An observation whose value is known exactly is input in XRT, and 
the corresponding element in ICEN is set to 0. If an observation is known only by a lower bound, we say the 
observation is right censored; the lower bound is input in XRT, and the corresponding element in ICEN is set to 
1. If an observation is known only by an upper bound, we say the observation is left censored; the upper 
bound is input in XLT, and the corresponding element in ICEN is set to 2. If an observation is known only by 
two bounds, we say the observation is interval censored; the lower bound is input in XRT, the upper bound is 
input in XLT, and the corresponding element in ICEN is set to 3.

Newton-Raphson iterations are used to find a stationary point of the likelihood function, and the Hessian at 
that point is used to estimate the variances and covariance of the estimates of the population mean and vari-
ance. If the numerical derivative of the estimate of the variance increases on nine consecutive iterations, the 
process is deemed divergent and a terminal error is issued. The iterations begin at user-supplied values if 
INIT is set to 0.

Example

This example uses an artificial data set consisting of 18 observations. The first 12 observations are known 
exactly; the next three are known only by a lower bound; the next two, by an upper bound; and the last one, 
by two bounds.

INIT Action

0 On input, XMEAN and XSIGMA contain initial estimates of the parameters.

1 If there are enough exactly specified data, initial estimates are obtained from it; and, if 
there are not enough such data, fixed starting values (XRT(1) for the mean and 1.0 for the 
variance) are used.
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      USE NRCES_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=18)
! 
      INTEGER    ICEN(NOBS), INIT, MAXITS, NOUT, NUMBER(4)
      REAL       COVXMS, EPSM, EPSSIG, VXM, VXS, XLT(NOBS), XMEAN, &
                XRT(NOBS), XSIGMA
! 
      DATA XRT/4.5, 5.4, 3.9, 5.1, 4.6, 4.8, 2.9, 6.3, 5.5, 4.6, 4.1, &
          5.2, 3.2, 4.0, 3.1, 0.0, 0.0, 2.2/
      DATA XLT/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, &
          0.0, 0.0, 0.0, 0.0, 5.1, 3.8, 2.5/
      DATA ICEN/0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3/
! 
      CALL UMACH (2, NOUT)
      EPSM   = 0.01
      EPSSIG = 0.01
      MAXITS = 25
      INIT   = 1
      CALL NRCES (XRT, XLT, ICEN, XMEAN, XSIGMA, VXM, VXS, COVXMS,  &
                 NUMBER, EPSM=EPSM, EPSSIG=EPSSIG)
      WRITE (NOUT,99999) XMEAN, XSIGMA, VXM, VXS, COVXMS, NUMBER
99999 FORMAT (' Estimate of mean:                           ', F8.4, &
            /, ' Estimate of variance:                       ', F8.4, &
            /, ' Estimate of variance of mean estimate:      ', F8.4, &
            /, ' Estimate of variance of variance estimate:  ', F8.4, &
            /, ' Estimate of covariance of mean and variance:', F8.4, &
            /, ' Number of exact observations:               ', I4, &
            /, ' Number of right-censored observations:      ', I4, &
            /, ' Number of left-censored observations:       ', I4, &
            /, ' Number of interval-censored observations:   ', I4)
      END

Output

Estimate of mean:                             4.4990
Estimate of standard deviation:               1.2304
Estimate of variance of mean estimate:        0.0819
Estimate of variance of variance estimate:   -0.0494
Estimate of covariance of mean and variance: -0.0019
Number of exact observations:                 12
Number of right-censored observations:         3
Number of left-censored observations:          2
Number of interval-censored observations:      1
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GRPES

Computes basic statistics from grouped data.

Required Arguments
TABLE — Vector of length NGROUP containing the frequencies within the groups.  (Input) 

The entries in TABLE are interpreted as counts. They must be nonnegative.
CLOW — The center (class mark) of the lowest class interval.  (Input)
CWIDTH — The class width.  (Input) 

CWIDTH must be positive.
STAT — Vector of length 13 containing the statistics.   (Output) 

Optional Arguments
NGROUP — Number of groups.  (Input)

Default: NGROUP = size (TABLE,1).
IPRINT — Printing option.  (Input) 

If IPRINT = 0, no printing is performed; and if IPRINT = 1, the statistics in STAT are printed.
Default: IPRINT = 0.

I STAT(I)

1 The sum of the frequencies in TABLE.

2 Mean (arithmetic mean, first moment).

3 Sample standard deviation. (Uses STAT(1) - 1 as divisor).

4 Second moment about the mean, uncorrected for grouping. (Uses 
STAT(1) as divisor.)

5 Second moment about the mean, adjusted using Sheppard’s 
correction.

6 Third moment about the mean, uncorrected for grouping.

7 Third moment about the mean, adjusted using Sheppard’s 
correction.

8 Fourth moment about the mean, uncorrected for grouping.

9 Fourth moment about the mean, adjusted using Sheppard’s 
correction.

10 Median.

11 Geometric mean; defined only if CLOW - CWIDTH/2 is nonnegative.

12 Harmonic mean; defined only if CLOW -  CWIDTH/2 is nonnegative.

13 Mode; defined only if one element of TABLE is strictly greater than 
all other elements of TABLE.
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FORTRAN 90 Interface
Generic: CALL GRPES (TABLE, CLOW, CWIDTH, STAT [, …])
Specific: The specific interface names are S_GRPES and D_GRPES.

FORTRAN 77 Interface
Single: CALL GRPES (NGROUP, TABLE, CLOW, CWIDTH, IPRINT, STAT)
Double: The double precision name is DGRPES.

Description

The routine GRPES computes various statistics using data from equally spaced groups. The second, third, 
and fourth moments are computed both with and without Sheppard’s corrections. These corrections for 
grouped data are most useful for distributions whose densities tail off smoothly (such as the normal distribu-
tion). Kendall, Stuart, and Ord (1987, Chapters 2 and 3) discuss these corrections.

The moments are computed using the sum of the frequencies as the divisor. The standard deviation 
(STAT(3)), on the other hand, is computed using as the divisor the sum of the frequencies minus one.

If any of the class marks are negative, the geometric and harmonic means are not computed, and NaN (not a 
number) is stored as the value of STAT(11). Likewise, if the mode does not exist (no group has a frequency 
greater than that of all other groups), NaN is stored as the value of STAT(13).

Examples

Example 1

This example is taken from Conover and Iman (1983, page 119). The objective is to compute some basic statis-
tics relating to test scores, using the following data:

      USE GRPES_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, NGROUP
      REAL       CLOW, CWIDTH, STAT(13), TABLE(5)
! 
      NGROUP   = 5
      CLOW     = 55.5

Score Frequency

91 - 100 7

81 - 90 13

71 - 80 11

61 - 70 5

≤ 60 4
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      CWIDTH   = 10.0
      TABLE(1) = 4.0
      TABLE(2) = 5.0
      TABLE(3) = 11.0
      TABLE(4) = 13.0
      TABLE(5) = 7.0
      IPRINT   = 1
      CALL GRPES (TABLE, CLOW, CWIDTH, STAT, IPRINT=IPRINT)
      END

Output

Statistics from GRPES
Sum freqs.        40.0
Mean              79.0
Std. dev.         12.1
2nd moment       142.8
2nd, adj.        134.4
3rd moment      -741.8
3rd, adj.      -2716.8
4th moment     48242.3
4th, adj.      47929.0
Median            80.5
Geometric         78.0
Harmonic          77.0
Mode              85.5

Example 2

In this example, there are negative values of some class marks, and there is no modal class.

      USE GRPES_INT

      IMPLICIT   NONE
      INTEGER    NGROUP, IPRINT
      REAL       TABLE(5), CLOW, CWIDTH, STAT(13)
! 
      NGROUP = 5
      CLOW = -2.0
      CWIDTH = 1.0
      TABLE(1) = 2.0
      TABLE(2) = 5.0

Class Marks Frequency

-2.0 2

-1.0 5

0.0 7

1.0 7

2.0 2
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      TABLE(3) = 7.0
      TABLE(4) = 7.0
      TABLE(5) = 2.0
      IPRINT = 1
      CALL GRPES (TABLE, CLOW, CWIDTH, STAT, IPRINT=IPRINT)
      END

Output

Statistics from GRPES
Sum freqs.     23.0000
Mean            0.0870
Std. dev.       1.1246
2nd moment      1.2098
2nd, adj.       1.1265
3rd moment     -0.2293
3rd, adj.      -0.2510
4th moment      3.3292
4th, adj.       2.7960
Median          0.1429

The mode is not defined, since no class has higher
frequency than all others.
The geometric and harmonic means are not defined, since
the lower bound is negative.
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CSTAT

Computes cell frequencies, cell means, and cell sums of squares for multivariate data.

Required Arguments
X — ∣NROW∣ by NCOL matrix containing the data.  (Input) 

Each column of X represents either a classification variable, a response variable, a weight, or a 
frequency.

KMAX — Maximum number of cells.  (Input) 
This quantity does not have to be exact, but must be at least as large as the actual number of cells, K.

CELIF — Matrix with min(KMAX, K) columns containing cell information.  
(Output, if IDO = 0 or 1; input/output, if IDO = 2.) 
The number of rows in CELIF depends on the eight cases tabled below.

Each column contains information on each unique combination of values of the m classification vari-
ables that occurs in the data. The first m rows give the values of the classification variables. Row m + 1 
gives the number of observations that are in this cell. (For cases 2, 4, 6 and 8, this is the sum of the fre-
quencies.) For case 3 and 4, row m + 2 contains the sum of the weights. For NR greater than zero, the 
remaining rows (beginning with row m + 3 in case 3 and 4 and with row m + 2 otherwise) contain 
information concerning the response variables. For cases 1, 2, 3 and 4, there are 2 ∗ NR remaining rows 
with the cell (weighted) mean and cell (weighted) sum of squares for each of the NR response vari-
ables. For cases 5 and 6, there are 3 ∗ NR remaining rows with the sample size, the mean and sum of 
squares for each of the NR response variables. For case 7 and 8, there are 4 ∗ NR remaining rows with 
the sample size, the sum of weights, weighted means, and weighted sum of squares for each of the NR 
response variables.

Case Contents Rows in CELIF

1 MOPT ≤ 0, IFRQ = 0 and IWT = 0 NCOL + NR + 1

2 MOPT ≤ 0, IFRQ > 0 and IWT = 0  NCOL + NR

3 MOPT ≤ 0, IFRQ = 0 and IWT > 0  NCOL + NR + 1

4 MOPT ≤ 0, IFRQ > 0 and IWT > 0  NCOL + NR

5 MOPT > 0, IFRQ = 0 and IWT = 0  NCOL + 2 * NR + 1

6 MOPT > 0, IFRQ > 0 and IWT = 0  NCOL + 2 * NR

7 MOPT > 0, IFRQ = 0 and IWT > 0  NCOL + 3 * NR

8 MOPT > 0, IFRQ > 0 and IWT > 0 NCOL + 3 * NR - 1
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Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NROW — The absolute value of NROW is the number of rows of data currently input in X.  (Input) 
Default: NROW = size (X,1).
NROW may be positive or negative. Negative NROW means that the -NROW rows of data are to be deleted 
from some aspects of the analysis, and this should be done only if IDO is 2. When a negative value is 
input for NROW, it is assumed that each of the -NROW rows of X has been input (with positive NROW) in 
previous invocations of CSTAT.

NCOL — Number of columns in X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

NR — Number of response variables.  (Input) 
NR = 0 means no response variables are input. Otherwise, cell means and sums of squares are com-
puted for the response variables.
Default: NR = 0.

IRX — Vector of length NR.  (Input if NR is greater than 0.) 
The IRX(1), …, IRX(NR) columns of X contain the response variables for which cell means and sums of 
squares are computed.

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X contains the weights.
Default: IWT = 0.

MOPT — Missing value option.  (Input) 
If MOPT is zero, the exclusion is listwise. If MOPT is positive, the following occurs: (1) if a classification 
variable’s value is missing, the entire case is excluded, (2) if 
IFRQ > 0 and the frequency variable’s value is missing, the entire case is excluded, (3) if IWT > 0 and 
the weight variable’s value is missing, the case is classified and the cell frequency updated, but no 
information with regard to the response variables is computed, and (4) if only some response vari-
ables’ values are missing, all computations are performed except those pertaining to the response 
variables with missing values.
Default: MOPT = 0.

IDO Action

0 This is the only invocation of CSTAT for this data set, and all the 
data are input at once.

1 This is the first invocation, and additional calls to CSTAT will be 
made. Initialization and updating for the data in X are performed.

2 This is an intermediate invocation of CSTAT, and updating for the 
data in X is performed.
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K — Number of cells or an upper bound for this number.  (Input/Output) 
On the first call K must be input K = 0. It should not be changed between calls to CSTAT. K is incre-
mented by one for each new cell up to KMAX cells. Once KMAX cells are encountered, K is incremented 
by one for each observation that does not fall into one of the KMAX cells. In this case, K is an upper 
bound on the number of cells and can be used for KMAX in a subsequent run.
Default: K = 0.

LDCELI — Leading dimension of CELIF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCELI = size (CELIF,1).

FORTRAN 90 Interface
Generic: CALL CSTAT (X, KMAX, CELIF [, …])
Specific: The specific interface names are S_CSTAT and D_CSTAT.

FORTRAN 77 Interface
Single: CALL CSTAT (IDO, NROW, NCOL, X, LDX, NR, IRX, IFRQ, IWT, MOPT, KMAX, K, CELIF, 

LDCELI)
Double: The double precision name is DCSTAT.

Description

The routine CSTAT computes cell frequencies, cell means, and cell sums of squares for multivariate data in X. 
The columns of X can contain data for four types of variables: classification variables, a frequency variable, a 
weight variable, and response variables. The frequency variable, the weight variable, and the response vari-
ables are all designated by indicators in IFRQ, IWT, and IRX. All other variables are considered to be 
classification variables; hence, there are m classification variables, where m = NCOL - NR if there is no weight 
or frequency variable,  m = NCOL - NR - 1 if there is a weight or frequency variable but not both, and 
m = NCOL - NR - 2 if there are weight and frequency variables.

Each combination of values of the classification variables is stored in the first m rows of CELIF. For each 
combination of values of the classification variables, the frequencies are stored in the next row of CELIF. 
Then, for each combination, means and sums of squares for each of the response variables are computed and 
stored in the remaining rows of CELIF. If a weighting variable is specified, the sum of the weights for each 
combination is computed and stored. If missing values are deleted elementwise (that is, if MOPT is positive), 
the frequencies and sums of weights for each of the response variables are stored in the rows of CELIF.

Comments
1. If no nonmissing observations with positive weights or frequencies exist in a cell for a particular 

response variable, the mean and sum of squares are set to NaN (not a number).
2. In cases 3 and 6, if a zero weight is encountered, there is no contribution to the means or sums of 

squares, but the sample sizes are implemented by one for that observation.
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Examples

Example 1

In this example, there are two classification variables, C1 and C2, and two response variables, R1 and R2. Their 
values are shown below.

      USE CSTAT_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    KMAX, LDCELI, LDX, NR, NCOL
      PARAMETER  (KMAX=4, LDCELI=15, LDX=10, NR=2, NCOL=4)
! 
      INTEGER    IDO, IFRQ, IRX(NR), IWT, K, MIN0, MOPT, NROW
      REAL       CELIF(LDCELI,KMAX), X(LDX,NCOL)
      CHARACTER  CLABEL(1)*6, FMT*7, RLABEL(7)*6
      INTRINSIC  MIN0
!                                 Get data for example
      DATA X/1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, &
          1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 5.0, 7.0, 4.3, &
          3.2, 1.7, 3.8, 5.2, 4.9, 6.5, 3.1, 3.4, 2.6, 9.8, 7.1, 6.3, &
          2.4, 6.3, 1.2, 3.4, 5.1/
!                                 All data are input at once
      IDO  = 0
      NROW = 10
      K    = 0
!                                 No unequal frequencies or weights
!                                 are used
      IFRQ = 0
      IWT  = 0
!                                 Response variables are in 3rd and 4th
!                                 columns
      IRX(1) = 3
      IRX(2) = 4
!                                 Delete any row containing a missing
!                                 value
      MOPT = 0
! 
      CALL CSTAT (X, KMAX, CELIF, NR=NR, IRX=IRX, K=K)

C1

1 2

R1 R2 R1 R2

C2

1 5.0
7.0

3.4
2.6

3.8
5.2
4.9

2.4
6.3
1.2

2 4.3
3.2
1.7

9.8
7.1
6.3

6.5
3.1

3.4
5.1
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!                                 Print the results
      CLABEL(1) = 'NONE'
      RLABEL(1) = ' '
      RLABEL(2) = ' '
      RLABEL(3) = 'Freq.'
      RLABEL(4) = 'Mean 1'
      RLABEL(5) = 'SS 1'
      RLABEL(6) = 'Mean 2'
      RLABEL(7) = 'SS 2'
      FMT       = '(W10.4)'
      CALL WRRRL ('Statistics for the Cells', CELIF, &
                  RLABEL, CLABEL, NRA=(NCOL+NR+1), &
                  NCA=MIN0(KMAX, K), FMT=FMT)
      END

Output

             Statistics for the Cells
              1.00        1.00        2.00        2.00
              1.00        2.00        1.00        2.00
Freq.         2.00        3.00        3.00        2.00
Mean 1        6.00        3.07        4.63        4.80
SS 1          2.00        3.41        1.09        5.78
Mean 2        3.00        7.73        3.30        4.25
SS 2          0.32        6.73       14.22        1.44

Example 2

This example uses the same data as in the first example, except some of the data are set to missing values. 
Also, a frequency variable is used. It is in the fourth column of X. The frequency variable indicates that the 
values of the classification and response variables in the first observation occur 3 times and that all other fre-
quencies are 1. Since MOPT is greater than zero, statistics on one response variable are accumulated even if the 
other response variable has a missing value. If the frequency variable has a missing value, however, the 
entire observation is omitted. 

The missing value is NaN (not a number) that can be obtained with the argument of 6 in the routine AMACH 
(Reference Material). For this example, we set the first response variable in the first cell (C1 = 1, C2 = 1) to a 
missing value; we set the second response variable in the (2, 1) cell to a missing value; and we set the fre-
quency variable in the (1, 2) cell to a missing value. The data are now as shown below, with “NaN” in place of 
the missing values. 
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The first two rows output in CELIF are the values of the classification variables, and the third row is the fre-
quencies of the cells, as before. The next three rows correspond to the first response variable, and the last 
three rows correspond to the second response variable. (This is “case 6” above, where the argument CELIF is 
described.)

      USE CSTAT_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    KMAX, LDCELI, LDX, NR, NCOL, NROW
      PARAMETER  (KMAX=4, LDCELI=15, LDX=10, NR=2, NCOL=5)
! 
      INTEGER    IDO, IFRQ, IRX(NR), IWT, K, MIN0, MOPT
      REAL       CELIF(LDCELI,KMAX), X(LDX,NCOL), AMACH
      INTRINSIC   MIN0
!                                 Get data for example.
      DATA X/1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, &
           1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 5.0, 7.0, 4.3, &
           3.2, 1.7, 3.8, 5.2, 4.9, 6.5, 3.1, 3.4, 2.6, 9.8, 7.1, 6.3, &
           2.4, 6.3, 1.2, 3.4, 5.1, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, &
           1.0, 1.0, 1.0/
!                                 All data are input at once.
      IDO  = 0
      NROW = 10
      K    = 0
!                                 Frequencies are in the 5th column.
!                                 All weights are equal
      IFRQ = 5
      IWT  = 0
!                                 Response variables are in 3rd and 4th
!                                 columns.
      IRX(1) = 3
      IRX(2) = 4
!                                 Set some values to “missing” for
!                                 this example.  Specify elementwise
!                                 deletion of missing values of the
!                                 response variables.
      MOPT   = 1
      X(1,3) = AMACH(6)

C1

1 2

R1 R2 R1 R2

C2

1 NaN
NaN
NaN
7.0

3.4
3.4
3.4
2.6

3.8
5.2
4.9

NaN
6.3
1.2

2 NaN
3.2
1.7

NaN
7.1
6.3

6.5
3.1

3.4
5.1
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      X(6,4) = AMACH(6)
      X(3,5) = AMACH(6)
! 
      CALL CSTAT (X, KMAX, CELIF, NR=NR, IRX=IRX, MOPT=MOPT, IFRQ=IFRQ, &
                  K=K)
!                                 Print the results.
      CALL WRRRN ('Statistics for the Cells', CELIF, NRA=(NCOL+2*NR), &
                  NCA=MIN0(KMAX, K))
      END

Output

     Statistics for the Cells
        1       2       3       4
1    1.00    1.00    2.00    2.00 
2    1.00    2.00    1.00    2.00
3    4.00    2.00    3.00    2.00
4    1.00    2.00    3.00    2.00
5    7.00    2.45    4.63    4.80
6    0.00    1.12    1.09    5.78
7    4.00    2.00    2.00    2.00
8    3.20    6.70    3.75    4.25
9    0.48    0.32   13.01    1.44
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MEDPL

Computes a median polish of a two-way table.

Required Arguments
TABLE — NROW by NCOL matrix containing the table.  (Input)
MAXIT — Maximum number of polishing iterations to be performed.  (Input) 

An iteration is counted each time the rows or the columns are polished. The iterations begin by polish-
ing the rows.

PTABLE — (NROW + 1) by (NCOL + 1) matrix containing the cell residuals from the fitted table and, in the 
last row and column, the marginal residuals.  (Output)

Optional Arguments
NROW — Number of rows in the table.  (Input)

Default: NROW = size (TABLE,1).
NCOL — Number of columns in the table.  (Input)

Default: NCOL = size (TABLE,2).
LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 

program.  (Input)
Default: LDTABL = size (TABLE,1).

LDPTAB — Leading dimension of PTABLE exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDPTAB = size (PTABLE,1).

ITER — Number of iterations actually performed.  (Output)

FORTRAN 90 Interface
Generic: CALL MEDPL (TABLE, MAXIT, PTABLE [, …])
Specific: The specific interface names are S_MEDPL and D_MEDPL.

FORTRAN 77 Interface
Single: CALL MEDPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE, LDPTAB, ITER)
Double: The double precision name is DMEDPL.

Description

The routine MEDPL performs a median polish on a two-way table. It first copies TABLE into PTABLE and fills 
the last row and last column of PTABLE with zeroes. It then computes the row-wise medians, adds these to 
the values in the last column and corresponding row, and subtracts them from the other entries in the corre-
sponding row. Similar computations are then performed for all NCOL + 1 columns. The whole procedure is 
then repeated (using NROW + 1 rows) until convergence is achieved (until no changes occur), or until MAXIT 
iterations are performed. Convergence is known to have occurred if ITER is less than MAXIT.
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As Emerson and Hoaglin (1983) discuss, it is not necessarily desirable to continue until convergence. If 
MAXIT is set to twice the maximum of the number of rows and columns plus five, it is likely that convergence 
will occur. 

As Emerson and Hoaglin point out, median polish starting with rows can lead to a different fit from that 
obtained by starting with columns. Although MEDPL does not make provision for choosing which dimension 
to start with, TABLE can be transposed by use of routine 
TRNRR (IMSL MATH/LIBRARY). Use of the transposed table in MEDPL would result in the iterations begin-
ning with the columns of the original table. Further descriptions of median polish, which was first proposed 
by John Tukey, and examples of its use can be found in Tukey (1977, Chapter 11) and in Velleman and Hoag-
lin (1981, Chapter 8).

Comments
Workspace may be explicitly provided, if desired, by use of M2DPL/DM2DPL. 

The reference is:

CALL M2DPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE, LDPTAB, ITER, WK)
The additional argument is:

WK — Work vector of length max(NROW, NCOL).

Example

This example is taken from Emerson and Hoaglin (1983, page 168). It involves data on infant mortality in the 
United States, classified by father’s education and by region of the country. In order to show the difference 
between making only one polishing pass over the rows and polishing until convergence, on the first invoca-
tion MAXIT is set to one. On a second call, it is set large enough to have reasonable assurance of execution 
until convergence. In the first case, the last row and column of PTABLE are printed. The values in these are 
the medians before any polishing. These values approach zero as the polishing continues.

      USE MEDPL_INT
      USE UMACH_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    NCOL, NROW
      PARAMETER  (NCOL=5, NROW=4)
! 
      INTEGER    ITER, LDPTAB, LDTABL, MAXIT, NOUT
      REAL       PTABLE(NROW+1,NCOL+1), TABLE(NROW,NCOL)
      CHARACTER  CLABEL(1)*5, RLABEL(1)*5
! 
      DATA CLABEL/'NONE'/
      DATA RLABEL/'NONE'/
      DATA TABLE/25.3, 32.1, 38.8, 25.4, 25.3, 29.0, 31.0, 21.1, 18.2, &
          18.8, 19.3, 20.3, 18.3, 24.3, 15.7, 24.0, 16.3, 19.0, 16.8, &
          17.5/
! 
      CALL UMACH (2, NOUT)
      MAXIT  = 1
      LDTABL = 4
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      LDPTAB = 5
      CALL MEDPL (TABLE, MAXIT, PTABLE, ITER=ITER)
      CALL WRRRL ('Fitted table after one iteration over the rows', &
                 PTABLE, CLABEL, RLABEL, FMT='(W10.4)')
      MAXIT = 15
      CALL MEDPL (TABLE, MAXIT, PTABLE, ITER=ITER)
      CALL WRRRL ('%/Fitted table and marginal residuals', PTABLE, &
                 CLABEL, RLABEL, FMT='(W10.4)')
      WRITE (NOUT,99999) ITER
99999 FORMAT (/, ' Iterations taken: ', I2)
      END

Output

      Fitted table after one iteration over the rows
 7.0         7.0        -0.1         0.0        -2.0        18.3
 7.8         4.7        -5.5         0.0        -5.3        24.3
19.5        11.7         0.0        -3.6        -2.5        19.3
 4.3         0.0        -0.8         2.9        -3.6        21.1
 0.0         0.0         0.0         0.0         0.0         0.0

                   Fitted table and marginal residuals
-1.55        0.00        0.00       -1.15        0.60       -1.45
 1.55        0.00       -3.10        1.15       -0.40        2.25
10.85        4.60        0.00       -4.85        0.00       -0.35
-3.25       -6.00        0.30        2.75        0.00        0.35
 8.10        6.55       -0.55        0.70       -3.05       20.20
Iterations taken: 15
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Chapter 2: Regression
Routines

2.1 Simple Linear Regression

Straight line fit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RLINE     101

Simple linear regression analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RONE     104

Response control by a fitted line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RINCF     113

Inverse prediction by a fitted line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RINPF     117

2.2 Multivariate General Linear Model Analysis

2.2.1 Model Fitting

From raw data for a single dependent variable . . . . . . . . . . . . . . . . . . . . . . . . RLSE     122

From covariances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RCOV     129

From raw data without classification variables. . . . . . . . . . . . . . . . . . . . . . . . RGIVN     133

From raw data with classification variables . . . . . . . . . . . . . . . . . . . . . . . . . . .RGLM     143

With linear equality restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RLEQU     156

2.2.2 Statistical Inference and Diagnostics

Summary statistics for a fitted regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . RSTAT     166

Variance-covariance matrix of the estimated coefficients  . . . . . . . . . . . . . . RCOVB     178

Construction of a completely testable hypothesis  . . . . . . . . . . . . . . . . . . . . . .CESTI     184

Sums of crossproducts for a multivariate hypothesis. . . . . . . . . . . . . . . . . . .RHPSS     190

Tests for the multivariate linear hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . .RHPTE     197

Test for lack of fit based on exact replicates  . . . . . . . . . . . . . . . . . . . . . . . . . RLOFE     203

Test for lack of fit based on near replicates . . . . . . . . . . . . . . . . . . . . . . . . . .RLOFN     210

Intervals and diagnostics for individual cases  . . . . . . . . . . . . . . . . . . . . . . . .RCASE     219

Diagnostics for outliers and influential cases . . . . . . . . . . . . . . . . . . . . . . . . . ROTIN     230

2.2.3 Utilities for Classification Variables

Getting unique values of classification variables . . . . . . . . . . . . . . . . . . . . . .GCLAS     237

Generation of regressors for a general linear model . . . . . . . . . . . . . . . . . . GRGLM     240
         Chapter 2: Regression      85



2.3 Variable Selection

All best regressions via leaps-and-bounds algorithm  . . . . . . . . . . . . . . . . . . RBEST     245

Stepwise regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSTEP     252

Generalized sweep of a nonnegative definite matrix . . . . . . . . . . . . . . . . . . GSWEP     261

Retrieval of a symmetric submatrix from a symmetric matrix  . . . . . . . . . . . RSUBM     265

2.4 Polynomial Regression and Second-Order Models

2.4.1 Polynomial Regression Analysis

Polynomial fit of known degree  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RCURV     270

Polynomial regression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RPOLY     275

2.4.2 Second-Order Model Design

Generation of an orthogonal central composite design . . . . . . . . . . . . . . . . RCOMP     282

2.4.3 Utility Routines for Polynomial Models and Second-Order Models

Polynomial regression fit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RFORP     287

Summary statistics for a fitted polynomial model . . . . . . . . . . . . . . . . . . . . . . RSTAP     294

Case statistics for a fitted polynomial model  . . . . . . . . . . . . . . . . . . . . . . . . .RCASP     300

Generation of orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .OPOLY     307

Centering of variables and generation of crossproducts . . . . . . . . . . . . . . . GCSCP     311

Transforming coefficients for a second order model  . . . . . . . . . . . . . . . . . . . TCSCP     317

2.5 Nonlinear Regression Analysis

Nonlinear regression fit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RNLIN     321

2.6 Fitting Linear Models Based on Alternative Criteria

Least absolute value regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RLAV     334

Least Lp norm regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RLLP     338

Least maximum value regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RLMV     350

Partial Least Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLSR     354
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Usage Notes

Simple Linear Regression

The simple linear regression model is

where the observed values of the yi’s constitute the responses or values of the dependent variable, the xi’s are 
the settings of the independent (explanatory) variable, β0 and β1 are the intercept and slope parameters, 

respectively, and the ɛi’s are independently distributed normal errors each with mean zero and variance σ2.

Routine RLINE fits a straight line and computes summary statistics for the simple linear regression model. 
There are no options with this routine.

Routine RONE analyzes a simple linear regression model. Routine RONE requires a data matrix as input. There 
is an option for excluding the intercept β0 from the model. The variables x, y, weights (optional), and fre-
quencies (optional) must correspond to columns in this matrix. The simple linear regression model is fit, 
summary statistics are computed (including a test for lack of fit), and confidence intervals and diagnostics for 
individual cases are computed. There are options for printing and plotting the results.

Routines RINCF and RINPF solve the inverse regression (calibration) problem using a fitted simple linear 
regression. Routines RLINE or RONE can be used to compute the fit. Routine RINCF estimates settings of the 
independent variable that restrict, at a specified confidence percentage, y to a given specified range. Routine 
RINPF computes a confidence interval on the setting of the independent variable for a given response y0.

Multiple Linear Regression

The multiple linear regression model is

where the observed values of the yi’s constitute the responses or values of the dependent variable, the 
xi1’s, xi2’s, …, xik’s are the settings of the k independent (explanatory) variables, β0, β1, …, βk are the regres-
sion coefficients, and the ɛi’s are independently distributed normal errors each with mean zero and variance 

σ2.

Routine RLSE fits the multiple linear regression model. There is an option for excluding the intercept β0. 
There are no other options. The responses are input in a one-dimensional array Y, and the independent vari-
ables are input in a two-dimensional array X that contains the individual cases as the rows and the variables 
as the columns.

By specifying a single dependent variable, either RGIVN or RCOV can also be used to fit the multiple linear 
regression. (These routines are designed to fit any number of dependent variables simultaneously. See the 
section Multivariate General Linear Model.)
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Routine RGIVN fits the model using fast Givens transformations. For large data sets that cannot be stored in a 
single array, RGIVN is designed to allow multiple invocations. In this case, only some of the rows from the 
entire data set are input at any one time. Alternatively, the data set can be input in a single array.

Routine RCOV fits the multiple linear regression model from the sum of squares and crossproducts matrix for 
the data (x1, x2, …, xk, y). Routine CORVC in Chapter 3, “Correlation” can compute the required sums of squares 
and crossproducts matrix for input into RCOV. Routine RORDM in Chapter 19, “Utilities” can reorder this 
matrix, if required.

Three routines in the IMSL MATH/LIBRARY can be used for fitting the multiple linear regression model. 
Routine LSQRR (IMSL MATH/LIBRARY) computes the fit via the Householder QR decomposition. Routine 
LSBRR (IMSL MATH/LIBRARY) computes the fit via iterative refinement. Routine LSVRR 
(IMSL MATH/LIBRARY) computes the singular value decomposition of a matrix. Routines LSQRR and 
LSBRR use the regressors and dependent variable as two input arrays. Routine LSVRR computes the singular 
value decomposition of the matrix of regressors, from which the regression coefficients can be obtained. Ken-
nedy and Gentle (1980, section 8.1) discuss some of the computational advantages and disadvantages of the 
various methods for least-squares computations.

No Intercept Model

Several routines provide the option for excluding the intercept from a model. In most practical applications, 
the intercept should be included in the model. For routines that use the sums of squares and crossproducts 
matrix as input, the no-intercept case can be handled by using the raw sums of squares and crossproducts 
matrix as input in place of the corrected sums of squares and crossproducts. The raw sum of squares and 

crossproducts matrix can be computed as(x1, x2, …, xk, y)T(x1, x2, …, xk, y) using the matrix multiplication 
routine MXTXF (IMSL MATH/LIBRARY).

Variable Selection

Variable selection can be performed by RBEST, which does all best subset regressions, or by RSTEP, which 
does stepwise regression. In either case, the sum of squares and crossproducts matrix must first be formed. 
The method used by RBEST is generally preferred over that used by RSTEP because RBEST implicitly exam-
ines all possible models in the search for a model that optimizes some criterion while stepwise does not 
examine all possible models. However, the computer time and memory requirements for RBEST can be much 
greater than that for RSTEP when the number of candidate variables is large.

Two utility routines GSWEP and RSUBM are provided also for variable selection. Routine GSWEP performs a 
generalized sweep of a nonnegative define matrix. Routine RSUBM can be invoked after either GSWEP or 
RSTEP in order to extract the symmetric submatrix whose rows and columns have been swept, i.e., whose 
rows and columns have entered the stepwise model. Routines GSWEP and RSUBM can be invoked prior to 
RBEST in order to force certain variables into all the models considered by RBEST.
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Polynomial Model

The polynomial model is

where the observed values of the yi’s constitute the responses or values of the dependent variable, the xi’s are 
the settings of the independent (explanatory) variables, β0, β1, …, βk are the regression coefficients, and the 

ɛi’s are independently distributed normal errors each with mean zero and variance σ2.

Routine RCURV fits a specified degree polynomial. Routine RPOLY determines the degree polynomial to fit 
and analyzes this model. If only a decomposition of sum of squares for first, second, …, k-th degree effects in 
a polynomial model is required, either RCURV or the service routine RFORP can be used to compute this 
decomposition. The other service routines (RSTAP, RCASP, OPOLY) can be used to perform other parts of the 
full analysis.

Multivariate General Linear Model

Routines for the multivariate general linear model use the model

Y = XB + ɛ
where Y is the n × q matrix of responses, X is the n × p matrix of regressors, B is the p × q matrix of regres-
sion coefficients, and ɛ is the n × q matrix of errors whose q-dimensional rows are identically and 
independently distributed multivariate normal with mean vector 0 and variance-covariance matrix Σ.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification variables. Typically, multiple 
regression models use continuous variables, whereas analysis of variance models use classification variables. 
Although the notation used to specify analysis of variance models and multiple regression models may look 
quite different, the models are essentially the same. The term general linear model emphasizes that a common 
notational scheme is used for specifying a model that may contain both continuous and classification 
variables. 

A general linear model is specified by its effects (sources of variation). We refer to an effect as a single vari-
able or a product of variables. (The term effect is often used in a narrower sense, referring only to a single 
regression coefficient.) In particular, an effect is composed of one of the following:

1. a single continuous variable
2. a single classification variable
3. several different classification variables
4. several continuous variables, some of which may be the same
5. continuous variables, some of which may be the same, and classification variables, which must be 

distinct
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Effects of the first type are common in multiple regression models. Effects of the second type appear as main 
effects in analysis of variance models. Effects of the third type appear as interactions in analysis of variance 
models. Effects of the fourth type appear in polynomial models and response surface models as powers and 
crossproducts of some basic variables. Effects of the fifth type appear in one-way analysis of covariance mod-
els as regression coefficients that indicate lack of parallelism of a regression function across the groups. 

The specification of a general linear model is through arguments INTCEP, NCLVAR, INDCL, NEF, NVEF, and 
INDEF, whose meanings are as follows:

INTCEP — Intercept option.  (Input)

NCLVAR — Number of classification variables.  (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification vari-
ables.  (Input)

NEF — Number of effects (sources of variation) in the model excluding error.  (Input)

NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.  
(Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF).  (Input) 
The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next NVEF(2) 
elements give the column numbers for each variable in the second effect; and so on. The last NVEF(NEF) ele-
ments give the column numbers for each variable in the last effect.

Suppose the data matrix has as its first 4 columns two continuous variables in columns 1 and 2 and two clas-
sification variables in columns 3 and 4. The data might appear as follows:

Each distinct value of a classification variable determines a level. The classification variable in column 3 has 
two levels. The classification variable in column 4 has three levels. (Integer values are recommended, but not 
required, for values of the classification variables. If real numbers are used, the values of the classification 

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.

Column 1 Column 2 Column 3 Column 4

11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0
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variables corresponding to the same level must be identical.) Some examples of regression functions and 
their specifications are as follows:

Routines for Fitting the Model

Routine RGLM fits a multivariate general linear model. If the data set is too large to be stored in a single array, 
RGLM is designed so that multiple invocations can be made. In this case, one or more rows of the entire data 
set can be input at each invocation. Alternatively, the data set can be input all at once in a single array. Index 
vectors are used to specify the column numbers of the data matrix used as classification variables, effects, 
and dependent variables. This is useful if several models with different effects need to be fit from the same 
data matrix. 

Routine RLEQU can be called after RGIVN or RGLM to impose linear equality restrictions AB = Z on the regres-
sion parameters. RLEQU checks consistency of the restrictions. Routine RLEQU is useful for fitting spline 
functions where restrictions on the regression parameters arise from continuity and differentiability condi-
tions on the regression function. 

Routine RLEQU can be used to test the multivariate general linear hypothesis AB = Z by fitting the restricted 
model after the full model is fit. The additional degrees of freedom for error (and the additional sum of 
squares and crossproducts for error) gained in the restricted model can be used for computing a test statistic. 
However, a more efficient approach for computing the sum of squares and crossproducts for a multivariate 
general linear hypothesis is provided by RHPSS. See the next section entitled “Multivariate General Linear 
Hypothesis” for a brief description of the problem and related routines. 

Two utility routines GCLAS and GRGLM are provided to determine the values of the classification variables 
and then to use those values and the specified general linear model to generate the regressors in the model. 
These routines would not be required if you use RGLM to fit the model since RGLM does this automatically. 
However, if other routines in this chapter are used that require the actual regressors and not the classification 
variables, then these routines could be used.

INTCEP NCLVAR INDCL NEF NVEF INDEF

β0 + β1 x1 1 0 1 1 1

β0 + β1x1+ β2x1
2 1 0 2 1,2 1,1,1

μ + α I 1 1 3 1 1 3

μ + α i + βj + γij 1 2 3,4 3 1,1,2 3,4,3,4

μ ij 0 2 3,4 1 2 3,4

β0 + β1x1 + β2x2 + β3x1x2 1 0 3 1,1,2 1,2,1,2

μ + α i + βx1i + βix1i 1 1 3 3 1,1,2 3,1,1,3
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Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—sometimes by design and some-
times by accident. The routines in this chapter are designed to handle linear dependence of the regressors, 
i.e., the n × p matrix X (the matrix of regressors) in the general linear model can have rank less than p. Often, 
the models are referred to as nonfull rank models. 

As discussed in Searle (1971, Chapter 5) some care must be taken to use correctly the results of the fitted non-
full rank regression model for estimation and hypothesis testing. In the nonfull rank case, not all linear 
combinations of the regression coefficients can be estimated. Those linear combinations that can be estimated 
are called “estimable functions.” If routines in this chapter are used to attempt to estimate linear combina-
tions that cannot be estimated, error messages are issued. A good general discussion of estimable functions is 
given by Searle (1971, pages 180-188).

The check used by routines in this chapter for linear dependence is sequential. The j-th regressor is declared 
linearly dependent on the preceding j - 1 regressors if 

is less than or equal to TOL. Here, Rj·1, 2, …, j−1 is the multiple correlation coefficient of the j-th regressor 
with the first j - 1 regressors. Also, TOL is a tolerance that must be input by the user. When a routine declares 
the j-th regressor to be linearly dependent on the first j - 1 regressors, the j-th regression coefficient is set to 
zero. Essentially, this removes the j-th regressor from the model.

The reason a sequential check is used is that frequently practitioners include the variables that they prefer to 
remain in the model first. Also, the sequential check is based on many of the computations already per-
formed as this does not degrade the overall efficiency of the routines. There is no perfect test for linear 
dependence when finite precision arithmetic is used. The input of the tolerance TOL allows the user some 
control over the check for linear dependence. If you know your model is full rank, you can input TOL = 0.0. 
However, generally TOL should be input as approximately 100 times the machine epsilon. The machine epsi-
lon is AMACH(4) in single precision and DMACH(4) in double precision. (See routines AMACH and DMACH in 
Reference Material)

Routines in this chapter performing least squares are based on QR decomposition of X or on a Cholesky fac-

torization RTR of XTX. Maindonald (1984, chapters 1-5) discusses these methods extensively. The R matrix 
used by the regression routines is taken to be a p × p upper triangular matrix, i.e., all elements below the 
diagonal are zero. The signs of the diagonal elements of R are used as indicators of linearly dependent regres-
sors and as indicators of parameter restrictions imposed by fitting a restricted model. The rows of R can be 
partitioned into three classes by the sign of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.
2. A negative diagonal element means the row corresponds to a linearly independent restriction imposed 

on the regression parameters by AB = Z in a restricted model.
3. A zero diagonal element means a linear dependence of the regressors was declared. The regression 

coefficients in the corresponding row of  are set to zero. This represents an arbitrary restriction which 
is imposed to obtain a solution for the regression coefficients. The elements of the corresponding row 
of R are also set to zero.
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Multivariate General Linear Hypothesis

Routine RHPSS computes the matrix of sums of squares and crossproducts for the general linear hypothesis 
H B U = G for the multivariate general linear model Y = XB + ɛ with possible linear equality restrictions 

AB = Z. The R matrix and  from the routines that fit the model are required for input to RHPSS.

The rows of H must be linear combinations of the rows of R, i.e., H B = G must be completely testable. If the 
hypothesis is not completely testable, routine CESTI can be used to construct an equivalent completely test-
able hypothesis.

Routine RHPTE computes several test statistics and approximate p-values for the multivariate general linear 
hypothesis. The test statistics computed included are Wilks’ lambda, Roy’s maximum root, Hotelling’s trace, 
and Pillai’s trace. Seber (1984, pages 409-416) and Morrison (1976, pages 222-224) discuss the procedures 
and compare the test statistics. The error sum of squares and crossproducts matrix (SCPE) output from the fit 
of the model is required for input to RHPTE. In addition, the hypothesis sum of squares and crossproducts 
matrix (SCPH), which can be computed using RHPSS, is required for input to RHPTE.

Nonlinear Regression Model

The nonlinear regression model is

where the observed values of the yi’s constitute the responses or values of the dependent variable, the xi’s are 
the known vectors of values of the independent (explanatory) variables, f is a known function of an unknown 
regression parameter vector θ, and the ɛi’s are independently distributed normal errors each with mean zero 

and variance σ2.

Routine RNLIN performs the least-squares fit to the data for this model. The routine RCOVB can be used to 
compute the large sample variance-covariance matrix of the estimated nonlinear regression parameters from 
the output of RNLIN.

Weighted Least Squares

Routines throughout the chapter generally allow weights to be assigned to the observations. The argument 
IWT is used throughout to specify the weighting option. (IWT = 0 means ordinary least squares; a positive 
IWT means weighted least squares with weights in column IWT of the data set.) All of the weights must be 
nonnegative. For routines requiring a sum of squares and crossproducts matrix for input, a weighted analy-
sis can be performed by using as input a weighted sum of squares and crossproducts matrix. Routine CORVC 
in Chapter 3, "Correlation” can compute the required weighted sum of squares and crossproducts matrix.

Computations that relate to statistical inference, e.g., t tests, F tests, and confidence intervals, are based on the 

multiple regression model except that the variance of ɛi is assumed to equal σ2 (or Σ in the multivariate case) 
times the reciprocal of the corresponding weight.
Usage Notes         Chapter 2: Regression      93



If a single row of the data matrix corresponds to ni observations, the argument IFRQ can be used to specify 
the frequency option. IFRQ = 0 means that for all rows, ni = 1; a positive IFRQ means the frequencies are 
entered into column IFRQ of the data matrix. Degrees of freedom for error are affected by frequencies, but 
are unaffected by weights.

Summary Statistics

Summary statistics for a single dependent variable are computed by several routines in the regression chap-
ter. The routines RONE, RLSE, RSTEP, and RPOLY output some summary statistics with the fit of the model. 
For additional summary statistics, the routines RSTAT and RSTAP can be used.

Routine RSTAT can be used to compute and print statistics related to a regression for each of the q dependent 
variables fitted by RGIVN, RGLM, RLEQU, or RCOV. Routine RSTAT computes summary statistics that include 
the model analysis of variance table, sequential sums of squares and 
F-statistics, coefficient estimates, estimated standard errors, t-statistics, variance inflation factors, and esti-
mated variance-covariance matrix of the estimated regression coefficients. If only the variance-covariance 
matrix of the estimated regression coefficients in needed, routine RCOVB can be used.

The summary statistics are computed under the model y = X β + ɛ, where y is the n × 1 vector of responses, X 
is the n × p matrix of regressors with rank(X) = r, β is the p × 1 vector of regression coefficients, and ɛ is the 
n × 1 vector of errors whose elements are independently normally distributed with mean 0 and variance 

σ2∕wi. 

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), most of the com-
puted summary statistics are output in the following variables:

AOV  — a one-dimensional array usually of length 15. In RSTEP, AOV is of length 13 because the last two ele-
ments of the array cannot be computed from the input. The array contains statistics related to the analysis of 
variance. The sources of variation examined are the regression, error, and total. The first 10 elements of AOV 
and the notation frequently used for these is described in the following table:

In the case an intercept is indicated (INTCEP = 1), the total sum of squares is the sum of squares of the devia-
tions of yi from its (weighted) mean

— the so-called corrected total sum of squares, it is denoted by

Model Analysis of Variance Table

Source of 
Variation

Degrees of 
Freedom

Sum of 
Squares

Mean Square F p-value

Regression DFR=AOV(1) SSR=AOV(4) MSR=AOV(7) AOV(9) AOV(10)

Error DFE=AOV(2) SSE=AOV(5) s2 = AOV(8)

Total DFT=AOV(3) SST=AOV(6)
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In the case an intercept is not indicated (INTCEP = 0), the total sum of squares is the sum of squares of yi —
the so-called corrected total sum of squares, it is denoted by

The error sum of squares is given by

The error degrees of freedom is defined by

DFE = n - r

The estimate of σ2 is given by

s2 = SSE/DFE

which is the error mean square.

The computed F statistic for the null hypothesis H0 : β1 = β2 = … = βk = 0 versus the alternative that at least 
one coefficient is nonzero is given by

F = MSR/s2

The p-value associated with the test is the probability of an F larger than that computed under the assump-
tion of the model and the null hypothesis. A small p-value (less that 0.05) is customarily used to indicate that 
there is sufficient evidence from the data to reject the null hypothesis.

The remaining 5 elements in AOV frequently are displayed together with the actual analysis of variance table. 

The quantities R-squared (R2 = AOV(11)) and adjusted R-squared 

are expressed as a percentage and are defined by

R2 = 100(SSR/SST) = 100(1 - SSE/SST)

The square root of s2(s = AOV(13)) is frequently referred to as the estimated standard deviation of the model 
error.
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The overall mean of the responses 

is output in (AOV(14)).

The coefficient of variation (CV = AOV(15)) is expressed as a percentage and is defined by 

COEF  — a two dimensional array containing the regression coefficient vector 

as one column and associated statistics (including the estimated standard error, t statistic and p-value) in the 
remaining columns.

SQSS  — a two dimensional array containing sequential sums of squares as one column and associated sta-
tistics (including degrees of freedom, F statistic, and p-value) in the remaining columns.

COVB  — the estimated variance-covariance matrix of the estimated regression coefficients.

Tests for Lack of Fit

Tests for lack of fit are computed for simple linear regression by RONE, for the polynomial regression by rou-
tines RPOLY and RSTAP and for multiple regression by routines RLOFE and RLOFN. 

In the case of polynomial regression, the two-dimensional output array TLOF contains the lack of fit F tests 
for each degree polynomial 1, 2, …, k, that is fit to the data. These tests are useful for indicating the degree of 
the polynomial required to fit the data well. 

In the case of simple and multiple regression, the one-dimensional output array TESTLF of length 10 con-
tains the analysis of variance table for the test of lack of fit. Two routines RLOFE and RLOFN can be used to 
compute a test for lack of fit. Routine RLOFE requires exact replicates of the independent variables, i.e., there 
must be at least two cases in the data set that have the same settings of all the independent variables, while 
RLOFN does not require exact replicates. Customarily, one would require there to be several sets of duplicate 
settings of the independent variables in order to use RLOFE. 

For RLOFE, the 10 elements of TESTLF and the notation frequently used for these is described in the follow-
ing table:

Lack of Fit Analysis of Variance Table

Source of 
Variation

Degrees of 
Freedom

Sum of Squares Mean Square F p-value

Lack of Fit TESTLF(1) TESTLF(4) TESTLF(7) TESTLF(9) TESTLF(10)

Error DFPE = TESTLF(2) SSPE = TESTLF(5) TESTLF(8)

Pure Error DFE = TESTLF(3) SSE = TESTLF(6)
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For RLOFN, the 10 elements of TESTLF are similar to those in the previous table. However, since there may 
not be exact replicates in the data, the data are grouped into sets of near replicates. Then, instead of comput-
ing a pure error (or within) sum of squares using a one-way analysis of variance model, an expanded one-
way analysis of covariance model using the clusters of near replicates as the groups is computed. The error 
from this expanded model replaces the pure error in the preceding table in order to compute an exact F test 
for lack of fit conditional on the selected clusters.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by several routines in the regression chapter. 
Routines RONE, and RPOLY output diagnostics for individual cases with the fit. If the fit of the model is done 
by other routines, RCASE and RCASP can be used to compute the diagostics.

Routine RCASE computes confidence intervals and diagnostics for individual cases in the data matrix. The 
cases can be stored in a single data matrix or multiple invocations can be made in which one or more rows of 
the entire data set are input at any one time. Statistics computed by RCASE include predicted values, confi-
dence intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted regression.

If not all of the statistics computed by RCASE are needed, ROTIN can be used to obtain some of the statistics.

The diagnostics are computed under the model y = X β + ɛ, where y is the n × 1 vector of responses, X is the 
n × p matrix of regressors with rank(X) = r, β is the p × 1 vector of regression coefficients, and ɛ is the n × 1 

vector of errors whose elements are independently normally distributed with mean 0 and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), the following five 
diagnostics are computed: (1) leverage, (2) standardized residual, (3) jackknife residual, (4) Cook’s distance, 
and (5) DFFITS. These diagnostics are stored in the FORTRAN matrix CASE. The definition of these terms is 
given in the discussion that follows:

Let xi be a column vector containing the elements of the i-th row of X. A case could be unusual either because 
of xi or because of the response yi. The leverage hi is a measure of unusualness of the xi. The leverage is defined 
by

where W = diag(w1, w2, …, wn) and (XTW X)− denotes a generalized inverse of XTWX. The average value of 
the hi’s is r/n. Regression routines declare xi unusual if hi > 2r/n. A row label X is printed beside a case that is 
unusual because of of xi. Hoaglin and Welsch (1978) call a data point highly influential (i.e., a leverage point) 
when this occurs. 

Let ei denote the residual

for the i-th case. The estimated variance of ei is (1 - hi)s
2/wi where s2 is the residual mean square from the fit-

ted regression. The i-th standardized residual (also called the internally studentized residual) is by definition
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and ri follows an approximate standard normal distribution in large samples. 

The i-th jackknife residual or deleted residual involves the difference between yi and its predicted value based on 
the data set in which the i-th case is deleted. This difference equals ei/(1 - hi). The jackknife residual is 
obtained by standardizing this difference. The residual mean square for the regression in which the i-th case 
is deleted is

The jackknife residual is defined to be

and ti follows a t distribution with n - r - 1 degrees of freedom. The regression routines declare yi unusual 
(an outlier) if a jackknife residual greater than 2.0 in absolute value is computed. A row label Y is printed 
beside a case that is unusual because of yi.

Cook’s distance for the i-th case is a measure of how much an individual case affects the estimated regression 
coefficients. It is given as

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n - r) distribution, it should be consid-
ered large. (This value is about 1. This statistic does not have an F distribution.) 

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, DFFITS is computed by the 
formula

Hoaglin and Welsch (1978) suggest that DFFITSi is greater than

is large.
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Transformations

Transformations of the independent variables are sometimes useful in order to satisfy the regression model. 
The inclusion of squares and crossproducts of the variables 

is often needed. Logarithms of the independent variables are also often used. (See Draper and Smith, 1981, 
pages 218-222, Box and Tidwell, 1962, Atkinson, 1985, pages 177-180, Cook and Weisberg, 1982, pages 
78-86.) 

When the responses are described by a nonlinear function of the parameters, a transformation of the model 
equation can often be selected so that the transformed model is linear in the regression parameters. For 
example, the exponential model

by taking natural logarithms on both sides of the equation, can be transformed to a model that satisfies the 
linear regression model provided the ɛi’s have a log normal distribution (Draper and Smith, pages 222-225). 

When the responses are nonnormal and their distribution is known, a transformation of the responses can 
often be selected so that the transformed responses closely satisfy the regression model assumptions. The 
square root transformation for counts with a Poisson distribution and the arc-sine transformation for bino-
mial proportions are common examples (Snedecor and Cochran, 1967, pages 325-330, Draper and Smith, 
pages 237-239). 

If the distribution of the responses is not known, the data can be used to select a transformation so that the 
transformed responses may more closely obey the regression model. For a positive response variable y > 0, 
the family of power transformations indexed by λ

and generalizations of this family are useful. Routine BCTR (See Chapter 8, “Time Series Analysis and Forecast-
ing”) can be used to perform the transformation. A method to estimate and to compute an approximate test 
for λ = 1 is given by Atkinson (1973). Also, Atkinson (1986) discusses transformation deletion statistics for 
computing the estimate and test leaving out a single observation since the evidence for a transformation of 
the response may sometimes depend crucially on one or a few observations.

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are normally distributed, e.g., a 
least-squares solution produces maximum likelihood estimates of the regression parameters. However, when 
errors are not normally distributed, least squares may yield poor estimators. The least absolute value (LAV, 
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L1) criterion yields the maximum likelihood estimate when the errors follow a Laplace distribution. Routine 
RLAV is often used when the errors have a heavy tailed distribution or when a fit is needed that is resistant to 
outliers. 

A more general approach, minimizing the Lp norm (p ≥ 1), is given by routine RLLP. Although the routine 
requires about 30 times the CPU time for the case p = 1 than would the use of RLAV, the generality of RLLP 
allows the user to try several choices for p ≥ 1 by simply changing the input value of p in the calling pro-
gram. The CPU time decreases as p gets larger. Generally, choices of p between 1 and 2 are of interest. 
However, the Lp norm solution for values of p larger than 2 can also be computed.

The minimax (LMV, L∞, Chebyshev) criterion is used by RLMV. Its estimates are very sensitive to outliers, 
however, the minimax estimators are quite efficient if the errors are uniformly distributed.

Routine PLSR provides a fourth alternative useful when there are many inter-related regression variables 
and relatively few observations. PLSR finds linear combinations of the predictor variables that have highest 
covariance with Y.

Missing Values

NaN (not a number) is the missing value code used by the regression routines. Use function AMACH(6) (or 
function DMACH(6) with double precision regression routines) to retrieve NaN. (See the section Machine-
Dependent Constants in Reference Material.) Any element of the data matrix that is missing must be set to 
AMACH(6) (or DMACH(6) for double precision). In fitting regression models, any row of the data matrix con-
taining NaN for the independent, dependent, weight, or frequency variables is omitted from the 
computation of the regression parameters. 

Often predicted values and confidence intervals are desired for combinations of settings of the independent 
variables not used in computing the regression fit. This can be accomplished by including additional rows in 
the data matrix. These additional rows should contain the desired settings of the independent variables 
along with the responses set equal to NaN. The cases with NaN will not be used in determining the estimates 
of the regression parameters, and a predicted value and confidence interval will be computed from the given 
settings of the independent variables.
Usage Notes         Chapter 2: Regression      100



RLINE

Fits a line to a set of data points using least squares.

Required Arguments
XDATA — Vector of length NOBS containing the x-values.  (Input)
YDATA — Vector of length NOBS containing the y-values.  (Input)
B0 — Estimated intercept of the fitted line.  (Output)
B1 — Estimated slope of the fitted line.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (XDATA,1). 
STAT — Vector of length 12 containing the statistics described below.  (Output)

 

FORTRAN 90 Interface
Generic: CALL RLINE (XDATA, YDATA, B0, B1 [, …])
Specific: The specific interface names are S_RLINE and D_RLINE.

FORTRAN 77 Interface
Single: CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)
Double: The double precision name is DRLINE.

I STAT(I)

1 Mean of XDATA

2 Mean of YDATA

3 Sample variance of XDATA

4 Sample variance of YDATA

5 Correlation

6 Estimated standard error of B0

7 Estimated standard error of B1

8 Degrees of freedom for regression

9 Sum of squares for regression

10 Degrees of freedom for error

11 Sum of squares for error

12 Number of (x, y) points containing NaN (not a number) as either the 
x or y value
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Description

Routine RLINE fits a line to a set of (x, y) data points using the method of least squares. Draper and Smith 
(1981, pages 1-69) discuss the method. The fitted model is

where  (stored in B0) is the estimated intercept and  (stored in B1) is the estimated slope. In addition to 
the fit, RLINE produces some summary statistics, including the means, sample variances, correlation, and the 

error (residual) sum of squares. The estimated standard errors of  are computed under the simple 
linear regression model. The errors in the model are assumed to be uncorrelated and with constant variance.

If the x values are all equal, the model is degenerate. In this case, RLINE sets  to zero and  to the mean of 
the y values.

Comments

Informational error

Example

This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, pages 9-33). The 
response y is the amount of steam used per month (in pounds), and the independent variable x is the average 
atmospheric temperature (in degrees Fahrenheit).

      USE RLINE_INT
      USE UMACH_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=25)
!
      INTEGER    NOUT
      REAL       B0, B1, STAT(12), XDATA(NOBS), YDATA(NOBS)
      CHARACTER  CLABEL(13)*15, RLABEL(1)*4
!
      DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7, &
          57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0, &
          74.5, 72.1, 58.1, 44.6, 33.4, 28.6/
      DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5, &
          7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09, &
          8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
      DATA RLABEL/'NONE'/, CLABEL/' ', 'Mean of X', 'Mean of Y', &
          'Variance X', 'Variance Y', 'Corr.', 'Std. Err. B0', &
          'Std. Err. B1', 'DF Reg.', 'SS Reg.', 'DF Error', &

Type Code Description

4 1 Each (x, y) point contains NaN (not a number). There are no valid data.
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          'SS Error', 'Pts. with NaN'/
!
      CALL RLINE (XDATA, YDATA, B0, B1, STAT=STAT)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) B0, B1
99999 FORMAT (' B0 = ', F7.2, '  B1 = ', F9.5)
      CALL WRRRL ('%/STAT', STAT, RLABEL, CLABEL, 1, 12, 1, &
                  FMT='(12W10.4)')
!
      END

Output

B0 =   13.62  B1 =  -0.07983

                                      STAT
Mean of X   Mean of Y  Variance X  Variance Y       Corr.  Std. Err. B0
     52.6       9.424       298.1       2.659     -0.8452        0.5815

Std. Err. B1     DF Reg.     SS Reg.    DF Error    SS Error  Pts. with NaN
     0.01052           1       45.59          23       18.22              0

Figure 2.1 — Plot of the Data and the Least Squares Line
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RONE

Analyzes a simple linear regression model.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
IND — Column number IND of X contains the data for the independent (explanatory) variable.  (Input)
AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output)

 

If INTCEP = 1, the regression and total are corrected for the mean. If INTCEP = 0, the regression and total 
are not corrected for the mean, and AOV(14) and AOV(15) are set to NaN (not a number).

COEF — INTCEP + 1 by 5 matrix containing statistics relating the regression coefficients.  (Output) 
If INTCEP = 1, the first row corresponds to the intercept. Row INTCEP + 1 corresponds to the coeffi-
cient for the slope. The statistics in the columns are

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)

Col. Description

1 Coefficient estimate

2 Estimated standard error of the coefficient estimate

3 t-statistic for the test that the coefficient is zero

4 p-value for the two-sided t test

5 Variance inflation factor
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COVB — INTCEP + 1 by INTCEP + 1 matrix that is the estimated variance-covariance matrix of the esti-
mated regression coefficients.  (Output)

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model.  (Output)
 

If there are no replicates in the data set, a test for lack of fit cannot be performed. In this case, elements 7, 8, 
9, and 10 of TESTLF are set to NaN (not a number).

CASE — NOBS by 12 matrix containing case statistics.  (Output) 
Columns 1 through 12 contain the following:

 

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

Elem Description

1 Degrees of freedom for lack of fit

2 Degrees of freedom for pure error

3 Degrees of freedom for error (TESTLF(1) + TESTLF(2))

4 Sum of squares for lack of fit

5 Sum of squares for pure error

6 Sum of squares for error

7 Mean square for lack of fit

8 Mean square for pure error

9 F statistic

10 p-value

Col. Description

1 Observed response

2 Predicted response

3 Residual

4 Leverage

5 Standardized residual

6 Jackknife residual

7 Cook’s distance

8 DFFITS

9, 10 Confidence interval on the mean

11, 12 Prediction interval
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INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1. 

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies. If X(I, IFRQ) = 0.0, none of the remaining elements of row I of X are referenced, and 
updating of statistics is skipped for row I.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

IPRED — Prediction interval option.  (Input) 
IPRED = 0 means that prediction intervals are computed for a single future response. For positive 
IPRED, a prediction interval is computed on the average of future responses, and column number 
IPRED of X contains the number of future responses in each average.
Default: IPRED =0.

CONPCM — Confidence level for two-sided interval estimates on the mean, in percent.  (Input) 
CONPCM percent confidence intervals are computed, hence, CONPCM must be greater than or equal to 
0.0 and less than 100.0. CONPCM often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence 
level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set 
CONPCM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCM = 95.0.

CONPCP — Confidence level for two-sided prediction intervals, in percent.  (Input)
CONPCP percent prediction intervals are computed, hence, CONPCP must be greater than or equal to 
0.0 and less than 100.0. CONPCP often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence 
level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set 
CONPCP = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCP = 95.0.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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IPRINT — Printing option.  (Input)
Default: IPRINT = 0. 

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOVB = size (COVB,1).

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of data encountered containing missing values for the independent, depen-
dent, weight, or frequency variables.  (Output) 
NaN (not a number) is used as the missing value code. Any row of X containing NaN as a value of the 
independent, dependent, weight, or frequency variables is omitted from the computations for fitting 
the model.

FORTRAN 90 Interface
Generic: CALL RONE (X, IRSP, IND, AOV, COEF, COVB, TESTLF, CASE [, …])
Specific: The specific interface names are S_RONE and D_RONE.

FORTRAN 77 Interface
Single: CALL RONE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, IFRQ, IWT, IPRED, CONPCM, 

CONPCP, IPRINT, AOV, COEF, LDCOEF, COVB, LDCOVB, TESTLF, CASE, LDCASE, NRMISS)
Double: The double precision name is DRONE.

Description

Routine RONE performs an analysis for the simple linear regression model. In addition to the fit, summary 
statistics (analysis of variance, t tests, lack-of-fit test), and confidence intervals and diagnostics for individual 
cases are computed. With the printing option, diagnostic plots can also be produced. Draper and Smith (1981, 
chapter 1) give formulas for many of the statistics computed by RONE. For definitions of the case diagnostics 
(stored in CASE), see the “Usage Notes” of this chapter.

IPRINT Action

0 No printing is performed.

1 AOV, COEF, TESTLF, and unusual rows of CASE are printed.

2 AOV, COEF, TESTLF, and unusual rows of CASE are printed. A plot 
of the data with the regression line is printed.

3 All printing is performed. A plot of the data with the regression 
line, a plot of the standardized residuals versus the independent 
variable, and a half-normal probability plot of the standardized 
residuals are printed.
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Comments
1. Workspace may be explicitly provided, if desired, by use of R2NE/DR2NE. The reference is:

CALL R2NE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, IFRQ, IWT, IPRED, CONPCM, CONPCP, 
IPRINT, AOV, COEF, LDCOEF, COVB, LDCOVB, TESTLF, CASE, LDCASE, NRMISS, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length NOBS.

WK — Work vector of length 3 * NOBS.
2. Informational errors

Examples

Example 1

This example fits a line to a set of data discussed by Draper and Smith (1981, pages 9-33). The response y is 
the amount of steam used per month (in pounds), and the independent variable x is the average atmospheric 
temperature (in degrees Fahrenheit). The IPRINT = 1 option is selected. Hence, plots are not produced and 
only unusual cases are printed. Note in the case analysis, with the default page width, the observation num-
ber and the associated 12 statistics require two lines of output. (Routine PGOPT, Chapter 19, "Utilities", can be 
invoked to increase the page width to put all 12 statistics on the same line.) Also note that observation 11 is 
labeled with a “Y” to indicate an unusual y (response). The residual for this case is about 2 standard devia-
tions from zero.

      USE RONE_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, LDCASE, LDCOEF, LDCOVB, LDX, NCOEF, NCOL, NOBS
      INTEGER    J
      PARAMETER  (NOBS=25, LDX=25, LDCASE=25, INTCEP=1, NCOEF=INTCEP+1, &
                 LDCOEF=NCOEF, LDCOVB=NCOEF, NCOL=2)
!
      INTEGER    IND, IPRINT, IRSP, NRMISS
      REAL       AOV(15), CASE(LDCASE,12), COEF(LDCOEF,5), CONPCP, &
                 COVB(LDCOVB,NCOEF), TESTLF(10), X(LDX,NCOL)
!
      DATA (X(1,J),J=1,2)  /35.3, 10.98/
      DATA (X(2,J),J=1,2)  /29.7, 11.13/
      DATA (X(3,J),J=1,2)  /30.8, 12.51/
      DATA (X(4,J),J=1,2)  /58.8,  8.40/

Type Code Description

3 5 CONPCM is less than 50.0. Confidence percentages commonly used are 
90.0, 95.0, and 99.0.

3 6 CONPCP is less than 50.0. Confidence percentages commonly used are 
90.0, 95.0, and 99.0.

4 1 Negative weight encountered.

4 2 Negative frequency encountered.

4 7 Each row of X contains NaN.
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      DATA (X(5,J),J=1,2)  /61.4,  9.27/
      DATA (X(6,J),J=1,2)  /71.3,  8.73/
      DATA (X(7,J),J=1,2)  /74.4,  6.36/
      DATA (X(8,J),J=1,2)  /76.7,  8.50/
      DATA (X(9,J),J=1,2)  /70.7,  7.82/
      DATA (X(10,J),J=1,2) /57.5,  9.14/
      DATA (X(11,J),J=1,2) /46.4,  8.24/
      DATA (X(12,J),J=1,2) /28.9, 12.19/
      DATA (X(13,J),J=1,2) /28.1, 11.88/
      DATA (X(14,J),J=1,2) /39.1,  9.57/
      DATA (X(15,J),J=1,2) /46.8, 10.94/
      DATA (X(16,J),J=1,2) /48.5,  9.58/
      DATA (X(17,J),J=1,2) /59.3, 10.09/
      DATA (X(18,J),J=1,2) /70.0,  8.11/
      DATA (X(19,J),J=1,2) /70.0,  6.83/
      DATA (X(20,J),J=1,2) /74.5,  8.88/
      DATA (X(21,J),J=1,2) /72.1,  7.68/
      DATA (X(22,J),J=1,2) /58.1,  8.47/
      DATA (X(23,J),J=1,2) /44.6,  8.86/
      DATA (X(24,J),J=1,2) /33.4, 10.36/
      DATA (X(25,J),J=1,2) /28.6, 11.08/
!
      IRSP   = 2
      IND    = 1
      CONPCP = 99.0
      IPRINT = 1
      CALL RONE (X, IRSP, IND, AOV, COEF, COVB, TESTLF, CASE, &
                CONPCP=CONPCP, IPRINT=IPRINT, NRMISS=NRMISS)
!
      END

Output

R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   71.444     70.202          0.8901       9.424           9.445

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             1       45.59       45.59     57.543    0.0000
Residual              23       18.22        0.79
Corrected Total       24       63.82

                * * * Inference on Coefficients * * *
                     Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       13.62      0.5815        23.43      0.0000       10.67
    2       -0.08      0.0105        -7.59      0.0000        1.00

                 * * * Test for Lack of Fit * * *
                          Sum of        Mean             Prob. of
Source            DF     Squares      Square  Overall F  Larger F
Lack of fit       22       17.40      0.7911      0.966    0.6801
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Pure error         1        0.82      0.8192
Residual          23       18.22

                         * * * Case Analysis * * *
     Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
            Cook’s D     DFFITS   95.0% CI   95.0% CI   99.0% PI   99.0% PI
Y      11     8.2400     9.9189    -1.6789     0.0454    -1.9305    -2.0625
              0.0886    -0.4497     9.5267    10.3112     7.3640    12.4739

Figure 2.2 — Plot of Line and 99% One-at-a-Time Prediction Intervals

Example 2

This example fits a line to a data set discussed by Draper and Smith (1981, pages 38-40). The data set con-
tains several repeated x values in order to assess lack of fit of the straight line. The IPRINT = 1 option is 
selected. Hence, plots are not produced and only unusual cases are printed. Note in the case analysis that 
observations 1 and 2 are labeled with an “X” to indicate an unusual x value. Each have leverage 0.1944 that 
exceeds the average leverage of p/n = 2/24 by a factor of 2.

      USE RONE_INT

      IMPLICIT   NONE
      INTEGER    LDCASE, LDCOEF, LDCOVB, LDX, NCOEF, NCOL, NOBS,J
      INTEGER    INTCEP, NRMISS
      PARAMETER  (INTCEP=1, NCOL=2, NOBS=24, LDCASE=NOBS, LDX=NOBS, &
                  NCOEF=INTCEP+1, LDCOEF=NCOEF, LDCOVB=NCOEF) 
!
      INTEGER    IFRQ, IND, IPRED, IPRINT, IRSP
      REAL       AOV(15), CASE(LDCASE,12),COEF(LDCOEF,5), &
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                 COVB(LDCOVB,NCOEF), TESTLF(10), X(LDX,NCOL)                
!
      DATA (X(1,J),J=1,2)  /2.3, 1.3/
      DATA (X(2,J),J=1,2)  /1.8, 1.3/
      DATA (X(3,J),J=1,2)  /2.8, 2.0/
      DATA (X(4,J),J=1,2)  /1.5, 2.0/
      DATA (X(5,J),J=1,2)  /2.2, 2.7/
      DATA (X(6,J),J=1,2)  /3.8, 3.3/
      DATA (X(7,J),J=1,2)  /1.8, 3.3/
      DATA (X(8,J),J=1,2)  /3.7, 3.7/
      DATA (X(9,J),J=1,2)  /1.7, 3.7/
      DATA (X(10,J),J=1,2) /2.8, 4.0/
      DATA (X(11,J),J=1,2) /2.8, 4.0/
      DATA (X(12,J),J=1,2) /2.2, 4.0/
      DATA (X(13,J),J=1,2) /5.4, 4.7/
      DATA (X(14,J),J=1,2) /3.2, 4.7/
      DATA (X(15,J),J=1,2) /1.9, 4.7/
      DATA (X(16,J),J=1,2) /1.8, 5.0/
      DATA (X(17,J),J=1,2) /3.5, 5.3/
      DATA (X(18,J),J=1,2) /2.8, 5.3/
      DATA (X(19,J),J=1,2) /2.1, 5.3/
      DATA (X(20,J),J=1,2) /3.4, 5.7/
      DATA (X(21,J),J=1,2) /3.2, 6.0/
      DATA (X(22,J),J=1,2) /3.0, 6.0/
      DATA (X(23,J),J=1,2) /3.0, 6.3/
      DATA (X(24,J),J=1,2) /5.9, 6.7/
!
      IRSP = 1
      IND  = 2
      IPRINT = 1
      CALL RONE (X, IRSP, IND, AOV, COEF, COVB, TESTLF, CASE, &
                IPRINT=IPRINT, NRMISS=NRMISS)
      END

Output

R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   22.983     19.483          0.9815       2.858          34.34

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             1        6.32       6.325      6.565    0.0178
Residual              22       21.19       0.963
Corrected Total       23       27.52

                * * * Inference on Coefficients * * *
                     Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       1.436      0.5900        2.435      0.0235       8.672
    2       0.338      0.1319        2.562      0.0178       1.000

                 * * * Test for Lack of Fit * * *
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                          Sum of        Mean             Prob. of
Source            DF     Squares      Square  Overall F  Larger F
Lack of fit       11        8.72       0.793      0.700    0.7183
Pure error        11       12.47       1.134
Residual          22       21.19

                       * * * Case Analysis * * *
      Obs.  Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
            Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
X       1     2.3000     1.8756     0.4244     0.1944     0.4817     0.4731
              0.0280     0.2324     0.9783     2.7730    -0.3489     4.1002
X       2     1.8000     1.8756    -0.0756     0.1944    -0.0859    -0.0839
              0.0009    -0.0412     0.9783     2.7730    -0.3489     4.1002
Y      13     5.4000     3.0245     2.3755     0.0460     2.4780     2.8515
              0.1481     0.6264     2.5877     3.4612     0.9426     5.1063
Y      24     5.9000     3.7002     2.1998     0.1537     2.4363     2.7855
              0.5391     1.1873     2.9021     4.4983     1.5138     5.8866

Figure 2.3 — Plot of Leverages hi and the Average (p/n = 2/24)
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RINCF

Performs response control given a fitted simple linear regression model.

Required Arguments
SUMWTF — Sum of products of weights with frequencies from the fitted regression.  (Input, if 

INTCEP = 1) 
In the ordinary case when weights and frequencies are all one, SUMWTF equals the number of 
observations.

DFE — Degrees of freedom for error from the fitted regression.  (Input)
B — Vector of length INTCEP + 1 containing a least-squares solution for the intercept and slope.  (Input) 

XYMEAN — Vector of length 2 containing the variable means.  (Input) 
XYMEAN(1) is the independent variable mean. XYMEAN(2) is the dependent variable mean. If 
INTCEP = 0, XYMEAN is not referenced and can be a vector of length one.

SSX — Sum of squares for the independent variable.  (Input) 
If INTCEP = 1, SSX is the sums of squares of deviations of the independent variable from its mean. 
Otherwise, SSX is not corrected for the mean.

S2 — s2, the estimate of σ2 from the fitted regression.  (Input)
YLOWER — Lower limit for the response.  (Input)
YUPPER — Upper limit for the response.  (Input)
XLOWER — Lower limit on the independent variable for controlling the response.  (Output)
XUPPER — Upper limit on the independent variable for controlling the response.  (Output)

Optional Arguments
INTCEP — Intercept option.  (Input)

Default: INTCEP = 1. 

SWTFY0 — S2/SWTFY0 is the estimated variance of the future response (or future response mean) that is 
to be controlled.  (Input) 
In the ordinary case, when weights and frequencies are all one, SWTFY0 is the number of observations 
in the response mean that is to be controlled. SWTFY0 = 0.0 means the true response mean is to be con-
trolled. 
Default: SWTFY0 = 0.0.

INTCEP Intercept Slope

0 B(1)

1 B(1) B(2)

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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CONPER — Confidence level for a two-sided response control, in percent.  (Input)
CONPER percent limits are computed; hence, CONPER must be greater than or equal to 0.0 and less than 
100.0. CONPER often will be 90.0, 95.0, or 99.0. For one-sided control with confidence level ONECL, 
where ONECL is greater than or equal to 50.0 and less than 100.0, set 
CONPCM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface
Generic: CALL RINCF (SUMWTF, DFE, B, XYMEAN, SSX, S2, YLOWER, YUPPER, XLOWER, XUPPER 

[, …])
Specific: The specific interface names are S_RINCF and D_RINCF.

FORTRAN 77 Interface
Single: CALL RINCF (SUMWTF, DFE, INTCEP, B, XYMEAN, SSX, S2, SWTFY0, CONPER, YLOWER, 

YUPPER, XLOWER, XUPPER)
Double: The double precision name is DRINCF.

Description

Routine RINCF estimates settings of the independent variable that restrict, at a specified confidence percent-
age, the average of k randomly drawn responses to a given acceptable range (or the true mean response to a 
given acceptable range), using a fitted simple linear regression model. The results of routine RLINE or RONE 
can be used for input into RINCF. The simple linear regression model is assumed:

yi= β0 + β1xi+ ɛ i     i = 1, 2, …, n + k

where the ɛi’s are independently distributed normal errors with mean zero and variance σ2/wi. Here, n is the 
total number of observations used in the fit of the line, i.e., n = DFE + INTCEP + 1. Also, k is the number of 
additional responses whose average is to be restricted to the specified range. The wi’s are the weights. 

The methodology is based on Graybill (1976, pages 280-283). The estimate of σ2, s2 (stored in S2), is the 

usual estimate of σ2 from the fitted regression based on the first n observations. First, a test of the hypothesis 
H0 : β1 = 0 vs. Ha : β1 ≠ 0 at level α = 1 - CONPER/100 is performed. If H0 is accepted, the model becomes 
yi = β0 + ɛi, and limits for x to control the response are meaningless since x is no longer in the model. In this 

case, a type 4 fatal error is issued. If H0 is rejected and  is positive, a lower limit (upper limit) for x stored in 
XLOWER(XUPPER) is computed for the case where SWTFY0 is positive by

where y0 is the value stored in YLOWER(YUPPER) and where
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and t is the 50 + CONPER/2 percentile of the t distribution with DFE degrees of freedom. In the formula, the 
symbol ± is used to indicate that + is used to compute XLOWER with y0 = YLOWER, and - is used to compute 

XUPPER with y0 = YUPPER. If H0 is rejected and  is negative, a lower limit (upper limit) for x stored in 
XLOWER(XUPPER) is computed for the case where SWTFY0 is positive by a small modification. In particular, 
the symbol ± is then taken so that + is used to compute XLOWER with y0 = YUPPER, and - is used to compute 
XUPPER with y0 = YLOWER. These limits actually have a confidence coefficient less than that specified by 
CONPER.

In the weighted case, which was discussed earlier, the means (stored in XYMEAN) and the sum of squares for 
x (stored in SSX) are all weighted. When the variances of the ɛi’s are all equal, ordinary least squares must be 
used, this corresponds to all wi = 1.

The previous discussion can be generalized to the case where an intercept is not in the model. The necessary 

modifications are to let  and to replace the first term under the square root symbol by zero,  by 
zero, and  by zero.

In order to restrict the true mean response to a specified range, i.e, when SWTFY0 is zero, the formulas are 
modified by replacing the second term under the square root symbol with zero.

Comments

Informational errors

Example

This example estimates the settings of the independent variable that restrict, at 97.5% confidence, the true 
mean response to a upper bound of -4.623, using a fitted simple linear regression model. The fitted model 
excludes the intercept term. To accomplish one-sided control, CONPER is set to 100 - 2(100 - 97.5) = 95, and 
YLOWER is set to an arbitrary value less than YUPPER. The output for XLOWER furnishes the lower bound for 
x necessary to control y.

      USE RINCF_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    INTCEP

Type Code Description

4 1 The slope is not significant at the (100 - CONPER) percent level. Control limits 
cannot be obtained.

4 2 The computed lower limit, XLOWER, exceeds the computed upper limit, 
XUPPER. No satisfactory settings of the independent variable exist to control 
the response as specified.
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      PARAMETER  (INTCEP=0)
!
      INTEGER    NOUT
      REAL       B(INTCEP+1), CONPER, DFE, ONECL, S2, SSX, SUMWTF, &
                SWTFY0, XLOWER, XUPPER, XYMEAN(1), YLOWER, YUPPER
!
      DATA B/-.079829/
!
      SUMWTF = 25.0
      DFE    = 24.0
      SSX    = 76323.0
      S2     = 0.7926
      SWTFY0 = 0.0
      ONECL  = 97.5
      CONPER = 100.0 - 2*(100.0-ONECL)
      YUPPER = -4.623
      YLOWER = -9.0
      CALL RINCF (SUMWTF, DFE, B, XYMEAN, SSX, S2, YLOWER, YUPPER,  &
                 XLOWER, XUPPER, INTCEP=INTCEP, CONPER=CONPER)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'XLOWER = ', XLOWER, '  XUPPER = ', XUPPER
      END

Output

XLOWER = 63.1747   XUPPER = 104.07
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RINPF

Performs inverse prediction given a fitted simple linear regression model.

Required Arguments
SUMWTF — Sum of products of weights with frequencies from the fitted regression.  (Input, if 

INTCEP = 1) 
In the ordinary case when weights and frequencies are all one, SUMWTF equals the number of observa-
tions used in the fit of the model.

DFS2 — Degrees of freedom for estimate of σ2.  (Input) 
If IY0 = 1, DFS2 is the degrees of freedom for error from the fitted regression. If IY0 = 0, DFS2 is the 
pooled degrees of freedom from the estimate of sigma-squared based on the fitted regression and the 
additional responses used to compute the mean Y0.

B — Vector of length INTCEP + 1 containing a least-squares solution for the intercept and slope.  (Input)
 

XYMEAN — Vector of length 2 with the mean of the independent and dependent variables, respectively.  
(Input, if INTCEP = 1) 
If INTCEP = 0, XYMEAN is not referenced and can be a vector of length 1.

SSX — Sum of squares for x.  (Input)
If INTCEP = 1, SSX is the sum of squares of deviations of x from its mean. If INTCEP = 0, SSX must not 
be corrected for the mean.

S2 — s2, the estimate of the variance of the error in the model.  (Input) 
If IY0 = 1, S2 is the estimate of σ2 from the fitted regression. If IY0 = 0, S2 is the pooled estimate of σ2 
based on the fitted regression, and the additional responses used to compute the mean Y0.

Y0 — Value of the response variable for which an interval estimate of the corresponding independent vari-
able value is desired.  (Input)

X0HAT — Point estimate of the independent variable.  (Output)
XLOWER — Lower limit of the interval estimate for the independent variable.  (Output)
XUPPER — Upper limit of the interval estimate for the independent variable.  (Output)

Optional Arguments
INTCEP — Intercept option.  (Input) 

Default: INTCEP = 1.

INTCEP Intercept Slope

0 B(1)

1 B(1) B(2)

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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CONPER — Confidence level for the interval estimation.  (Input) 
CONPER must be expressed as a percentage between 0.0 and 100.0. CONPER often will be 
90.0, 95.0, 99.0. For one-sided confidence intervals with confidence level ONECL, set 
CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

IY0 — Option for Y0.  (Input) 
Default: IY0 = 1.

SWTFY0 — Sum of products of weights with frequencies for Y0.  (Input, if IY0 = 0) 
In the ordinary case, when weights and frequencies are all one, SWTFY0 is the number of observations 
used to obtain the mean Y0. If IY0 = 1, SWTFY0 is not referenced.

FORTRAN 90 Interface
Generic: CALL RINPF (SUMWTF,DFS2 , B , XYMEAN , SSX , S2 , Y0 , X0HAT, XLOWER , XUPPER [, …])
Specific: The specific interface names are S_RINPF and D_RINPF.

FORTRAN 77 Interface
Single: CALL RINPF (SUMWTF,DFS2 , INTCEP, B , XYMEAN , SSX , S2 , CONPER , IY0,  SWTFY0, Y0, 

X0HAT, XLOWER , XUPPER)
Double: The double precision name is DRINPF.

Description

Routine RINPF computes a confidence interval on the independent variable setting x0 for a given response y0 
from the results of a straight line fit. Here, y0 may represent the mean of k responses or the true mean 
response. The results of routine RLINE or RONE can be used for input into RINPF. The simple linear regres-
sion model is assumed,

where the ɛi’s are independently distributed normal errors with mean zero and variance σ2/wi. Here, n is the 
total number of observations used in the fit of the line, i.e., n = DFE + INTCEP + 1 where DFE is the degrees of 
freedom from the fitted regression. Also, k is the number of additional responses used to determine y0. The 
wi’s are the weights that must be used in the fit of the model. The methodology is discussed by Graybill 

(1976, pages 280-283). For the case when IY0  = 1, the estimate of σ2, s2 (stored in S2), is the usual estimate of 

σ2 from the fitted regression based on the first n observations. If IY0 = 0, the estimate of σ2 is a pooled esti-
mator based on the fitted regression and the k responses that produce .

IY0 Action

0 Y0 is a sample mean of one or more responses.

1 Y0 is the true mean response.
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This pooled estimator (stored in S2) is given by

where (n - 2) + (k - 1) (stored in DFS2) is the pooled degrees of freedom for s2.

First, a point estimate  (stored in X0HAT) is computed by

Then, a test of the hypothesis H0 : β1 = 0 vs. Ha : β1 ≠ 0 is performed. If H0 is accepted, the model becomes 
yi = β0 + ɛi, and therefore no confidence interval exists for x0 because it is no longer in the model. In this case, 
a type 3 warning error is issued. If H0 is rejected, a confidence interval exists and is computed for the case 
IY0 = 1 by

where 

and t is the 50 + CONPER/2 percentile of the t distribution with DFS2 degrees of freedom. The interval actu-
ally has a confidence coefficient less than that specified by CONPER.

In the weighted case, which was discussed earlier, the means (stored in XYMEAN) and the sum of squares for 
x (stored in SSX) are all weighted. When the variances of the ɛi’s are all equal, ordinary least squares must be 
used, this corresponds to all wi = 1. 

Modifications are necessary to the preceding discussion for other cases. For the case when an intercept is not 

in the model, let  the pooled degrees of freedom of s2 equal to (n - 1) + (k - 1), and replace the 
first term under the square root symbol with zero,  with zero, and  with zero.

For the case of the true response mean, i.e, when IY0 = 1, replace the second term under the square root sym-
bol by zero.
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Comments

Informational errors

Example

This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, page 9). The response 
y is the amount of steam used per month (in pounds), and the independent variable x is the average atmo-
spheric temperature (in degrees Fahrenheit). A 95% confidence interval for the temperature x0 is computed 
given a single response of y0 = 10.

      USE RINPF_INT
      USE RLINE_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=25)
!
      INTEGER    INTCEP, IY0, NOUT
      REAL       B(2), B0, B1, CONPER, DFS2, S2, SSX, STAT(12), &
                 SUMWTF, SWTFY0, X0HAT, XDATA(NOBS), XLOWER, XUPPER, &
                 XYMEAN(2), Y0, YDATA(NOBS)
!
      DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7, &
          57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0, &
          74.5, 72.1, 58.1, 44.6, 33.4, 28.6/
      DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5, &
          7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09, &
          8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
!
      CALL RLINE (XDATA, YDATA, B0, B1, STAT=STAT)
      SUMWTF    = NOBS
      DFS2      = STAT(10)
      INTCEP    = 1
      B(1)      = B0
      B(2)      = B1
      XYMEAN(1) = STAT(1)
      XYMEAN(2) = STAT(2)
      SSX       = STAT(3)*(NOBS-1)
      S2        = STAT(11)/STAT(10)
      CONPER    = 95.0
      IY0       = 0
      SWTFY0    = 1.0
      Y0        = 10.0
      CALL RINPF (SUMWTF, DFS2, B, XYMEAN, SSX, S2, Y0, X0HAT, XLOWER,  &
                 XUPPER, IY0=IY0, SWTFY0=SWTFY0)
      CALL UMACH (2, NOUT)

Type Code Description

3 2 The slope is not significant at the (100 - CONPER)% level. Confidence limits 
XLOWER and XUPPER cannot be obtained.
RINPF         Chapter 2: Regression      120



      WRITE (NOUT,*) 'X0HAT = ', X0HAT
      WRITE (NOUT,*) '(XLOWER,XUPPER) = (', XLOWER, ',', XUPPER, ')'
      END

Output

X0HAT = 45.3846 
(XLOWER,XUPPER) = (20.2627,69.347)
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RLSE

Fits a multiple linear regression model using least squares.

Required Arguments
Y — Vector of length NOBS containing the dependent (response) variable.  (Input)
X — NOBS by NIND matrix containing the independent (explanatory) variables.  (Input)

B — Vector of length INTCEP + NIND containing a least-squares solution  for the regression coefficients.  
(Output) 
For INTCEP = 0, the fitted value for observation I is 
B(1) * X(I, 1) + B(2) * X(I, 2) + … + B(NIND) * X(I, NIND).
For INTCEP = 1, the fitted value for observation I is 
B(1) + B(2) * X(I, 1) + … + B(NIND + 1) * X(I, NIND).

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (Y,1).
NIND — Number of independent (explanatory) variables.  (Input)

Default: NIND = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

SST — Total sum of squares.  (Output) 
If INTCEP = 1, the total sum of squares is corrected for the mean.

SSE — Sum of squares for error.  (Output)

FORTRAN 90 Interface
Generic: CALL RLSE (Y, X, B [, …])
Specific: The specific interface names are S_RLSE and D_RLSE.

FORTRAN 77 Interface
Single: CALL RLSE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE)
Double: The double precision name is DRLSE.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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Description

Routine RLSE fits a multiple linear regression model with or without an intercept. If INTCEP = 1, the multi-
ple linear regression model is

where the observed values of the yi’s (input in Y) constitute the responses or values of the dependent vari-
able, the xi1’s, xi2’s, …, xik’s (input in X) are the settings of the k (input in NIND) independent variables, 
β0, β1, …, βk are the regression coefficients whose estimated values are output in B, and the ɛ i’s are inde-

pendently distributed normal errors each with mean zero and variance σ2. Here, n is the number of valid 
rows in the augmented matrix (X, Y), i.e. n equals NOBS - NRMISS (the number of rows that do not contain 
NaN). If INTCEP = 0, β0 is not included in the model.

Routine RLSE computes estimates of the regression coefficients by minimizing the sum of squares of the 
deviations of the observed response yi from the fitted response 

for the n observations. This minimum sum of squares (the error sum of squares) is output and denoted by 

In addition, the total sum of squares is output. For the case, INTCEP = 1, the total sum of squares is the sum 
of squares of the deviations of yi from its mean 

— the so-called corrected total sum of squares; it is denoted by 

For the case INTCEP = 0, the total sum of squares is the sum of squares of yi — the so-called uncorrected total 
sum of squares; it is denoted by 

See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analy-
sis, and many examples. 

In order to compute a least-squares solution, RLSE performs an orthogonal reduction of the matrix of regres-
sors to upper triangular form. If the user needs the upper triangular matrix output for subsequent 
computing, the routine R2SE can be invoked in place of RLSE. (See the description of R in Comment 1). The 
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reduction is based on one pass through the rows of the augmented matrix (X, Y) using fast Givens transfor-
mations. (See routines SROTMG and SROTM Golub and Van Loan, 1983, pages 156-162, Gentleman, 1974.) This 
method has the advantage that the loss of accuracy resulting from forming the crossproduct matrix used in 
the normal equations is avoided. 

With INTCEP = 1, the current means of the dependent and independent variables are used to internally cen-
ter the data for improved accuracy. Let xj be a column vector containing the j-th row of data for the 

independent variables. Let  represent the mean vector for the independent variables given the data for rows 
1, 2, …, i. The current mean vector is defined to be 

The i-th row of data has  subtracted from it and is then weighted by i/(i - 1). Although a crossproduct 
matrix is not computed, the validity of this centering operation can be seen from the following formula for 
the sum of squares and crossproducts matrix:

An orthogonal reduction on the centered matrix is computed. When the final computations are performed, 
the first row of R and the first element of B are updated so that they reflect the statistics for the original 
(uncentered) data. This means that the estimate of the intercept and the R matrix are for the uncentered data. 

As part of the final computations, RLSE checks for linearly dependent regressors. If the i-th regressor is a lin-
ear combination of the first i - 1 regressors, the i-th diagonal element of R is close to zero (exactly zero if 
infinite precision arithmetic could be used) prior to the final computations. In particular, linear dependence 
of the regressors is declared if any of the following three conditions is satisfied:

 A regressor equals zero.

 Two or more regressors are constant.

 The result of

is less than or equal to 100 × ɛ where ɛ is the machine epsilon. (For RLSE, ɛ = AMACH(4) and for DRLSE, 
ɛ = DMACH(4). See routines AMACH and DMACH in Reference Material).

Here, Ri·1, 2, …, i−1 is the multiple correlation coefficient of the i-th independent variable with the first i - 1 
independent variables. If no intercept is in the model (INTCEP = 0), the “multiple correlation” coefficient is 
computed without adjusting for the mean.
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On completion of the final computations, if the i-th regressor is declared to be linearly dependent upon the 
previous i - 1 regressors, then the i-th element of B and all elements in the i-th row of R are set to zero. Finally, 
if a linear dependence is declared, an informational (error) message, code 1, is issued indicating the model is 
not full rank.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2SE/DR2SE. The reference is:

CALL R2SE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE, R, LDR, DFE, NRMISS, WK)
The additional arguments are as follows:

R — INTCEP + NIND by INTCEP + NIND upper triangular matrix containing the R matrix from a 
QR decomposition of the matrix of regressors.  (Output)
All of the diagonal element of R are taken to be nonnegative. The rank of the matrix of regres-
sors is the number of positive diagonal elements, which equals NOBS - NRMISS - DFE.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling pro-
gram.  (Input)

DFE — Degrees of freedom for error.  (Output)

NRMISS — Number of rows in the augmented matrix (X, Y) containing NaN (not a number).  
(Output) 
If a row contains NaN, that row is excluded from all other computations.

WK — Work vector of length 5 * NIND + 4 * INTCEP + 2.
2. Informational error 

Examples

Example 1

A regression model

yi= β0 + β1xi1 + β2xi2 + β3xi3 + ɛi      i = 1,2, …, 9

is fitted to data taken from Maindonald (1984, pages 203-204).

      USE RLSE_INT
      USE WRRRN_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, LDX, NCOEF, NIND, NOBS, J
      PARAMETER  (INTCEP=1, NIND=3, NOBS=9, LDX=NOBS, &
                 NCOEF=INTCEP+NIND)
!
      INTEGER    NOUT

Type Code Description

3 1 The model is not full rank. There is not a unique least-squares solution. If the 
I-th diagonal element of R is zero, B(I) is set to zero in order to compute a 
solution.
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      REAL       B(NCOEF), SSE, SST, X(LDX,NIND), Y(NOBS)
!
      DATA (X(1,J),J=1,NIND)/ 7.0,  5.0, 6.0/, Y(1)/ 7.0/
      DATA (X(2,J),J=1,NIND)/ 2.0, -1.0, 6.0/, Y(2)/-5.0/
      DATA (X(3,J),J=1,NIND)/ 7.0,  3.0, 5.0/, Y(3)/ 6.0/
      DATA (X(4,J),J=1,NIND)/-3.0,  1.0, 4.0/, Y(4)/ 5.0/
      DATA (X(5,J),J=1,NIND)/ 2.0, -1.0, 0.0/, Y(5)/ 5.0/
      DATA (X(6,J),J=1,NIND)/ 2.0,  1.0, 7.0/, Y(6)/-2.0/
      DATA (X(7,J),J=1,NIND)/-3.0, -1.0, 3.0/, Y(7)/ 0.0/
      DATA (X(8,J),J=1,NIND)/ 2.0,  1.0, 1.0/, Y(8)/ 8.0/
      DATA (X(9,J),J=1,NIND)/ 2.0,  1.0, 4.0/, Y(9)/ 3.0/
!
      CALL RLSE (Y, X, B, SST=SST, SSE=SSE)
      CALL WRRRN ('B', B)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,99999) 'SST = ', SST, '  SSE = ', SSE
99999 FORMAT (A7, F7.2, A7, F7.2)
      END

Output

    B
1   7.733
2  -0.200
3   2.333
4  -1.667

SST =  156.00  SSE =   4.00

Example 2

A weighted least-squares fit is computed using the model

yi= β0 + β1xi1 + β2xi2 + ɛi       i = 1, 2, …, 4

and weights 1/i2 discussed by Maindonald (1984, pages 67 - 68). In order to compute the weighted least-
squares fit, using an ordinary least squares routine (RLSE), the regressors (including the column of ones for 
the intercept term as well as the independent variables) and the responses must be transformed prior to invo-
cation of RLSE. The transformed regressors and responses can be computed by using routine SHPROD 
(IMSL MATH/LIBRARY). For the i-th case the corresponding response and regressors are multiplied by a 
square root of the i-th weight. Because the column of ones corresponding to the intercept term in the untrans-
formed model, is transformed by the weights, this transformed column of ones must be input to the least 
squares subroutine as an additional independent variable along with the option INTCEP = 0. 

In terms of the original, untransformed regressors and responses, the minimum sum of squares for error out-
put in SSE is
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where here the weight wi = 1/i2. Also, since INTCEP = 0, the uncorrected total sum of squares is output in 
SST. In terms of the original untransformed responses,

      USE RLSE_INT
      USE SHPROD_INT
      USE WRRRN_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, LDX, NCOEF, NIND, NOBS, J
      PARAMETER  (INTCEP=0, NIND=3, NOBS=4, LDX=NOBS, &
                NCOEF=INTCEP+NIND)
!
      INTEGER    I, NOUT
      REAL       B(NCOEF), SQRT, SSE, SST, W(NOBS), X(LDX,NIND), &
                 Y(NOBS) 
      INTRINSIC  SQRT
!
      DATA (X(1,J),J=1,NIND)/1.0, -2.0, 0.0/, Y(1)/-3.0/
      DATA (X(2,J),J=1,NIND)/1.0, -1.0, 2.0/, Y(2)/ 1.0/
      DATA (X(3,J),J=1,NIND)/1.0,  2.0, 5.0/, Y(3)/ 2.0/
      DATA (X(4,J),J=1,NIND)/1.0,  7.0, 3.0/, Y(4)/ 6.0/
!
      DO 10  I=1, NOBS
!                                 Assign weights
         W(I) = 1.0/I**2
!                                 Store square roots of weights
         W(I) = SQRT(W(I))
   10 CONTINUE
!                                 Transform regressors
      DO 20  J=1, NIND
         CALL SHPROD (NOBS, W, 1, X(:,J), 1, X(:,J), 1)
   20 CONTINUE
!                                 Transform response
      CALL SHPROD (NOBS, W, 1, Y, 1, Y, 1)
!
      CALL RLSE (Y, X, B, INTCEP=INTCEP, SST=SST, SSE=SSE)
!
      CALL WRRRN ('B', B)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,99999) 'SST = ', SST, '  SSE = ', SSE
99999 FORMAT (A7, F7.2, A7, F7.2)
      END
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Output

    B
1  -1.431
2   0.658
3   0.748

SST =   11.94  SSE =   1.01
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RCOV

Fits a multivariate linear regression model given the variance-covariance matrix.

Required Arguments
COV — NIND + NDEP by NIND + NDEP matrix containing the variance-covariance matrix or sum of 

squares and crossproducts matrix.  (Input) 
Only the upper triangle of COV is referenced. The first NIND rows and columns correspond to the inde-
pendent variables, and the last NDEP rows and columns correspond to the dependent variables. If 
INTCEP = 0, COV contains raw sums of squares and crossproducts. If INTCEP = 1, COV contains sums 
of squares and crossproducts corrected for the mean. If weighting is desired, COV contains weighted 
sums of squares and crossproducts.

XYMEAN — Vector of length NIND + NDEP containing variable means.  (Input, if INTCEP = 1) 
The first NIND elements of XYMEAN are for the independent variables in the same order in which they 
appear in COV. The last NDEP elements of XYMEAN are for the dependent variables in the same order in 
which they appear in COV. If weighting is desired, XYMEAN contains weighted means. If INTCEP = 0, 
XYMEAN is not referenced and can be a vector of length one.

SUMWTF — Sum of products of weights with frequencies.  (Input, if INTCEP = 1) 
In the ordinary case when weights and frequencies are all one, SUMWTF equals the number of 
observations.

B — INTCEP + NIND by NDEP matrix containing a least-squares solution  for the regression coefficients.  
(Output) 
Column j is for the j-th dependent variable. If INTCEP = 1, row 1 is for the intercept. Row INTCEP + i 
is for the i-th independent variable. Elements of the appropriate row(s) of  are set to 0.0 if linear 
dependence of the regressors is declared.

Optional Arguments
INTCEP — Intercept option.  (Input) 

Default: INTCEP = 1.

NIND — Number of independent (explanatory) variables.  (Input)
Default: NIND = size (B,1) - INTCEP.

NDEP — Number of dependent (response) variables.  (Input)
Default: NDEP = size (B,2).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

TOL — Tolerance used in determining linear dependence.  (Input) 
For RCOV, TOL = 100 * AMACH(4) is a common choice. See documentation for routine AMACH in Refer-
ence Material.
Default: TOL = 1.e-5 for single precision and 2.d -14 for double precision.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

R — INTCEP + NIND by INTCEP + NIND upper triangular matrix containing the R matrix from a Cholesky 
factorization RTR of the matrix of sums of squares and crossproducts of the regressors.  (Output) 
Elements of the appropriate row(s) of R are set to 0.0 if linear dependence of the regressors is declared.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

IRANK — Rank of R.  (Output) 
IRANK less than INTCEP + NIND indicates that linear dependence of the regressors was declared. In 
this case, some rows of  are set to zero.

SCPE — NDEP by NDEP matrix containing the error (residual) sums of squares and crossproducts.  
(Output)

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSCPE = size (SCPE,1).

FORTRAN 90 Interface
Generic: CALL RCOV (COV, XYMEAN, SUMWTF, B [, …])
Specific: The specific interface names are S_RCOV and D_RCOV.

FORTRAN 77 Interface
Single: CALL RCOV (INTCEP, NIND, NDEP, COV, LDCOV, XYMEAN, SUMWTF, TOL, B, LDB, R, LDR, 

IRANK, SCPE, LDSCPE)
Double: The double precision name is DRCOV.

Description

Routine RCOV fits a multivariate linear regression model given the variance-covariance matrix (or sum of 
squares and crossproducts matrix) for the independent and dependent variables. Typically, an intercept is to 
be in the model, and the corrected sum of squares and crossproducts matrix is input for COV. Routine CORVC 
in Chapter 3, “Correlation” can be invoked to compute the corrected sum of squares and crossproducts matrix. 
Routine RORDM in Chapter 19, “Utilities” can reorder this matrix, if required. If an intercept is not to be 
included in the model, a raw (uncorrected) sum of squares and crossproducts matrix must be input for COV; 
and SUMWTF and XYMEAN are not used in the computations. Routine MXTXF (IMSL MATH/LIBRARY) can be 
used to compute the raw sum of squares and crossproducts matrix.

Routine RCOV is based on a Cholesky factorization of COV. Let k (input in NIND) be the the number of inde-
pendent variables, and d (input in SUMWTF) the denominator used in computing the x means (input in the 
first k locations of XYMEAN). The matrix R is formed by computing a Cholesky factorization of the first k rows 
and columns of COV. If INTCEP equals one, the k rows from this factorization are appended to the initial row
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The resulting R matrix is the Cholesky factor of the XTX matrix where X contains a column of ones as its first 
column and the independent variable settings as its remaining k columns.

Maindonald (1984, Chapter 3) discusses the Cholesky factorization as it applies to regression computations.

The routine RCOV checks sequentially for linear dependent regressors. Linear dependence of the regressors is 
declared if

is less than or equal to TOL. Here, Ri·1, 2, …,i −1 is the multiple correlation coefficient of the i-th independent 
variable with the first i - 1 independent variables. If no intercept is in the model (INTCEP = 0), the “multiple 
correlation” coefficient is computed without adjusting for the mean. When a dependence is declared, ele-
ments of the corresponding rows of R and B are set to zero. Maindonald (1984, Sections 3.3, 3.4, and 3.9) 
discusses these implementation details of the Cholesky factorization in regression problems.

Comments
1. Informational error

Example

This example uses a data set from Draper and Smith (1981, pages 629 - 630). This data set is put into the 
matrix X by routine GDATA (Chapter 19, “Utilities”). The first four columns are for the independent variables, 
and the last column is for the dependent variable. Routine CORVC in Chapter 3, “Correlation” is invoked to 
compute the corrected  sum of squares and crossproducts matrix. Then, RCOV is invoked to compute the 
regression coefficient estimates, the R matrix, and the sum of squares for error.

      USE RCOV_INT
      USE GDATA_INT
      USE CORVC_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDX, NDX, NIND, NDEP, LDCOV, LDSCPE, INTCEP
      INTEGER    LDB, LDR, NROW, NVAR, IRANK, NOUT
      PARAMETER (LDX=13, NDX=5, NIND=4, NDEP=1, LDCOV=NIND+NDEP, &
                 LDSCPE=NDEP)
      PARAMETER (INTCEP=1, LDB=INTCEP+NIND, LDR=INTCEP+NIND)
      REAL       XYMEAN(NIND+NDEP)
      REAL       X(LDX,NDX), B(LDB,NDEP), R(LDR,INTCEP+NIND)
      REAL       COV(LDCOV,NIND+NDEP), SCPE(LDSCPE,NDEP), SUMWTF
      INTEGER    INCD(1,1), ICOPT
!

Type Code Description

3 1 COV is not a variance-covariance matrix within the tolerance defined by TOL.
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      CALL GDATA (5, X, NROW, NVAR)
!
      ICOPT = 1
      CALL CORVC (NVAR, X, COV, ICOPT=ICOPT, XMEAN=XYMEAN, SUMWT=SUMWTF)
!
      CALL RCOV (COV, XYMEAN, SUMWTF, B, R=R, IRANK=IRANK, &
                SCPE=SCPE)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'IRANK = ', IRANK, '  SCPE(1,1) = ', SCPE(1,1)
      CALL WRRRN ('B', B, 1, INTCEP+NIND, 1)
      CALL WRRRN ('R', R)
      END

Output

IRANK =   5  SCPE(1,1) =     47.8638

                  B
    1       2       3       4       5
62.40    1.55    0.51    0.10   -0.14

                    R
        1       2       3       4       5
1     3.6    26.9   173.6    42.4   108.2
2     0.0    20.4    12.3   -18.3   -14.2
3     0.0     0.0    52.5     1.1   -54.6
4     0.0     0.0     0.0    12.5   -12.9
5     0.0     0.0     0.0     0.0     3.4
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RGIVN

Fits a multivariate linear regression model via fast Givens transformations.

Required Arguments
X — ∣NROW∣ by NCOL matrix containing the data.  (Input)
IIND — Independent variable option.  (Input) 

The regressors are the intercept (if INTCEP = 1) and the independent variables. There are 
INTCEP + ∣IIND∣ regression coefficients for each dependent variable.

INDIND — Index vector of length IIND containing the column numbers of X that are the independent 
variables.  (Input, if IIND is positive) 
If IIND is nonpositive, INDIND is not referenced and can be a vector of length one.

IDEP — Dependent variable option.  (Input) 

INDDEP — Index vector of length IDEP containing the column numbers of X that are the dependent vari-
ables.  (Input, if IDEP is positive) 
If IDEP is nonpositive, INDDEP is not referenced and can be a vector of length one.

B — INTCEP + ∣IIND∣ by ∣IDEP∣ matrix containing a least-squares solution  for the regression coeffi-
cients on return from the final invocation of this routine.  (Output, if IDO = 0 or 1; Input/Output, if 
IDO = 2 or 3) 
If INTCEP = 1, row 1 is for the intercept. Row INTCEP + I is for the I-th independent variable. Col-
umn j is for the j-th dependent variable. 

If IDEP = 0, B is not referenced and can be a vector of length 1.

IIND Meaning

< 0 The first -IIND columns of X contain the independent (explanatory) variables.

> 0 The IIND independent variables are specified by the column numbers in INDIND.

= 0 There are no independent variables.

IDEP Meaning

< 0 The last -IDEP columns of X contain the dependent (response) variables. That is, col-
umns NCOL + IDEP + 1, NCOL + IDEP + 2, …, NCOL contain the dependent variables.

> 0 The IDEP dependent (response) variables are specified by the column numbers in 
INDDEP..

= 0 There are no dependent variables. (Generally, this option is not used. The R matrix 
from a QR decomposition of a matrix of regressors is computed.)

IDO Action

1 or 2 A current least-squares solution is given by a solution x to the 
equation Rx = B.

0 or 3 A least-squares solution for the regression coefficients is returned 
in B. Elements of the appropriate row(s) of B are set to 0.0 if linear 
dependence of the  regressors is declared.
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Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NROW — The absolute value of NROW is the number of rows of data currently input in X.  (Input) 
NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be 
deleted from some aspects of the analysis, and this should be done only if IDO is 2 or 3 and the wrap-
up computations have not been performed. When a negative value is input for NROW, it is assumed 
that each of the -NROW rows of X has been input (with positive NROW) in previous invocations of 
RGIVN. Use of negative values of NROW should be made with care and with the understanding that 
XMIN and XMAX cannot be updated properly in this case. It is also possible that a constant variable in 
the remaining data will not be recognized as such.
Default: NROW = size (X,1).

NCOL — Number of columns in X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies. If X(I, IFRQ) = 0.0, none of the remaining elements of row I of X are referenced, and 
updating of statistics is skipped for row I.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

ICEN — Data centering option.  (Input) 
If INTCEP = 0, ICEN must equal 0.
Default: ICEN = 1.

IDO Action

0 This is the only invocation of RGIVN for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to RGIVN will be made. Initialization 
and updating for the data in X are performed.

2 This is an intermediate invocation of RGIVN, and updating for the data in X is 
performed.

3 This is the final invocation of this routine. Updating for the data in X and wrap-up 
computations are performed.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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TOL — Tolerance used in determining linear dependence.  (Input) 
For RGIVN, TOL = 100 * AMACH(4) is a common choice. See the documentation for routine AMACH in 
Reference Material.
Default: TOL = 1.e-5 for single precision and 2.D-14 for double precision.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

R — INTCEP + ∣IIND∣ by INTCEP +  ∣IIND∣ upper triangular matrix containing the R matrix from a QR 
decomposition of the matrix of regressors on return from the final invocation of this routine. (Output, 
if IDO = 0 or 1; input/output, if IDO = 2 or 3)

 

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

D — Vector of length INTCEP + ∣IIND∣ containing scale factors for fast Givens transformations.  (Output, 
if IDO = 0 or 1; input/output, if IDO = 2 or 3)

IRANK — Rank of R.  (Output, if IDO = 0 or 3) 
IRANK less than INTCEP + ∣IIND∣ indicates linear dependence of the regressors was declared.

DFE — Degrees of freedom for error on return from the final invocation of this routine.  (Output, if IDO = 0 
or 1; Input/Output, if IDO = 2 or 3) 
Prior to the final invocation of RGIVN, DFE is the sum of the frequencies.

ICEN Action

0 No centering. This option should be used when (1) the data are already cen-
tered; (2) there is no intercept in the model; or (3) the independent variables 
for a large percentage of the data are zero, and sparsity of the problem needs 
to be preserved in order that the Givens rotations are performed quickly.

1 Variables are centered using the method of provisional means for improved 
accuracy of the computations. The final estimate for the intercept and the R 
matrix are given for the uncentered data. This option is generally 
recommended.

IDO Action

1 or 2 The current matrix of raw sums of squares and crossproducts for 
the regressors can be found as RT · diag(D) · R where diag(D) is 
the diagonal matrix whose diagonal elements are the elements of 
the vector D.

0 or 3 The matrix of raw sums of squares and crossproducts for the 
regressors can be found as RT R. Elements of the appropriate 
row(s) of R are set to 0.0 if linear dependence of the regressors is 
declared.

IDO Action

1 or 2 D contains the current scale factors associated with the fast Giv-
ens transformations.

0 or 3 Each element of D is set to 1.0.
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SCPE — ∣IDEP∣ by ∣IDEP∣ matrix containing error (residual) sums of squares and crossproducts.  (Out-
put, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3) 
SCPE(m, n) contains the current sum of crossproducts of residuals for the m-th and n-th dependent 
variables. If IDEP = 0, SCPE is not referenced and can be a 1 by 1 array.

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSCPE = size (SCPE,1).

NRMISS — Number of rows of data encountered in calls to RGIVN that contain any missing values for the 
independent, dependent, weight, or frequency variables.  (Output, if IDO = 0 or 1; Input/Output, if 
IDO = 2 or 3) 
NaN (not a number) is used as the missing value code. Any row of X containing NaN as a value of the 
independent, dependent, weight, or frequency variables is omitted from the analysis.

XMIN — Vector of length INTCEP + ∣IIND∣ containing the minimum values for each of the regressors.  
(Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3)

XMAX — Vector of length INTCEP + ∣IIND∣ containing the maximum values for each of the regressors.  
(Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3)

FORTRAN 90 Interface
Generic: CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B [, …])
Specific: The specific interface names are S_RGIVN and D_RGIVN.

FORTRAN 77 Interface
Single: CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP, INDDEP, IFRQ, 

IWT, ICEN, TOL, B, LDB, R, LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
Double: The double precision name is DRGIVN.

Description

Routine RGIVN fits a multivariate linear regression model. (See the chapter introduction for a description of 
the multivariate linear regression model.) The routine RGIVN is designed so that multiple invocations can be 
made. In this case, zero, one, or several rows of the data set can be input for each invocation of RGIVN (with 
IDO = 1, 2, 2, …, 2, 3). Alternatively, one invocation of RGIVN (with IDO = 0) can be made with the entire data 
set contained in X. Routine RSTAT can be invoked after the wrap-up computations are performed by RGIVN 
to compute and print summary statistics related to the fitted regression. 

Routine RGIVN performs an orthogonal reduction of the matrix of regressors to upper triangular form. The 
reduction is based on fast Givens transformations. (See routines SROTMG and SROTM, Golub and Van Loan 
1983, pages 156-162, Gentleman 1974.) This method has two main advantages: (1) the loss of accuracy result-
ing from forming the crossproduct matrix used in the normal equations is avoided, (2) data can be 
conveniently added or deleted to take advantage of the previous computations performed. 

With ICEN = 1, the current means of the independent and dependent variables are used to center the data for 
improved accuracy. Let xi be a column vector containing the i-th row of data for the independent variables. 

Let  represent the mean vector for the independent variables given the data for observations 1, 2, …, i. The 
mean vector is defined to be
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where the wj’s and fj’s are the weights and frequencies, respectively. The i-th row of data has  subtracted 
from it, and then wifi is multiplied by the factor ai/ai-1 where 

Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the 
following formula for the sum of squares and crossproducts matrix:

An orthogonal reduction on the centered matrix is computed. When wrap-up computations 
(IDO = 3 or IDO = 0) are performed, the first rows of R and B are updated so that they reflect the statistics for 
the original (uncentered) data. This means that the estimate of the intercept and the R matrix are for the 
uncentered data. 

If the i-th regressor is a linear combination of the first i - 1 regressors, the i-th diagonal element of R will be 
close to zero (exactly zero if infinite precision arithmetic could be used) prior to the wrap-up computations. 
When performing the wrap-up computations, RGIVN checks sequentially for linear dependent regressors. 
Linear dependence of the regressors is declared if any of the following three conditions is satisfied:

 A regressor equals zero, as determined from XMIN and XMAX.

 Two or more regressors are constant, as determined from XMIN and XMAX. 

  is less than or equal to TOL. Here, Ri·1,2,…,i−1 is the multiple correlation 

coefficient of the i-th independent variable with the first i - 1 independent variables. If no 
intercept is in the model (INTCEP = 0) the “multiple correlation” coefficient is computed 
without adjusting for the mean.

When a dependence is declared, R is changed in the wrap-up computations so as to reflect the deletion of the 
i-th regressor from the model. On completion of the wrap-up computations, if the i-th regressor is declared to 

be dependent upon the previous i - 1 regressors, then the R and  matrices will have all elements in their i-th 
rows set to zero.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2IVN/DR2IVN. The reference is:

CALL R2IVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP, INDDEP, IFRQ, IWT, 
ICEN, TOL, B, LDB, R, LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX, WK)

The additional argument is:

WK — Work vector of length INTCEP + ∣IIND∣ + ∣IDEP∣
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2. Informational errors

Examples

Example 1

The first example uses a data set from Draper and Smith (1981, pages 629-630). This data set is put into the 
matrix X by routine GDATA in Chapter 19, “Utilities”. There is 1 dependent variable and 4 independent vari-
ables. RGIVN is invoked to fit the regression model with the IDO = 0 option, so all computations are 
performed in one call.

      USE RGIVN_INT
      USE GDATA_INT
      USE WRRRN_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LDB, LDCOEF, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, NRX
      PARAMETER  (LDSCPE=1, NCOEF=5, NCOL=5, NDEP=1, NRX=13, &
                LDB=NCOEF, LDCOEF=NCOEF, LDR=NCOEF, LDX=NRX)
!
      INTEGER    I, IDEP, IIND, INDDEP(1), INDIND(1), &
                 IRANK, NOBS, NOUT, NRMISS, NVAR
      REAL       B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF), &
                 SCPE(LDSCPE,NDEP), X(LDX,NCOL), XMAX(NCOEF), &
                 XMIN(NCOEF)
!
      CALL GDATA (5, X, NOBS, NVAR)
!
      IIND   = -4
      IDEP   = -1
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, r=r, d=d, &
                 irank=irank, dfe=dfe, scpe=scpe, nrmiss=nrmiss, &
                 xmin=xmin, xmax=xmax)
!
      CALL WRRRN ('B', B)
      CALL WRRRN ('R', R)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Regressor   XMIN     XMAX'
      DO 10  I=1, NCOEF
         WRITE (NOUT,'(1X,I5,2X,2F9.1)') I, XMIN(I), XMAX(I)
   10 CONTINUE
      WRITE (NOUT,*) ' '
      WRITE (NOUT,*) 'IRANK = ', IRANK
      WRITE (NOUT,*) 'DFE = ', DFE, '  SCPE(1,1) = ', SCPE(1,1)
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Type Code Description

4 1 Negative weight encountered.

4 2 Negative frequency encountered.
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Output

     B
1   62.41
2    1.55
3    0.51
4    0.10
5   -0.14
                    R
        1       2       3       4       5
1     3.6    26.9   173.6    42.4   108.2
2     0.0    20.4    12.3   -18.3   -14.2
3     0.0     0.0    52.5     1.1   -54.6
4     0.0     0.0     0.0    12.5   -12.9
5     0.0     0.0     0.0     0.0     3.4

Regressor       XMIN     XMAX
        1        1.0      1.0
        2        1.0     21.0
        3       26.0     71.0
        4        4.0     23.0
        5        6.0     60.0

IRANK =   5
DFE =     8.00000  SCPE(1,1) =     47.8637
NRMISS =   0

Example 2

The data for the second example are taken from Maindonald (1984, pages 203-204). The data are saved in the 
matrix X. Here, the data are input into RGIVN a row at a time. The data set is small for clarity. However, the 
approach is generally useful when the data set is large and the entire data set cannot be stored in X. A multi-
variate regression model containing two dependent variables and three independent variables is fit.

      USE RGIVN_INT
      USE WRRRN_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, &
                 NIND, NOBS, J
      PARAMETER  (INTCEP=1, NCOL=5, NDEP=2, NIND=3, NOBS=9, &
                LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF, &
                LDR=NCOEF)
!
      INTEGER    I, IDEP, IDO, IIND, INDDEP(1), INDIND(1), IRANK, &
                 NOUT, NRMISS, NROW
      REAL       B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF), &
                 SCPE(LDSCPE,NDEP), TOL, X(LDX,NCOL), XMAX(NCOEF), &
                 XMIN(NCOEF)
!
      DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
      DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
      DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
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      DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
      DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
      DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
      DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
      DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
!
      NROW = 1
      IIND = -NIND
      IDEP = -NDEP
      DO 10  I=1, 9
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE IF (I .EQ. 9) THEN
            IDO = 3
         ELSE
            IDO = 2
         END IF
      CALL RGIVN (X(I:I, 1:NCOL), IIND, INDIND, IDEP, INDDEP, &
               B, IDO=IDO, R=R, D=D,IRANK=IRANK, DFE=DFE,&
               SCPE=SCPE,NRMISS=NRMISS, xmin=xmin, xmax=xmax)

   10 CONTINUE
!
      CALL WRRRN ('B', B)
      CALL WRRRN ('R', R)
      CALL WRRRN ('SCPE', SCPE)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Regressor   XMIN     XMAX'
      DO 20  I=1, NCOEF
         WRITE (NOUT,'(1X,I5,2X,2F9.1)') I, XMIN(I), XMAX(I)
   20 CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'IRANK = ', IRANK
      WRITE (NOUT,*) 'DFE = ', DFE
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Output

          B
        1       2
1   7.733  -1.633
2  -0.200   0.400
3   2.333   0.167
4  -1.667   0.667

             R
         1       2       3       4
1    3.00    6.00    3.00   12.00
2    0.00   10.00    4.00    2.00
3    0.00    0.00    4.00    2.00
4    0.00    0.00    0.00    6.00
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       SCPE
        1       2
1     4.0    20.0
2    20.0   110.0

Regressor    XMIN     XMAX
     1        1.0      1.0
     2       -3.0      7.0
     3       -1.0      5.0
     4        0.0      7.0

IRANK =   4
DFE =     5.00000
NRMISS =   0

Example 3

The data for the third example are taken from Maindonald (1984, pages 104-106). The constant regressor and 
the independent variables X1, X2, and X3 are linearly dependent

      USE RGIVN_INT
      USE WRRRN_INT
      USE UMACH_INT
      INTEGER    INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, &
                 NIND, NOBS
      PARAMETER  (INTCEP=1, NCOL=5, NDEP=1, NIND=4, NOBS=9, &
                 LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF,&
                 LDR=NCOEF)
!
      INTEGER    I, IDEP, IIND, INDDEP(1), INDIND(1), &
                 IRANK, NOUT, NRMISS, NROW
      REAL       B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF), &
                 SCPE(LDSCPE,NDEP), TOL, X(LDX,NCOL), XMAX(NCOEF), &
                 XMIN(NCOEF)
!
      DATA (X(1,J),J=1,NCOL)/-1.0, 0.0, -0.5, 1.0, 0.0/
      DATA (X(2,J),J=1,NCOL)/3.0, 0.0, 3.5, 1.0, 0.0/
      DATA (X(3,J),J=1,NCOL)/2.0, -2.0, 3.5, -2.0, -2.0/
      DATA (X(4,J),J=1,NCOL)/-2.0, -1.0, -1.0, 1.0, 1.0/
      DATA (X(5,J),J=1,NCOL)/-1.0, 1.0, -1.0, -1.0, -1.0/
      DATA (X(6,J),J=1,NCOL)/3.0, 3.0, 2.0, 1.0, 3.0/
      DATA (X(7,J),J=1,NCOL)/2.0, 2.0, 1.5, 2.0, 4.0/
      DATA (X(8,J),J=1,NCOL)/-2.0, -1.0, -1.0, -1.0, -2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 2.0, 1.0, 3.0/
!
      NROW = NOBS
      IIND = -NIND
      IDEP = -NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, r=r, d=d, &
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                  irank=irank, dfe=dfe, scpe=scpe, nrmiss=nrmiss, &
                  xmin=xmin, xmax=xmax)
!
      CALL WRRRN ('B', B)
      CALL WRRRN ('R', R)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Regressor  Minimum  Maximum'
      DO 10  I=1, NCOEF
         WRITE (NOUT,'(1X,I5,2X,2F9.1)') I, XMIN(I), XMAX(I)
   10 CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'IRANK = ', IRANK
      WRITE (NOUT,*) 'DFE = ', DFE, '  SCPE(1,1) = ', SCPE(1,1)
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Output

     B
1   0.056
2   0.167
3   0.500
4   0.000
5   1.000

                      R
        1       2       3       4       5
1   3.000   2.000   1.000   3.000   1.000
2   0.000   6.000   2.000   5.000   1.000
3   0.000   0.000   4.000  -2.000   2.000
4   0.000   0.000   0.000   0.000   0.000
5   0.000   0.000   0.000   0.000   3.000

Regressor  Minimum  Maximum
      1        1.0      1.0
      2       -2.0      3.0
      3       -2.0      3.0
      4       -1.0      3.5
      5       -2.0      2.0

IRANK =   4
DFE =     5.00000  SCPE(1,1) =     6.00000
NMISS =   0
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RGLM

Fits a multivariate general linear model.

Required Arguments
X — ∣NROW∣ by NCOL matrix containing the data.  (Input)
INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification 

variables.  (Input)
NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.  

(Input)
INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF).  (Input) 

The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next 
NVEF(2) elements give the column numbers for each variable in the second effect; and so on. The last 
NVEF(NEF) elements give the column numbers for each variable in the last effect.

IDEP — Dependent variable option.  (Input) 
The absolute value of IDEP is the number of dependent (response) variables. The sign of IDEP speci-
fies the following options: 

INDDEP — Index vector of length IDEP containing the column numbers of X that are the dependent 
(response) variables.  (Input, if IDEP is positive) 
If IDEP is nonpositive, INDDEP is not referenced and can be a vector of length one.

MAXCL — An upper bound on the sum of the number of distinct values taken on by each classification 
variable.  (Input)

B — NCOEF by ∣ IDEP∣ matrix containing on return from the final invocation of this routine a least-squares 
solution  for the regression coefficients.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3) 
Here, NCOEF = IRBEF(NEF + 1) - 1 is the number of coefficients in the model. If INTCEP = 1, row 1 is 
for the intercept. Column j is for the j-th dependent variable. 

IDEP Action

< 0 The last -IDEP columns of X contain the dependent (response) variables. That is, col-
umns NCOL + IDEP + 1, NCOL + IDEP + 2, …, NCOL contain the dependent variables.

> 0 The data for the IDEP dependent variables are in the columns of X whose column 
numbers are given by the elements of INDDEP.

= 0 There are no dependent variables. (Generally, this option is not used. However, it is 
possible to get the R matrix from a QR decomposition of a matrix of regressors in this 
way.)

IDO Action

1 or 2 A current least-squares solution is given by a solution x to the 
equation R * x = B

0 or 3 A least-squares solution for the regression coefficients is 
returned in B. Elements of the appropriate row(s) of B are set to 
0.0 if linear dependence of the regressors is declared.
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Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NROW — The absolute value of NROW is the number of rows of data currently input in X.  (Input) 
NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be 
deleted from some aspects of the analysis, and this should be done only if IDO is 2 or 3 and the wrap-
up computations have not been performed. When a negative value is input for NROW, it is assumed 
that each of the -NROW rows of X has been input (with positive NROW) in previous invocations of 
RGIVN. Use of negative values of NROW should be made with care and with the understanding that 
XMIN, XMAX, and CLVAL cannot be updated properly in this case. It is also possible that a constant vari-
able in the remaining data will not be recognized as such.
Default: NROW = size (X,1).

NCOL — Number of columns in X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

NCLVAR — Number of classification variables.  (Input)
Default: NCLVAR = size (INDCL,1).

NEF — Number of effects (sources of variation) in the model excluding error.  (Input)
Default: NEF = size (NVEF,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies. If X(I, IFRQ) = 0.0, none of the remaining elements of row I of X are referenced and 
updating of statistics is skipped for row I.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

IDO Action

0 This is the only invocation of RGLM for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to RGLM will be made. Initialization 
and updating for the data in X are performed.

2 This is an intermediate invocation of RGLM, and updating for the data in X is 
performed.

3 This is the final invocation of this routine. Updating for the data in X and wrap-up 
computation are performed.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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IDUMMY — Dummy variable option.  (Input) 
Default: IDUMMY = 1.
Some indicator variables are defined for the I-th class variable as follows: Let 
J = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(I - 1). NCLVAL(I) indicator variables are defined such 
that for K = 1, 2, …, NCLVAL(I) the K-th indicator variable for observation number IOBS takes the 
value 1.0 if X(IOBS, INDCL(I)) = CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are gener-
ated from these indicator variables, and restrictions may be applied as given by the following:

ICEN — Data centering option.  (Input) 
If INTCEP = 0, ICEN must equal 0. 
Default: ICEN = 1.

TOL — Tolerance used in determining linear dependence.  (Input) 
For RGLM, TOL = 100 * AMACH(4) is a common choice. See the documentation for IMSL routine AMACH 
in Reference Material.
Default: TOL = 1.e-5 for single precision and 2.d –14 for double precision.

NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-
able.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3) NCLVAL(I) is the number of distinct 
values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the values of the 
classification variables.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3) 
Since in general the length of CLVAL will not be known in advance, MAXCL (an upper bound for this 
length) should be used for purposes of dimensioning CLVAL. The first NCLVAL(1) elements contain the 
values of the first classification variable; the next NCLVAL(2) elements contain the values of the second 
classification variable; and so on. The last NCLVAL(NCLVAR) elements contain the values of the last 
classification variable. If IDUMMY = 0 or 1, the values are in ascending order for each classification vari-
able. If IDUMMY = 2, the last value for each classification variable is the value associated with the 
indicator variable omitted from the model. The remaining values for each classification variable are in 
ascending order.

IDUMMY Description

0 The NCLVAL(I) indicator variables are the dummy variables. The usual bal-
anced-data restrictions on the regression parameters are applied as part of 
the wrap-up computations regardless of whether the data are balanced.

1 The NCLVAL(I) indicator variables are the dummy variables.

2 1 indicator variables are used as the dummy variables. The indicator vari-
able associated with the class value given in the first row of X on the first 
invocation is omitted.

ICEN Action

0 No centering. This option should be used when (1) the data are already centered, (2) 
there is no intercept in the model, or (3) the regressors for a large percentage of the 
data are zero, and sparsity of the problem needs to be preserved in order that the fast 
Givens transformations are performed quickly

1 Variables are centered using the method of provisional means for improved accuracy 
of the computations. The final estimate for the intercept along with the R matrix are 
given for the uncentered data. This option is generally recommended.
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IRBEF — Index vector of length NEF + 1.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3) 
For I = 1, 2, …, NEF, rows IRBEF(I), IRBEF(I) + 1, …, IRBEF(I + 1) - 1 of B correspond to the I-th 
effect.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

R — NCOEF by NCOEF upper triangular matrix containing, on return from the final invocation of this rou-
tine, the R matrix from a QR decomposition of the matrix of regressors.  (Output, if IDO = 0 or 1; 
Input/Output, if IDO = 2 or 3) 
Upon completion of the wrap-up computations, a zero row indicates a nonfull rank model. If 
IDUMMY = 0, a negative diagonal element of R indicates that the associated row corresponds to a sum-
mation restriction.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

D — Vector of length NCOEF.  (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
 

IRANK — Rank of R.  (Output, if IDO = 0 or 3) 
IRANK less than NCOEF indicates linear dependence of the regressors was declared.

DFE — Degrees of freedom for error on return from the final invocation of this routine.  (Output, if IDO = 0 
or 1; input/output, if IDO = 2 or 3) 
Prior to the final invocation, DFE is the sum of the frequencies.

SCPE — ∣IDEP∣ by ∣IDEP∣ matrix containing error (residual) sums of squares and crossproducts.  (Out-
put, if IDO = 0 or 1; input/output, if IDO = 2 or 3) 
SCPE(M, N) is the current sum of crossproducts of residuals for the M-th and N -th dependent variables.

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSCPE = size (SCPE,1).

NRMISS — Number of rows of data encountered in calls to RGLM containing NaN (not a number) for the 
independent, dependent, weight, and/or frequency variables.  (Output, if IDO = 0 or 1, Input/Output, 
if IDO = 2 or 3) 
If a row of data contains NaN for any of these variables, that row is excluded from the computations.

XMIN — Vector of length NCOEF containing the minimum values for each of the regressors.  (Output, if 
IDO = 0 or 1; Input/Output, if IDO = 2 or 3)

XMAX — Vector of length NCOEF containing the maximum values for each of the regressors.  (Output, if 
IDO = 0 or 1; Input/Output, if IDO = 2 or 3)

FORTRAN 90 Interface
Generic: CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B [, …])

IDO Action

1 or 2 D contains the current scale factors associated with the fast Giv-
ens transformations. The current matrix of uncorrected sums of 
squares and crossproducts for the regressors can be found as 
RT · diag(D) · R where diag(D) is the diagonal matrix whose 
diagonal elements are the elements of D.

0 or 3 Each element of D is set to 1.0.
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Specific: The specific interface names are S_RGLM and D_RGLM.

FORTRAN 77 Interface
Single: CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF, 

IDEP, INDDEP, IFRQ, IWT, IDUMMY, ICEN,  TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB, 
R, LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)

Double: The double precision name is DRGLM.

Description

Routine RGLM fits a multivariate linear regression model. (See the chapter introduction for a description of 
the multivariate linear regression model.) The routine RGLM is designed so that multiple invocations can be 
made. In this case, zero, one, or several rows of the data set can be input for each invocation of RGLM (with 
IDO = 1, 2, 2, ..., 2, 3). Alternatively, one invocation of RGLM (with IDO = 0) can be made with the entire data 
set contained in X. Routines RSTAT and RCASE can be invoked after the wrap-up computations are per-
formed by RGLM to compute and print summary statistics and case statistics related to the fitted regression.

The data matrix can contain classification variables as well as continuous variables. The specification of a 
general linear model through the arguments INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF is discussed in the 
chapter introduction.

Regressors for effects composed solely of continuous variables are generated as powers and crossproducts. 
Consider a data matrix containing continuous variables as columns 3 and 4. The effect (3, 3) generates a 
regressor whose i-th value (i = 1, 2, …, n) is the square of the i-th value in column 3. The effect (3, 4) generates 
a regressor whose i-th value is the product of the i-th value in column 3 with the i-th value in column 4.

Regressors for an effect containing a single classification variable are generated using indicator variables. Let 
the classification variable A take on values a1, a2, …, an (stored in that order in CLVAL). From this classifica-
tion variable, n indicator variables Ik are created. For k = 1, 2, …, n we have

For each classification variable, another set of variables is created from the indicator variables. We call these 
new variables dummy variables. Dummy variables are generated from the indicator variables in one of two 
manners: (1) the dummies are the n indicator variables, or (2) the dummies are the first n - 1 indicator vari-
ables. In particular, for IDUMMY = 0 or IDUMMY = 1, the dummy variables are Ak = Ik (k = 1, 2, …, n). For 
IDUMMY = 2, the dummy variables are Ak = Ik (k = 1, 2, …, n - 1).

Let mj be the number of dummies generated for the j-th classification variable. Suppose there are two classifi-
cation variables A and B with dummies A1, A2, …, Am1 and B1, B2, …, Bm2, respectively. The regressors 
generated for an effect composed of two classification variables A and B are
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More generally, the regressors generated for an effect composed of several classification variables and several 
continuous variables are given by the Kronecker products of variables, where the order of the variables is 
specified in INDEF. Consider a data matrix containing classification variables in columns 1 and 2 and contin-
uous variables in columns 3 and 4. Label these four columns A, B, X1, and X2, respectively. The regressors 
generated by the effect (1, 2, 3, 3, 4) are A ⊗ B ⊗ X1X1X2. 

Routine RGLM performs an orthogonal reduction of the matrix of regressors to upper triangular form. The 
reduction is based on fast Givens transformations. (See routines SROTMG and SROTM, Golub and Van Loan 
1983, pages 156-162, Gentleman 1974.) This method has two main advantages: (1) the loss of accuracy result-
ing from forming the crossproduct matrix used in the normal equations is avoided, and (2) data can be 
conveniently added or deleted to take advantage of the previous computations performed. 

With ICEN = 1, the current means of the regressors and dependent variables are used to center the data for 
improved accuracy. Let xi be a column vector containing the i-th row of data for the regressors. Let  repre-
sent the mean vector for the regressors given the data for observations 
1, 2, ..., i. The mean vector is defined to be

where the wj’s and fj’s are the weights and frequencies, respectively. The i-th row of data has  subtracted 
from it, and then, wifi is multiplied by the factor ai/ai−1 where

Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the 
following formula for the sum of squares and crossproducts matrix: 

An orthogonal reduction on the centered matrix is computed. When wrap-up computations (IDO = 3 or 
IDO = 0) are performed, the first rows of R and B are updated so that they reflect the statistics for the original 
(uncentered) data. This means that the R matrix and the estimate of the intercept are for the uncentered data.

If the i-th regressor is a linear combination of the first i - 1 regressors, the i-th diagonal element of R will be 
close to zero (exactly zero if infinite precision arithmetic could be used) prior to the wrap-up computations. 
When performing the wrap-up computations, RGLM checks sequentially for linear dependent regressors. Lin-
ear dependence of the regressors is declared if any of the following three conditions is satisfied:
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 A regressor equals zero, as determined from XMIN and XMAX.

 Two or more regressors are constant, as determined from XMIN and XMAX.

  is less than or equal to TOL. Here Ri·1, 2, …, i-1 is the multiple correlation 

coefficient of the i-th regressor with the first i - 1 regressors. If no intercept is in the model 
(INTCEP = 0) the ‘multiple correlation’ coefficient is computed without adjusting for the mean.

When a dependence is declared, R is changed in the wrap-up computations so as to reflect the deletion of the 
i-th regressor from the model. On completion of the wrap-up computations, if thei-th regressor is declared to 
be dependent upon the previous i - 1 regressors, then the R and B matrices will have all elements in their i-th 
rows set to zero.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2LM/DR2LM. The reference is:

CALL R2LM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF, IDEP, 
INDEP, IFRQ, IWT, IDUMMY, ICEN, TOL, MAXCL, NCLVAL, VAL, IRBEF, B, LDB, R, LDR, D, 
IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length max(MAXB, NCLVAR).

WK — Work vector of length MAXB + ∣IDEP∣ + 2.
2. Informational errors

3. Let the data matrix X = (A, B, X1, Y) where A and B are classification variables, X1is a continuous inde-
pendent variable, and Y is a response variable. The model containing an intercept and the effects A, B, 
AB, X1, AX1, BX1, and ABX1 is specified as follows: INTCEP = 1, NCLVAR = 2, INDCL = (1, 2), NEF = 7, 
NVEF = (1, 1, 2, 1, 2, 2, 3), INDEF = (1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3), IDEP = 1, and INDDEP = (4).
For this model suppose NCLVAL(1) = 2, NCLVAL(2) = 3, and 
CLVAL = (1.0, 2.0, 1.0, 2.0, 3.0). Let A1, A2, B1, B2, and B3, be the associated indicator variables. For each 
IDUMMY option the regressors following the intercept in their order of appearance in the model are 
given as follows:

Type Code Description

4 1 Negative weight encountered.

4 2 Negative frequency encountered.

4 7 MAXCL is too small. Increase MAXCL and the dimension of CLVAL.

4 8 LDB or LDR is too small. One or more of the dimensions of B, R, D, XMIN, and 
XMAX must be increased.
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Within a group of regressors corresponding to an interaction effect, the indicator variables composing 
the regressors change most rapidly for the last classification variable, change next most rapidly for the 
next to last classification variable, etc.

4. If NROW is negative, no downdating of XMIN, XMAX, NCLVAL, and CLVAL can occur.

Examples

Example 1

A one-way analysis of covariance model is fitted to the turkey data discussed by Draper and Smith (1981, 
pages 243-249). The response variable is turkey weight y (in pounds). There are three groups of turkeys cor-
responding to the three states where they were reared. The age of a turkey (in weeks) is the covariate. The 
explanatory variables are group, age, and interaction. The model is

yij = μ + α i + βxij + βixij + ɛ ij     i = 1, 2, 3; j = 1, 2, …, ni

where α3 = 0 and β3 = 0. Here, the IDUMMY = 2 option is used. The fitted model gives three separate lines, one 
for each state where the turkeys were reared.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
!                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    IDEP, INTCEP, LDB, LDR, LDSCPE, LDX, MAXB, MAXCL, &
                 NCLVAR, NCOL, NEF, NROW
      PARAMETER  (IDEP=1, INTCEP=1, LDX=13, MAXB=6, MAXCL=3, NCLVAR=1, &
                 NCOL=3, NEF=3, NROW=13, LDB=MAXB, LDR=MAXB, &
                 LDSCPE=IDEP)
!
      INTEGER    I, IDUMMY, INDCL(NCLVAR), INDDEP(IDEP), &
                 INDEF(4), IRANK, IRBEF(NEF+1), J, &
                 NCLVAL(NCLVAR), NCOEF, NOUT, NRMISS, NVEF(NEF)
      REAL       B(LDB,IDEP), CLVAL(MAXCL), D(MAXB), DFE, &
                 R(LDR,MAXB), SCPE(LDSCPE,IDEP), TOL, X(LDX,NCOL), &
                 XMAX(MAXB), XMIN(MAXB)
      CHARACTER  CLABEL(7)*6, RLABEL(1)*4
!
      DATA (X(1,J),J=1,3)  /25, 13.8, 3/
      DATA (X(2,J),J=1,3)  /28, 13.3, 1/
      DATA (X(3,J),J=1,3)  /20,  8.9, 1/
      DATA (X(4,J),J=1,3)  /32, 15.1, 1/
      DATA (X(5,J),J=1,3)  /22, 10.4, 1/

IDUMMY Regressors

0 or 1 A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, A2B3, X1, 
A1X1, A2X1B1X1, B2X1, B3X1, A1B1X1, A1B2X1, A1B3X1, 
A2B1X1, A2B2X1, A2B3X1

2 A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1, A1B1X1, 
A1B2X1
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      DATA (X(6,J),J=1,3)  /29, 13.1, 2/
      DATA (X(7,J),J=1,3)  /27, 12.4, 2/
      DATA (X(8,J),J=1,3)  /28, 13.2, 2/
      DATA (X(9,J),J=1,3)  /26, 11.8, 2/
      DATA (X(10,J),J=1,3) /21, 11.5, 3/
      DATA (X(11,J),J=1,3) /27, 14.2, 3/
      DATA (X(12,J),J=1,3) /29, 15.4, 3/
      DATA (X(13,J),J=1,3) /23, 13.1, 3/
      DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/3, 1, 1, 3/, INDDEP/2/
      DATA CLABEL/' ', 'MU', 'ALPHA1', 'ALPHA2', 'BETA', 'BETA1', &
           'BETA2'/
      DATA RLABEL/'NONE'/
!
      IDUMMY = 2
      CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
                 idummy=idummy, nclvar=nclvar, nclval=nclval, &
                 clval=clval, irbef=irbef, r=r, d=d, irank=irank, &
                 dfe=dfe, scpe=scpe, nrmiss=nrmiss, xmin=xmin, &
                 xmax=xmax)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      WRITE (NOUT,*) 'IRANK = ', IRANK, '  DFE = ', DFE, '  '// &
                    'SCPE(1,1) = ', SCPE(1,1)
      J = 0
      DO 10  I=1, NCLVAR
         CALL WRRRN ('Class values', CLVAL((J+1):), 1, NCLVAL(I), 1)
         J = J + NCLVAL(I)
   10 CONTINUE
      NCOEF = IRBEF(NEF+1) - 1
      CALL WRRRN ('XMIN', XMIN, 1, NCOEF, 1)
      CALL WRRRN ('XMAX', XMAX, 1, NCOEF, 1)
      CALL WRIRN ('IRBEF', IRBEF, 1, NEF+1, 1)
      CALL WRRRN ('R-MATRIX', R)
      CALL WRRRL ('B', B, RLABEL, CLABEL, 1, NCOEF, 1)
!
      END

Output

NRMISS =   0
IRANK =   6  DFE =     7.00000  SCPE(1,1) =    0.706176

      Class values
    1       2       3
1.000   2.000   3.000

                     XMIN
   1       2       3       4       5       6
1.00    0.00    0.00   20.00    0.00    0.00

                     XMAX
   1       2       3       4       5       6
1.00    1.00    1.00   32.00   32.00   29.00
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    IRBEF
1   2   3   4
2   4   5   7

                     R-MATRIX
        1       2       3       4       5       6
1    3.61    1.11    1.11   93.47   28.29   30.51
2            1.66   -0.74   -1.02   42.43  -20.34
3                    1.49    3.73    0.00   40.99
4                           11.66    7.80    0.43
5                                   5.49    -0.61
6                                            2.11

                                B
   MU      ALPHA1      ALPHA2        BETA       BETA1       BETA2
2.475      -3.454      -2.775       0.445     0.06104       0.025

Figure 2.4 — Plot of Turkey Weights and Fitted Lines by State

Example 2

A two-way analysis-of-variance model is fitted to balanced data discussed by Snedecor and Cochran (1967, 
Table 12.5.1, page 347). The responses are the weight gains (in grams) of rats fed diets varying in two compo-
nents — level of protein and source of protein. The model is

 yijk= μ + α i+ βj+ γij+ ɛ ijk     i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where
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Here, the IDUMMY = 0 option is used.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IDEP, LDB, LDR, LDSCPE, LDX, LINDEF, MAXB, MAXCL, &
                 NCLVAR, NCOL, NEF, NROW
      PARAMETER  (IDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2, &
                 NCOL=3, NEF=3, NROW=60, LDB=MAXB, LDR=MAXB, &
                 LDSCPE=IDEP, LDX=NROW)
!
      INTEGER    I, IDUMMY, INDCL(NCLVAR), INDDEP(IDEP), &
                 INDEF(LINDEF), INTCEP, IRANK, IRBEF(NEF+1), J, &
      NCLVAL(NCLVAR), NCOEF, NOUT, NRMISS, NVEF(NEF)

      REAL       B(LDB,IDEP), CLVAL(MAXCL), D(MAXB), DFE, &
                 R(LDR,MAXB), SCPE(LDSCPE,IDEP), X(LDX,NCOL), &
                 XMAX(MAXB), XMIN(MAXB)
      CHARACTER  CLABEL(MAXB+1)*7, RLABEL(1)*4
!
      DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, &
           117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, &
           77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0, &
           108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0, &
           51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0, &
           98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0, &
           81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0, &
           10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
      DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/
      DATA CLABEL/' ', 'MU', 'ALPHA1', 'ALPHA2', 'BETA1', 'BETA2', &
           'BETA3', 'GAMMA11', 'GAMMA12', 'GAMMA13', 'GAMMA21', &
           'GAMMA22', 'GAMMA23'/
      DATA RLABEL/'NONE'/
      !
      IDUMMY = 0
      CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
                 idummy=idummy, nclvar=nclvar, nclval=nclval, &
                 clval=clval, irbef=irbef, r=r, d=d, irank=irank, &
                 dfe=dfe, scpe=scpe, nrmiss=nrmiss, xmin=xmin, &
                 xmax=xmax)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      WRITE (NOUT,*) 'IRANK = ', IRANK, '  DFE = ', DFE, '  '// &
                    'SCPE(1,1) = ', SCPE(1,1)
      J = 0
      DO 10  I=1, NCLVAR
         CALL WRRRN ('Class Values', CLVAL((J+1):), 1, NCLVAL(I), 1)
         J = J + NCLVAL(I)
   10 CONTINUE
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      NCOEF = IRBEF(NEF+1) - 1
      CALL WRRRN ('XMIN', XMIN, 1, NCOEF, 1)
      CALL WRRRN ('XMAX', XMAX, 1, NCOEF, 1)
      CALL WRIRN ('IRBEF', IRBEF, 1, NEF+1, 1)
      CALL WRRRN ('R-MATRIX', R, NRA=NCOEF, NCA=NCOEF, ITRING=1)
      CALL WRRRL ('B', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(2W10.4)')
!
      END

Output

NRMISS =   0
IRANK =   12  DFE =     54.0000  SCPE(1,1) =     11586.0

Class Values
    1       2
1.000   2.000

    Class Values
    1       2       3
1.000   2.000   3.000

                                    XMIN
    1      2      3       4       5       6       7       8       9      10
1.000  0.000  0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

   11      12
0.000   0.000

                                     XMAX
    1      2      3       4       5       6       7       8       9      10
1.000  1.000  1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000

   11      12
1.000   1.000

     IRBEF
1    2    3    4
2    4    7   13

                                  R-MATRIX
        1       2       3       4       5       6       7       8       9
1   7.746   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000
2          -1.000  -1.000   0.000   0.000   0.000   0.000   0.000   0.000
3                   7.746   0.000   0.000   0.000   0.000   0.000   0.000
4                          -1.000  -1.000  -1.000   0.000   0.000   0.000
5                                   6.325   3.162   0.000   0.000   0.000
6                                           5.477   0.000   0.000   0.000
7                                                  -1.000   0.000   0.000
8                                                          -1.000   0.000
9                                                                  -1.000

       10      11      12
1   0.000   0.000   0.000
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2   0.000   0.000   0.000
3   0.000   0.000   0.000
4   0.000   0.000   0.000
5   0.000   0.000   0.000
6   0.000   0.000   0.000
7  -1.000   0.000   0.000
8   0.000  -1.000   0.000
9   0.000   0.000  -1.000
10  -1.000  -1.000  -1.000
11           6.325   3.162
12                   5.477

                                    B
         MU      ALPHA1      ALPHA2       BETA1       BETA2       BETA3
      87.87       7.267      -7.267       1.733      -2.967       1.233

    GAMMA11     GAMMA12     GAMMA13     GAMMA21     GAMMA22     GAMMA23
      3.133      -6.267       3.133      -3.133       6.267      -3.133
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RLEQU

Fits a multivariate linear regression model with linear equality restrictions H B = G imposed on the regres-
sion parameters given results from routine RGIVN after IDO = 1 and IDO = 2 and prior to IDO = 3.

Required Arguments
H — NH by NCOEF matrix with the i-th row specifying a linear combination of the regression parameters 

for the i-th row in the restriction H B = G.  (Input)
B — NCOEF by NDEP matrix containing on return from the final invocation of this routine a least-squares 

solution for the regression coefficients in the restricted model.  (Input/Output) 
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the B matrix from RGIVN after RGIVN’s 
invocation with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0. After the wrap-up computa-
tions are computed by RLEQU, B contains a least-squares solution for the regression coefficients in the 
restricted model.

R — NCOEF by NCOEF upper triangular matrix containing, on return from the final invocation of this rou-
tine, the R matrix from the restricted regression fit.  (Input/Output) 
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the R matrix from RGIVN after RGIVN’s 
invocation with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0. After the wrap-up computa-
tions are computed by RLEQU, R contains the R matrix from the restricted regression fit. Elements to 
the right of a diagonal element of R (that is zero) are also zero. A zero row in R indicates a nonfull rank 
model. Each row of R corresponding to a restriction has a corresponding diagonal element that is neg-
ative. Each remaining row of R has a corresponding diagonal element that is positive.

D — Vector of length NCOEF containing scale factors associated with the fast Givens transformations.  
(Input/Output) 
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the D from RGIVN after RGIVN’s invoca-
tion with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0. After the wrap-up computations 
are computed by RLEQU, D contains all its elements set to 1.0.

DFE — Degrees of freedom for error for the restricted model on return from the final invocation of this 
routine.  (Input/Output) 
Prior to the final invocation of this routine, DFE contains the sum of the frequencies. Invocation of 
RLEQU with INVOKE = 0 and 1 requires as input the DFE from RGIVN after RGIVN’s invocation with 
IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0.

SCPE — NDEP by NDEP matrix containing error (residual) sums of squares and crossproducts for the 
restricted model.  (Input/Output) 
SCPE(M, N) is the current sum of crossproducts of residuals for the M-th and N-th dependent variables. 
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the SCPE matrix from RGIVN after 
RGIVN’s invocation with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0.

Optional Arguments
INVOKE — Invocation option.  (Input) 

Default: INVOKE = 0.

INVOKE Action

0 This is the only invocation of RLEQU. All the restrictions are input at 
once.
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NH — Number of rows in the restriction H B = G.  (Input)
Default: NH = size (H,1).

NCOEF — Number of coefficients in the regression equation for each dependent variable.  (Input)
Default: NCOEF = size (H,2).

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDH = size (H,1).

IG — Option for G matrix.  (Input) 
Default: IG = 0.

NDEP — Number of dependent (response) variables.  (Input)
Default: NDEP = size (B,2).

G — NH by NDEP matrix containing the right-hand side of the restriction 
H B = G.  (Input, if IG = 1) 
If IG = 0, G is not referenced and can be a 1 by 1 array.
Default: G is a 1 by 1 array.

LDG — Leading dimension of G exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDG = size(G, 1).

TOL — Tolerance used in determining linear dependence.  (Input) 
For RLEQU, TOL = 100.0 * AMACH(4) is a common choice. See the documentation for IMSL routines 
AMACH in Reference Material.
Default: TOL = 1.e-5 for single precision and 2.d-14 for double precision.

LDB — Leading dimension B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

IRANKR — Rank of matrix R.  (Output, if INVOKE = 0 or 3)
LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDSCPE = size (SCPE,1).

IRANKH — Rank of matrix H.  (Output)

1 This is the first invocation, and additional calls to RLEQU will be made. 
Initialization and updating for the restrictions H B = G are performed.

2 This is an intermediate invocation of RLEQU, and updating for the 
restrictions H B = G is performed.

3 This is the final invocation of this routine. Updating for the restrictions 
H B = G is performed, and wrap-up computations are performed.

IG Restrictions

0 H B = 0

1 H B = G
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FORTRAN 90 Interface
Generic: CALL RLEQU (H, B, R, D, DFE, SCPE[, …])
Specific: The specific interface names are S_RLEQU and D_RLEQU.

FORTRAN 77 Interface
Single: CALL RLEQU (INVOKE, NH, NCOEF, H, LDH, IG, NDEP, G, LDG, TOL, B, LDB, R, LDR, D, 

IRANKR, DFE, SCPE, LDSCPE, IRANKH)
Double: The double precision name is DRLEQU.

Description

Routine RLEQU requires the output from routine RGIVN after RGIVN has been invoked with IDO = 1 and 
IDO = 2 and prior to IDO = 3 with NROW = 0. Similarly, RLEQU can use results from IMSL routine RGLM. 

The routine RLEQU is designed so that you can partition a large number of restrictions, as might arise in clas-
sification models, into several groups of restrictions (each requiring less space) and make multiple calls to 
RLEQU (with INVOKE = 1, 2, 2, …, 3). Alternatively, one invocation of RLEQU (with INVOKE = 0) can be made 
with all the restrictions contained in H and G. 

After the wrap-up computations are performed by RLEQU, routines RSTAT and RCASE can be used to com-
pute and print summary statistics and case statistics related to the fitted regression. 

Routine RGIVN (or RGLM) together with routine RLEQU compute estimates of the regression coefficients in a 
multivariate general linear model Y = X B + Ε subject to H B = G. Here, Y is the n × q matrix of responses, X is 
the n × p matrix of regressors, B is the p × q matrix of regression coefficients, and Ε is the n × q matrix of 
errors whose q-dimensional rows are identically and independently distributed multivariate normal with 
mean vector 0 and variance-covariance matrix Σ. The restriction is specified by the h × p matrix H and the 
h × q matrix G.

Previously, algorithms for solving the restricted least-squares problem were based on solving the following 
equations (Rao, 1973, page 232):

Routine RLEQU is based on an orthogonal reduction of X to upper triangular form. Fast Givens transforma-
tions with modifications described by Stirling (1981) for incorporating restrictions are used. This method has 

two main advantages: (1) the loss of accuracy resulting from forming XT X and XT Y is avoided, and (2) 
restrictions can be conveniently added so as to take advantage of the previous computations performed. 

The method conceptually treats restrictions as observations with zero error variance. Fast Givens transforma-
tions as described by Golub and Van Loan (1983, pages 156-162) are used. The modification to the matrix R 
from the unrestricted fit to form a modified

for the restricted fit is as follows:
RLEQU         Chapter 2: Regression      158



1. If the leading nonzero element of the first restriction is small (as determined by TOL times a computed 
scale factor), the element is set to zero.

2. Let i be the index of the leading nonzero element in the modified first restriction. Replace row i of R by 
the restriction. Flag the i-th row as a restriction. Use the restriction to reduce the first nonzero element 
of the row that was removed from R to zero. Incorporate the row that has been reduced by the restric-
tion into the remaining rows of R as if it were new data.

3. Add additional restrictions into R by using Gaussian elimination, with the rows in R corresponding to 
restrictions, to reduce the restriction to a form so that it can replace a row of R corresponding to data 
and preserve the upper triangular structure of R. While performing the Gaussian elimination, set small 
nonzero elements (as determined by TOL times a computed scale factor) of the reduced restriction to 
zero, so that errors from inexact computer arithmetic are not incorporated as a new restriction. Flag the 
row as a restriction. Use the restriction to reduce the first nonzero element of the row that was 
removed from R to zero. Incorporate the row that has been reduced by the restriction into the remain-
ing rows of R as if it were new data.

4. After all the data and restrictions are incorporated, the i-th row of R (where i ranges over each row of R 
corresponding to a linearly independent constraint) is used to zero out elements of R in the i-th col-
umn of the previous rows of R that correspond to data. Although this step is not required to get a least-
squares solution, Sallas (1988) recommends this step so that the rows and columns of

corresponding to data form the R matrix for the reduced model that arises from expressing some 
regression parameters, βi, in terms of other regression parameters, βj(j > i).

Linear dependence of the regressors in the reduced model is then checked as part of the wrap-up computa-
tions, using the rows and columns of R corresponding to the reduced model. The check is complicated 
somewhat by the fact that a regressor could become zero in the reduced model, but because of the finite pre-

cision of computer arithmetic, the regressor is not exactly zero. Let di equal the i-th diagonal element of XT X, 
and let 

equal the corresponding diagonal from the crossproducts matrix for the reduced model. Linear dependence 
of regressors in the reduced model is declared if

is less than or equal to TOL or if

is less than or equal to TOL. (The last check is designed to detect a zero regressor in the reduced model.) Here,

is the square of the “multiple correlation” coefficient of the i-th regressor in the reduced model with the first 
i - 1 regressors in the reduced model. The “multiple correlation” coefficient is computed using the regressors 
in the reduced model and adjusted for the mean only if the incorporated restrictions have that effect. 
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When a linear dependence is declared, R is changed so as to reflect the deletion of the i-th regressor from the 
model. On completion of the wrap-up computations, the rows of R can be partitioned into three classes 
according to the sign of the corresponding diagonal element:

1. A positive diagonal element means the row/column corresponds to data for regressors in the reduced 
model.

2. A negative diagonal element means the row corresponds to a linearly independent restriction imposed 
on the regression parameters by H B = G.

3. A zero diagonal element means a linear dependence in the reduced model was declared. The regres-
sion coefficients in the corresponding row of

are set to zero. This represents an arbitrary restriction that is imposed to obtain a solution for the 
regression coefficients. The elements of the corresponding row of R are also set to zero.

Redundant restrictions on the regression parameters are frequently specified in general linear models. Rou-
tine RLEQU permits redundant restrictions and returns the rank of H. An informational error is issued if 
inconsistent restrictions are detected.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2EQU/DR2EQ. The reference is:

CALL R2EQU (INVOKE, NH, NCOEF, H, LDH, IG, NDEP, G,  LDG, TOL, B,LDB, R, LDR, D, IRANKR, DFE, 
SCPE, LDSCPE, IRANKH, WK)

The additional argument is:

WK — Work vector of length NCOEF + NDEP.
2. Informational error 

3. The results of routine RGLM can be used as input to RLEQU in place of the results of routine RGIVN.

Examples

Example 1

A grafted polynomial (spline function) is fit to data discussed by Fuller (1976, pages 396-398). The data set 
contains the response variable y measuring the annual wheat yield (in bushels per acre) for the years 1908 
through 1971. In order to fit the trend, Fuller fits a function that is constant for the first 25 years, increases at a 
quadratic rate until 1961, and is linear for the last 10 years. This trend is represented by the function f(t) 
where

Type Code Description

3 1 The restrictions are inconsistent.
RLEQU         Chapter 2: Regression      160



where t = 1 for 1908.

In order to fit a smooth function to the data, we require both continuity and differentiability. This imposes 
four restrictions on the coefficients given as follows:

1. β1 - β2 - 25 β3 - 252 β4 = 0

2. β2 + 54 β3 + 542 β4 - β5 - 54 β6 = 0

3. β3 + 50 β4 = 0

4. β3 + 108 β4 - β6 = 0

The example program first calls routine RGIVN with IDO = 1, which specifies that initialization and updating 
for the data are performed and wrap-up computations are not performed. This intermediate output from 
RGIVN along with the restrictions is the input to RLEQU .

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IDEP, LDB, LDG, LDH, LDR, LDSCPE, LDX, NCOEF, NH, &
                 NOBS, NVAR, J
      PARAMETER  (IDEP=1, LDG=1, NCOEF=6, NH=4, NOBS=64, NVAR=7, &
                 LDB=NCOEF, LDH=NH, LDR=NCOEF, LDSCPE=IDEP, LDX=NOBS)
!
      INTEGER    I, IDO, IG, INDDEP(IDEP), INDIND(NCOEF), INTCEP, &
                 IRANK, IRANKH, IRANKR, ICEN, NOUT, NRMISS
      REAL       B(LDB,IDEP), D(NCOEF), DFE, G(LDG,IDEP), &
                 H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,IDEP), &
                 X(LDX,NVAR), XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER*4 RLABEL(1), CLABEL(1)
!
      DATA INDIND/1, 2, 3, 4, 5, 6/, INDDEP/7/
      DATA X/384*0.0, 14.3, 15.5, 13.7, 12.4, 15.1, 14.4, 16.1, 16.7, &
            11.9, 13.2, 14.8, 12.9, 13.5, 12.7, 13.8, 13.3, 16.0, 12.8, &
           14.7, 14.7, 15.4, 13.0, 14.2, 16.3, 13.1, 11.2, 12.1, 12.2, &
          12.8, 13.6, 13.3, 14.1, 15.3, 16.8, 19.5, 16.4, 17.7, 17.0, &
           17.2, 18.2, 17.9, 14.5, 16.5, 16.0, 18.4, 17.3, 18.1, 19.8, &
           20.2, 21.8, 27.5, 21.6, 26.1, 23.9, 25.0, 25.2, 25.8, 26.5, &
           26.3, 25.9, 28.4, 30.6, 31.0, 33.9/
      DATA (H(1,J),J=1,NCOEF)/1, -1, -25, -625, 0, 0/
      DATA (H(2,J),J=1,NCOEF)/0, 1, 54, 2916, -1, -54/
      DATA (H(3,J),J=1,NCOEF)/0, 0, 1, 50, 0, 0/
      DATA (H(4,J),J=1,NCOEF)/0, 0, 1, 108, 0, -1/
!
      DATA RLABEL/'NONE'/,CLABEL/'NONE'/
!
      DO 10  I=1, NOBS
         IF (I .LE. 25) THEN
!                                 Constant function.
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            X(I,1) = 1.0
         ELSE IF (I.GT.25 .AND. I.LE.54) THEN
!                                 Quadratic function.
            X(I,2) = 1.0
            X(I,3) = I
            X(I,4) = I**2
         ELSE IF (I .GT. 54) THEN
!                                 Linear function.
            X(I,5) = 1.0
            X(I,6) = I
         END IF
   10 CONTINUE
      IDO    = 1
      INTCEP = 0
      ICEN = 0
      CALL RGIVN (X, NCOEF, INDIND, IDEP, INDDEP, B, IDO=IDO, &
                  INTCEP=INTCEP, ICEN=ICEN, R=R, D=D, DFE=DFE, SCPE=SCPE)
      CALL RLEQU (H, B,  r, d, DFE, SCPE, irankr=irankr, Irankh=irankh)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'IRANKR = ', IRANKR, '  IRANKH = ', IRANKH
      WRITE (NOUT,*) 'DFE = ', DFE, '  SCPE(1,1) = ', SCPE(1,1)
      CALL WRRRL ('%/B', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(2W10.4)')
      CALL WRRRL ('%/R', R, RLABEL, CLABEL, ITRING=1, FMT='(2W10.4)')
      END

Output

IRANKR =   6  IRANKH =   4
DFE =     62.0000  SCPE(1,1) =     172.559

                              B
13.99       21.58     -0.6068     0.01214      -13.81      0.7039

                              R
   -1           1          25         625          0.         0.0
               -1         -54       -2916          1.        54.0
                           -1         -50          0.         0.0
                                      -58          0.         1.0
                                                   8.       359.4
                                                             59.4
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Figure 2.5 — Annual U.S. Wheat Yield and a Grafted Polynomial Fit

Example 2

A fit to unbalanced data for a two-way classification model is computed. The model is

yijk = μ + α i+ βj+ γij + ɛ ijk      i = 1, 2; j = 1, 2; k = 1, 2, …, nij

where the αi’s and βj’s are the row and column effects, respectively, and γij’s are the interaction effects. The 
responses yijk are given in the cells of the following 2 × 2 table:

The following restrictions can be imposed on the regression parameters in order to compute a cell-means fit 
to the responses:

1. 5 α1 + 7 α2 = 0

2. 8 β1 + 4 β2 = 0

3. 3 α1 + 5 α2 + 3 γ11+ 5 γ21 = 0

4. 2 α1 + 2 α2 + 2 γ12+ 2 γ22 = 0

5. 3 β1 + 2 β2 + 3 γ11+ 2 γ21 = 0

6. 5 β1 + 2 β2 + 5 γ12+ 2 γ22 = 0

17, 14, 11 13, 12

12, 14, 15, 14, 12 13, 14
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The example program first calls IMSL routine RGLM with IDO = 1, which specifies that initialization and 
updating for the data are performed and wrap-up computations are not performed. This intermediate output 
from RGLM along with the restrictions is the input to RLEQU. 

A cell-means fit to the data could also be obtained without using RLEQU and using IDO = 0 in the call to RGLM 
in this example. Although the fitted yijk would be the same, the coefficient estimates and their interpretations 
would be different.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IDEP, INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDX, MAXCL, &
                 NCLVAR, NCOEF, NEF, NH, NOBS, NVAR, J
      PARAMETER  (IDEP=1, INTCEP=1, LDG=1, LDH=6, MAXCL=4, NCLVAR=2, &
                 NCOEF=9, NEF=3, NH=6, NOBS=12, NVAR=3, LDB=NCOEF, &
                 LDR=NCOEF, LDSCPE=IDEP, LDX=NOBS)
!
      INTEGER    IDO, INDCL(NCLVAR), INDDEP(1), INDEF(4),&
                 IRANK, IRANKH, IRANKR, IRBEF(NEF+1), ICEN, &
                 NCLVAL(NCLVAR), NOUT, NRMISS, NVEF(NEF)
      REAL       B(LDB,IDEP), CLVAL(MAXCL), D(NCOEF), DFE, &
                 G(LDG,IDEP), H(LDH,NCOEF), R(LDR,NCOEF), &
                 SCPE(LDSCPE,IDEP), X(LDX,NVAR), XMAX(NCOEF), &
                 XMIN(NCOEF)
      CHARACTER  CLABEL(10)*7, RLABEL(1)*4
!
      DATA INDCL/1, 2/, NVEF/1, 1, 2/, INDEF/1, 2, 1, 2/, INDDEP/3/
      DATA CLABEL/' ', 'MU', 'ALPHA1', 'ALPHA2', 'BETA1', 'BETA2', &
           'GAMMA11', 'GAMMA12', 'GAMMA21', 'GAMMA22'/
      DATA (X(1,J),J=1,NVAR)  /1, 1, 17/
      DATA (X(2,J),J=1,NVAR)  /1, 1, 14/
      DATA (X(3,J),J=1,NVAR)  /1, 1, 11/
      DATA (X(4,J),J=1,NVAR)  /1, 2, 13/
      DATA (X(5,J),J=1,NVAR)  /1, 2, 12/
      DATA (X(6,J),J=1,NVAR)  /2, 1, 12/
      DATA (X(7,J),J=1,NVAR)  /2, 1, 14/
      DATA (X(8,J),J=1,NVAR)  /2, 1, 15/
      DATA (X(9,J),J=1,NVAR)  /2, 1, 14/
      DATA (X(10,J),J=1,NVAR) /2, 1, 12/
      DATA (X(11,J),J=1,NVAR) /2, 2, 13/
      DATA (X(12,J),J=1,NVAR) /2, 2, 14/
      DATA (H(1,J),J=1,NCOEF) /0, 5, 7, 0, 0, 0, 0, 0, 0/
      DATA (H(2,J),J=1,NCOEF) /0, 0, 0, 8, 4, 0, 0, 0, 0/
      DATA (H(3,J),J=1,NCOEF) /0, 3, 5, 0, 0, 3, 0, 5, 0/
      DATA (H(4,J),J=1,NCOEF) /0, 2, 2, 0, 0, 0, 2, 0, 2/
      DATA (H(5,J),J=1,NCOEF) /0, 0, 0, 3, 2, 3, 2, 0, 0/
      DATA (H(6,J),J=1,NCOEF) /0, 0, 0, 5, 2, 0, 0, 5, 2/
!
      IDO   = 1
      ICEN  = 0
      CALL RGLM (IDO=IDO, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
                 ICEN=ICEN, R=R, D=D, DFE=DFE, SCPE=SCPE)
      CALL RLEQU (H, B, r, d, DFE, SCPE, irankr=irankr,  &
                  irankh=irankh)
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      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'IRANKR = ', IRANKR, '  IRANKH = ', IRANKH
      WRITE (NOUT,*) 'DFE = ', DFE, '  SCPE(1,1) = ', SCPE(1,1)
      RLABEL(1) = 'NONE'
      CALL WRRRL ('B', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(F7.2)')
      CALL WRRRN ('R', R, ITRING=1)
      END

Output

IRANKR =   9  IRANKH =   5
DFE =     8.00000  SCPE(1,1) =     26.2000

                                    B
       MU   ALPHA1   ALPHA2    BETA1    BETA2  GAMMA11  GAMMA12  GAMMA21
    13.42    -0.02     0.01     0.21    -0.42     0.39    -0.48    -0.24

GAMMA22
   0.49

                                     R
        1       2       3       4       5       6       7       8       9
1    3.46    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00
2           -5.00   -7.00    0.00    0.00    0.00    0.00    0.00    0.00
3                   -0.80    0.00    0.00   -3.00    0.00   -5.00    0.00
4                           -8.00   -4.00    0.00    0.00    0.00    0.00
5                                   -0.50   -3.00   -2.00    0.00    0.00
6                                           -3.00   -2.00   -5.00   -2.00
7                                                   10.41    3.20   11.37
8                                                           24.56    9.65
9                                                                    2.45
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RSTAT

Computes statistics related to a regression fit given the coefficient estimates  and the R matrix.

Required Arguments
IRBEF — Index vector of length ∣IEF∣ + 1.  (Input, if IEF is positive.) 

For i = 1, 2, …, ∣IEF∣, element numbers IRBEF(i), IRBEF(i) + 1, …, IRBEF(i + 1) - 1, of B correspond 
to the i-th effect.

B — Vector of length NCOEF containing a least-squares solution  for the regression coefficients.  (Input) 
Here, if IEF > 0, then NCOEF = IRBEF(IEF + 1) - 1; and if IEF ≤ 0, then NCOEF = INTCEP - IEF. If 
INTCEP = 1, then B(1) must be the estimated intercept.

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.  (Input) 
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors 
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the 
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row 
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality 
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding 
diagonal element that is negative. The remaining rows of R must have positive diagonal elements. 
Only the upper triangle of R is referenced.

DFE — Degrees of freedom for error.  (Input)
SSE — Sum of squares for error.  (Input)
AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output) 

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)
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If INTCEP = 1, the regression and total are corrected for the mean. If INTCEP = 0, the regression and 
total are not corrected for the mean, and AOV(14) and AOV(15) are set to NaN (not a number).

SQSS — ∣IEF∣ by 4 matrix containing in columns 1 through 4 the sequential degrees of freedom, sum of 
squares, F-statistic, and p-value.  (Output) 
Each row corresponds to an effect. If IEF = 0, SQSS is not referenced and can be a vector of length one.

COEF — NCOEF by 5 matrix containing statistics relating to the regression coefficients.  (Output) 
Each row corresponds to a coefficient in the model. Row INTCEP + I corresponds to the coefficient for 
the I-th independent variable. If INTCEP = 1, the first row corresponds to the intercept. The statistics 
in the columns are 

COVB — NCOEF by NCOEF matrix that is the estimated variance-covariance matrix of the estimated regres-
sion coefficients when R is nonsingular and is from an unrestricted regression fit.  (Output) 
See Comments for an explanation of COVB when R is singular or R is from a restricted regression fit. If 
R is not needed, COVB and R can share the same storage locations.

Optional Arguments
INTCEP — Intercept option.  (Input) 

Default: INTCEP = 1.

IEF — Effect option.  (Input) 
Default: IEF = 0.
The absolute value of IEF is the number of effects (sources of variation) in the model excluding the 
error. The sign of IEF specifies the following options: 

Col. Description

1 Coefficient estimate. 

2 Estimated standard error of the coefficient estimate. 

3 t-statistic for the test that the coefficient is zero. 

4 p-value for the two-sided t test.

5 Variance inflation factors. The square of the multiple correlation coefficient for the I-th 
regressor after all others can be obtained from COEF(I, 5) by the formula 
1.0 - 1.0/COEF(I, 5). If INTCEP = 0 or INTCEP = 1 and I = 1, the “multiple correlation 
coefficient” is not adjusted for the mean.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.

IEF Meaning

< 0 Each effect corresponds to a single regressor (coefficient) in the model.

> 0 Each effect corresponds to one or more regressors. The association between the effects 
and the regressors is given by elements of IRBEF.

0 There are no effects in the model. INTCEP must equal 1.
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LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

PRINT — Printing option.  (Input) 
Default: PRINT = ‘N’.
PRINT is a character string indicating what is to be printed. The PRINT string is composed of one char-
acter print codes to control printing. These print codes are given as follows: 

The concatenated print codes ‘A’, ‘N’, ‘1’, …, ‘4’ that comprise the PRINT string give the combination of 
statistics to be printed. Here are a few examples. 

LDSQSS — Leading dimension of SQSS exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSQSS = size (SQSS,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOVB = size (COVB,1).

FORTRAN 90 Interface
Generic: CALL RSTAT (IRBEF, B, R, DFE, SSE, AOV, SQSS, COEF, COVB [, …])
Specific: The specific interface names are S_RSTAT and D_RSTAT.

FORTRAN 77 Interface
Single: CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT, AOV, SQSS, LDSQSS, 

COEF, LDCOEF, COVB, LDCOVB)
Double: The double precision name is DRSTAT.

PRINT(I : I) Printing that occurs

‘A’ All

‘N’ None

‘1’ AOV

‘2’ SQSS

‘3’ COEF

‘4’ COVB

PRINT Printing that occurs

‘A’ All

‘N’ None

‘13’ AOV and COEF

‘124’ AOV, SQSS, and COVB
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Description

Routine RSTAT computes summary statistics from a fitted general linear model. The model is y = Xβ + ɛ 
where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector of regression 
coefficients, and ɛ is the n × 1 vector of errors whose elements are each independently distributed with mean 

0 and variance σ2. Routine RGIVN or routine RGLM can be used to compute the fit of the model. Next, RSTAT 
uses the results of this fit to compute summary statistics, including analysis of variance, sequential sum of 
squares, t tests, and estimated variance-covariance matrix of the estimated regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th element of ɛ has variance σ2/wi and 
the weights wi are used in the fit of the model, RSTAT produces summary statistics from the weighted least-

squares fit. More generally, if the variance-covariance matrix of ɛ is σ2V, RSTAT can be used to produce sum-
mary statistics from the generalized least-squares fit. (Routine RGIVN can be used to perform a generalized 

least-squares fit, by regressing y* on X* where y* = (T−1)Ty, X* = (T−1)TX and T satisfies TTT = V. Routines for 
computing y* and X* can be found in the IMSL MATH/LIBRARY.)

If the general linear model has the restriction H β = g on the regression parameters, and this restriction is 
used in the fit of the model by routine RLEQU, RSTAT produces summary statistics from this restricted least-
squares fit. 

The sequential sum of squares for the i-th regression parameter is given by

The regression sum of squares is given by the sum of the sequential sums of squares. If an intercept is in the 
model, the regression sum of squares is adjusted for the mean, i.e., 

is not included in the sum. 

The estimate of σ2 is s2 (stored in AOV(8)) that is computed as SSE/DFE. 

If R is nonsingular, the estimated variance-covariance matrix of  (stored in COVB) is computed by 

s2R−1(R−1)T.

If R is singular, corresponding to rank (X) < p, a generalized inverse is used. For a matrix G to be a 
gi(i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy conditions j (for j ≤ i) for the Moore-Penrose inverse 
but generally must fail conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse of A 
are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric
4. GA is symmetric
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In the case where R is singular, the method for obtaining COVB follows the discussion of Maindonald (1984, 
pages 101-103). Let Z be the diagonal matrix with diagonal elements defined by 

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G to zero. COVB is set to s2GGT. 
(G is a g3 inverse of R. For any g3 inverse of R, represented by

the result

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti [1988].) 

Note that COVB can only be used to get variances and covariances of estimable functions of the regression 
coefficients, i.e., nonestimable functions (linear combinations of the regression coefficients not in the space 
spanned by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages 166-168) for 
a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in column 2 of COEF) are com-
puted as square roots of the corresponding diagonal entries in COVB.

For the case where an intercept is in the model, put

equal to the matrix R with the first row and column deleted. Generally, the variance inflation factor (VIF) for 

the i-th regression coefficient is computed as the product of the i-th diagonal element of RTR and the i-th 
diagonal element of its computed inverse. If an intercept is in the model, the VIF for those coefficients not 
corresponding to the intercept uses the diagonal elements of

(see Maindonald 1984, page 40). 

The preceding discussion can be modified to include the restricted least-squares problem. The modification 
is based on the work of Stirling (1981). Let the matrix D = diag(d1, d2, …, dp) be a diagonal matrix with ele-
ments di = 0 if the i-th row of R corresponds to restriction. In the unrestricted case, D is simply the p × p 

identity matrix. The formula for COVB is s2GDGT. The formula for the sequential sum of squares for the i-th 
({i : rii > 0}) regression parameter is given by

Sequential sums of squares for {i : rii ≤ 0} are set to zero. 
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For the restricted least-squares problem, the sequential and regression sums of squares correspond to those 
from a fitted reduced model obtained by first substituting the restriction H β = g into the model. In general, 
the reduced model is not unique. Care must be taken to interpret the sequential sums of squares in the con-
text of the particular reduced model indicated by the R matrix. If g = 0, any of the reduced models that could 
be computed from the restrictions will produce the same regression sum of squares. However, if g ≠ 0, differ-
ent reduced models resulting from the same restricted model can have different regressands, and hence, 
different total and regression sums of squares.

Comments
When R is nonsingular and comes from an unrestricted regression fit, COVB is the estimated variance-
covariance matrix of the estimated regression coefficients, and COVB = (SSE/DFE) * (RTR)−1. Other-
wise, variances and covariances of estimable functions of the regression coefficients can be obtained 
using COVB, and COVB = (SSE/DFE) * GDGT. Here, D is the diagonal matrix with diagonal elements 
equal to 0 if the corresponding rows of R are restrictions and with diagonal elements equal to one oth-
erwise. Also, G is a particular generalized inverse of R. See the Description section.

Examples

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629-630). This data set is put into 
the matrix X by routine GDATA (see Chapter 19, “Utilities”). There are four independent variables and one 
dependent variable. Routine RGIVN is invoked to fit the regression model and RSTAT is invoked to compute 
summary statistics.

      USE RSTAT_INT
      USE GDATA_INT
      USE RGIVN_INT

      IMPLICIT   NONE
!                                 SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDSQSS, &
                 LDX, NCOEF, NDEP, NDX, NIND
      PARAMETER  (INTCEP=1, LDX=13, NDEP=1, NDX=5, NIND=4, &
                 LDSCPE=NDEP, LDSQSS=NIND, NCOEF=INTCEP+NIND, &
                 LDB=NCOEF, LDCOEF=NCOEF, LDCOVB=NCOEF, LDR=NCOEF) 
!
      INTEGER    IDEP, IDO, IEF, IFRQ, IIND, INDDEP(1), INDIND(1), &
                 IRANK, IRBEF(1), IWT, NCOL, NRMISS, NROW
      REAL       AOV(15), B(LDB,NDEP), COEF(LDCOEF,5), &
                 COVB(LDCOVB,5), D(NCOEF), DFE, R(LDR,NCOEF), &
                 SCPE(LDSCPE,NDEP), SQSS(LDSQSS,4), SSE, TOL, &
                 X(LDX,NDX), XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER  PRINT*5
!
      CALL GDATA (5, X, NROW, NCOL)
      IIND = -NIND
      IDEP = -NDEP
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      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, &
                  SCPE=SCPE)
      PRINT = 'A'
      IEF   = -NIND
      SSE   = SCPE(1,1)
!
      CALL RSTAT (IRBEF, B(:, 1), R, DFE, SSE, AOV, SQSS, COEF, COVB,  &
                  IEF=IEF, PRINT=PRINT)
!
      END

Output

R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   98.238     97.356           2.446       95.42           2.563

               * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             4      2667.9       667.0    111.479    0.0000
Residual               8        47.9         6.0
Corrected Total       12      2715.8
         * * * Sequential Statistics * * *
Indep.    Degrees of     Sum of                Prob. of
Variable     Freedom     Squares  F-statistic   Larger F
       1           1      1450.1      242.368     0.0000
       2           1      1207.8      201.870     0.0000
       3           1         9.8        1.637     0.2366
       4           1         0.2        0.041     0.8441

                * * * Inference on Coefficients * * *
                      Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       62.41       70.07        0.891      0.3991     10668.5
    2        1.55        0.74        2.083      0.0708        38.5
    3        0.51        0.72        0.705      0.5009       254.4
    4        0.10        0.75        0.135      0.8959        46.9
    5       -0.14        0.71       -0.203      0.8441       282.5

  * * * Variance-Covariance Matrix for the Coefficient Estimates * * *
              1             2             3             4             5
1       4909.95        -50.51        -50.60        -51.66        -49.60
2                        0.55          0.51          0.55          0.51
3                                      0.52          0.53          0.51
4                                                    0.57          0.52
5                                                                  0.50
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Example 2

A one-way analysis of covariance model is fitted to the turkey data discussed by Draper and Smith (1981, 
pages 243-249). The response variable is turkey weight y (in pounds). Three groups of turkeys correspond-
ing to the three states where they were reared are used. The age of a turkey (in weeks) is the covariate. The 
explanatory variables are age, group, and interaction. The model is

yij = μ + βxij + α i + βixij + ɛ ij      i = 1, 2, 3; j = 1, 2, …, ni

where α3 = 0 and β3 = 0. Routine RGLM is used to fit the model with the option IDUMMY = 2. Then, RSTAT is 
used to compute summary statistics. The fitted model gives three separate lines with slopes 
0.506, 0.470, and 0.445. The F test for interaction (the last effect) suggests omitting the interaction from the 
model and using a model with identical slopes for each group.

      USE RSTAT_INT
      USE RGLM_INT

      IMPLICIT   NONE
!                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    IDEP, IEF, INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, &
                 LDSQSS, LDX, MAXB, MAXCL, NCLVAR, NCOL, NROW, J
      PARAMETER  (IDEP=1, IEF=3, INTCEP=1, LDX=13, MAXB=6, MAXCL=3, &
                 NCLVAR=1, NCOL=3, NROW=13, LDB=MAXB, LDCOEF=MAXB, &
                 LDCOVB=MAXB, LDR=MAXB, LDSCPE=IDEP, LDSQSS=IEF)
!
      INTEGER    IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(IDEP), &
                 INDEF(4), IRANK, IRBEF(IEF+1), IWT, NCLVAL(NCLVAR), &
                 NRMISS, NVEF(IEF)
      REAL       AOV(15), B(LDB,IDEP), CLVAL(MAXCL), &
                 COEF(LDCOEF,5), COVB(LDCOVB,MAXB), D(MAXB), DFE, &
                 R(LDR,MAXB), SCPE(LDSCPE,IDEP), SQSS(LDSQSS,4), SSE, &
                 TOL, X(LDX,NCOL), XMAX(MAXB), XMIN(MAXB)
      CHARACTER  PRINT*1
!
      DATA (X(1,J),J=1,3)/25, 13.8, 3/
      DATA (X(2,J),J=1,3)/28, 13.3, 1/
      DATA (X(3,J),J=1,3)/20, 8.9, 1/
      DATA (X(4,J),J=1,3)/32, 15.1, 1/
      DATA (X(5,J),J=1,3)/22, 10.4, 1/
      DATA (X(6,J),J=1,3)/29, 13.1, 2/
      DATA (X(7,J),J=1,3)/27, 12.4, 2/
      DATA (X(8,J),J=1,3)/28, 13.2, 2/
      DATA (X(9,J),J=1,3)/26, 11.8, 2/
      DATA (X(10,J),J=1,3)/21, 11.5, 3/
      DATA (X(11,J),J=1,3)/27, 14.2, 3/
      DATA (X(12,J),J=1,3)/29, 15.4, 3/
      DATA (X(13,J),J=1,3)/23, 13.1, 3/
      DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/1, 3, 1, 3/, INDDEP/2/
!
      IDUMMY = 2      
      CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, &
                 B, IDUMMY=IDUMMY, IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)
!
      SSE   = SCPE(1,1)
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      PRINT = 'A'
      CALL RSTAT (IRBEF, B(:,1), R, DFE, SSE, AOV, SQSS, COEF, COVB, &
                 ief=ief,PRINT=PRINT)
!
      END

Output

R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   98.208     96.929          0.3176       12.78           2.484

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             5       38.71       7.742     76.744    0.0000
Residual               7        0.71       0.101
Corrected Total       12       39.42

            * * * Sequential Statistics * * *
         Degrees of     Sum of                Prob. of
Effect     Freedom     Squares  F-statistic   Larger F
     1           1       26.20      259.728     0.0000
     2           2       12.40       61.477     0.0000
     3           2        0.11        0.520     0.6156

                * * * Inference on Coefficients * * *
                      Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       2.475       1.264        1.959      0.0910       205.7
    2       0.445       0.050        8.861      0.0000         3.8
    3      -3.454       1.531       -2.257      0.0586        64.3
    4      -2.775       4.109       -0.675      0.5211       463.4
    5       0.061       0.060        1.013      0.3447        68.1
    6       0.025       0.151        0.166      0.8729       472.3

     * * * Variance-Covariance Matrix for the Coefficient Estimates * * *
              1             2             3             4             5
1        1.5965       -0.0631       -1.5965       -1.5965        0.0631
2                      0.0025        0.0631        0.0631       -0.0025
3                                    2.3425        1.5965       -0.0913
4                                                 16.8801       -0.0631
5                                                                0.0036

              6
1        0.0631
2       -0.0025
3       -0.0631
4       -0.6179
5        0.0025
6        0.0227
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Example 3

A two-way analysis-of-variance model is fitted to balanced data discussed by Snedecor and Cochran (1967, 
Table 12.5.1, page 347). The responses are the weight gains (in grams) of rats fed diets varying in two compo-
nents—level of protein and source of protein. The model is

yijk = μ + α i + βj  + γij + ɛ ijk      i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where

Routine RGLM is used to fit the model with the IDUMMY = 0 option. Then, RSTAT is used to compute summary 
statistics.

      USE RSTAT_INT
      USE RGLM_INT

      IMPLICIT   NONE
      INTEGER    IDEP, IEF, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDSQSS, &
                 LDX, LINDEF, MAXB, MAXCL, NCLVAR, NCOL, NEF, NROW
      PARAMETER  (IDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2, &
                 NCOL=3, NEF=3, NROW=60, IEF=NEF, LDB=MAXB, &
                 LDCOEF=MAXB, LDCOVB=MAXB, LDR=MAXB, LDSCPE=IDEP, &
                 LDSQSS=NEF, LDX=NROW)
!
      INTEGER    IDO, IDUMMY, IFRQ, INDCL(NCLVAR), INDDEP(IDEP),&
                 INDEF(LINDEF), INTCEP, IRANK, IRBEF(NEF+1), IWT, &
                 NCLVAL(NCLVAR), NRMISS, NVEF(NEF)
      REAL       AOV(15), B(LDB,IDEP), CLVAL(MAXCL), &
                 COEF(LDCOEF,5), COVB(LDCOVB,MAXB), D(MAXB), DFE, &
                 R(LDR,MAXB), SCPE(LDSCPE,IDEP), SQSS(LDSQSS,4), SSE, &
                 TOL, X(LDX,NCOL), XMAX(MAXB), XMIN(MAXB)
      CHARACTER  PRINT*1
!
      DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, &
           117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, &
           77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0, &
           108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0, &
           51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0, &
           98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0, &
           81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0, &
           10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
      DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/
!
      IDUMMY = 0
      CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
                IDUMMY=IDUMMY, IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)
!
      SSE   = SCPE(1,1)
      PRINT = 'A'
      CALL RSTAT (IRBEF, B(:,1), R, DFE, SSE, AOV, SQSS, COEF, &
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                 COVB, IEF=IEF, PRINT=PRINT)
!
      END

Output

R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   28.477     21.854           14.65       87.87           16.67

                     * * * Analysis of Variance * * *
                                 Sum of        Mean             Prob. of
Source                    DF     Squares      Square  Overall F  Larger F
Regression                 5      4612.9       922.6      4.300    0.0023
Residual                  54     11586.0       214.6
Reduced Model Total       59     16198.9

        * * * Sequential Statistics * * *
         Degrees of     Sum of                Prob. of
Effect     Freedom     Squares  F-statistic   Larger F
     1           1      3168.3       14.767     0.0003
     2           2       266.5        0.621     0.5411
     3           2      1178.1        2.746     0.0732

                * * * Inference on Coefficients * * *
                      Standard                 Prob. of    Variance
Coef.    Estimate       Error  t-statistic  Larger |t|   Inflation
    1       87.87       1.891        46.47      0.0000       1.000
    2        7.27       1.891         3.84      0.0003         NaN
    3       -7.27       1.891        -3.84      0.0003       1.000
    4        1.73       2.674         0.65      0.5196         NaN
    5       -2.97       2.674        -1.11      0.2722       1.333
    6        1.23       2.674         0.46      0.6465       1.333
    7        3.13       2.674         1.17      0.2465         NaN
    8       -6.27       2.674        -2.34      0.0228         NaN
    9        3.13       2.674         1.17      0.2465         NaN
   10       -3.13       2.674        -1.17      0.2465         NaN
   11        6.27       2.674         2.34      0.0228       1.333
   12       -3.13       2.674        -1.17      0.2465       1.333

      * * * Variance-Covariance Matrix for the Coefficient Estimates * * *
               1             2             3             4             5
 1       3.57593       0.00000       0.00000       0.00000       0.00000
 2                     3.57593      -3.57593       0.00000       0.00000
 3                                   3.57593       0.00000       0.00000
 4                                                 7.15185      -3.57592
 5                                                               7.15185

               6             7             8             9            10
 1       0.00000       0.00000       0.00000       0.00000       0.00000
 2       0.00000       0.00000       0.00000       0.00000       0.00000
 3       0.00000       0.00000       0.00000       0.00000       0.00000
 4      -3.57593       0.00000       0.00000       0.00000       0.00000
 5      -3.57593       0.00000       0.00000       0.00000       0.00000
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 6       7.15185       0.00000       0.00000       0.00000       0.00000
 7                     7.15185      -3.57592      -3.57593      -7.15185
 8                                   7.15185      -3.57593       3.57592
 9                                                 7.15185       3.57593
10                                                               7.15185
              11            12
 1       0.00000       0.00000
 2       0.00000       0.00000
 3       0.00000       0.00000
 4       0.00000       0.00000
 5       0.00000       0.00000
 6       0.00000       0.00000
 7       3.57592       3.57593
 8      -7.15185       3.57593
 9       3.57593      -7.15185
10      -3.57592      -3.57593
11       7.15185      -3.57593
12                     7.15185
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RCOVB

Computes the estimated variance-covariance matrix of the estimated regression coefficients given the R 
matrix.

Required Arguments
R — NCOEF by NCOEF upper triangular matrix containing the R matrix.  (Input) 

The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors 
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the 
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row 
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality 
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding 
diagonal element that is negative. The remaining rows of R must have positive diagonal elements. 
Only the upper triangle of R is referenced.

S2 — s2, the estimated variance of the error in the regression model.  (Input) 
s2 is the error mean square from the regression fit.

COVB — NCOEF by NCOEF matrix that is the estimated variance-covariance matrix of the estimated regres-
sion coefficients when R is nonsingular and is from an unrestricted regression fit.  (Output) 
See Comments for an explanation of COVB when R is singular or R is from a restricted regression fit. If 
R is not needed, COVB and R can share the same storage locations.

Optional Arguments
NCOEF — Number of regression coefficients in the model.  (Input)

Default: NCOEF = size (R,1).
LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDR = size (R,1).

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOVB = size (COVB,1).

FORTRAN 90 Interface
Generic: CALL RCOVB (R, S2, COVB [, …])
Specific: The specific interface names are S_RCOVB and D_RCOVB.

FORTRAN 77 Interface
Single: CALL RCOVB (NCOEF, R, LDR, S2, COVB, LDCOVB)
Double: The double precision name is DRCOVB.
RCOVB         Chapter 2: Regression      178



Description

Routine RCOVB computes an estimated variance-covariance matrix of estimated regression parameters from 
the R matrix in several models. In the simplest situation, the model is a general linear model given by 
y = X β + ɛ where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector of 
regression coefficients, and ɛ is the n × 1 vector of errors whose elements are each independently distributed 

with mean 0 and variance σ2. Routine RGIVN can be used to get the fit of the model and the R matrix.

If the i-th element of ɛ has variance σ2/wi and the weights wi are used in the fit of the model, RCOVB produces 
the estimated variance-covariance matrix from the R matrix in the weighted least squares fit. More generally, 

if the variance-covariance matrix of ɛ is σ2V, RCOVB can be used to produce the estimated variance-covari-
ance matrix from the generalized least-squares fit. (Routine RGIVN can be used to perform a generalized 

least-squares fit, by regressing y* on X* where y* = (T−1)Ty, X* = (T−1)TX and T satisfies TTT = V.)

If the general linear model has the restriction H β = g on the regression parameters and this restriction is used 
in the fit of the model by routine RLEQU, RCOVB produces the estimated variance-covariance from the R 
matrix in the restricted least squares fit.

Routine RCOVB computes an estimated variance-covariance matrix for the estimated regression coefficients,

in a fitted multivariate general linear model. The model is Y = XB + E where Y is the n × q matrix of 
responses, X is the n × p matrix of regressors, B is the p × q matrix of regression coefficients, and E is the 
n × q matrix of errors whose rows are each independently distributed as a q-dimensional multivariate nor-
mal each with mean vector 0 and variance-covariance matrix Σ. Let

The estimated covariance matrix 

Here, sij (input in S2) is the estimate of the ij-th element of Σ.

If a nonlinear regression model is fit using routine RNLIN, RCOVB produces the asymptotic estimated vari-
ance-covariance matrix from the R matrix in that fit.

If R is singular, corresponding to rank(R) < p, a generalized inverse is used to compute COVB. For a matrix G 
to be a gi(i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy conditions j(for j ≤ i) for the Moore-Penrose 
inverse but, generally, must fail conditions k (for k > i). The four conditions for G to be a Moore-Penrose 
inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric
4. GA is symmetric
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In the case that R is singular, the method for obtaining COVB follows the discussion of Maindonald (1984, 
pages 101-103). Let Z be the diagonal matrix with diagonal elements defined by 

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G to zero. COVB is set to s2GGT. 
(G is a g3 inverse of R. For any g3 inverse of R, represented by

the result

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti [1988].)

Note that COVB can only be used to get variances and covariances of estimable functions of the regression 
coefficients, i.e., nonestimable functions (linear combinations of the regression coefficients not in the space 
spanned by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages 166-168) for 
a discussion of estimable functions.

The preceding discussion can be modified to include the restricted least-squares problem. The modification 
is based on the work of Stirling (1981). Let the matrix D = diag(d1, d2, …, dp) be a diagonal matrix with ele-
ments dii = 0 if the i-th row of R corresponds to a restriction and 1 otherwise. In the unrestricted case, D is 

simply the p × p identity matrix. The formula for COVB is s2GDGT.

Comments
When R is nonsingular and comes from an unrestricted regression fit, COVB is the estimated variance-
covariance matrix of the estimated regression coefficients, and COVB = s2(RTR)−1. Otherwise, variances 
and covariances of estimable functions of the regression coefficients can be obtained using COVB, and 
COVB = s2GDGT. Here, D is the diagonal matrix with diagonal elements equal to 0 if the corresponding 
rows of R are restrictions and with diagonal elements equal to one otherwise. Also, G is a particular 
generalized inverse of R. See the Description section.

Examples

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629-630). This data set is put into 
the matrix X by routine GDATA (see Chapter 19, “Utilities”). There are 4 independent variables and 1 depen-
dent variable. Routine RGIVN is invoked to fit the regression model, and RCOVB is invoked to compute 
summary statistics.

      USE RCOVB_INT
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      USE GDATA_INT 
      USE RGIVN_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDX, NCOEF, &
                 NDEP, NDX, NIND
      PARAMETER  (INTCEP=1, LDX=13, NDEP=1, NDX=5, NIND=4, &
                 LDSCPE=NDEP, NCOEF=INTCEP+NIND, LDB=NCOEF, &
                 LDCOEF=NCOEF, LDCOVB=NCOEF, LDR=NCOEF)
!
      INTEGER    IDEP, IDO, IFRQ, IIND, INDDEP(1), INDIND(1), IRANK, &
                 ICEN, IWT, NCOL, NRMISS, NROW
      REAL       B(LDB,NDEP), COVB(LDCOVB,5), DFE, R(LDR,NCOEF), &
                 S2, SCPE(LDSCPE,NDEP), X(LDX,NDX)
      CHARACTER  CLABEL(6)*10, RLABEL(5)*10
!
      DATA RLABEL/'Intercept', 'X1', 'X2', 'X3', 'X4'/
      DATA CLABEL/' ', 'Intercept', 'X1', 'X2', 'X3', 'X4'/
!
      CALL GDATA (5, X, NROW, NCOL)
      IIND = -NIND
      IDEP = -NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, &
                  SCPE=SCPE)
      S2 = SCPE(1,1)/DFE
!
      CALL RCOVB (R, S2, COVB)
      CALL WRRRL ('COVB', COVB, RLABEL, CLABEL, FMT='(2W10.4)')
!
      END

Output

                                  COVB
            Intercept          X1          X2          X3          X4
Intercept      4910.0      -50.51      -50.60      -51.66      -49.60
X1              -50.5        0.55        0.51        0.55        0.51
X2              -50.6        0.51        0.52        0.53        0.51
X3              -51.7        0.55        0.53        0.57        0.52
X4              -49.6        0.51        0.51        0.52        0.50

Example 2

In this example, routine RNLIN is first invoked to fit the following nonlinear regression model discussed by 
Neter, Wasserman, and Kutner (1983, pages 475-478):
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Then, RCOVB is used to compute the estimated asymptotic variance-covariance matrix of the estimated non-
linear regression parameters. Finally, the diagonal elements of the output matrix from RCOVB are used 
together with routine TIN (see Chapter 17, "Probability Distribution Functions and Inverses") to compute 95% 
confidence intervals on the regression parameters.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDR, NOBS, NPARM
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
!
      INTEGER    I, IDERIV, IRANK, ISETNG, NOUT
      REAL       A, DFE, R(LDR,NPARM), SQRT, SSE, THETA(NPARM)
      INTRINSIC  SQRT
      EXTERNAL   EXAMPL
!
      DATA THETA/60.0, -0.03/
!
      CALL UMACH (2, NOUT)
!
      IDERIV = 1
      CALL RNLIN (EXAMPL, THETA, IDERIV=IDERIV, R=R, DFE=DFE, SSE=SSE)
!
      CALL RCOVB (R, SSE/DFE, R)
!                                 Print
      ISETNG=2
      CALL WROPT (-6, ISETNG, 0)
      CALL WRRRN ('Estimated Asymptotic Variance-Covariance Matrix', &
                  R)
!                                 Compute and print 95 percent
!                                 confidence intervals.
      WRITE (NOUT,*)
      WRITE (NOUT,*) '        95% Confidence Intervals     '
      WRITE (NOUT,*) '   Estimate  Lower Limit  Upper Limit'
      DO 10  I=1, NPARM
         A = TIN(0.975,DFE)*SQRT(R(I,I))
         WRITE (NOUT,'(1X, F10.3, 2F13.3)') THETA(I), THETA(I) - A, &
                                    THETA(I) + A
   10 CONTINUE
      END
!
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, &
                         IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(NPARM)
!
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
!
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
!

RCOVB         Chapter 2: Regression      182



      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0, &
           13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, &
           38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
!
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         IF (IOPT .EQ. 0) THEN
            E = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
         ELSE
            DE(1) = -EXP(THETA(2)*XDATA(IOBS))
            DE(2) = -THETA(1)*XDATA(IOBS)*EXP(THETA(2)*XDATA(IOBS))
         END IF
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output

Estimated Asymptotic Variance-Covariance Matrix
              1             2
1   2.16701E+00  -1.78121E-03
2  -1.78121E-03   2.92786E-06

     95% Confidence Intervals
Estimate  Lower Limit  Upper Limit
58.603       55.423       61.784
-0.040       -0.043       -0.036
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CESTI

Constructs an equivalent completely testable multivariate general linear hypothesis H BU = G from a par-
tially testable hypothesis HpBU = Gp.

Required Arguments
HP — NHP by NCOEF matrix Hp with each row corresponding to a row in the hypothesis and containing 

the constants that specify a linear combination of the regression coefficients.  (Input)
NDEP — Number of dependent (response) variables.  (Input)
NU — U matrix option.  (Input) 

For positive NU, NU is the number of linear combinations of the dependent variables to be considered. 
If NU = 0, the hypothesis is HpB = Gp, and U is automatically taken to be the identity. NU must be less 
than or equal to NDEP .

GP — Matrix Gp containing the null hypothesis values.  (Input) 
If NU = 0, then GP is NHP by NDEP; otherwise, GP is NHP by NU.

R — NCOEF by NCOEF upper triangular matrix containing the R matrix.  (Input) 
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors 
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the 
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row 
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality 
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding 
diagonal element that is negative. The remaining rows of R must have positive diagonal elements. 
Only the upper triangle of R is referenced.

IRANKP — Rank of Hp.  (Output)

NH — Number of rows in the completely testable hypothesis (also, the degrees of freedom for the hypoth-
esis).  (Output) 
The degrees of freedom for the hypothesis (NH) classify the hypothesis Hp BU = Gp as nontestable 
(NH = 0), partially testable (0 < NH < IRANKP), or completely testable (0 < NH = IRANKP).

H — NH by NCOEF matrix H with each row corresponding to a row in the completely testable hypothesis 
and containing the constants that specify an estimable linear combination of the regression coeffi-
cients.  (Output) 
If HP is not needed, H and HP can occupy the same storage locations.

G — Matrix G containing the null hypothesis values for the completely testable hypothesis.  (Output) 
If NU = 0, then G is NH by NDEP, otherwise, G is NH by NU. If GP is not needed, G and GP can occupy the 
same storage locations.

more...
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Optional Arguments
NHP — Number of rows in the hypothesis.  (Input)

Default: NHP = size (HP,1).
NCOEF — Number of regression coefficients in the model.  (Input)

Default: NCOEF = size (HP,2).
LDHP — Leading dimension of HP exactly as specified in the dimension statement of the calling program.  

(Input)
Default: LDHP = size (HP,1).

LDGP — Leading dimension of GP exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDGP = size (GP,1).

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDH = size (H,1).

LDG — Leading dimension of G exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDG = size (G,1).

FORTRAN 90 Interface
Generic: CALL CESTI (HP, NDEP, NU, GP, R, IRANKP, NH, H, G [, …])
Specific: The specific interface names are S_CESTI and D_CESTI.

FORTRAN 77 Interface
Single: CALL CESTI (NHP, NCOEF, HP, LDHP, NDEP, NU, GP, LDGP, R, LDR, IRANKP, NH, H, LDH, G, 

LDG)
Double: The double precision name is DCESTI.

Description

Once a general linear model y = X β + ɛ is fitted, particular hypothesis tests are frequently of interest. If the 
matrix of regressors X is not full rank (as evidenced by the fact that some diagonal elements of the R matrix 
output from the fit are equal to zero), methods that use the results of the fitted model to compute the hypoth-
esis sum of squares (see routine RHPSS) require one to specify in the hypothesis only linear combinations of 

the regression parameters that are estimable. A linear combination of regression parameters cT β is estimable 

means that there exists some vector a such that cT = aTX, i.e., cT is in the space spanned by the rows of X. For 
a further discussion of estimable functions, see Maindonald (1984, pages 166-168) and Searle (1971, pages 
180 - 188). Routine CESTI is only useful in the case of nonfull rank regression models, i.e., when the problem 
of estimability arises.
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Peixoto (1986) noted that the customary definition of testable hypothesis in the context of a general linear 
hypothesis test H β = g is overly restrictive. He extended the notion of a testable hypothesis (a hypothesis 
composed of estimable functions of the regression parameters) to include partially testable and completely 
testable hypotheses. A hypothesis H β = g is partially testable means that the intersection of the row space of H 
(denoted by R(H)) and the row space of X(R(X)) is not essentially empty and is a proper subset of R(H), i.e., 
{0} ⊂ R(H) ∩ R(X) ⊂ R(H). A hypothesis H β = g is completely testable means that {0} ⊂ R(H) ⊆ R(X). Peixoto 
also demonstrated a method for converting a partially testable hypothesis to one that is completely testable 
so that the usual method for obtaining the sum of squares for the hypothesis from the results of the fitted 
model can be used. The method replaces Hp in the partially testable hypothesis Hp β = gp by a matrix H 
whose rows are a basis for the intersection of the row space of Hp and the row space of X. A corresponding 
conversion of the null hypothesis values from gp to g is also made. A sum of squares for the completely test-
able hypothesis can then be computed (see routine RHPSS). The sum of squares that is computed for the 
hypothesis H β = g equals the difference in the error sums of squares from two fitted models the restricted 
model with the partially testable hypothesis Hp β = gp adjoined to the model as linear equality restrictions 
(see routine RLEQU) and the unrestricted model.

Routines RGLM, RGIVN, RLEQU, and RCOV can be used to compute the fit of the general linear model prior to 
invoking CESTI. The R matrix is required for input to CESTI. After converting a partially testable hypothesis 
to a completely testable hypothesis, RHPSS can be invoked to compute the sum of squares for the hypothesis.

For the general case of the Multivariate General Linear Model Y = XB + E with possible linear equality 
restrictions on the regression parameters, CESTI converts the partially testable hypothesis Hp BU = Gp to a 
completely testable hypothesis H BU = G. For the case of the linear model with linear equality restrictions, 
the definitions of estimable functions, nontestable hypotheses, partially testable hypotheses, and completely 
testable hypothesis are similar to those previously given for the unrestricted model with the exception that 
R(X) is replaced by R(R) where R is the upper triangular matrix output from RLEQU. The nonzero rows of R 

form a basis for the rowspace of the matrix (XT, AT)T. The rows of H form an orthonormal basis for the inter-
section of two subspaces: the subspace spanned by the rows of Hp and the subspace spanned by the rows of 
R. The algorithm used by CESTI for computing the intersection of these two subspaces is based on an algo-
rithm for computing angles between linear subspaces due to to Bjorck and Golub (1973). (See also Golub and 
Van Loan 1983, pages 429-430). The method is closely related to a canonical correlation analysis discussed by 
Kennedy and Gentle (1980, 56-565). The algorithm is as follows:

1. Compute a QR factorization of 

with column permutations so that

Here, P1 is the associated permutation matrix that is also an orthogonal matrix. Determine the rank of 
Hp as the number of nonzero diagonal elements of R1, say n1. Partition Q1 = (Q11, Q12) so that Q11is the 
first n1columns of Q1. Set IRANKP = n1.

2. Compute a QR factorization of the transpose of the R matrix input to CESTI with column permuta-
tions so that
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Determine the rank of R from the number of nonzero diagonal elements of R, say n2. Partition 
Q2 = (Q21, Q22) so that Q21 is the first n2 columns of Q2.

3. Form

4. Compute the singular values of A

and the left singular vectors W of the singular value decomposition of A so that

If σ1 < 1, then the dimension of the intersection of the two subspaces is s = 0. Otherwise, take the 
dimension of the intersection to be s if σs = 1 > σs+1. Set NH = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Take R11 to be a NHP by NHP matrix related to R1 as follows. If NHP ≤ NCOEF, R11 equals the first NHP 
rows of R1. Otherwise, R11 contains R1 in its first NCOEF rows and zeros in the remaining rows. Com-
pute a solution Z to the linear system

using routine GIRTS (IMSL MATH/LIBRARY). If this linear system is declared inconsistent, an error 
message with error code equal to 2 is issued.

7. Partition

so that Z1 is the first n1 rows of Z. Set 

The degrees of freedom (NH) classify the hypothesis Hp BU = Gp as nontestable (NH = 0), partially test-
able (0 < NH < IRANKP), or completely testable (0 < NH = IRANKP).
For further details concerning the algorithm, see Sallas and Lionti (1988).

Comments
1. Workspace may be explicitly provided, if desired, by use of C2STI/DC2STI. The reference is:

CALL C2STI (NCOEF, NHP, HP, LDHP, NDEP, NU, GP, LDGP, R, LDR, IRANKP, NH, H, LDH, G, LDG, 
IWK, WK)
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The additional arguments are as follows:

IWK — Work vector of length max{NHP, NCOEF}.

WK — Work vector of length NCOEF * m + NCOEF2 + NHP2 
+ n * r + n2 + m + max{2 * m, n + r + max(n, r) - 1}.

2. Informational errors

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to some data. The model is

yij= μ + α i + ɛ ij      (i, j) = (1, 1), (2, 1), (2, 2)

The model is fitted using routine RGLM. Next, the partially testable hypothesis

is converted to a completely testable hypothesis using CESTI. Sum of squares associated with the hypothesis 
are computed using routine RHPSS. Finally, the F statistic is computed along with the associated p-value 
using routine FDF (see Chapter 17, "Probability Distribution Functions and Inverses").

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDB, LDG, LDGP, LDH, LDHP, LDR, LDSCPE, LDSCPH, &
                 LDX, LINDEF, MAXB, NCOL, NDEP, NEF,NHP, NROW, MAXCL, &
                 NCLVAR, J, NU
      PARAMETER  (LINDEF=1, MAXB=3, MAXCL=2, NCLVAR=1, NCOL=2, &
                 NDEP=1, NEF=1, NHP=2, NROW=3, LDB=MAXB, LDG=NHP, &
                 LDGP=NHP, LDH=NHP, LDHP=NHP, LDR=MAXB, LDSCPE=NDEP, &
                 LDSCPH=NDEP, LDX=NROW)
!
      INTEGER    INDCL(NCLVAR), INDDEP(NDEP),INDEF(LINDEF), INTCEP, &
      IRANK, IRANKP, IRBEF(NEF+1),NCOEF, NH, NOUT, NVEF(NEF)
      REAL      B(LDB,NDEP), DFE, DFH, F, G(LDG,NDEP), GP(LDGP,NDEP),&
                   H(LDH,MAXB), HP(LDHP,MAXB), PVALUE, R(LDR,MAXB), &
                   SCPE(LDSCPE,NDEP), SCPH(LDSCPH,NDEP),X(LDX,NCOL)
!
      DATA X/1.0, 2.0, 2.0, 17.3, 24.1, 26.3/
      DATA INDCL/1/, NVEF/1/, INDEF/1/, INDDEP/2/
      DATA (HP(1,J),J=1,MAXB)/0.0, 1.0, 0.0/
      DATA (HP(2,J),J=1,MAXB)/0.0, 0.0, 1.0/
      DATA GP/5.0, 3.0/
!
      CALL RGLM (X, INDCL, NVEF, INDEF, NDEP, INDDEP, MAXCL, B, &

Type Code Description

4 1 There is inadequate space to store the completely testable hypothesis. 
Increase LDH or LDG so that it is greater than or equal to NH.

3 2 The hypothesis Hp BU = Gp is inconsistent.
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      IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)
      NCOEF = IRBEF(NEF+1) - 1
!
      NU = 0
      CALL CESTI (HP, NDEP, NU, GP, R, IRANKP, NH, H, G, NCOEF=NCOEF)
!
      CALL UMACH (2, NOUT)
      IF (NH .EQ. 0) THEN
         WRITE (NOUT,*) 'Nontestable hypothesis'
      ELSE IF (NH .LT. IRANKP) THEN
         WRITE (NOUT,*) 'Partially testable hypothesis'
      ELSE
         WRITE (NOUT,*) 'Completely testable hypothesis'
      END IF
      CALL WRRRN ('H', H, NH, NCOEF, LDH)
      CALL WRRRN ('G', G, NH, NDEP, LDG)
      CALL RHPSS (H, B, G, R, SCPH, DFH=DFH)
!
      F      = (SCPH(1,1)/DFH)/(SCPE(1,1)/DFE)
      PVALUE = 1.0 - FDF(F,DFH,DFE)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Degrees of    Sum of                 Prob. of'
      WRITE (NOUT,*) '   Freedom   Squares   F-statistic   Larger F'
      WRITE (NOUT,99999) DFH, SCPH(1,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)
      END

Output

Partially testable hypothesis

           H
     1        2        3
0.0000   0.7071  -0.7071

  G
1.414

Degrees of    Sum of                 Prob. of
   Freedom   Squares   F-statistic   Larger F
     1.0       65.340     27.000      0.1210
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RHPSS

Computes the matrix of sums of squares and crossproducts for the multivariate general linear hypothesis 
H BU = G given the coefficient estimates

and the R matrix.

Required Arguments
H — NH by NCOEF matrix H with each row corresponding to a row in the hypothesis and containing the 

constants that specify an estimable linear combination of the regression coefficients.  (Input)
B — NCOEF by NDEP matrix

containing a least-squares solution for the regression coefficients.  (Input)
G — Matrix containing the null hypothesis values.  (Input)

If NU = 0, then G is NH by NDEP; otherwise, G is NH by NU.
R — NCOEF by NCOEF upper triangular matrix containing the R matrix.  (Input) 

The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors 
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the 
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row 
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality 
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding 
diagonal element that is negative. The remaining rows of R must have positive diagonal elements. 
Only the upper triangle of R is referenced.

SCPH — Matrix containing sums of squares and crossproducts attributable to the hypothesis.  (Output) 
If NU = 0, SCPH is a NDEP by NDEP matrix, otherwise, SCPH is a NU by NU matrix.

Optional Arguments
NH — Number of rows in the hypothesis.  (Input)

Default: NH = size (H,1).
NCOEF — Number of regression coefficients in the model.  (Input)

Default: NCOEF = size (H,2).

more...
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LDH — Leading dimension of H exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDH = size (H,1).

NDEP — Number of dependent (response) variables.  (Input)
Default: NDEP = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

NU — U matrix option.  (Input) 
For positive NU, NU is the number of linear combinations of the dependent variables to be considered. 
If NU = 0, the hypothesis is HB = G, i.e., U is automatically taken to be the identity. NU must be less than 
or equal to NDEP.
Default: NU = 0.

U — NDEP by NU matrix U in test H BU = G.  (Input, if NU is positive) 
If NU = 0, U is not referenced and can be a 1 x 1 array.
Default: U is a 1x 1 array. 

LDU — Leading dimension of U exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDU = size (U, 1,).

LDG — Leading dimension of G exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDG = size (G,1).

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

DFH — Degrees of freedom for SCPH.  (Output) 
DFH equals the rank of H.

LDSCPH — Leading dimension of SCPH exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSCPH = size (SCPH,1).

FORTRAN 90 Interface
Generic: CALL RHPSS (H, B, G, R, SCPH [, …])
Specific: The specific interface names are S_RHPSS and D_RHPSS.

FORTRAN 77 Interface
Single: CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG, R, LDR, DFH, SCPH, 

LDSCPH)
Double: The double precision name is DRHPSS.
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Description

Routine RHPSS computes the matrix of sums of squares and crossproducts for the general linear hypothesis 
H BU = G for the multivariate general linear model Y = XB + E with possible linear equality restrictions 
AB = Z. (See the chapter introduction for a description of the Multivariate General Linear Model.) Routines 
RGLM, RGIVN, RLEQU, and RCOV can be used to compute the fit of the general linear model prior to invoking 

RHPSS. The R matrix and  from any of those routines are required for input to RHPSS. 

The rows of H must be linear combinations of the rows of R, i.e., HB = G must be completely testable. If the 
hypothesis is not completely testable, Routine CESTI can be used to construct an equivalent completely test-
able hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980, page 317) that is extended 
by Sallas and Lionti (1988) for multivariate nonfull rank models with possible linear equality restrictions. The 
algorithm is as follows:

1. Form

2. Find C as the solution of RTC = HT using routine GIRTS (IMSL MATH/LIBRARY). If the equations are 
declared inconsistent within a computed tolerance, an error message with code 1 is issued that the 
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative diagonal elements from a 
restricted least-squares fit using RLEQU, zero out the corresponding rows of C, i.e., form DC.

4. Decompose DC using Householder transformations and column pivoting to yield a square, upper tri-
angular matrix T with diagonal elements of nonincreasing magnitude and permutation matrix P such 
that 

where Q is an orthogonal matrix.
5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of T is r if

where ɛ = 10.0 * AMACH(4). Then, zero out all rows of T below row r. Set the degrees of freedom for 
the hypothesis, output in DFH, to r.

6. Find V as a solution to T TV = PTW using routine GIRTS. If the equations are inconsistent, an error 
message with code 2 is issued that the hypothesis is inconsistent within a computed tolerance, i.e., the 
linear system

H BU = G

AB = Z
does not have a solution for B.

7. Form VTV, which is the required matrix of sum of squares and crossproducts output in SCPH.
RHPSS         Chapter 2: Regression      192



In general, the two errors with code 1 and 2 are serious user errors that require the user to correct the 
hypothesis before any meaningful sums of squares from this routine can be computed. However, in 
some cases, the user may know the hypothesis is consistent and completely testable, but the checks in 
RHPSS are too tight. For this reason, RHPSS continues with the computations.
Routine RHPSS gives a matrix of sums of squares and crossproducts that could also be obtained from 
separate fittings of the two models

and

where Y* = YU, B* = BU, E* = EU, and Z* = ZU. The error sum of squares and crossproduct matrix for (1) 
minus that for (2) is the matrix of sum of squares and crossproducts output in SCPH. Note that this 
approach avoids entirely the question of testability.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2PSS/DR2PSS. The reference is:

CALL R2PSS (NCOEF, NH, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG, R, LDR, DFH, SCPH, LDSCPH, 
IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length NH.

WK — Work vector of length 
NH * (NDEP + NCOEF + max(NCOEF, NH) + 3) + NU * NDEP - 1.

2. Informational errors

3.

where (CTDC)− is a generalized inverse of CTDC, C is a solution to RTC = HT, and D is a diagonal 
matrix with

Y* = XB* + E*

AB* = Z* (1)

HB* = G

Y* = XB* + E*

AB* = Z* (2)

Type Code Description

3 1 The hypothesis is not completely testable. Each row of H must be in the 
space spanned by the rows of R.

3 2 The hypothesis is inconsistent. The linear system HB U = G combined with 
any restrictions from a regression fit with linear equality restrictions must 
have a solution for B.
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Examples

Example 1

A two-way analysis-of-variance model is fitted to balanced data discussed by Snedecor and Cochran (1967, 
Table 12.5.1, page 347). The responses are the weight gains (in grams) of rats fed diets varying in two compo-
nents-level of protein and source of protein. The model is

yijk = μ + α i + βj + γij + ɛ ijk      i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where

The model is fitted using routine RGLM. Next, the sum of squares for interaction

is computed using RHPSS. Finally, the F statistic is computed along with the associated p-value using routine 
FDF (see Chapter 17, "Probability Distribution Functions and Inverses").

      USE RHPSS_INT
      USE RGLM_INT
      USE UMACH_INT
      USE FDF_INT

      IMPLICIT   NONE
      INTEGER    LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX, LINDEF, &
                 MAXB, NCOL, NDEP, NEF, NH, NROW, MAXCL, NCLVAR, J
      PARAMETER  (NDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2, NCOL=3, &
                  NEF=3, NH=2, NROW=60, LDB=MAXB, LDG=NH, LDH=NH, &
                  LDR=MAXB, LDSCPE=NDEP, LDSCPH=NDEP, LDX=NROW)
!
      INTEGER   INDCL(NCLVAR), INDDEP(NDEP), INDEF(LINDEF), INTCEP,&
                 IRANK, IRBEF(NEF+1), NCOEF, NOUT, NVEF(NEF)
      REAL       B(LDB,NDEP), DFE, DFH, F, G(LDG,NDEP), H(LDH,MAXB), & 
                 PVALUE, R(LDR,MAXB), SCPE(LDSCPE,NDEP), &
                 SCPH(LDSCPH,NDEP),X(LDX,NCOL), XMAX(MAXB), &
                 XMIN(MAXB)
!
      DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, &
           117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, &
           77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0, &
           108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0, &
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           51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0, &
           98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0, &
           81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0, &
          10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
      DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/
      DATA (H(1,J),J=1,MAXB)/6*0.0, 1.0, -1.0, 0.0, -1.0, 1.0, 0.0/
      DATA (H(2,J),J=1,MAXB)/6*0.0, 1.0, 0.0, -1.0, -1.0, 0.0, 1.0/
      DATA G/2*0.0/
!
      CALL RGLM (X, INDCL, NVEF, INDEF, NDEP, INDDEP, MAXCL, B, &
                 IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)
!
      NCOEF = IRBEF(NEF+1) - 1
      CALL RHPSS (H, B, G, R, SCPH, DFH=DFH)
!
      F      = (SCPH(1,1)/DFH)/(SCPE(1,1)/DFE)
      PVALUE = 1.0 - FDF(F,DFH,DFE)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'Degrees of    Sum of                 Prob. of'
      WRITE (NOUT,*) '   Freedom   Squares   F-statistic   Larger F'
      WRITE (NOUT,99999) DFH, SCPH(1,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)
      END

Output

Degrees of    Sum of                 Prob. of
   Freedom   Squares   F-statistic   Larger F
     2.0     1178.135      2.746      0.0732

Example 2

The data for the second example are taken from Maindonald (1984, pages 203-204). The data are saved in the 
matrix X. A multivariate regression model containing two dependent variables and three independent vari-
ables is fit using routine RGIVN. The sum of squares and crossproducts matrix is computed for the third 
independent variable in the model.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDX, &
                 NCOEF, NCOL, NDEP, NH, NIND, NROW, J, LDU
      PARAMETER  (INTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NIND=3, &
                 NROW=9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP, &
                 LDX=NROW, NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
!
      INTEGER    IDEP, IIND, INDDEP(1), INDIND(1),&
                 NOUT, NRMISS
      REAL       B(LDB,NDEP), D(NCOEF), DFE, DFH, G(LDG,NDEP), &
                 H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
                 SCPH(LDSCPH,NDEP), X(LDX,NCOL)
!
      DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
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      DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
      DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
      DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
      DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
      DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
      DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
      DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
      DATA H/3*0.0, 1.0/, G/0.0, 0.0/
!
      IIND = -NIND
      IDEP = -NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R)
      CALL RHPSS (H, B, G, R, SCPH, DFH=DFH)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'DFH = ', DFH
      CALL WRRRN ('SCPH', SCPH)
      END

Output

DFH =     1.00000

     SCPH
        1       2
1   100.0   -40.0
2   -40.0    16.0
RHPSS         Chapter 2: Regression      196



RHPTE

Performs tests for a multivariate general linear hypothesis H BU = G given the hypothesis sums of squares 
and crossproducts matrix SH and the error sums of squares and crossproducts matrix SE.

Required Arguments
DFE — Degrees of freedom for error matrix SCPE.  (Input)
SCPE — NDEP by NDEP matrix SE containing sums of squares and crossproducts for error.  (Input)

DFH — Degrees of freedom for hypothesis matrix SH.  (Input)

SCPH — Matrix SH containing sums of squares and crossproducts attributable to the hypothesis.  (Input) 
If NU = 0, SH is a NDEP by NDEP matrix; otherwise, SH is a NU by NU matrix.

TEST — Vector of length 8 containing test statistics and p-values for the hypothesis 
H BU = G.  (Output) 

Optional Arguments
NDEP — Number of dependent variables.  (Input)

Default: NDEP = size (SCPE,2).
LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDSCPE = size (SCPE,1).

NU — U matrix option.  (Input) 
For positive NU, NU is the number of linear combinations of the dependent variables to be considered. 
If NU = 0, the hypothesis is HB = G, i.e., U is automatically taken to be the identity.
Default: NU = 0.

U — NDEP by NU matrix used to test H BU = G.  (Input, if NU is positive) 
The rank of the matrix U must equal the number of columns. If NU = 0, U is not referenced and can be 
a 1 × 1 array.
Default: U is a 1 × 1 array.

more...

Elem Description

1, 5 Wilks’ lambda and p-value

2, 6 Roy’s maximum root criterion and p-value

3, 7 Hotelling’s trace and p-value

4, 8 Pillai’s trace and p-value
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LDU — Leading dimension of U exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDU = size(U, 1).

LDSCPH — Leading dimension of SCPH exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSCPH = size (SCPH,1).

FORTRAN 90 Interface
Generic: CALL RHPTE (DFE, SCPE, DFH, SCPH, TEST [, …])
Specific: The specific interface names are S_RHPTE and D_RHPTE.

FORTRAN 77 Interface
Single: CALL RHPTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH, LDSCPH, TEST)
Double: The double precision name is DRHPTE.

Description

Routine RHPTE computes test statistics and p-values for the general linear hypothesis H BU = G for the multi-
variate general linear model. See the section “Multivariate General Linear Model” in the chapter 
introduction. 

Routines RGLM, RGIVN, RLEQU, and RCOV can be used to compute the fit of the general linear model prior to 
invoking RHPTE. The error sum of squares and crossproducts matrix (SCPE) is required for input to RHPTE. 
In addition, the hypothesis sum of squares and crossproducts matrix (SCPH), which can be computed using 
routine RHPSS, is required for input to RHPTE. 

The hypothesis sum of squares and crossproducts matrix input in SCPH is

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal elements 

See the section “Linear Dependence and the R Matrix” in the chapter introduction. 

The error sum of squares and crossproducts matrix for the model Y = XB + E is

which is input in SCPE. The error sum of squares and crossproducts matrix for the hypothesis H BU = G com-
puted by RHPTE is
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Let p equal the order of the matrices SE and SH, i.e.,

Let q (stored in DFH) be the degrees of freedom for the hypothesis. Let v (stored in DFE) be the degrees of free-
dom for error. Routine RHTPE computes three test statistics based on eigenvalues λi (i = 1, 2, …, p) of the 
generalized eigenvalue problem SHx = λSEx. These test statistics are as follows:

Wilks’ lambda

Λ is output in TEST(1). The p-value output in TEST(5) is based on an approximation discussed by Rao (1973, 
page 556). The statistic

has an approximate F distribution with pq and ms - pq/2 + 1 numerator and denominator degrees of free-
dom, respectively, where 

and 

m = v - (p - q + 1)/2

The F test is exact if min(p, q) ≤ 2 (Kshirsagar 1972, Theorem 4, pages 299-300).

Roy’s maximum root

c is output in TEST(2). The p-value output in TEST(6) is based on the approximation
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where s = max(p, q) has an approximate F distribution with s and v + q - s numerator and denominator 
degrees of freedom, respectively. The F test is exact if s = 1, and then the p-value output in TEST(7) is exact. In 
general, the value output in TEST(7) is a lower bound on the actual p-value.

Hotelling’s trace

U is output in TEST(3). The p-value output in TEST(7) is based on the approximation of McKeon (1974) that 
supersedes the approximation of Hughes and Saw (1972). McKeon’s approximation is also discussed by 
Seber (1984, page 39). For

the p-value output in TEST(7) is based on the result that

has an approximate F distribution with pq and b degrees of freedom. The test is exact if min(p, q) = 1. For 
v ≤ p + 1, the approximation is not valid, and TEST(7) is set to NaN (not a number).

These three test statistics are valid when SE is positive definite. A necessary condition for SE to be positive 
definite is v ≥ p. If SE is not positive definite, a warning error message with error code 1 is issued, and the 
entries in TEST corresponding to the computed test statistics and p-values are set to NaN (not a number).

Because the requirement v ≥ p can be a serious drawback, RHTPE computes a fourth test statistic based on 
eigenvalues θi(i = 1, 2, …, p) of the generalized eigenvalue problem SHw = θ (SH + SE)w. This test statistic 
requires a less restrictive assumption—SH + SE is positive definite. A necessary condition for SH + SE to be 
positive definite is v + q ≥ p. If SE is positive definite, RHPTE avoids the computation of this generalized 
eigenvalue problem from scratch. In this case, the eigenvalues θ i are obtained from λi by

The fourth test statistic is as follows:
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Pillai’s trace

V is output in TEST(4). The p-value output in TEST(8) is based on an approximation discussed by Pillai 
(1985). The statistic

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and denominator degrees of 
freedom, respectively, where

The F test is exact if min(p, q) = 1.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2PTE/DR2PTE. The reference is:

CALL R2PTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH, LDSCPH, TEST, WK)
The additional argument is:

WK — Work vector of length 2 * p2 + 2 * p + NDEP + 2 * NU2

2. Informational errors 

Example

The data for the example are taken from Maindonald (1984, pages 203-204). The data are stored in the matrix 
X. A multivariate regression model containing two dependent variables and three independent variables is 
fit using routine RGIVN. The sum of squares and crossproducts matrix is computed for the third independent 
variable in the model using RHPSS. Routine RHPTE is used to test whether the third independent variable 
should be included in the regression.

Type Code Description

3 1 UTSEU is singular. Only the Pillai trace statistic can be computed. Other sta-
tistics are set to NaN.

4 2 UTSEU + SH is singular. No tests can be computed.

4 3 Iterations for eigenvalues for the generalized eigenvalue problem 
SHx = λ(SH + UTSEU)x failed to converge. Statistics cannot be computed.
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      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX, &
                 NCOEF, NCOL, NDEP, NH, NIND, NROW, J, INTCEP, IIND
      PARAMETER  (INTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NIND=3, &
                 NROW=9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP, &
                 LDX=NROW, NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
!
      INTEGER    IDEP, IND, INDDEP(1), INDIND(1)
      REAL       B(LDB,NDEP), DFE, DFH, G(LDG,NDEP), &
                 H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
                 SCPH(LDSCPH,NDEP), TEST(8), X(LDX,NCOL)
      CHARACTER  CLABEL(3)*14, RLABEL(4)*9
!
      DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
      DATA (X(2,J),J=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
      DATA (X(3,J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
      DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
      DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
      DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
      DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
      DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
      DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
      DATA H/3*0.0, 1.0/, G/0.0, 0.0/
      DATA RLABEL/'Wilks', 'Roy', 'Hotelling', 'Pillai'/
      DATA CLABEL/' ', 'Test statistic', 'p-value'/
!
      IIND = -NIND
      IDEP = -NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)
      CALL RHPSS (H, B, G, R, SCPH, DFH=DFH)
      CALL RHPTE (DFE, SCPE, DFH, SCPH, TEST)
      CALL WRRRL (' ', TEST, RLABEL, CLABEL, 4, 2, 4, FMT= '(F14.3, F9.6)')
      END

Output

           Test statistic    p-value
Wilks               0.003   0.000010
Roy               316.601   0.000010
Hotelling         316.601   0.000010
Pillai              0.997   0.000010
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RLOFE

Computes a lack of fit test based on exact replicates for a fitted regression model.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IREP — Variable option.  (Input) 

INDREP — Index vector of length IREP containing the column numbers of X that are the variables used to 
determine replication.  (Input, if IREP is positive)  If IREP is less than or equal to 0, INDREP is not ref-
erenced and can be a vector of length one.

IRSP — Column number IRSP of X contains data for the response (dependent) variable.  (Input)
DFE — Degrees of freedom for error from the fitted regression.  (Input)
SSE — Sum of squares for error from the fitted regression.  (Input)
IGROUP — Vector of length NOBS specifying group numbers.  (Output, if IREP is nonzero; input, if 

IREP = 0) 
On output, IGROUP(I) = J means row I of X is in the J-th group of replicates (J = 0, 1, 2, …, NGROUP). 
Here, J = 0 indicates the group of observations not used in the analysis because NaN (not a number) 
was input for one of more of the values of the response, replication, frequency, or weight variables. On 
input, IGROUP(I) = IGROUP(K), K ≠ I, indicates that row I and row K of X are in the same group. 
IGROUP(I) must equal 0 if row I of X has NaN as one or more of the values of the response, replica-
tion, frequency, or weight variables.

NGROUP — Number of groups in the lack of fit test.  (Output)
TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model.  (Output) 

IREP Meaning

< 0 The first -IREP columns of X contain the variables used to determine exact replicates.

> 0 The IREP variables used to determine exact replicates are specified by the column 
numbers in INDREP.

0 The exact replicates are specified in IGROUP.

Elem Description

1 Degrees of freedom for lack of fit

2 Degrees of freedom for pure error

3 Degrees of freedom for error (TESTLF(1)+ TESTLF(2))

4 Sum of squares for lack of fit

5 Sum of squares for pure error

6 Sum of squares for error

7 Mean square for lack of fit

8 Mean square for pure error
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If there are no replicates in the data set, a test for lack of fit cannot be performed. In this case, elements 
8, 9, and 10 of TESTLF are set to NaN (not a number).

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

FORTRAN 90 Interface
Generic: CALL RLOFE (X, IREP, INDREP, IRSP, DFE, SSE, IGROUP, NGROUP, TESTLF [, …])
Specific: The specific interface names are S_RLOFE and D_RLOFE.

FORTRAN 77 Interface
Single: CALL RLOFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ, IWT, DFE, SSE, IGROUP, 

NGROUP, TESTLF)
Double: The double precision name is DRLOFE.

Description

Routine RLOFE computes a lack of fit test based on exact replicates for a fitted regression model. The data 
need not be sorted prior to invoking RLOFE. The column indices of X for determining exact replicates can be 
input in INDREP. If the groups of exact replicates are known prior to invoking RLOFE, the option IREP = 0 
allows RLOFE to bypass the computation of the groups. This option is particularly useful for computing a 
second lack of fit for a different dependent variable that uses the same columns of X for determining exact 
replicates as the first test.

9 F statistic

10 p-value

Elem Description
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If IREP is nonzero, routine SROWR (see Chapter 19, “Utilities”) is used to compute a permutation vector that 
specifies the sorted X along with the  ni’s, the number of rows of X in each group. If IREP is zero, the permu-
tation vector and the ni’s are computed from IGROUP. 

Let ni be the number of rows of X in the i-th group of replicates (i = 1, 2, …, k). Let yij be the response for the 
j-th row within the i-th group. Let wij and fij be the associated weight and frequency, respectively. The pure 
error (within group) sum of squares is

The associated degrees of freedom are 

The lack of fit sum of squares is SSE - SSPE and the lack of fit degrees of freedom are 
DFE - DFPE. 

The F statistic for the test of the null hypothesis of no lack of fit is

Under the hypothesis of no lack of fit, the computed F has an F distribution with numerator and denomina-
tor degrees of freedom DFE - DFPE and DFPE, respectively. The p-value for the test is computed as the 
probability that a random variable with this distribution is greater than or equal to the computed F statistic.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2OFE/DR2OFE. The reference is:

CALL R2OFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ, IWT, DFE, SSE, IGROUP, NGROUP, 
TESTLF, IWK, WK)

The additional arguments are as follows:

IWK — Work vector. If IREP = 0, the length of IWK is 3 * NOBS; otherwise, the length of IWK is 
∣IREP∣ + m + 2.8854 * ln(m) + 3 * NOBS + 5.

WK — Work vector. If IREP= 0, WK is not referenced and can be a vector of length 1; otherwise, WK 
is of length 2 * m.
RLOFE         Chapter 2: Regression      205



2. Informational errors

Examples

Example 1

This example uses data from Draper and Smith (1981, page 374), which is input in X. A multiple linear regres-
sion of column 6 of X on an intercept and columns 1, 3, and 4 has already been computed. The fit gave a 
residual sum of squares SSE = 163.93 with DFE = 16 degrees of freedom. A test for lack of fit is computed 
using routine RLOFE.

      USE RLOFE_INT
      USE UMACH_INT
      USE WRIRN_INT

      IMPLICIT   NONE
      INTEGER    LDX, NCOL, NOBS, NREP, J
      PARAMETER  (NCOL=6, NOBS=20, NREP=3, LDX=NOBS)
!
      INTEGER    IGROUP(NOBS), INDREP(NREP), IREP, IRSP,  &
                 NGROUP, NOUT
      REAL       DFE, SSE, TESTLF(10), X(LDX,NCOL)
!
      DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/

Type Code Description

3 1 DFE is less than the degrees of freedom for pure error. The degrees of free-
dom for lack of fit is set to zero.

3 2 SSE is less than the sum of squares for pure error. The sum of squares for lack 
of fit is set to zero.

4 3 An invalid weight or frequency is encountered. Weights and frequencies 
must be nonnegative.

4 4 An element in X contains NaN (not a number), but the corresponding ele-
ment in IGROUP is not zero. When IREP = 0, missing values in a row of X are 
indicated by setting the corresponding row of IGROUP to zero.
RLOFE         Chapter 2: Regression      206



      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDREP/1, 3, 4/
!
      IREP = NREP
      IRSP = 6
      DFE  = 16.0
      SSE  = 163.93
      CALL RLOFE (X, IREP, INDREP, IRSP, DFE, SSE, IGROUP, NGROUP, TESTLF)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' NGROUP = ', NGROUP
      CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,99999) '                    Test for Lack of '// &
                        'Fit'
      WRITE (NOUT,99999) '                        Sum of    Mean  '// &
                        '       Prob. of'
      WRITE (NOUT,99999) ' Source of Error   DF  Squares  Square  '// &
                        '    F  Larger F'
      WRITE (NOUT,99999) ' Lack of Fit    ', TESTLF(1), TESTLF(4), &
                        TESTLF(7), TESTLF(9), TESTLF(10)
      WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5), &
                        TESTLF(8)
      WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output

NGROUP =   6

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
6  6  6   4   5   4   5   6   2   4   4   4   6   6   6   4   1   4   4   3

                    Test for Lack of Fit
                        Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      2.0     20.5   10.25   1.001  0.393
Expanded model  14.0    143.4   10.24
Original model  16.0    163.9

Example 2

This example uses the same data as in Example 1. Here, the option IREP = 0 is used because IGROUP is 
known before invoking routine RLOFE. Routine SROWR (see Chapter 19, “Utilities”) is used to compute the 
group numbers contained in IGROUP.

      USE RLOFE_INT
      USE SROWR_INT
      USE UMACH_INT
      USE WRIRN_INT
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      IMPLICIT   NONE
      INTEGER    LDX, NCOL, NKEY, NOBS, J
      PARAMETER  (NCOL=6, NKEY=3, NOBS=20, LDX=NOBS)
!
      INTEGER    I, IGROUP(NOBS), INDKEY(NKEY), &
                 INDREP(1), IPERM(NOBS), IREP, IRET, IRSP, &
                 K, NGROUP, NI(NOBS), NOUT, NRMISS
      REAL       DFE, SSE, TESTLF(10), X(LDX,NCOL)
!
      DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDKEY/1, 3, 4/
!
      IRET  = 1
      CALL SROWR (X, INDKEY, IPERM, NGROUP, NI, IRET=IRET)
      K = 1
      DO 20  I=1, NGROUP
         DO 10  J=1, NI(I)
            IGROUP(IPERM(K)) = I
            K = K + 1
   10    CONTINUE
   20 CONTINUE
      IREP = 0
      IRSP = 6
      DFE  = 16.0
      SSE  = 163.93
      CALL RLOFE (X, IREP, INDREP, IRSP, DFE, SSE, IGROUP, NGROUP, TESTLF)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' NGROUP = ', NGROUP
      CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,99999) '                    Test for Lack of '// &
                        'Fit'
      WRITE (NOUT,99999) '                        Sum of    Mean  '// &
                        '       Prob. of'
      WRITE (NOUT,99999) ' Source of Error   DF  Squares  Square  '// &
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                        '    F  Larger F'
      WRITE (NOUT,99999) ' Lack of Fit    ', TESTLF(1), TESTLF(4), &
                        TESTLF(7), TESTLF(9), TESTLF(10)
      WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5), &
                        TESTLF(8)
      WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output

NGROUP =   6

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
6  6  6   4   5   4   5   6   2   4   4   4   6   6   6   4   1   4   4   3

                    Test for Lack of Fit
                        Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      2.0     20.5   10.25  1.001     0.393
Expanded model  14.0    143.4   10.24
Original model  16.0    163.9
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RLOFN

Computes a lack of fit test based on near replicates for a fitted regression model.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IIND — Independent variable option.  (Input)

There are NCOEF = INTCEP + ∣IIND∣ regressors—the intercept (if INTCEP = 1) and the    independent 
variables.

INDIND — Index vector of length IIND containing the column numbers of X that are the independent 
variables.  (Input, if IIND is positive) 
If IIND is nonnegative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains data for the response (dependent) variable.  (Input)
B — Vector of length NCOEF containing a least-squares solution 

for the regression coefficients.  (Input)
R — NCOEF by NCOEF upper triangular matrix containing the R matrix.  (Input) 

The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors 
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the 
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row 
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality 
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding 
diagonal element that is negative. The remaining rows of R must have positive diagonal elements. 
Only the upper triangle of R is referenced.

DFE — Degrees of freedom for error from the fitted regression.  (Input)
SSE — Sum of squares for error from the fitted regression.  (Input)
NGROUP — Number of groups.  (Input) 

A cluster analysis based on NGROUP groups is performed. A good choice for NGROUP is the number of 
groups of near replicates in the data set.

more...

IIND Meaning

< 0 The first -IIND columns of X contain the independent (explanatory) variables.

> 0 The IIND independent variables are specified by the column numbers in INDIND.

= 0 There are no independent variables.
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IGROUP — Vector of length NOBS specifying group numbers.  (Input, if ICLUST = 0; Output, if 
ICLUST ≥ 1) 
IGROUP(I) = J means row I of X is in the J-th group of near replicates (J = 0, 1, 2, …, NGROUP). Here, 
J = 0 indicates the group of observations not used in the analysis because NaN (not a number) was 
input for one or more of the values of the response, independent, frequency, or weight variables.

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model.  (Output) 

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input)
Default: INTCEP = 1.

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies.
Default: IFRQ = 0.

Elem Description

1 Degrees of freedom for lack of fit

2 Degrees of freedom for error from the expanded model (one-way analysis of 
covariance model using clusters of near replicates as the groups).

3 Degrees of freedom for error (DFE = TESTLF(1) + TESTLF(2)).

4 Sum of squares for lack of fit.

5 Sum of squares for error from the expanded model.

6 Sum of squares for error (SSE = TESTLF(4) + TESTLF(5)).

7 Mean square for lack of fit.

8 Mean square for error from the expanded model.

9 F statistic

10 p-value

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

ICLUST — Clustering option.  (Input)
Default: ICLUST = 1.

MAXIT — Maximum number of iterations for the cluster analysis to determine near replicates.  (Input, if 
ICLUST is positive, otherwise, MAXIT is not referenced) 
MAXIT = 30 is usually sufficient for convergence.
Default: MAXIT = 30.

TOL — Tolerance used in determining linear dependence for the one-way analysis of covariance model 
using clusters as the groups.  (Input) 
TOL = EPS2∕3 is a good choice. For RLOFN, EPS = AMACH(4). See documentation for AMACH in Reference 
Material.
Default: TOL = 2.4e-5 for single precision and 3.6d – 11 for double precision.

FORTRAN 90 Interface
Generic: CALL RLOFN (X, IIND, INDIND, IRSP, B, R, DFE, SSE, NGROUP, IGROUP, TESTLF [, …])
Specific: The specific interface names are S_RLOFN and D_RLOFN.

FORTRAN 77 Interface
Single: CALL RLOFN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, IFRQ, IWT, B, R, LDR, 

DFE, SSE, ICLUST, MAXIT, TOL, NGROUP, IGROUP, TESTLF)
Double: The double precision name is DRLOFN.

Description

Routine RLOFN computes a lack of fit test based on near replicates for a fitted regression model. The data 
need not be sorted prior to invoking RLOFN. The column indices of X for determining near replicates must 
correspond to the independent variables in the original fitted model. If the groups of near replicates are 
known prior to invoking RLOFN, the option ICLUST = 0 allows RLOFN to bypass the computation of the 
groups.

ICLUST Meaning

0 Cluster groups are input in IGROUP.

1 Cluster groups are obtained using Euclidean distance.

2 Cluster groups are obtained using Mahalanobis distance.
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The data can contain missing values indicated by NaN. (NaN is AMACH(6). Routine AMACH is described in the 
section “Machine-Dependent Constants” in the Reference Material.) For ICLUST equal to 1 or 2, any row of X 
containing NaN as a value for the response, weight, frequency, or independent variables is omitted from the 
analysis. For ICLUST equal to 0, if the i-th row of X contains NaN for one of the variables in the analysis, the 
i-th element of IGROUP must be 0 on input.

Routine KMEAN (see Chapter 11, “Cluster Analysis”) is used to compute k clusters or groups of near replicates. 
Prior to invoking KMEAN, a detached sort of the independent variables in the regression model is performed 
using routine SROWR (See Chapter 19, “Utilities”.) If there are fewer than NGROUP distinct observations, a 
warning message is issued and k is set equal to the number of distinct observations. Otherwise, k equals 
NGROUP. For purposes of the cluster analysis, ICLUST = 1 specifies Euclidean distance and ICLUST = 2 spec-
ifies Mahalanobis distance. For Mahalanobis distance, the data are transformed before invoking KMEAN so 
that the Euclidean metric applied by KMEAN for the transformed data is equivalent to the sample Mahalano-
bis distance for the original (untransformed) data.

Let X be the n × p matrix of regressors, and let R be the upper triangular matrix computed from the fitted 
regression model. The matrix R can be computed by routines RGLM, RGIVN, or RLEQU for fitting the regres-
sion model. A linear equality restriction on the regression parameters corresponds to a row of R with a 
negative diagonal element. Let D be a p × p diagonal matrix with diagonal elements

Let

be the i-th row of X, and let ti = Dsi where si satisfies

RTsi = xi

Then, the Mahalanobis distance from xi to xj equals the Euclidean distance from ti to tj because

Once the clusters are identified by KMEAN an expanded regression model—a one-way analysis of covariance 
model–is fitted to the original (untransformed) data. Denote the original model by y = X β + ɛ and the 
expanded model by y = X β + Z γ + ɛ. The added regressors that are contained in the n × k matrix Z in the 
expanded model are indicator variables specifying cluster membership. The lack of fit test that is computed 
is an exact test of the hypothesis that γ = 0 in the expanded model. This test was proposed as a lack of fit test 
by Christensen (1989). 
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Let SSE(X, Z) be the error sum of squares from the fit of the expanded model and let SSE(X) be the error sum 
of squares from the fit of the original model. The lack of fit sum of squares is SSE(X) - SSE(X, Z) and the lack 
of fit degrees of freedom are DFE(X) - DFE(X, Z). The F statistic for the test of the null hypothesis of no lack 
of fit is

Under the hypothesis of no lack of fit, the computed F has an F distribution with numerator and denomina-
tor degrees of freedom DFE(X) - DFE(X, Z) and DFE(X, Z), respectively. The p-value for the test is computed 
as the probability that a random variable with this distribution is greater than or equal to the computed F 
statistic. 

The error degrees of freedom and error sum of squares from the fit of the expanded model are computed as 
the error degrees of freedom and sum of squares from the reduced model where Z and y have been adjusted 
for X. Routine RCOV is used to fit the reduced model. Let e be the vector of residuals from the original fitted 
model, let W be the diagonal matrix whose i-th diagonal element is the product of the weight and frequency 
for the i-th observation. The sum of squares and crossproducts matrix for the adjusted Z and y in the reduced 
model, which is input into RCOV, is 

where A is a solution of RTA = DXTW Z.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2OFN/DR2OFN. The reference is:

CALL R2OFN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, FRQ, IWT, B, R, LDR, DFE, SSE, 
ICLUST, MAXIT, TOL, NGROUP, IGROUP, TESTLF, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length 3 * NOBS + ∣IIND∣ + NGROUP + 3 + max{m + 2.8854 * ln(m) 
+ 2, 3 * NGROUP, NCOEF}, if ICLUST is positive. If ICLUST =  0, IWK can be an array of 
length 1.

WK — Work array of length LWK.
2. Informational errors

Type Code Description

3 1 Convergence did not occur in the cluster analysis for the lack of fit test 
within MAXIT iterations. Better results may be obtained by increasing MAXIT.

4 2 An invalid weight or frequency is encountered. Weights and frequencies 
must be nonnegative.
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Examples

Example 1

This example uses data from Draper and Smith (1981, page 374), which is input in X. A multiple linear regres-
sion of column 6 of X on an intercept and columns 1, 3, and 4 is computed using routine RGIVN. Tests for lack 
of fit are computed for choices of NGROUP equal to 4 and 6 using routine RLOFN. Note that for NGROUP equal 
to 6 the results are exactly the same as for routine RLOFE. (If there are exact replicates in the data and the 
number of clusters used by RLOFN equals the number of distinct cases of the independent variables, then 
RLOFN and RLOFE produce the same output.)

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, &
                 NIND, NOBS, J, INTCEP
      PARAMETER  (INTCEP=1, NCOL=6, NDEP=1, NIND=3, NOBS=20, &
                 LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF, &
                 LDR=NCOEF)
!
      INTEGER    ICLUST, IDEP, IGROUP(NOBS), IIND, INDDEP(NDEP), &
      INDIND(NIND), IRSP, NGROUP, NOUT,  NRMISS, NROW
      REAL       B(LDB,NDEP), DFE, R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
                 SSE, TESTLF(10), X(LDX,NCOL)
!
      DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/

3 3 The matrix of sum of squares and crossproducts computed for the within 
cluster model for testing lack of fit is not nonnegative definite within the tol-
erance defined by TOL.

4 4 At least one element in the columns containing the independent variables, 
IRSP, IFRQ, or IWT of X contains NaN (not a number), but the corresponding 
element in IGROUP is not zero. When ICLUST = 0, missing values in a row of 
X are indicated by setting the corresponding row of IGROUP to zero.

Type Code Description
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      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDIND/1, 3, 4/, INDDEP/6/
!
      NROW = NOBS
      IIND = NIND
      IDEP = NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)
      SSE    = SCPE(1,1)
      IRSP   = 6
      ICLUST = 2
      DO 10  NGROUP=4, 6, 2
         CALL RLOFN (X, IIND, INDIND, IRSP, B(1:, 1), R, DFE, SSE, NGROUP, & 
                     IGROUP, TESTLF, ICLUST=ICLUST)
         CALL UMACH (2, NOUT)
         WRITE (NOUT,*) ' '
         WRITE (NOUT,*) 'NGROUP = ', NGROUP
         CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)
         WRITE (NOUT,*) ' '
         WRITE (NOUT,99999) '                    Test for Lack of '// &
                           'Fit'
         WRITE (NOUT,99999) '                        Sum of    Mean  '// &
                           '       Prob. of'
         WRITE (NOUT,99999) ' Source of Error   DF  Squares  Square  '// &
                           '    F  Larger F'
         WRITE (NOUT,99999) ' Lack of Fit    ', TESTLF(1), TESTLF(4), &
                           TESTLF(7), TESTLF(9), TESTLF(10)
         WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5), &
                           TESTLF(8)
         WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF(6)
   10 CONTINUE
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output

NGROUP =   4

                                 IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
4  4  4   4   2   4   2   4   2   4   4   4   4   4   4   4   1   4   4   3

                Test for Lack of Fit
                       Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      1.0      0.4    0.38  0.035     0.855
Expanded model  15.0    163.6   10.90
Original model  16.0    163.9

NGROUP =   6

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
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6  6  6   4   5   4   5   6   2   4   4   4   6   6   6   4   1   4   4   3

                    Test for Lack of Fit
                       Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      2.0     20.5   10.25  1.001     0.393
Expanded model  14.0    143.4   10.24
Original model  16.0    163.9

Example 2

This example uses the same data and model from Example 1. Here, the option ICLUST = 0 is input so that the 
group numbers for performing the lack of fit test are input.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, &
                 NIND, NOBS, J, INTCEP
      PARAMETER  (INTCEP=1, NCOL=6, NDEP=1, NIND=3, NOBS=20, &
                 LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF, &
                 LDR=NCOEF)
!
      INTEGER    ICLUST, IDEP, IGROUP(NOBS), IIND, &
                 INDDEP(NDEP), INDIND(NIND), IRSP, &
                 NGROUP, NOUT
      REAL       B(LDB,NDEP), DFE, R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
                 SSE, TESTLF(10), TOL, X(LDX,NCOL), &
                 XMAX(NCOEF), XMIN(NCOEF)
!
      DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
      DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
      DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
      DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
      DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
      DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
      DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
      DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
      DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
      DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
      DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
      DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
      DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
      DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
      DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
      DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
      DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
      DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
      DATA INDIND/1, 3, 4/, INDDEP/6/
      DATA IGROUP/4*4, 2, 4, 2, 4, 2, 7*4, 1, 2*4, 3/
!
      IIND = NIND
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      IDEP = NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)
      SSE    = SCPE(1,1)
      IRSP   = 6
      ICLUST = 0
      NGROUP = 4
      CALL RLOFN (X, IIND, INDIND, IRSP, B(1:, 1), R, DFE, SSE, NGROUP,  &
                  IGROUP, TESTLF, iclust=iclust)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,*) 'NGROUP = ', NGROUP
      CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,99999) '                    Test for Lack of '// &
                        'Fit'
      WRITE (NOUT,99999) '                        Sum of    Mean  '// &
                        '       Prob. of'
      WRITE (NOUT,99999) ' Source of Error   DF  Squares  Square  '// &
                        '    F  Larger F'
      WRITE (NOUT,99999) ' Lack of Fit    ', TESTLF(1), TESTLF(4),&
                        TESTLF(7), TESTLF(9), TESTLF(10)
      WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5),&
                        TESTLF(8)
      WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
      END

Output

NGROUP =   4

                                     IGROUP
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
4  4  4   4   2   4   2   4   2   4   4   4   4   4   4   4   1   4   4   3

                    Test for Lack of Fit
                       Sum of    Mean         Prob. of
Source of Error   DF  Squares  Square      F  Larger F
Lack of Fit      1.0      0.4    0.38  0.035     0.855
Expanded model  15.0    163.6   10.90
Original model  16.0    163.9
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RCASE

Computes case statistics and diagnostics given data points, coefficient estimates 

and the R matrix for a fitted general linear model.

Required Arguments
X — NRX by NCOL matrix containing the data.  (Input)
IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
B — Vector of length NCOEF containing a least-squares solution

for the regression coefficients.  (Input)
R — NCOEF by NCOEF upper triangular matrix containing the R matrix.  (Input) 

The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors 
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the 
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row 
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality 
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding 
diagonal element that is negative. The remaining rows of R must have positive diagonal elements. 
Only the upper triangle of R is referenced.

DFE — Degrees of freedom for error.  (Input)
SSE — Sum of squares for error.  (Input)
CASE — NRX by 12 matrix containing the case statistics.  (Output) 

Columns 1 through 12 contain the following: 

Col. Description

1 Observed response

2 Predicted response

3 Residual

4 Leverage

5 Standardized residual

6 Jackknife residual

7 Cook’s distance

8 DFFITS

9, 10 Confidence interval on the mean

11, 12 Prediction interval
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Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NRX — Number of rows in X.  (Input)
Default: NRX = size (X,1).

NCOL — Number of columns in X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

IEF — Effect option.  (Input)
Default: IEF = -1. 
The absolute value of IEF is the number of effects (sources of variation) due to the model. The sign of 
IEF specifies the following options.

NCLVAR — Number of classification variables.  (Input, if IEF is positive)
INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification 

variables.  (Input, if IEF is positive)
NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-

able.  (Input, if IEF is positive) 
NCLVAL(I) is the number of distinct values for the I-th classification variable.

IDO Action

0 This is the only invocation of RCASE for this data set, and all the 
data are input at once.

1 This is the first invocation, and additional calls to RCASE will be 
made. Case statistics are computed for the data in X.

2 This is an intermediate or final invocation of RCASE. Case statistics 
are computed for the data in X.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.

IEF Meaning

< 0 Each effect corresponds to a single regressor (coefficient) in the model. In this case, 
arguments NCLVAR, INDCL, NCLVAL, CLVAL, NVEF, INDEF, and IDUMMY are not 
referenced.

> 0 Each effect corresponds to one or more regressors. A general linear model is specified 
through the arguments NCLVAR, INDCL, NCLVAL, CLVAL, NVEF, INDEF, and IDUMMY.

0 There are no effects in the model. INTCEP must equal 1.
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CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the values of the 
classification variables.  (Input, if IEF is positive) 
The first NCLVAL(1) variables contain the values of the first classification variable; the next NCLVAL(2) 
variables contain the values of the second classification variable; and so on. The last NCLVAL(NCLVAR) 
variables contain the values of the last classification variable.

NVEF — Vector of length IEF containing the number of variables associated with each effect in the model.  
(Input, if IEF is positive)

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(IEF).  (Input, if IEF is positive) 
The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next 
NVEF(2) elements give the column numbers for each variable in the second effect; and so on. The last 
NVEF(NEF) elements give the column numbers for each variable in the last effect.

IDUMMY — Dummy variable option.  (Input, if IEF is positive) 
Some indicator variables are defined for the I-th class variable as follows: Let 
J = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(I - 1). NCLVAL(I) indicator variables are defined such 
that for K = 1, 2, …, NCLVAL(I) the K-th indicator variable for row M of X takes the value 1.0 if 
X(M, INDCL(I)) = CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are generated from these 
indicator variables in one of the three following ways:

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights, and the computed prediction interval uses SSE/(DFE * X(I, IWT)) for the estimated variance 
of a future response.
Default: IWT = 0.

IPRED — Prediction interval option.  (Input) 
IPRED = 0 means that prediction intervals are desired for a single future response. For positive IPRED, 
column number IPRED of X contains the number of future responses for which a prediction interval is 
desired on the average of the future responses.
Default: IPRED = 0.

CONPCM — Confidence level for two-sided interval estimates on the mean, in percent.  (Input) 
CONPCM percent confidence intervals are computed, hence, CONPCM must be greater than or equal to 
0.0 and less than 100.0. CONPCM often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence 
level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set 
CONPCM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCM = 95.0.

CONPCP — Confidence level for two-sided prediction intervals, in percent.  (Input) 
CONPCP percent prediction intervals are computed, hence, CONPCP must be greater than or equal to 
0.0 and less than 100.0. CONPCP often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence 

IDUMMY Method

0, 1 The NCLVAL(I) indicator variables are the dummy variables (In RCASE, the computa-
tions for IDUMMY = 0 and IDUMMY = 1 are the same. The two values 0 and 1 are 
provided so that RCASE can be called after routine RGLM with no change in IDUMMY.)

2 The first NCLVAL(I) - 1 indicator variables are the dummy variables. The last indicator 
variable is omitted.

3 The K-th indicator variable minus the NCLVAL (I)-th indicator variable is the K-th 
dummy variable (K = 1, 2, …, NCLVAL(I) - 1).
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level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set 
CONPCP = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCP = 95.0.

PRINT — Printing option.  (Input) 
Default: PRINT = ‘N’.
PRINT is a character string indicating what is to be printed. The PRINT string is composed of one-
character print codes to control printing. These print codes are given as follows:

The concatenated print codes ‘A’, ‘N’, ‘1’, …, ‘P’ that comprise the PRINT string give the combination of sta-
tistics to be printed. Concatenation of these codes with print codes ‘X’ or ‘Y’ restricts printing to cases 
determined to be influential or outliers. Here are a few examples. 

IOBS — Number of the observation corresponding to the first row of X.  (Input) 
This observation number is used only for printing the row labels for the individual case statistics.
Default: IOBS = size (X,1).

NCOEF — Number of regression coefficients in the model.  (Input)
Default: NCOEF = size (B,1).

PRINT(I:I) Printing that Occurs

‘A’ All

‘N’ None

‘1’ Observed response

‘2’ Predicted response

‘3’ Residual

‘4’ Leverage

‘5’ Standardized residual

‘6’ Jackknife residual

‘7’ Cook’s distance

‘8’ DFFITS

‘M’ Confidence interval on the mean

‘P’ Prediction interval

‘X’ Influential cases (unusual “x-value”)

‘Y’ Outlier cases (unusual “y-value”)

PRINT Printing Action

‘A’ All.

‘N’ None.

‘46’ Leverage and jackknife residual for all cases.

‘AXY’ All statistics are printed for cases that are highly influen-
tial or are outliers.

‘46XY’ Leverage and jackknife residual are printed for cases that 
are highly influential or are outliers.
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LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of CASE containing NaN (not a number).  (Output) 
If any row of data contains NaN as a value of a variable other than the response variable, columns 3 
through 12 of the corresponding row in CASE are set to NaN. If the response is missing, columns 1, 3, 
and 5 through 8 are set to NaN.

FORTRAN 90 Interface
Generic: CALL RCASE (X, IRSP, B, R, DFE, SSE, CASE [, …])
Specific: The specific interface names are S_RCASE and D_RCASE.

FORTRAN 77 Interface
Single: CALL RCASE (IDO, NRX, NCOL, X, LDX, INTCEP, IEF, NCLVAR, INDCL, NCLVAL, CLVAL, 

NVEF, INDEF, IDUMMY, IRSP, IWT, IPRED, CONPCM, CONPCP, PRINT, IOBS, NCOEF, B, R, 
LDR, DFE, SSE, CASE, LDCASE, NRMISS)

Double: The double precision name is DRCASE.

Description

The general linear model used by routine RCASE is

y = X β + ɛ
where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector of regression 
coefficients, and ɛ is the n × 1 vector of errors whose elements are independently normally distributed with 

mean 0 and variance σ2/wi. The model used by RCASE also permits linear equality restrictions on β. From a 
general linear model fitted using the wi’s as the weights, routine RCASE computes confidence intervals and 
statistics for the individual cases that constitute the data set. Let xi be a column vector containing elements of 
the i-th row of X. Let W = diag(w1, w2, …, wn). The leverage is defined as 

(In the case of linear equality restrictions on β, the leverage is defined in terms of the reduced model.) Put 
D = diag(d1, d2, …, dp) with dj = 1 if the j-th diagonal element of R is positive and 0 otherwise. The leverage is 

computed as hi = (aTDa)wi where a is a solution to RTa = xi. The estimated variance of
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is given by his
2/wi, where s2 = SSE/DFE. The computation of the remainder of the case statistics follows eas-

ily from their definitions. See the Diagnostics for Individual Cases section in the chapter introduction for 
definitions of the case diagnostics. 

Often predicted values and confidence intervals are desired for combinations of settings of the effect vari-
ables not used in computing the regression fit. This can be accomplished using a single data matrix by 
including these settings of the variables as part of the data matrix and by setting the response equal to NaN 
(not a number). NaN can be retrieved by the invocation of the function AMACH(6). The regression routine per-
forming the fit will omit the case, and RCASE will compute a predicted value and confidence interval for the 
missing response from the given settings of the effect variables.

The type 3 informational errors can occur if the input variables X, R, B and SSE are not consistent with each 
other or if excessive rounding has occurred in their computation. The type 3 error message with error code 2 
arises when X contains a row not in the space spanned by the rows of R. An examination of the model that 
was fitted and the X for which diagnostics are to be computed is required in order to insure that only linear 
combinations of the regression coefficients that can be estimated from the fitted model are specified in X. For 
further details, see the discussion of estimable functions given by Maindonald (1984, pages 166-168) and 
Searle (1971, pages 180-188).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2ASE/DR2ASE. The reference is:

CALL R2ASE (IDO, NRX, NCOL, X, LDX, INTCEP, IEF, NCLVAR, INDCL, NCLVAL, CLVAL, NVEF, 
INDEF, IDUMMY, IRSP, IWT, IPRED, CONPCM, CONPCP, PRINT, IOBS, NCOEF, B, R, LDR, DFE, 
SSE, CASE, LDCASE, NRMISS, WK)

The additional argument is:

WK — Work vector of length NCOEF + 1.
2. Informational errors
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Examples

Example 1

A multiple linear regression model is fitted and case statistics computed for data discussed by Cook and 
Weisberg (1982, page 103). The fitted model is 

Some of the statistics in row 6 of the output matrix CASE are undefined (0.0/0.0) and are set to NaN (not a 
number). Some statistics in row 4 of CASE are set to Inf (positive machine infinity). The values of NaN and 
positive machine infinity can be retrieved by routine AMACH (or DMACH when using double precision), which 
is documented in the section “Machine-Dependent Constants” in Reference Material.

      USE RCASE_INT
      USE RGIVN_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, LDB, LDCASE, LDR, LDSCPE, LDX, NCOEF, NCOL, &
                 NDEP, NIND, NROW, J, NRMISS
      PARAMETER  (INTCEP=1, NCOL=3, NDEP=1, NIND=2, NROW=7, &
                 LDCASE=NROW, LDSCPE=NDEP, LDX=NROW, &
                 NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
!
      INTEGER    IDEP, IEF, IIND, INDDEP(1), INDIND(1), IOBS, IRSP
      REAL       B(LDB,NDEP), CASE(LDCASE,12), DFE, R(LDR,NCOEF), &
                 SCPE(LDSCPE,NDEP), SSE, X(LDX,NCOL)
      CHARACTER  PRINT*1
!
      DATA (X(1,J),J=1,NIND+NDEP) /1.0, 1.0, 3.0/
      DATA (X(2,J),J=1,NIND+NDEP) /1.0, 2.0, 4.0/
      DATA (X(3,J),J=1,NIND+NDEP) /1.0, 3.0, 5.0/
      DATA (X(4,J),J=1,NIND+NDEP) /1.0, 4.0, 7.0/
      DATA (X(5,J),J=1,NIND+NDEP) /1.0, 5.0, 7.0/
      DATA (X(6,J),J=1,NIND+NDEP) /0.0, 6.0, 8.0/
      DATA (X(7,J),J=1,NIND+NDEP) /1.0, 7.0, 9.0/
!
      IIND = -NIND

Type Code Description

4 1 A weight is negative. Weights must be nonnegative.

3 2 The linear combination of the regression coefficients specified is not estima-
ble within the preset tolerance.

3 3 A leverage much greater than 1.0 was computed. It is set to 1.0.

3 4 A deleted residual mean square much less than 0.0 was computed. It is set to 
0.0.

4 5 A number of future observations for the prediction interval is nonpositive. It 
must be positive.
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      IDEP = -NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)
      IEF    = -NIND
      IRSP   =  NCOL
      PRINT  = 'A'
      IOBS   = 1
      SSE    = SCPE(1,1)
      CALL RCASE (X, IRSP, B(1:,1), R, DFE, SSE, CASE, ief=ief, &
            PRINT=PRINT, iobs=iobs, ncoef=ncoef, nrmiss=nrmiss)
!
      END

Output

                     * * * Case Analysis * * *
     Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
            Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
        1     3.0000     3.1286    -0.1286     0.4714    -0.3886    -0.3430
              0.0449    -0.3240     2.2609     3.9962     1.5957     4.6614
        2     4.0000     4.1429    -0.1429     0.2857    -0.3714    -0.3273
              0.0184    -0.2070     3.4674     4.8183     2.7100     5.5757
        3     5.0000     5.1571    -0.1571     0.1857    -0.3826    -0.3376
              0.0111    -0.1612     4.6126     5.7017     3.7812     6.5331
Y       4     7.0000     6.1714     0.8286     0.1714     2.0000        Inf
              0.2759        Inf     5.6482     6.6946     4.8038     7.5391
        5     7.0000     7.1857    -0.1857     0.2429    -0.4689    -0.4178
              0.0235    -0.2366     6.5630     7.8084     5.7770     8.5945
X       6     8.0000     8.0000     0.0000     1.0000        NaN        NaN
                 NaN        NaN     6.7364     9.2636     6.2129     9.7871
        7     9.0000     9.2143    -0.2143     0.6429    -0.7878    -0.7423
              0.3724    -0.9959     8.2011    10.2275     7.5946    10.8339
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Figure 2.6 — Plot of Leverages hi and the Average (p/n = 3/7)

Example 2

A one-way analysis of covariance model is fitted to the turkey data discussed by Draper and Smith (1981, 
pages 243-249). The response variable is turkey weight y (in pounds). There are three groups of turkeys cor-
responding to the three states where they were reared. The age of a turkey (in weeks) is the covariate. The 
explanatory variables are group, age, and interaction. The model is

where α3 = 0 and β3 = 0. Routine RGLM is used to fit the model. The option IDUMMY = 2 is used. The fitted 
model gives three separate lines, one for each state where the turkeys were reared. Then, RCASE is used to 
compute case statistics from the fitted model.

      USE RCASE_INT
      USE RGLM_INT
      USE AMACH_INT
      INTEGER    IDEP, IEF, INTCEP, LDB, LDCASE, LDR, LDSCPE, LDX, &
                 MAXB, MAXCL, NCLVAR, NCOL, NROW
      PARAMETER  (IDEP=1, IEF=3, INTCEP=1, MAXB=6, MAXCL=3, NCLVAR=1, &
                 NCOL=3, NROW=13, LDB=MAXB, LDCASE=NROW, LDR=MAXB, &
                 LDSCPE=IDEP, LDX=NROW)
!
      INTEGER    IDUMMY, INDCL(NCLVAR), INDDEP(IDEP), &
                 INDEF(4), IOBS, IRANK, IRBEF(IEF+1), IRSP, &
                 NCLVAL(NCLVAR), NCOEF, NRMISS, NVEF(IEF)
      REAL       B(LDB,IDEP), CASE(LDCASE,12), CLVAL(MAXCL), &
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                 DFE, R(LDR,MAXB),SCPE(LDSCPE,IDEP), SSE, X(LDX,NCOL) 
      CHARACTER  PRINT
!
      DATA (X(1,J),J=1,3)  /25.0, 13.8, 3.0/
      DATA (X(2,J),J=1,3)  /28.0, 13.3, 1.0/
      DATA (X(3,J),J=1,3)  /20.0,  8.9, 1.0/
      DATA (X(4,J),J=1,3)  /32.0, 15.1, 1.0/
      DATA (X(5,J),J=1,3)  /22.0, 10.4, 1.0/
      DATA (X(6,J),J=1,3)  /29.0, 13.1, 2.0/
      DATA (X(7,J),J=1,3)  /27.0, 12.4, 2.0/
      DATA (X(8,J),J=1,3)  /28.0, 13.2, 2.0/
      DATA (X(9,J),J=1,3)  /26.0, 11.8, 2.0/
      DATA (X(10,J),J=1,3) /21.0, 11.5, 3.0/
      DATA (X(11,J),J=1,3) /27.0, 14.2, 3.0/
      DATA (X(12,J),J=1,3) /29.0, 15.4, 3.0/
      DATA (X(13,J),J=1,3) /23.0, 13.1, 3.0/
      DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/3, 1, 1, 3/, INDDEP/2/
!
      IDUMMY = 2
      CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
         IDUMMY=IDUMMY, NCLVAL=NCLVAL, CLVAL=CLVAL, IRBEF=IRBEF, &
         R=R, DFE=DFE, SCPE=SCPE)
!
      PRINT  = 'A'
      IRSP   = INDDEP(1)
      IPRED  = 0
      PRINT  = 'A'
      IOBS   = 1
      NCOEF  = IRBEF(IEF+1) - 1
      SSE    = SCPE(1,1)
      CALL RCASE (X, IRSP, B(1:, 1), R, DFE, SSE, CASE, IEF=IEF, &
         NCLVAR=NCLVAR, INDCL=INDCL, NCLVAL=NCLVAL, CLVAL=CLVAL, &
         NVEF=NVEF, INDEF=INDEF, IDUMMY=IDUMMY, IOBS=IOBS, &
      PRINT=PRINT, NCOEF=NCOEF)
!
      END

Output

                            * * * Case Analysis * * *
Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack Res.
        Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
 1    13.8000    13.6000     0.2000     0.2000     0.7040     0.6762
        0.0207     0.3381    13.2641    13.9359    12.7773    14.4227
 2    13.3000    13.1901     0.1099     0.3187     0.4192     0.3930
        0.0137     0.2688    12.7661    13.6141    12.3276    14.0526
 3     8.9000     9.1418    -0.2418     0.5824    -1.1779    -1.2178
        0.3225    -1.4383     8.5686     9.7149     8.1970    10.0865
 4    15.1000    15.2143    -0.1143     0.7143    -0.6732    -0.6444
        0.1888    -1.0189    14.5795    15.8490    14.2309    16.1976
 5    10.4000    10.1538     0.2462     0.3846     0.9879     0.9860
        0.1017     0.7795     9.6881    10.6196     9.2701    11.0376
 6    13.1000    13.3300    -0.2300     0.7000    -1.3221    -1.4131
         0.6797    -2.1585    12.7016    13.9584    12.3507    14.3093
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 7    12.4000    12.3900     0.0100     0.3000     0.0376     0.0348
        0.0001     0.0228    11.9786    12.8014    11.5337    13.2463
 8    13.2000    12.8600     0.3400     0.3000     1.2795     1.3533
        0.1169     0.8859    12.4486    13.2714    12.0037    13.7163
 9    11.8000    11.9200    -0.1200     0.7000    -0.6898    -0.6615
        0.1850    -1.0104    11.2916    12.5484    10.9407    12.8993
10    11.5000    11.8200    -0.3200     0.6000    -1.5930    -1.8472
        0.6344    -2.2623    11.2382    12.4018    10.8700    12.7700
11    14.2000    14.4900    -0.2900     0.3000    -1.0913    -1.1091
        0.0851    -0.7261    14.0786    14.9014    13.6337    15.3463
12    15.4000    15.3800     0.0200     0.6000     0.0996     0.0922
        0.0025     0.1130    14.7982    15.9618    14.4300    16.3300
13    13.1000    12.7100     0.3900     0.3000     1.4676     1.6330
        0.1538     1.0691    12.2986    13.1214    11.8537    13.5663
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ROTIN

Computes diagnostics for detection of outliers and influential data points given residuals and the R matrix 
for a fitted general linear model.

Required Arguments
X — NRX by NCOL matrix containing the data.  (Input)
IIND — Independent variable option.  (Input) 

The absolute value of IIND is the number of independent (explanatory) variables. The sign of IIND 
specifies the following options: 

The regressors are the constant regressor (if INTCEP = 1) and the independent variables.
INDIND — Index vector of length IIND containing the column numbers of X that are the independent 

(explanatory) variables.  (Input, if IIND is positive) 
If IIND is nonpositive, INDIND is not referenced and can be a vector of length one.

R — INTCEP + ∣IIND∣ by INTCEP + ∣IIND∣ upper triangular matrix containing the R matrix.  (Input) 
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors 
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the 
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row 
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality 
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding 
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.

DFE — Degrees of freedom for error.  (Input)
SSE — Sum of squares for error.  (Input)
E — Vector of length NRX with the residuals.  (Input) 

If a residual is not known, e.g., the value for the dependent (response) variable was missing, the input 
value of the corresponding element of E should equal NaN (not a number).

OTIN — NRX by 6 matrix containing diagnostics for detection of outliers and influential cases.  (Output) 
The columns of OTIN contain the following:

IIND Meaning

< 0 The data for the -IIND independent variables are given in the 
first -IIND columns of X.

> 0 The data for the IIND independent variables are in the columns 
of X whose column numbers are given by the elements of INDIND.

= 0 There are no independent variables.

Col. Description

1 Residual

2 Leverage (diagonal element of the ‘Hat’ matrix)

3 Standardized residual

4 Jackknife (deleted) residual
ROTIN         Chapter 2: Regression      230



Optional Arguments
NRX — Number of rows of data.  (Input)

Default: NRX = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

LDOTIN — Leading dimension of OTIN exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDOTIN = size (OTIN,1).

NRMISS — Number of rows of OTIN containing NaN (not a number).  (Output) 
If any row of data contains NaN as a value of the independent variable or weight, elements in columns 
2 thru 6 of the corresponding row in OTIN are set to NaN. If the residual is missing, elements in col-
umns 3 thru 6 are set to NaN.

FORTRAN 90 Interface
Generic: CALL ROTIN (X, IIND, INDIND, R, DFE, SSE, E, OTIN [, …])
Specific: The specific interface names are S_ROTIN and D_ROTIN.

FORTRAN 77 Interface
Single: CALL ROTIN (NRX, NCOL, X, LDX, INTCEP, IIND, INDIND, IWT, R, LDR, DFE, SSE, E, OTIN, 

LDOTIN, NRMISS)
Double: The double precision name is DROTIN.

5 Cook’s Distance

6 DFFITS

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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Description

The multiple regression model used by routine ROTIN is

y = X β + ɛ
where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector of regression 
coefficients, and ɛ is the n × 1 vector of errors whose elements are independently normally distributed with 

mean 0 and variance σ2/wi. The model used by ROTIN also permits linear equality restrictions on β. From a 
multiple regression model fit using the wi’s as the weights, routine ROTIN computes diagnostics for outliers 
and influential cases. Let xi be a column vector containing elements of the i-th row of X. Let 
W = diag(w1, w2, …, wn). The leverage is defined as

(In the case of linear equality restrictions on β, the leverage is defined in terms of the reduced model.) Put 
D = diag(d1, d2, …, dp) with dj = 1 if the j-th diagonal element of R is positive and 0 otherwise. The leverage is 

computed as hi = (aTDa)wi where a is a solution to RTa = xi. The computation of the remainder of the case 
diagnostics follows easily from their definitions. See the Diagnostics for Individual Cases section in the chapter 
introduction for definitions of the case diagnostics. 

The type 3 informational errors can occur if the input variables X, R, E and SSE are not consistent with each 
other or if excessive rounding has occurred in their computation.The type 3 error message with error code 2 
arises when X contains a row not in the space spanned by the rows of R. An examination of the model that 
was fitted and the X for which diagnostics are to be computed is required in order to insure that only linear 
combinations of the regression coefficients that can be estimated from the fitted model are specified in X. For 
further details, see the discussion of estimable functions given by Maindonald (1984, pages 166-168) and 
Searle (1971, pages 180-188).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2TIN/DR2TIN. The reference is:

CALL R2TIN (NRX, NCOL, X, LDX, INTCEP, IIND, INDIND, IWT, R, LDR, DFE, SSE, E, OTIN, 
LDOTIN, NRMISS, WK)

The additional argument is:

WK — Work vector of length INTCEP + ∣IIND∣.
2. Informational errors

Type Code Description

3 2 The linear combination of the regression coefficients specified is not estima-
ble within the preset tolerance.

3 3 A leverage much greater than 1.0 was computed. It is set to 1.0.

3 4 A deleted residual mean square much less than 0.0 was computed. It is set to 
0.0.

4 1 A weight is negative. Weights must be nonnegative.
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Examples

Example 1

A multiple linear regression model is fit and case statistics computed for data discussed by Cook and 
Weisberg (1982, page 103). The fitted model is 

Some of the statistics in row 6 of the output matrix OTIN are undefined (0.0/0.0) and are set to NaN (not a 
number). Some statistics in row 4 of OTIN are infinite and are set to machine infinity. The values of NaN and 
machine infinity can be retrieved by routine AMACH (or DMACH when using double precision), which is docu-
mented in Reference Material.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    INTCEP, LDB, LDOTIN, LDR, LDSCPE, LDX, NCOEF, NCOL, &
                 NDEP, NIND, NROW, J
      PARAMETER  (INTCEP=1, NCOL=3, NDEP=1, NIND=2, NROW=7, &
                 LDOTIN=NROW, LDSCPE=NDEP, LDX=NROW, &
                 NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
!
      INTEGER    I, IDEP, IIND, INDDEP(1), INDIND(1), NOUT, NRMISS
      REAL       B(LDB,NDEP), D(NCOEF), DFE, E(NROW), &
                 OTIN(LDOTIN,6), R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
                 SSE, X(LDX,NCOL), XMAX(NCOEF), XMIN(NCOEF)
      CHARACTER  CLABEL(7)*10, RLABEL(1)*6
!
      DATA CLABEL/'Obs.', 'Residual', 'Leverage', 'Std. Res.', &
           'Jack. Res.', 'Cook''s D', 'DFFITS'/
      DATA RLABEL/'NUMBER'/
!
      DATA (X(1,J),J=1,NIND+NDEP) /1.0, 1.0, 3.0/
      DATA (X(2,J),J=1,NIND+NDEP) /1.0, 2.0, 4.0/
      DATA (X(3,J),J=1,NIND+NDEP) /1.0, 3.0, 5.0/
      DATA (X(4,J),J=1,NIND+NDEP) /1.0, 4.0, 7.0/
      DATA (X(5,J),J=1,NIND+NDEP) /1.0, 5.0, 7.0/
      DATA (X(6,J),J=1,NIND+NDEP) /0.0, 6.0, 8.0/
      DATA (X(7,J),J=1,NIND+NDEP) /1.0, 7.0, 9.0/
!
      IIND = -NIND
      IDEP = -NDEP
      CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)
      SSE = SCPE(1,1)
!                                 Compute residuals.
      DO 10  I=1, NROW
         E(I) = X(I,NCOL) - B(1,1) - SDOT(NIND, B((INTCEP+1): ,1), &
                1, X(I:, 1), LDX)
   10 CONTINUE
!
      CALL ROTIN (X, IIND, INDIND, R, DFE, SSE, E, OTIN,  &
                  NRMISS=NRMISS)
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!
      CALL WRRRL ('OTIN', OTIN, RLABEL, CLABEL, FMT='(F10.3)')
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
!
      END

Output

                                      OTIN
Obs.   Residual    Leverage   Std. Res.  Jack. Res.    Cook’s D      DFFITS
  1      -0.129       0.471      -0.389      -0.343       0.045      -0.324
  2      -0.143       0.286      -0.371      -0.327       0.018      -0.207
  3      -0.157       0.186      -0.383      -0.338       0.011      -0.161
  4       0.829       0.171       2.000         Inf       0.276         Inf
  5      -0.186       0.243      -0.469      -0.418       0.024      -0.237
  6       0.000       1.000         NaN         NaN         NaN         NaN
  7      -0.214       0.643      -0.788      -0.742       0.372      -0.996
NRMISS =   1

Example 2

In this example, routine RNLIN is first invoked to fit the following nonlinear regression model discussed by 
Neter, Wasserman, and Kutner (1983, pages 475-478):

Then, ROTIN is used to compute case diagnostics. In addition, the leverage output by ROTIN is used to con-
struct asymptotic confidence intervals on the mean of the nonlinear regression function evaluated at xi. The 
asymptotic 95% confidence intervals are computed using the formula: 

where hi is the computed leverage, t.975,DFE is the 97.5 percentile of the t distribution with DFE degrees of 

freedom as computed by routine TIN (see Chapter 17, “Probability Distribution Functions and Inverses”), and s2 
equals SSE/DFE.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDOTIN, LDR, NOBS, NPARM, NRX
      PARAMETER  (NOBS=15, NPARM=2, NRX=1, LDOTIN=NRX, LDR=NPARM)
!
      INTEGER    IDERIV, IDUMMY(1), IEND, IOBS, IRANK, J, NOUT, NRMISS
      REAL       A, DE(NPARM, 1), DFE, E(1), FRQ, OTIN(LDOTIN,6), &
                 R(LDR,NPARM), SQRT, SSE, THETA(NPARM), WT, Y, &
                 YHAT
      INTRINSIC  SQRT
      EXTERNAL EXAMPL
!
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      DATA THETA/60.0, -0.03/
!
      CALL UMACH (2, NOUT)
!
      IDERIV = 1
      CALL RNLIN (EXAMPL, THETA, R=R, DFE=DFE, SSE=SSE)
!
      WRITE (NOUT,*) ' Obs.  Pred.   Res.   Lev. St Res Del Res Cook '// &
                    'D DFFIT Conf Interval'
      DO 10  IOBS=1, NOBS
         CALL EXAMPL (NPARM, THETA, 0, IOBS, FRQ, WT, E, DE, IEND)
         CALL EXAMPL (NPARM, THETA, 1, IOBS, FRQ, WT, E, DE, IEND)
         CALL EXAMPL (NPARM, THETA, 2, IOBS, FRQ, WT, Y, DE, IEND)
         YHAT = Y - E(1)
         CALL ROTIN (DE, -NPARM, IDUMMY, R, DFE, SSE, E, OTIN, &
                     NRX=NRX, LDX=1, INTCEP=0)
         A = TIN(0.975,DFE)*SQRT((SSE/DFE)*OTIN(1,2))
         WRITE (NOUT,'(F5.1,10F7.2)') Y, YHAT, (OTIN(1,J),J=1,6), &
                                     YHAT - A, YHAT + A
   10 CONTINUE
      END
!
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, &
                         IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E(1), DE(NPARM, 1)
!
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
!
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
!
      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0, &
           13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, &
           38.0, 45.0, 52.0, 53.0, 60.0, 65.0/

!
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         IF (IOPT .EQ. 0) THEN
            E(1) = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
         ELSE IF (IOPT .EQ. 1) THEN
            DE(1, 1) = -EXP(THETA(2)*XDATA(IOBS))
            DE(2, 1) = -THETA(1)*XDATA(IOBS)*EXP(THETA(2)*XDATA(IOBS))
         ELSE IF (IOPT .EQ. 2) THEN
            E(1) = YDATA(IOBS)
         END IF
      ELSE
         IEND = 1
      END IF
      RETURN
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      END

Output

 Obs.  Pred.   Res.   Lev. St Res Del Res Cook D DFFIT Conf Interval
54.0  54.15  -0.14   0.40  -0.09  -0.09   0.00  -0.07  51.19  56.53
50.0  48.08   1.92   0.24   1.13   1.14   0.21   0.65  49.84  54.00
45.0  44.42   0.58   0.18   0.33   0.32   0.01   0.15  43.79  47.37
37.0  39.45  -2.45   0.13  -1.34  -1.39   0.13  -0.54  33.04  36.07
35.0  33.67   1.33   0.11   0.72   0.71   0.03   0.24  34.96  37.70
25.0  27.62  -2.63   0.11  -1.42  -1.49   0.12  -0.52  21.00  23.75
20.0  20.94  -0.94   0.12  -0.51  -0.50   0.02  -0.18  17.61  20.51
16.0  17.18  -1.18   0.12  -0.65  -0.63   0.03  -0.23  13.35  16.29
18.0  15.26   2.74   0.12   1.50   1.58   0.15   0.58  19.29  22.20
13.0  13.02  -0.02   0.11  -0.01  -0.01   0.00   0.00  11.56  14.40
 8.0   9.87  -1.87   0.10  -1.01  -1.01   0.06  -0.33   4.81   7.45
11.0   7.48   3.52   0.08   1.88   2.12   0.15   0.62  13.33  15.70
 8.0   7.19   0.81   0.08   0.43   0.42   0.01   0.12   7.64   9.97
 4.0   5.45  -1.45   0.06  -0.77  -0.75   0.02  -0.19   1.53   3.57
 6.0   4.47   1.53   0.05   0.80   0.79   0.02   0.18   6.61   8.45
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GCLAS

Gets the unique values of each classification variable.

Required Arguments
X — NROW by NCOL matrix containing the data.  (Input)
INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification 

variables.  (Input)
MAXCL — An upper bound on the sum of the number of distinct values taken on by each classification 

variable.  (Input)
NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-

able.  (Output, if IDO = 0 or IDO = 1; input/output, if IDO = 2 or IDO = 3) NCLVAL(I) is the number of 
distinct values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the values of the 
classification variables.  (Output, if IDO = 0 or IDO = 1; Input/Output, if IDO = 2 or IDO = 3) 
Since in general the length of CLVAL will not be known in advance, MAXCL (an upper bound for this 
length) should be used for purposes of dimensioning CLVAL. The first NCLVAL(1) variables contain the 
values of the first classification variable; the next NCLVAL(2) variables contain the values of the second 
classification variable; and so on. The last NCLVAL(NCLVAR) variables contain the values of the last 
classification variable. After invocation of GCLAS with IDO = 3, CLVAL contains the values sorted in 
ascending order by the classification variable.

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NROW — Number of rows of data in X.  (Input)
Default: NROW = size (X,1).

NCOL — Number of columns in X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IDO Action

0 This is the only invocation of GCLAS for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to GCLAS will be made. Unique values 
for the classification variables are retrieved from X.

2 This is an intermediate invocation of GCLAS. Unique values for the classification vari-
ables are retrieved from X.

3 This is the final invocation of GCLAS. Unique values for the classification variables are 
retrieved from X, and the values in CLVAL are sorted in ascending order for each classi-
fication variable.
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NCLVAR — Number of classification variables.  (Input)
Default: NCLVAR = size (INDCL,1).

NMISS — Vector of length NCLVAR containing the number of elements of the data containing NaN for any 
classification variable.  (Output, if IDO = 0 or IDO = 1; input/output if IDO = 2 or IDO = 3)

FORTRAN 90 Interface
Generic: CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL [, …])
Specific: The specific interface names are S_GCLAS and D_GCLAS.

FORTRAN 77 Interface
Single: CALL GCLAS (IDO, NROW, NCOL, X, LDX, NCLVAR, INDCL, MAXCL, NCLVAL, CLVAL, NMISS)
Double: The double precision name is DGCLAS.

Description

Routine GCLAS gets the unique values of m (Input in NCLVAR) classification variables. The routine can be 
used in conjunction with routine GRGLM. Routine GRGLM requires the values of the classification variables 
output by GCLAS in order to generate dummy variables for the general linear model.

In the input array X, missing values for a classification variable can be indicated by NaN (not a number). 
NAN is represented by AMACH(6). (See the section Machine-Dependent Constants in the Reference Material for a 
further discussion of AMACH, and missing values.) The nonmissing values of the classifications variables are 
output in CLVAL. If for a particular row of X a value of a classification variable is missing, nonmissing values 
of the other classification variables are still used. The number of elements equal to NaN for each classification 
variable is output in NMISS.

Comments
Informational Error

Example

In the following example, the unique values of two classification variables are obtained from a data set XX 
with six rows. Here, routine GCLAS is invoked repeatedly with one row of the data set input into X at a time. 
Initially, GCLAS is invoked with IDO = 1, then with IDO = 2 for each of the six rows of data, and finally with 
IDO = 3.

      USE GCLAS_INT
      USE SCOPY_INT
      USE WRRRL_INT
      USE WRIRL_INT

      IMPLICIT   NONE

Type Code Description

4 1 MAXCL is too small. Increase MAXCL and the dimension of CLVAL.
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      INTEGER    LDX, LDXX, MAXCL, NCLVAR, NCOL, NOBS, J
      PARAMETER  (LDX=1, MAXCL=5, NCLVAR=2, NCOL=2, NOBS=6, LDXX=NOBS)
!
      INTEGER    I, IDO, INDCL(NCLVAR), NCLVAL(NCLVAR), NMISS(NCLVAR), &
                 NROW
      REAL       CLVAL(MAXCL), X(LDX,NCOL), XX(LDXX,NCOL)
      CHARACTER  CLABEL(2)*8, RLABEL(1)*17
!
      DATA INDCL/1, 2/, NCLVAL/2, 3/
      DATA (XX(1,J),J=1,NCOL)/10.0,  5.0/
      DATA (XX(2,J),J=1,NCOL)/20.0, 15.0/
      DATA (XX(3,J),J=1,NCOL)/20.0, 10.0/
      DATA (XX(4,J),J=1,NCOL)/10.0, 10.0/
      DATA (XX(5,J),J=1,NCOL)/10.0, 15.0/
      DATA (XX(6,J),J=1,NCOL)/20.0,  5.0/
!
      IDO = 1
      NROW = 0
      CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL, IDO=IDO, NROW=NROW, &
                  NMISS=NMISS)
      IDO = 2
      NROW = 1
      DO 10  I=1, NOBS
         CALL SCOPY (NCOL, XX(I:,1), LDXX, X(1:,1), LDX)
         CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL, IDO=IDO, NROW=NROW,  &
                     NMISS=NMISS)
   10 CONTINUE
      IDO = 3
      NROW = 0
      CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL, IDO=IDO, &
                  NROW=NROW, NMISS=NMISS)
      I         = 1
      RLABEL(1) = 'Variable   CLVAL:'
      CLABEL(1) = 'None'
      DO 20  J=1, NCLVAR
         WRITE (RLABEL(1)(9:10),'(I2)') J
         CALL WRRRL (' ', CLVAL(I:), RLABEL, CLABEL, 1, NCLVAL(J), 1)
         I = I + NCLVAL(J)
   20 CONTINUE
      RLABEL(1) = 'NUMBER'
      CLABEL(1) = 'Variable'
      CLABEL(2) = 'NMISS'
      CALL WRIRL ('%/', NMISS, RLABEL, CLABEL)
      END

Output

Variable 1 CLVAL:  10.00  20.00
Variable 2 CLVAL:   5.00  10.00  15.00

Variable  NMISS
       1      0
       2      0
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GRGLM

Generates regressors for a general linear model.

Required Arguments
X — NROW by NCOL matrix containing the data.  (Input)
INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification 

variables.  (Input)
NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-

able.  (Input) 
NCLVAL(I) is the number of distinct values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the values of the 
classification variables.  (Input) 
The first NCLVAL(1) elements contain the values of the first classification variable; the next NCLVAL(2) 
elements contain the values of the second classification variable; and so on. The last NCLVAL(NCLVAR) 
elements contain the values of the last classification variable.

NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.  
(Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF).  (Input) 
The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next 
NVEF(2) elements give the column numbers for each variable in the second effect; and so on. The last 
NVEF(NEF) elements give the column numbers for each variable in the last effect.

NREG — Number of columns in REG.  (Output)
REG — NROW by NREG matrix containing the regressor variables generated from the matrix X.  (Output, if 

IDUMMY > 0) 
Since, in general, NREG will not be known in advance, the user may need to invoke GRGLM first with 
IDUMMY < 0, dimension REG, and then invoke GRGLM with IDUMMY > 0.

Optional Arguments
NROW — Number of rows of data in X.  (Input)

Default: NROW = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2). 
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

NCLVAR — Number of classification variables.  (Input)
Default: NCLVAR = size (INDCL,1).

NEF — Number of effects (sources of variation) in the model.  (Input)
Default: NEF = size (NVEF,1).

IDUMMY — Dummy variable option.  (Input) 
Default: IDUMMY = 1.
Some indicator variables are defined for the I-th class variable as follows: Let 
J = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(I - 1). NCLVAL(I) indicator variables are defined such 
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that for K = 1, 2, …, NCLVAL(I) the K-th indicator variable for observation number IOBS takes the 
value 1.0 if X(IOBS, INDCL(I)) = CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are gener-
ated from these indicator variables in one of the three following ways:

If IDUMMY < 0, only NREG is computed; and X, CLVAL, and REG are not referenced.
LDREG — Leading dimension of REG exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDREG = size (REG,1).

NRMISS — Number of rows of REG containing NaN (not a number).  (Output) 
A row of REG contains NaN for a regressor when any of the variables involved in generation of the 
regressor equals NaN or if a value of one of the classification variables in the model is not given by 
CLVAL.

FORTRAN 90 Interface
Generic: CALL GRGLM (X, INDCL, NCLVAL, CLVAL, NVEF, INDEF, NREG, REG [, …])
Specific: The specific interface names are S_GRGLM and D_GRGLM.

FORTRAN 77 Interface
Single: CALL GRGLM (NROW, NCOL, X, LDX, NCLVAR, INDCL, NCLVAL, CLVAL, NEF, NVEF, INDEF, 

IDUMMY, NREG, REG, LDREG, NRMISS)
Double: The double precision name is DGRGLM.

Description

Routine GRGLM generates regressors for a general linear model from a data matrix. The data matrix can con-
tain classification variables as well as continuous variables.

Regressors for effects composed solely of continuous variables are generated as powers and crossproducts. 
Consider a data matrix containing continuous variables as columns 3 and 4. The effect indices (3,3) (stored in 
INDEF) generates a regressor whose i-th value is the square of the i-th value in column 3. The effect indices 
(3,4) generates a regressor whose i-th value is the product of the i-th value in column 3 with the i-th value in 
column 4. 

Regressors for an effect (source of variation) composed of a single classification variable are generated using 
indicator variables. Let the classification variable A take on values a1, a2, …, an (stored in CLVAL). From this 
classification variable, GRGLM creates n indicator variables. For k = 1, 2, …, n we have

IDUMMY Method

-1, 1 The NCLVAL(I) indicator variables are the dummy variables.

-2, 2 The first NCLVAL(I) - 1 indicator variables are the dummy variables. 
The last indicator variable is omitted.

-3, 3 The K-th indicator variable minus the NCLVAL(I)-th indicator vari-
able is the K-th dummy variable (K = 1, 2, …, NCLVAL(I) - 1).
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For each classification variable, another set of variables is created from the indicator variables. We call these 
new variables dummy variables. Dummy variables are generated from the indicator variables in one of three 
manners:

1. the dummies are the n indicator variables
2. the dummies are the first n - 1 indicator variables
3 the n - 1 dummies are defined in terms of the indicator variables so that for balanced data, the usual 

summation restrictions are imposed on the regression coefficients

In particular, for IDUMMY = 1, the dummy variables are Ak = Ik (k = 1, 2, …, n). For IDUMMY = 2, the dummy 
variables are Ak = Ik (k = 1, 2, …, n - 1). For IDUMMY = 3, the dummy variables are 
Ak = Ik - In (k = 1, 2, …, n - 1). The regressors generated for an effect composed of a single classification vari-
able are the associated dummy variables. 

Let mj be the number of dummies generated for the j-th classification variable. Suppose there are two classifi-
cation variables A and B with dummies

respectively. The regressors generated for an effect composed of two classification variables A and B are

More generally, the regressors generated for an effect composed of several classification variables and several 
continuous variables are given by the Kronecker products of variables, where the order of the variables is 
specified in INDEF. Consider a data matrix containing classification variables in columns 1 and 2 and contin-
uous variables in columns 3 and 4. Label these four columns A, B, X1, and X2. The regressors generated by 
the effect indices (1, 2, 3, 3, 4) is A ⊗ B ⊗ X1X1X2.

Comments
Let the data matrix X = (A, B, X1) where A and B are classification variables, and X1 is a continuous 
variable. The model containing the effects A, B, AB, X1, AX1, BX1 and ABX1 is specified as follows: 
NCLVAR = 2, INDCL = (1, 2), NEF = 7, NVEF = (1, 1, 2, 1, 2, 2, 3), and 
INDEF = (1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3).
For this model, suppose NCLVAL(1) = 2, NCLVAL(2) = 3, and CLVAL= (1.0, 2.0, 1.0, 2.0, 3.0). Let 
A1, B1, B2, and B3 be the associated indicator variables. Given below, for each IDUMMY option, are the 
regressors in their order of appearance in REG. 
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Within a group of regressors corresponding to an interaction effect, the indicator variables composing 
the regressors vary most rapidly for the last classification variable, vary next most rapidly for the next 
to last classification variable, etc.

Example

In this example, regressors are generated for a two-way analysis-of-covariance model containing all the inter-
action terms. The model could be fitted by a subsequent invocation of routine RGIVN with INTCEP = 1. The 
regressors generated with the option IDUMMY = 2 are for the model whose mean function is

μ + α i+ βj+ γij+ δxij+ ζ ixij+ ηjxij+ θ ijxij       i = 1, 2; j = 1, 2, 3

where α2 = β3 = γ13 = γ21 = γ22 = γ23 = ζ2 = η3 = θ13 = θ21 = θ22 = θ23 = 0.

      USE GRGLM_INT
      USE UMACH_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    LDREG, LDX, LINDEF, MAXCL, NCLVAR, NCOL, NDREG, NEF, &
                NROW
      PARAMETER  (LINDEF=12, MAXCL=5, NCLVAR=2, NCOL=3, NDREG=20, &
                 NEF=7, NROW=6, LDREG=NROW, LDX=NROW)
!
      INTEGER    IDUMMY, INDCL(NCLVAR), INDEF(LINDEF), J, &
                 NCLVAL(NCLVAR), NOUT, NREG, NRMISS, NVEF(NEF)
      REAL       CLVAL(MAXCL), REG(LDREG,NDREG), X(LDX,NCOL)
      CHARACTER  CLABEL(12)*7, RLABEL(1)*7
!
      DATA INDCL/1, 2/, NCLVAL/2, 3/, CLVAL/1.0, 2.0, 1.0, 2.0, 3.0/
      DATA NVEF/1, 1, 2, 1, 2, 2, 3/, INDEF/1, 2, 1, 2, 3, 1, 3, 2, 3, &
           1, 2, 3/
      DATA (X(1,J),J=1,NCOL)/1.0, 1.0, 1.11/
      DATA (X(2,J),J=1,NCOL)/1.0, 2.0, 2.22/
      DATA (X(3,J),J=1,NCOL)/1.0, 3.0, 3.33/
      DATA (X(4,J),J=1,NCOL)/2.0, 1.0, 4.44/
      DATA (X(5,J),J=1,NCOL)/2.0, 2.0, 5.55/
      DATA (X(6,J),J=1,NCOL)/2.0, 3.0, 6.66/
      DATA RLABEL/'NUMBER'/, CLABEL/' ', 'ALPHA1', 'BETA1', &
           'BETA2', 'GAMMA11', 'GAMMA12', 'DELTA', 'ZETA1', &
           'ETA1', 'ETA2', 'THETA11', 'THETA12'/

IDUMMY REG

1 A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, A2B3, X1, A1X1, A2X1, B1X1, 
B2X1, B3X1, A1B1X1, A1B2X1, A1B3X1, A2B1X1, A2B2X1, A2B3X1

2 A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1, A1B1X1, A1B2X1

3 A1 - A2, B1 - B3, B2 - B3, (A1 - A2)(B1 - B2), (A1 - A2)(B2 - B3), X1, (A1 - A2)X1, 
(B1 - B3)X1, (B2 - B3)X1, (A1 - A2)(B1 - B2)X1, (A1 - A2)(B2 - B3)X1
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!
      IDUMMY = 2
      CALL GRGLM (X, INDCL, NCLVAL, CLVAL, NVEF, INDEF, NREG, REG, &
                  IDUMMY=IDUMMY, NRMISS=NRMISS)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'NREG = ', NREG, '  NRMISS = ', NRMISS
      CALL WRRRL ('%/REG', REG, RLABEL, CLABEL, NROW, NREG, FMT='(F7.2)')
      END

Output

NREG =   11  NRMISS =   0

                                    REG
    ALPHA1    BETA1    BETA2  GAMMA11  GAMMA12    DELTA    ZETA1     ETA1
1     1.00     1.00     0.00     1.00     0.00     1.11     1.11     1.11
2     1.00     0.00     1.00     0.00     1.00     2.22     2.22     0.00
3     1.00     0.00     0.00     0.00     0.00     3.33     3.33     0.00
4     0.00     1.00     0.00     0.00     0.00     4.44     0.00     4.44
5     0.00     0.00     1.00     0.00     0.00     5.55     0.00     0.00
6     0.00     0.00     0.00     0.00     0.00     6.66     0.00     0.00

      ETA2  THETA11  THETA12
1     0.00     1.11     0.00
2     2.22     0.00     2.22
3     0.00     0.00     0.00
4     0.00     0.00     0.00
5     5.55     0.00     0.00
6     0.00     0.00     0.00
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RBEST

Selects the best multiple linear regression models.

Required Arguments
COV — NVAR by NVAR matrix containing the variance-covariance matrix or sum of squares and crossprod-

ucts matrix.  (Input) 
Only the upper triangle of COV is referenced. The last column of COV must correspond to the depen-
dent variable.

NOBS — Number of observations. NOBS must be greater than or equal to the number of variables plus 1 
(NVAR + 1), when using Adjusted R2 or Mallows Cp criteria 
(ICRIT > 1). (Input)

ICOEFX — Index vector of length NTBEST + 1 containing the locations in COEF of the first row for each of 
the best regressions.  (Output) 
Here, NTBEST is the total number of best regressions found and is given as follows:

For I = 1, 2, …, NTBEST, rows ICOEFX(I), ICOEFX(I) + 1, …, ICOEFX(I + 1) - 1 of COEF correspond 
to the I-th regression.

COEF — ICOEFX(NTBEST + 1) - 1 by 5 matrix containing statistics relating to the regression coefficients of 
the best models.  (Output) 
An upper bound on the number of rows in COEF is given as follows: 

Each row corresponds to a coefficient for a particular regression. The regressions are in order of 
increasing subset size. Within each subset size, the regressions are ordered so that the better regres-
sions appear first. The statistics in the columns are as follows: 

ICRIT NTBEST

<0 -NBEST * ICRIT

1 NBEST * (NVAR - 1)

2 NBEST

3 NBEST

ICRIT Upper Bound on the Number of Rows in COEF

<0 -NBEST * ICRIT * (1 - ICRIT)/2

1 NBEST * (NVAR - 1) * NVAR/2

2 NBEST * (NVAR - 1)

3 NBEST * (NVAR - 1)
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(Inferences are conditional on the selected models.)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (COV,2).
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOV = size (COV,1).

ICRIT — Criterion option.  (Input) 
Default: ICRIT = 1.

Subset sizes 1, 2, …, NSIZE are examined.
NBEST — Number of best regressions to be found.  (Input) 

If the R2 criterion is selected, the NBEST best regressions for each subset size examined are found. If the 
adjusted R2 or Mallows Cp criterion is selected, the NBEST best overall regressions are found.
Default: NBEST = 1.

NGOOD — Maximum number of good regressions of each subset size to be saved in finding the best 
regressions.  (Input) 
NGOOD must be greater than or equal to NBEST. Normally, NGOOD should be less than or equal to 10. It 
need not ever be larger than the maximum number of subsets for any subset size. Computing time 
required is inversely related to NGOOD.
Default: NGOOD = 10.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

Col. Description

1 Variable number

2 Coefficient estimate

3 Estimated standard error of the estimate

4 t-statistic for the test that the coefficient is zero

5 p-value for the two-sided t test

ICRIT Criterion NSIZE

< 0 R2 -ICRIT

1 R2 NVAR - 1

2 Adjusted R2 NVAR - 1

3 Mallows Cp NVAR - 1
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ICRITX — Index vector of length NSIZE + 1 containing the locations in CRIT of the first element for each 
subset size.  (Output) 
(See argument ICRIT for a definition of NSIZE. ) For I = 1, 2, …, NSIZE, element numbers 
ICRITX(I), ICRITX(I) + 1, …, ICRITX(I + 1) - 1 of CRIT correspond to the I-th subset size.

CRIT — Vector of length max(ICRITX(NSIZE + 1) - 1, NVAR - 1) containing in its first 
ICRITX(NSIZE + 1) - 1 elements the criterion values for each subset considered, in increasing subset 
size order.  (Output) 
An upper bound on the length of CRIT is max(NGOOD * NSIZE, NVAR - 1). Within each subset size, 
results are returned in monotone order according to the criterion value with the results for the better 
regressions given first.

IVARX — Index vector of length NSIZE + 1 containing the locations in INDVAR of the first element for 
each subset size.  (Output) 
For I = 1,2, …, NSIZE, element numbers IVARX(I), IVARX(I) + 1, …, IVARX (I + 1) - 1 of INDVAR 
correspond to the I-th subset size.

INDVAR — Index vector of length IVARX(NSIZE + 1) - 1 containing the variable numbers for each subset 
considered and in the same order as in CRIT.  (Output) 
An upper bound on the length of INDVAR is NGOOD * NSIZE * (NSIZE + 1)/2.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

FORTRAN 90 Interface
Generic: CALL RBEST (COV, NOBS, ICOEFX, COEF [, …])
Specific: The specific interface names are S_RBEST and D_RBEST.

FORTRAN 77 Interface
Single: CALL RBEST (NVAR, COV, LDCOV, NOBS, ICRIT, NBEST, NGOOD, IPRINT, ICRITX, CRIT, 

IVARX, INDVAR, ICOEFX, COEF, LDCOEF)
Double: The double precision name is DRBEST.

Description

Routine RBEST finds the best subset regressions for a regression problem with NVAR - 1 candidate indepen-
dent variables. Typically, the intercept is forced into all models and is not a candidate variable. In this case, a 
sum of squares and crossproducts matrix for the independent and dependent variables corrected for the 
mean is input for COV. Routine CORVC in Chapter 3, “Correlation”, can be used to compute the corrected sum 
of squares and crossproducts. IMSL routine RORDM in Chapter 19, “Utilities,” can be used to reorder this 
matrix, if required. Other possibilities are

IPRINT Action

0 No printing is performed.

1 Printing is performed.
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1. The intercept is not in the model. A raw (uncorrected) sum of squares and crossproducts matrix for the 
independent and dependent variables is required for COV. NOBS must be set to one greater than the 
number of observations. Routine MXTXF (IMSL MATH/LIBRARY) can be used to compute the raw 
sum of squares and crossproducts matrix.

2. An intercept is to be a candidate variable. A raw (uncorrected) sum of squares and crossproducts 
matrix for the constant regressor ( = 1), independent, and dependent variables is required for COV. In 
this case, COV contains one additional row and column corresponding to the constant regressor. This 
row/column contains the sum of squares and crossproducts of the constant regressor with the inde-
pendent and dependent variables. The remaining elements in COV are the same as in the previous case. 
NOBS must be set to one greater than the number of observations.

3. There are m variables to be forced into the models. A sum of squares and crossproducts matrix 
adjusted for the m variables is required. NOBS must be set to m less than the number of observations. 
Routine RCOV can be used to compute the adjusted sum of squares and crossproducts matrix. This is 
accomplished by a regression of the candidate variables on the variables to be forced into the models. 
The error sum of squares and crossproducts matrix, SCPE from RCOV, is the input to COV in routine 
RBEST.

“Best” is defined, on option, by one of three criteria:

1. R2 (in percent) 

2.  (adjusted R2 in percent)

Note that maximizing this criterion is equivalent to minimizing the residual mean square, 
SSEp/(n - p).

3. Mallows’ Cp statistic 

Here, n is NOBS, and SST is the total sum of squares. SSEp is the error sum of squares in a model con-
taining p regression parameters including β0 (or p - 1 of the NVAR - 1 candidate variables). 

is the error mean square from the model with all NVAR - 1 candidate variables in the model. Hocking 
(1972) and Draper and Smith (1981, pages 296-302) discuss these criteria. 
Routine RBEST is based on the algorithm of Furnival and Wilson (1974), this algorithm finds NGOOD 
candidate regressions for each possible subset size. These regressions are used to identify a set of best 
regressions. In large problems, many regressions are not computed. They may be rejected without 
computation based on results for other subsets, this yields an efficient technique for considering all 
possible regressions.
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Comments
1. Workspace may be explicitly provided, if desired, by use of R2EST/DR2EST. The reference is:

CALL R2EST (NVAR, COV, LDCOV, NOBS, ICRIT, NBEST, NGOOD, IPRINT, ICRITX, CRIT, IVARX, 
INDVAR, ICOEFX, COEF, LDCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length NVAR * (2 * NGOOD + 6) + (2 * NVAR3 + 4 * NVAR)/3. The first 
NVAR - 1 locations indicate which variables are in the full model. If IWK(I) = 0, then variable I 
is in the full model, otherwise, the variable has been dropped.

IWK — Integer work vector of length 3 * NVAR2 + 6 * NVAR.
2. Informational errors

Programming Notes

Routine RBEST can save considerable CPU time over explicitly computing all possible regressions. However, 
the routine has some limitations that can cause unexpected results for users that are unaware of the limita-
tions of the software.

1. For NVAR > - log2(ɛ) where ɛ is AMACH(4),  (See the section “Machine-Dependent Constants” in the Refer-
ence Material), some results can be incorrect. This limitation arises because the possible models 
indicated by the model numbers 1, 2, …, 2NVAR−1, are stored as floating-point values, for sufficiently 
large NVAR, the model numbers cannot be stored exactly. On many computers, this means  S_RBEST 
(for NVAR > 25) and D_RBEST (for NVAR > 50) can produce incorrect results.

2. Routine RBEST eliminates some subsets of candidate variables by obtaining lower bounds on the error 
sum of squares from fitting larger models. First, the full model containing all NVAR - 1 is fit sequen-
tially using a forward stepwise procedure in which one variable enters the model at a time, and 
criterion values and model numbers for all the candidate variables that can enter at each step are 
stored. If linearly dependent variables are removed from the full model, error code 1 is issued. If this 
error is issued, some submodels that contain variables removed from the full model because of linear 
dependency can be overlooked, if they have not already been identified during the initial forward 
stepwise procedure. If error code 1 is issued and you want the variables that were removed from the 
full model to be considered in smaller models, you may want to rerun the program with a set of lin-
early independent variables.

Example

This example uses a data set from Draper and Smith (1981, pages 629-630). This data set is input to the 
matrix X by routine GDATA (see Chapter 19, “Utilities”). The first four columns contain the independent vari-
ables, and the last column contains the dependent variable. Routine CORVC in Chapter 3, “Correlation,” is 
invoked to compute the corrected sum of squares and crossproducts matrix. Routine RBEST is then invoked 

to find the best regression for each of the four subset sizes using the R2 criterion.

      USE RBEST_INT

Type Code Description

3 1 At least one variable is deleted from the full model because COV is singular.

4 3 No variables can enter any model.
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      USE GDATA_INT
      USE CORVC_INT

      IMPLICIT   NONE
      INTEGER    LDCOEF, LDCOV, LDX, NBEST, NGOOD, NSIZE, NTBEST, NVAR
      PARAMETER  (LDX=13, NBEST=1, NGOOD=10, NVAR=5, &
                 LDCOEF=NBEST*(NVAR-1)*NVAR/2, LDCOV=NVAR, &
                 NSIZE=NVAR-1, NTBEST=NBEST*(NVAR-1))
!
      INTEGER    ICOEFX(NTBEST+1), ICOPT, ICRIT, ICRITX(NSIZE+1), &
                 INCD(1,1), INDVAR(NGOOD*NSIZE*(NSIZE+1)/2), &
                 IPRINT, IVARX(NSIZE+1), NMISS, NOBS, NROW, NVAR1
      REAL       COEF(LDCOEF,5), COV(LDCOV,NVAR), CRIT(NGOOD*NSIZE), &
                 SUMWT, X(LDX,NVAR), XMEAN(NVAR)
!
      CALL GDATA (5, X, NROW, NVAR1)
!
      ICOPT = 1
      CALL CORVC (NVAR, X, COV, ICOPT=ICOPT, NOBS=NOBS)
!
      IPRINT = 1
      CALL RBEST (COV, NOBS, ICOEFX, COEF, IPRINT=IPRINT)
!
      END

Output

Regressions with   1 variable(s) (R-squared)
        Criterion         Variables
         67.5              4
         66.6              2
         53.4              1
         28.6              3

Regressions with   2 variable(s) (R-squared)
        Criterion         Variables
         97.9              1  2
         97.2              1  4
         93.5              3  4
         68.0              2  4
         54.8              1  3

Regressions with   3 variable(s) (R-squared)
        Criterion         Variables
         98.2              1  2  4
         98.2              1  2  3
         98.1              1  3  4
         97.3              2  3  4

Regressions with   4 variable(s) (R-squared)
        Criterion         Variables
         98.2              1  2  3  4

         Best Regression with    1 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
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        4      -0.7382          0.1546       -4.775   0.0006
         Best Regression with    2 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
        1        1.468          0.1213        12.10   0.0000
        2        0.662          0.0459        14.44   0.0000

         Best Regression with    3 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
        1        1.452          0.1170        12.41   0.0000
        2        0.416          0.1856         2.24   0.0517
        4       -0.237          0.1733        -1.36   0.2054

         Best Regression with    4 variable(s) (R-squared)
    Variable  Coefficient  Standard Error  t-statistic  p-value
        1        1.551          0.7448        2.083   0.0708
        2        0.510          0.7238        0.705   0.5009
        3        0.102          0.7547        0.135   0.8959
        4       -0.144          0.7091       -0.203   0.8441
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RSTEP

Builds multiple linear regression models using forward selection, backward selection, or stepwise selection.

Required Arguments
COV — NVAR by NVAR matrix containing the variance-covariance matrix or sum of squares and crossprod-

ucts matrix.  (Input) 
Only the upper triangle of COV is referenced.

NOBS — Number of observations.  (Input)
AOV — Vector of length 13 containing statistics relating to the analysis of variance for the final model in 

this invocation.  (Output)

COEF — NVAR - 1 by 5 matrix containing statistics relating to the regression coefficients for the final 
model in this invocation.  (Output) 
The rows correspond to the NVAR - 1 variables with LEVEL(I) nonnegative, i.e., all variables but the 
dependent variable. The rows are in the same order as the variables in COV except that the dependent 
variable is excluded. Each row corresponding to a variable not in the model is for the model supposing 
the additional variable was in the model. 

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)

Col. Description

1 Coefficient estimate

2 Estimated standard error of the coefficient estimate

3 t-statistic for the test that the coefficient is zero
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COVS — NVAR by NVAR matrix that results after COV has been swept on the columns corresponding to the 
variables in the model.  (Output, if INVOKE = 0 or 1; Input/Output, if INVOKE = 2 or 3) 
The estimated variance-covariance matrix of the estimated regression coefficients in the final model 
can be obtained by extracting the rows and columns of COVS corresponding to the independent vari-
ables in the final model and multiplying the elements of this matrix by AOV(8). If COV is not needed, 
COV and COVS can occupy the same storage locations.

Optional Arguments
INVOKE — Invocation option.  (Input) 

Default: INVOKE = 0.

NVAR — Number of variables.  (Input)
Default: NVAR = size (COV,2).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

LEVEL — Vector of length NVAR containing levels of priority for variables entering and leaving the regres-
sion.  (Input) 
LEVEL(I) = -1 means the I-th variable is the dependent variable. LEVEL(I) = 0 means the I-th vari-
able is never to enter into the model. Other variables must be assigned a positive value to indicate 
their level of entry into the model. A variable can enter the model only after all variables with smaller 
nonzero levels of entry have entered. Similarly, a variable can only leave the model after all variables 
with higher levels of entry have left. Variables with the same level of entry compete for entry (deletion) 
at each step.

NFORCE — Variables with levels 1, 2, …, NFORCE are forced into the model as the independent variables.  
(Input)
Default: NFORCE = 0.

NSTEP — Step length option.  (Input) 
For nonnegative NSTEP, NSTEP steps are taken. NSTEP = - 1 means stepping continues until comple-
tion.
Default: NSTEP = -1.

4 p-value for the two-sided t test

5 Variance inflation factor. The square of the multiple correlation 
coefficient for the I-th regressor after all others can be obtained 
from COEF(I, 5) by the formula 1.0 - 1.0/COEF(I, 5).

INVOKE Action

0 This is the only invocation of RSTEP for this variance-covari-
ance matrix. Initialization, stepping, and wrap-up 
computations are performed.

1 This is the first invocation of RSTEP, and additional calls to 
RSTEP will be made. Initialization and stepping is performed.

2 This is an intermediate invocation of RSTEP and stepping is 
performed.

3 This is the final invocation of RSTEP and stepping is performed.
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ISTEP — Stepping option.  (Input)
Default: ISTEP = -1.

PIN — Largest p-value for entering variables.  (Input) 
Variables with p-values less than PIN may enter the model. A common choice is PIN = 0.05.
Default: PIN = .05.

POUT — Smallest p-value for removing variables.  (Input) 
Variables with p-values greater than POUT may leave the model. POUT must be greater or equal to PIN. 
A common choice is POUT = 0.10 (or 2 * PIN).
Default: POUT = .10.

TOL — Tolerance used in determining linear dependence.  (Input) 
TOL = 100 * AMACH (4) is a common choice. See documentation for AMACH in the Reference Mate-
rial.
Default: TOL = 1.e-5 for single precision and 2.d – 14 for double precision.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

SCALE — Vector of length NVAR containing the initial diagonal entries in COV.  (Output, if INVOKE = 0 or 
1; Input, if INVOKE = 2 or 3)

HIST — Vector of length NVAR containing the recent history of variables.  (Output, if INVOKE = 0 or 1; 
Input/Output, otherwise) 

ISTEP Action

-1 An attempt is made to remove a variable from the model (backward step). A 
variable is removed if its p-value exceeds POUT. During initialization, all can-
didate independent variables enter the model.

1 An attempt is made to add a variable to the model (forward step). A variable 
is added if its p-value is less than PIN. During initialization, only the forced 
variables enter the model.

0 A backward step is attempted. If a variable is not removed, a forward step is 
attempted. This is a stepwise step. Only the forced variables enter the model 
during initialization.

IPRINT Action

0 No printing is performed.

1 Printing is performed on the final invocation.

2 Printing is performed after each step and on the final 
invocation.

HIST(I) Meaning

k > 0 I-th variable was added to the model during the k-th step.

k < 0 I-th variable was deleted from the model during the k-th step.

0 I-th variable has never been in the model.

0.5 I-th variable was added into the model during initialization.
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IEND — Completion indicator.  (Output) 

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOVS — Leading dimension of COVS exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOVS = size (COVS,1).

FORTRAN 90 Interface
Generic: CALL RSTEP (COV, NOBS, AOV, COEF, COVS [, …])
Specific: The specific interface names are S_RSTEP and D_RSTEP.

FORTRAN 77 Interface
Single: CALL RSTEP (INVOKE, NVAR, COV, LDCOV, LEVEL, NFORCE, NSTEP, ISTEP, NOBS, PIN, 

POUT, TOL, IPRINT, SCALE, HIST, IEND, AOV, COEF, LDCOEF, COVS, LDCOVS)
Double: The double precision name is DRSTEP.

Description

Routine RSTEP builds a multiple linear regression model using forward selection, backward selection, or for-
ward stepwise (with a backward glance) selection. The routine RSTEP is designed so that the user can 
monitor, and perhaps change, the variables added (deleted) to (from) the model after each step. In this case, 
multiple calls to RSTEP (with INVOKE = 1, 2, 2, …, 3) are made. Alternatively, RSTEP can be invoked once 
(with INVOKE = 0) in order to perform the stepping until a final model is selected. 

Levels of priority can be assigned to the candidate independent variables. All variables with a priority level 
of 1 must enter the model before any variable with a priority level of 2. Similarly, variables with a level of 2 
must enter before variables with a level of 3, etc.

Variables can also be forced into the model. If equal levels of priority are to be assumed, the levels of priority 
can all be set to 1. 

Typically, the intercept is forced into all models and is not a candidate variable. In this case, a sum of squares 
and crossproducts matrix for the independent and dependent variables corrected for the mean is input for 
COV. Routine CORVC in Chapter 3, “Correlation” can be used to compute the corrected sum of squares and 
crossproducts. Routine RORDM in Chapter 19, “Utilities” can be used to reorder this matrix, if required. Other 
possibilities are

1. The intercept is not in the model. A raw (uncorrected) sum of squares and crossproducts matrix for the 
independent and dependent variables is required for COV. NOBS must be set to one greater than the 
number of observations. IMSL routine MXTXF (IMSL MATH/LIBRARY) can be used to compute the 
raw sum of squares and crossproducts matrix.

IEND Meaning

0 Additional steps may be possible.

1 No additional steps are possible.
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2. An intercept is to be a candidate variable. A raw (uncorrected) sum of squares and crossproducts 
matrix for the constant regressor (= 1), independent and dependent variables is required for COV. In 
this case, COV contains one additional row and column corresponding to the constant regressor. This 
row/column contains the sum of squares and crossproducts of the constant regressor with the inde-
pendent and dependent variables. The remaining elements in COV are the same as in the previous case. 
NOBS must be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). Routine RSTEP uses sweeps of COV to move 
variables in and out of the model (Hemmerle 1967, Chapter 3). The SWEEP operator discussed by Goodnight 
(1979) is used. A description of the stepwise algorithm is given also by Kennedy and Gentle (1980, pages 
335-340). The advantage of stepwise model building over all possible regressions (see routine RBEST) is that 
it is less demanding computationally when the number of candidate independent variables is very large. 

However, there is no guarantee that the model selected will be the best model (highest R2) for any subset size 
of independent variables.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2TEP/DR2TEP. The reference is:

CALL R2TEP (INVOKE, NVAR, COV, LDCOV, LEVEL, NFORCE, NSTEP, ISTEP, NOBS, PIN, POUT, 
TOL, IPRINT, SCALE,HIST, IEND, AOV, COEF, LDCOEF, COVS, LDCOVS, SWEPT, IWK)

The additional arguments are as follows:

SWEPT — Work vector of length NVAR with information to indicate the independent variables in 
the model.  (Output) 
SWEPT(I) = 1.0 indicates that independent variable I is in the model. Otherwise, 
SWEPT(I) = -1.0. Routine RSUBM can be called with the arguments COVS and SWEPT to obtain 
the part of COVS pertaining to the current model.

IWK — Integer work vector of length 2 * NVAR.
2. Informational errors

Examples

Example 1

Both examples use a data set from Draper and Smith (1981, pages 629-630). A corrected sum of squares and 
crossproducts matrix for this data is given in the DATA statement and can be computed using routine CORVC 
in Chapter 3, “Correlation”. The first four columns are for the independent variables and the last column is for 
the dependent variable. Here, RSTEP is invoked using the backward stepping option.

      USE RSTEP_INT

      IMPLICIT   NONE
      INTEGER    LDCOEF, LDCOV, LDCOVS, NVAR

Type Code Description

3 1 Based on TOL, there are linear dependencies among the variables to be 
forced.

4 2 No variables entered the model. Elements of AOV are set to NaN.
RSTEP         Chapter 2: Regression      256



      PARAMETER  (NVAR=5, LDCOEF=NVAR, LDCOV=NVAR, LDCOVS=NVAR)
!
      INTEGER    IEND, IPRINT, LEVEL(NVAR), NOBS
      REAL       AOV(13), COEF(LDCOEF,5), COV(LDCOV,NVAR), &
                 COVS(LDCOVS,NVAR), HIST(NVAR), SCALE(NVAR)
!
      DATA COV/415.231, 251.077, -372.615, -290.000, 775.962, 251.077, &
           2905.69, -166.538, -3041.00, 2292.95, -372.615, -166.538, &
           492.308, 38.0000, -618.231, -290.000, -3041.00, 38.0000, &
           3362.00, -2481.70, 775.962, 2292.95, -618.231, -2481.70, &
           2715.76/
      DATA LEVEL/4*1, -1/
!
      NOBS   = 13
      IPRINT = 2
      CALL RSTEP (COV, NOBS, AOV, COEF, COVS, IPRINT=IPRINT)
!
      END

Output

BACKWARD ELIMINATION
STEP 0:  4 variable(s) entered.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      98.238     97.356           2.446

              * * * Analysis of Variance * * *
                       Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        4      2667.9       667.0    111.480    0.0000
Error             8        47.9         6.0
Total            12      2715.8

              * * * Inference on Coefficients * * *
               (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.551      0.7448        2.082     0.0709        38.5
       2       0.510      0.7238        0.704     0.5012       254.4
       3       0.102      0.7547        0.135     0.8963        46.9
       4      -0.144      0.7091       -0.204     0.8437       282.5

STEP 1 :  Variable 3 removed.
Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      98.234     97.645           2.309

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        3      2667.8       889.3    166.835    0.0000
Error             9        48.0         5.3
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Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.452      0.1170       12.410     0.0000        1.07
       2       0.416      0.1856        2.242     0.0517       18.78
       4      -0.237      0.1733       -1.365     0.2054       18.94

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       3       0.102      0.7547        0.135     0.8963       46.87

STEP 2 :  Variable 4 removed.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      97.868     97.441           2.406

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        2      2657.9      1328.9    229.502    0.0000
Error            10        57.9         5.8
Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.468      0.1213       12.105     0.0000        1.06
       2       0.662      0.0459       14.442     0.0000        1.06

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       3       0.250      0.1847        1.354     0.2089        3.14
       4      -0.237      0.1733       -1.365     0.2054       18.94

* * * Backward Elimination Summary * * *
        Variable    Step Removed
               3             1
               4             2

Example 2

This example uses the data set in Example 1. Here, RSTEP is invoked using the forward stepwise option.

      USE RSTEP_INT

      IMPLICIT   NONE
      INTEGER    LDCOEF, LDCOV, LDCOVS, NVAR
      PARAMETER  (NVAR=5, LDCOEF=NVAR, LDCOV=NVAR, LDCOVS=NVAR)
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!
      INTEGER    IEND, IPRINT, ISTEP, LEVEL(NVAR), NOBS
      REAL       AOV(13), COEF(LDCOEF,5), COV(LDCOV,NVAR), &
                 COVS(LDCOVS,NVAR), HIST(NVAR), SCALE(NVAR)
!
      DATA COV/415.231, 251.077, -372.615, -290.000, 775.962, 251.077, &
           2905.69, -166.538, -3041.00, 2292.95, -372.615, -166.538, &
           492.308, 38.0000, -618.231, -290.000, -3041.00, 38.0000, &
           3362.00, -2481.70, 775.962, 2292.95, -618.231, -2481.70, &
           2715.76/
      DATA LEVEL/4*1, -1/
!
      ISTEP  = 1
      NOBS   = 13
      IPRINT = 2
      CALL RSTEP (COV, NOBS, AOV, COEF, COVS, ISTEP=ISTEP, IPRINT=IPRINT)
!
      END

Output

FORWARD SELECTION
STEP 0:  No variables entered.

          * * * Statistics for Variables Not in the Model * * *
                  Coef.    Standard  t-statistic   Prob. of    Variance
   Variable    Estimate       Error     to enter   Larger t   Inflation
          1       1.869      0.5264        3.550     0.0046           1
          2       0.789      0.1684        4.686     0.0007           1
          3      -1.256      0.5984       -2.098     0.0598           1
          4      -0.738      0.1546       -4.775     0.0006           1

STEP 1 :  Variable 4 entered.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      67.454     64.496           8.964

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        1      1831.9      1831.9     22.799    0.0006
Error            11       883.9        80.4
Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       4      -0.738      0.1546       -4.775     0.0006        1.00

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
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       1       1.440      0.1384       10.403     0.0000        1.06
       2       0.311      0.7486        0.415     0.6867       18.74
       3      -1.200      0.1890       -6.348     0.0001        1.00

    STEP 2 :  Variable 1 entered.

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      97.247     96.697           2.734

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        2      2641.0      1320.5    176.636    0.0000
Error            10        74.8         7.5
Total            12      2715.8

                  * * * Inference on Coefficients * * *
                   (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.440      0.1384       10.403     0.0000        1.06
       4      -0.614      0.0486      -12.622     0.0000        1.06

          * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       2       0.416      0.1856        2.242     0.0517       18.78
       3      -0.410      0.1992       -2.058     0.0697        3.46

* * * Forward Selection Summary * * *
       Variable    Step Entered
              1             2
              4             1

Example 3

For an extended version of Example 2 that in addition computes the intercept and standard error for the final 
model from RSTEP, see Example 2 for routine RSUBM.
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GSWEP

Performs a generalized sweep of a row of a nonnegative definite matrix.

Required Arguments
KROW — Row/column number to be swept.  (Input)
A — N by N nonnegative definite matrix whose row KROW is to be swept.  (Input/Output) 

Only the upper triangle of A is referenced.

Optional Arguments
N — Order of the matrix to be swept.  (Input)

Default: N = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

IREV — Reversibility option.  (Input) 
Default: IREV = 0.

TOL — Tolerance used in determining linear dependence.  (Input) 
TOL = 100 * AMACH(4) is a common choice. See documentation for routine AMACH in the Reference Mate-
rial.
Default: TOL = 1.e-5 for single precision and 2.d –14 for double precision.

SCALE — Vector of length N containing the diagonal scaling matrix used in the tolerance check.  (Input) 
A common choice for SCALE(I) is the I-th diagonal element of A before any calls to GSWEP have been 
made. If TOL = 0.0, SCALE is not referenced and can be a vector of length one.

SWEPT — Vector of length N with information to indicate what has and has not been swept.  (Input/Out-
put) 
On the first call to GSWEP all elements must equal -1.0. On output, SWEPT(KROW) = 1.0 if the sweep 
was successful. If a linear dependence is declared, SWEPT(KROW) remains equal to -1.0.

FORTRAN 90 Interface
Generic: CALL GSWEP (KROW, A [, …])
Specific: The specific interface names are S_GSWEP and D_GSWEP.

FORTRAN 77 Interface
Single: CALL GSWEP (KROW, N, A, LDA, IREV, TOL, SCALE, SWEPT)

IREV Action When Linear Dependence Is Declared

0 Elements of row and column KROW of A are set to 0.0. Reversibility of the generalized 
sweep operator is lost.

1 Elements of row and column KROW of A are left unchanged. Reversibility of the gener-
alized sweep operator is maintained, but some post processing by the user is required. 
See Comments.
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Double: The double precision name is DGSWEP.

Description

Routine GSWEP computes an upper triangular generalized sweep of a nonnegative definite matrix. The ver-
satility of the SWEEP operator for statistical computations, in particular for regression computations, is 
discussed by Goodnight (1979). 

Routine GSWEP is based on UTG2SWEEP and RUTG2SWEEP described by Goodnight (1979, pages 157-158). 
(A misprint appears twice in “Step 5”, page 157 of Goodnight’s article. The “aij” should be replaced by “aik.”) 
The test for linear dependence is the same as that given by Clarke (1982).

Comments
Say we wish to sweep k different rows of the matrix A. For purposes of discussion, let these be rows 
1, 2, …, k of A. Partition A into its first k rows and columns and the remainder,

For a nonsingular A11, successive invocations of GSWEP with A and KROW equal to 1, 2, …, k yields

Only the elements in the upper triangle of A are referenced. Thus, the elements in the lower triangles of the 
symmetric matrices

are not returned. For a singular A11and IREV equal to zero, a symmetric g2 inverse of A11, denoted by

is used. For a singular A11and IREV not equal to zero, the first k rows of the swept A are not the same as for 
the IREV equal to one case. However,

can be obtained from the output A as follows:

and
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H is the Hermite canonical form (also referred to as the Hermite normal form or a rowechelon form) of A11.

Example

We consider the correlation matrix for the first three regressors from the example used by Berk (1976) and 
discussed by Frane (1977). The matrix is “nearly” singular. The rows of the correlation matrix are swept 
sequentially with KROW equal 1, 2, 3. With a tolerance of 0.001, the sweeps for 1 and 2 are successful. When a 
sweep on row 3 is attempted a linear dependence is declared. This is because

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDA, N
      PARAMETER  (N=3, LDA=N)
!
      INTEGER    ISETNG, KROW
      REAL       A(LDA,N), SCALE(N), SQRT, SWEPT(N), TOL
      INTRINSIC  SQRT
!
      A(1,1) = 1.0
      A(1,2) = SQRT(0.99)
      A(1,3) = 0.1*SQRT(0.99)
      A(2,2) = 1.0
      A(2,3) = 0.0
      A(3,3) = 1.0
      TOL    = 0.001
!                                 Copy diagonal of A to SCALE.
      CALL SCOPY (N, A(1:,1), LDA+1, SCALE, 1)
!                                 Initialize elements of SWEPT to -1.
      SWEPT = -1.0
      ISETNG = 4
      CALL WROPT (-6, ISETNG, 1)
      CALL WRRRN ('A', A, ITRING=1)
      CALL WRRRN ('SWEPT', SWEPT)
      SWEPT = -1.0
      DO 10  KROW=1, 3
         CALL GSWEP (KROW, A, tol=tol, scale=scale, swept=swept)
         CALL WRRRN ('A', A, ITRING=1)
         CALL WRRRN ('SWEPT', SWEPT)
   10 CONTINUE
      END
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Output

                A    
          1         2         3
1   1.00000   0.99499   0.09950
2             1.00000   0.00000
3                       1.00000

   SWEPT
1  -1.00000
2  -1.00000
3  -1.00000

                A
          1         2         3
1   1.00000   0.99499   0.09950
2             0.01000  -0.09900
3                       0.99010

   SWEPT
1   1.00000
2  -1.00000
3  -1.00000

                A
          1         2         3
1   100.000   -99.499     9.950
2             100.000    -9.900
3                         0.010

   SWEPT
1   1.00000
2   1.00000
3  -1.00000

                A
          1         2         3
1   100.000   -99.499     0.000
2             100.000     0.000
3                         0.000

   SWEPT
1   1.00000
2   1.00000
3  -1.00000
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RSUBM

Retrieves a symmetric submatrix from a symmetric matrix.

Required Arguments
A — NA by NA symmetric matrix.  (Input) 

Only the upper triangle of A is referenced.
SWEPT — Vector of length NA.  (Input) 

Element A(I, J) is included in submatrix ASUB if and only if SWEPT(I) > 0.0 and SWEPT(J) > 0.0.
NASUB — Order of submatrix ASUB.  (Output) 

NASUB equals the number of elements in SWEPT that are greater than zero.
ASUB — NASUB by NASUB symmetric matrix containing a submatrix of A.  (Output) 

If A is not needed, ASUB and A can share the same storage locations.

Optional Arguments
NA — Order of matrix A.  (Input)

Default: NA = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.  

(Input)
Default: LDA = size (A,1).

LDASUB — Leading dimension of ASUB exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDASUB = size (ASUB,1).

FORTRAN 90 Interface
Generic: CALL RSUBM (A, SWEPT, NASUB, ASUB [, …])
Specific: The specific interface names are S_RSUBM and D_RSUBM.

FORTRAN 77 Interface
Single: CALL RSUBM (NA, A, LDA, SWEPT, NASUB, ASUB, LDASUB)
Double: The double precision name is DRSUBM.

Description

Routine RSUBM retrieves a symmetric submatrix from a symmetric matrix A. If elements i and j of the input 
vector SWEPT are greater than zero, then the ij-th element of A is output in the submatrix ASUB. Otherwise, 
the ij-th element of A will not be included in ASUB. (Here, i = 1, 2, …, NA, and j = 1, 2, …, NA, where NA is the 
order of A.) 

Routine RSUBM can be useful in conjunction with two routines, GSWEP and RSTEP. The routine RSUBM can be 
used after routine GSWEP in order to retrieve the submatrix of A that corresponds to the rows/columns that 
have been successfully swept. In this case, the SWEPT vector output from GSWEP can be used as the input for 
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the argument SWEPT in RSUBM. Also, RSUBM can be used after routine RSTEP in order to retrieve the subma-
trix of COVS that corresponds to the independent variables in the final model. In this case, the HIST vector 
output from RSTEP can be used as the input for the argument SWEPT in RSUBM.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2UBM/DR2UBM. The reference is:

CALL R2UBM (NA, A, LDA, SWEPT, NASUB, ASUB, LDASUB, IWK)
The additional argument is:

IWK — Vector of length NASUB.
2. Routine RSUBM can be used after invoking routines GSWEP and RSTEP in order to retrieve the subma-

trix for the variables in the model.

Examples

Example 1

The 2 × 2 symmetric submatrix ASUB is retrieved from rows and columns 1 and 4 of the 4 × 4 symmetric 
matrix A.

      USE RSUBM_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDA, LDASUB, NA
      PARAMETER  (LDASUB=2, NA=4, LDA=NA)
!
      INTEGER    NASUB
      REAL       A(LDA,NA), ASUB(LDASUB,LDASUB), SWEPT(NA)
!
      DATA SWEPT/1.0, -1.0, -1.0, 1.0/
      DATA A/10.0, 20.0, 40.0, 70.0, 20.0, 30.0, 50.0, 80.0, 40.0,&
          50.0, 60.0, 90.0, 70.0, 80.0, 90.0, 100.0/
!
      CALL RSUBM (A, SWEPT, NASUB, ASUB)
      CALL WRRRN ('ASUB', ASUB)
      END

Output

      ASUB
        1       2
1    10.0    70.0
2    70.0   100.0
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Example 2

This example invokes RSUBM after routine RSTEP in order to retrieve the submatrix of COVS that corresponds 
to the independent variables in the final stepwise model. With this submatrix, routine BLINF (IMSL 
MATH/LIBRARY) is used to compute the estimated standard deviation for the intercept in the final model.

A data set from Draper and Smith (1981, pages 629-630) is used. The means and the corrected sum of squares 
and crossproducts matrix for this data are given in the DATA statements. They can be computed using routine 
CORVC in Chapter 3, “Correlation”. The first four entries in XMEAN and the first four columns of COV corre-
spond to the independent variables, the last entry in XMEAN and the last column of COV correspond to the 
dependent variable.

After RSTEP is invoked to obtain a model, the intercept is computed using the formula

where k is the number of independent variables in the final model. The estimated standard deviation of the 
intercept is computed using the formula

where s2 is the error mean square from the fit (stored in AOV(8)), n is the number of observations,  is the sub-
vector of means for the independent variables in the final model (in this case the first mean and the fourth 
mean), and A is the submatrix (in this case with rows and columns 1 and 4) of the matrix COVS that is output 
by RSTEP.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDCOEF, LDCOV, LDCOVS, NVAR
      PARAMETER  (NVAR=5, LDCOEF=NVAR, LDCOV=NVAR, LDCOVS=NVAR)
!
      INTEGER    I, IEND, INVOKE, IPRINT, ISTEP, J, LEVEL(NVAR), &
                 NFORCE, NIND, NOBS, NOUT, NSTEP
      REAL       AOV(13), B0, COEF(LDCOEF,5), &
                 COV(LDCOV,NVAR), COVS(LDCOVS,NVAR), HIST(NVAR), PIN, &
                 POUT, SCALE(NVAR), SEB0, SQRT, TOL, XMEAN(NVAR)
      INTRINSIC  SQRT
!
      DATA COV/415.231, 251.077, -372.615, -290.000, 775.962, 251.077, &
           2905.69, -166.538, -3041.00, 2292.95, -372.615, -166.538, &
           492.308, 38.0000, -618.231, -290.000, -3041.00, 38.0000, &
           3362.00, -2481.70, 775.962, 2292.95, -618.231, -2481.70, &
           2715.76/
      DATA XMEAN/7.46154, 48.1538, 11.7692, 30.0000, 95.4231/
      DATA LEVEL/4*1, -1/
!
      J = 0
      ISTEP  = 1
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      NOBS   = 13
      IPRINT = 1
      CALL RSTEP (COV, NOBS, AOV, COEF, COVS, NVAR=NVAR, ISTEP=ISTEP, &
      IPRINT=IPRINT, HIST=HIST)
!                                 Compute intercept
      B0 = XMEAN(NVAR)
      DO 10  I=1, NVAR - 1
         IF (HIST(I) .GT. 0.0) THEN
            B0       = B0 - XMEAN(I)*COEF(I,1)
            J        = J + 1
            XMEAN(J) = XMEAN(I)
         END IF
   10 CONTINUE
!                                 Compute standard error of intercept
      CALL RSUBM (COVS, HIST, NIND, COVS)
      SEB0 = 1.0/NOBS + BLINF(COVS, XMEAN, XMEAN, NRA=NIND, NCA=NIND)
      SEB0 = SQRT(AOV(8)*SEB0)
!                                 Print intercept and standard error
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) ' '
      WRITE (NOUT,99999) 'Intercept ', B0
      WRITE (NOUT,99999) 'Std. Error', SEB0
99999 FORMAT (1X, A, F10.3)
!
      END

Output

FORWARD SELECTION

Dependent  R-squared   Adjusted  Est. Std. Dev.
Variable   (percent)  R-squared  of Model Error
       5      97.247     96.697           2.734

                 * * * Analysis of Variance * * *
                         Sum of        Mean             Prob. of
Source           DF     Squares      Square  Overall F  Larger F
Regression        2      2641.0      1320.5    176.636    0.0000
Error            10        74.8         7.5
Total            12      2715.8

                * * * Inference on Coefficients * * *
                (Conditional on the Selected Model)
               Coef.    Standard                Prob. of    Variance
Variable    Estimate       Error  t-statistic   Larger t   Inflation
       1       1.440      0.1384       10.403     0.0000        1.06
       4      -0.614      0.0486      -12.622     0.0000        1.06

        * * * Statistics for Variables Not in the Model * * *
               Coef.    Standard  t-statistic   Prob. of    Variance
Variable    Estimate       Error     to enter   Larger t   Inflation
       2       0.416      0.1856        2.242     0.0517        18.7
       3      -0.410      0.1992       -2.058     0.0697        3.46
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* * * Forward Selection Summary * * *
        Variable    Step Entered
               1             2
               4             1

Intercept    103.097
Std. Error     2.124
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RCURV

Fits a polynomial curve using least squares.

Required Arguments
XDATA — Vector of length NOBS containing the x values.  (Input)
YDATA — Vector of length NOBS containing the y values.  (Input)
B — Vector of length NDEG + 1 containing the coefficients 

(Output) 
The fitted polynomial is

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (XDATA,1).
NDEG — Degree of polynomial.  (Input)

Default: NDEG = size (B,1) – 1. 
SSPOLY — Vector of length NDEG + 1 containing the sequential sums of squares.  (Output) 

SSPOLY(1) contains the sum of squares due to the mean. For i = 1, 2, …, NDEG, SSPOLY(i + 1) contains 
the sum of squares due to xi adjusted for the mean, x, x2, …, and xi−1.

STAT — Vector of length 10 containing statistics described below.  (Output) 
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FORTRAN 90 Interface
Generic: CALL RCURV (XDATA, YDATA, B [, …])
Specific: The specific interface names are S_RCURV and D_RCURV.

FORTRAN 77 Interface
Single: CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT)
Double: The double precision name is DRCURV.

Description

Routine RCURV computes estimates of the regression coefficients in a polynomial (curvilinear) regression 
model. In addition to the computation of the fit, RCURV computes some summary statistics. Sequential sums 
of squares attributable to each power of the independent variable (stored in SSPOLY) are computed. These 
are useful in assessing the importance of the higher order powers in the fit. Draper and Smith (1981, pages 
101-102) and Neter and Wasserman (1974, pages 278-287) discuss the interpretation of the sequential sums 

of squares. The statistic R2 (stored in STAT(5)) is the percentage of the sum of squares of y about its mean 
explained by the polynomial curve. Specifically,

where

is the fitted y value at xi and 

i Statistics

1 Mean of x

2 Mean of y

3 Sample variance of x

4 Sample variance of y

5 R-squared (in percent)

6 Degrees of freedom for regression

7 Regression sum of squares

8 Degrees of freedom for error

9 Error sum of squares

10 Number of data points (x, y) containing NaN (not a number) as a x 
or y value
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(stored in STAT(2)) is the mean of y. This statistic is useful in assessing the overall fit of the curve to the data. 

R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a perfect fit to the data.

Routine RCURV computes estimates of the regression coefficients in a polynomial model using orthogonal 
polynomials as the regressor variables. This reparameterization of the polynomial model in terms of orthog-
onal polynomials has the advantage that the loss of accuracy resulting from forming powers of the x-values 
is avoided. All results are returned to the user for the original model.

The routine RCURV is based on the algorithm of Forsythe (1957). A modification to Forsythe’s algorithm sug-
gested by Shampine (1975) is used for computing the polynomial coefficients. A discussion of Forsythe’s 
algorithm and Shampine’s modification appears in Kennedy and Gentle (1980, pages 342-347).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2URV/DR2URV. The reference is:

CALL R2URV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT, WK, IWK)
The additional arguments are as follows:

WK — Work vector of length 11 * NOBS + 11 * NDEG + 5 + (NDEG + 1) * (NDEG + 3).

IWK — Work vector of length NOBS.
2. Informational errors

3. If NDEG is greater than 10, the accuracy of the results may be questionable.

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279-285). The data set 
contains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service 
coffee dispensers. Responses for fourteen similar cafeterias are in the data set.

      USE RCURV_INT
      USE WRRRN_INT
      USE WRRRL_INT

      IMPLICIT   NONE

Type Code Description

4 3 Each (x, y) point contains NaN (not a number). There are no valid data.

4 7 The x values are constant. At least NDEG + 1 distinct x values are needed to fit 
a NDEG polynomial.

3 4 The y values are constant. A zero order polynomial is fit. High order coeffi-
cients are set to zero.

3 5 There are too few observations to fit the desired degree polynomial. High 
order coefficients are set to zero.

3 6 A perfect fit was obtained with a polynomial of degree less than NDEG. High 
order coefficients are set to zero.
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      INTEGER    NDEG, NOBS
      PARAMETER  (NDEG=2, NOBS=14)
!
      REAL       B(NDEG+1), SSPOLY(NDEG+1), STAT(10), XDATA(NOBS), &
                 YDATA(NOBS)
      CHARACTER  CLABEL(11)*15, RLABEL(1)*4
!
      DATA RLABEL/'NONE'/, CLABEL/' ', 'Mean of X', 'Mean of Y', &
                 'Variance X', 'Variance Y', 'R-squared', &
                 'DF Reg.', 'SS Reg.', 'DF Error', 'SS Error', &
                 'Pts. with NaN'/
      DATA XDATA/0., 0., 1., 1., 2., 2., 4., 4., 5., 5., 6., 6., 7., &
           7./
      DATA YDATA/508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, &
           758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4/
!
      CALL RCURV (XDATA, YDATA, B, SSPOLY=SSPOLY, STAT=STAT)
!
      CALL WRRRN ('B', B, 1, NDEG+1, 1)
      CALL WRRRN ('SSPOLY', SSPOLY, 1, NDEG+1, 1)
      CALL WRRRL ('%/STAT', STAT, RLABEL, CLABEL, 1, 10, 1, FMT='(2W10.4)')
      END

Output

          B
    1       2       3
503.3    78.9    -4.0

             SSPOLY
        1           2           3
7077152.0    220644.2      4387.7

                             STAT
Mean of X   Mean of Y  Variance X  Variance Y   R-squared     DF Reg.
    3.571       711.0       6.418     17364.8       99.69           2

 SS Reg.    DF Error    SS Error  Pts. with NaN
225031.9           11       710.5              0
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Figure 2.7 — Plot of Data and Second Degree Polynomial Fit
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RPOLY

Analyzes a polynomial regression model.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
IND — Column number IND of X contains the data for the independent (explanatory) variable.  (Input)
MAXDEG — Maximum degree of polynomial to be fit.  (Input)
NDEG — Degree of final polynomial regression.  (Output)
COEF — NDEG + 1 by 4 matrix containing statistics relating to the coefficients of the polynomial model.  

(Output) 
Row 1 corresponds to the intercept. Row 1 + i corresponds to the coefficient of xi. The columns are 
described as follows: 

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies. If X(i, IFRQ) = 0.0, none of the remaining elements of row i of X are referenced, and updat-
ing of statistics is skipped for row i.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights, and the computed prediction interval uses AOV (8) = X(i, IWT) for the estimated variance of a 
future response.
Default: IWT = 0.

Col. Description

1 Estimated coefficient

2 Estimated standard error of the estimated coefficient

3 t-statistic for the test the coefficient is zero

4 p-value for the two-sided t test
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IPRED — Prediction interval option.  (Input) 
IPRED = 0 means that prediction intervals are desired for a single future response. For positive IPRED, 
column number IPRED of X contains the number of future responses for which a prediction interval is 
desired on the average of the future responses.
Default: IPRED = 0.

CONPCM — Confidence level for two-sided interval estimates on the mean in percent.  (Input)
Default: CONPCM = 95.0.

CONPCP — Confidence level for two-sided prediction intervals in percent.  (Input)
Default: CONPCP = 95.0.

ICRIT — Criterion option.  (Input) 
Default: ICRIT = 0.

CRIT — Criterion in percent.  (Input, if ICRIT = 1 or ICRIT = 2, not referenced if 
ICRIT = 0) 
Default: CRIT = 95.0.

LOF — Lack of fit option.  (Input) 
If ICRIT = 2, LOF must equal 1. 
Default: LOF = 0.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

ICRIT Meaning

0 Fit a MAXDEG-th degree polynomial.

1 Fit the lowest degree polynomial with an R2 (in percent) of at 
least CRIT.

2 Fit the lowest degree polynomial with a lack-of-fit F test not sig-
nificant at level CRIT percent.

CRIT Meaning of CRIT

1 R2 (in percent) that the fitted polynomial must achieve. A com-
mon choice is 95.0.

2 Significance level (in percent) for the lack-of-fit test that the fitted 
polynomial must not exceed. A common choice is 5.0.

LOF Action

0 TLOF is not computed.

1 TLOF is computed.

IPRINT Action

0 No printing is performed.

1 AOV, SQSS, COEF, TLOF are printed.
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AOV — Vector of length 15 that contains statistics relating to the analysis of variance.  (Output)

SQSS — NDEG by 4 matrix containing sequential statistics for the polynomial model.  (Output) 
Row i corresponds to xi(i = 1, 2, …, NDEG). The columns are described as follows: 

LDSQSS — Leading dimension of SQSS exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSQSS = size (SQSS,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

2 AOV, SQSS, COEF, TLOF, unusual cases in CASE and plots of the 
data,and the fitted polynomial are printed.

3 AOV, SQSS, COEF, TLOF, CASE, plots of the data, the fitted poly-
nomial, and the residuals are printed.

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)

Col. Description

1 Degrees of freedom

2 Sum of squares

3 F-statistic

4 p-value
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TLOF — NDEG by 4 matrix containing tests of lack of fit for each degree of the polynomial.  (Output, if 
LOF = 1) 
Row i corresponds to xi(i = 1, 2, …, NDEG). The columns are described as follows:

If LOF = 0, TLOF is not referenced and can be a 1 by 1 array.
LDTLOF — Leading dimension of TLOF exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDTLOF = size (TLOF,1).

CASE — NOBS by 12 matrix containing the case statistics.  (Output) 
Columns 1 through 12 contain the following:

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of CASE containing NaN (not a number).  (Output)

FORTRAN 90 Interface
Generic: CALL RPOLY (X, IRSP, IND, MAXDEG, NDEG, COEF [, …])
Specific: The specific interface names are S_RPOLY and D_RPOLY.

FORTRAN 77 Interface
Single: CALL RPOLY (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, IPRED, CONPCM, CONPCP, 

MAXDEG, ICRIT, CRIT, LOF, IPRINT, NDEG, AOV, SQSS, LDSQSS, COEF, LDCOEF, TLOF, 
LDTLOF, CASE, LDCASE, NRMISS)

Col. Description

1 Degrees of freedom

2 Lack-of-fit sum of squares

3 F test for lack of fit of the polynomial model of degree i

4 p-value for the F test

Col. Description

1 Observed response

2 Predicted response

3 Residual

4 Leverage

5 Standardized residual

6 Jackknife residual

7 Cook’s distance

8 DFFITS

9, 10 Confidence interval on the mean

11, 12 Prediction interval
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Double: The double precision name is DRPOLY.

Description

Routine RPOLY computes estimates of the regression coefficients in a polynomial (curvilinear) regression 
model. The degree of the polynomial can be specified, or the degree of the polynomial can be determined by 
RPOLY under one of two criteria:

1. If some of the x settings are repeated, the lowest degree polynomial can be fit whose lack of fit is not 
significant at a specified level.

2. The lowest degree polynomial can be fitted with an R2 that meets a specified lower bound.

In addition to the computation of the fit, RPOLY computes and prints summary statistics (analysis of vari-
ance, sequential sums of squares, t tests for the coefficients, tests for lack of fit), case statistics (diagnostics for 
individual cases, confidence and prediction intervals), and plots (data, fitted data, and residuals).

Routine RPOLY computes estimates of the regression coefficients in a polynomial regression model using 
orthogonal polynomials. The reparameterization of the polynomial model in terms of orthogonal polynomi-
als has the advantage that the loss of accuracy resulting from forming powers of the x settings is avoided. All 
results are returned to the user for the original model. 

Often a predicted value and a confidence interval are desired for a setting of the independent variable not 
used in computing the regression fit. This is accomplished by including an extra row in the data matrix with 
the desired setting of the independent variable and with the response set equal to NaN (not a number). NaN 
can be retrieved by AMACH(6), which is documented in the Reference Material. The row of the data matrix con-
taining NaN will be omitted from the computations for determining the regression fit, and a prediction and a 
confidence interval for the missing response will be computed from the given setting of the independent 
variable. 

Routine RPOLY is based on the algorithm of Forsythe (1957). A modification to Forsythe’s algorithm sug-
gested by Shampine (1975) is used for computing the polynomial coefficients. A discussion of Forsythe’s 
algorithm and Shampine’s modification appears in Kennedy and Gentle (1980, pages 342-347). A modifica-
tion to Forsythe’s algorithm is made for the inclusion of weights (Kelly 1967, page 68).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2OLY/DR2OLY. The reference is:

CALL R2OLY (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, IPRED,CONPCM, CONPCP, MAXDEG, 
ICRIT, CRIT, LOF, IPRINT, NDEG, AOV, SQSS, LDSQSS, COEF, LDCOEF, TLOF, LDTLOF, CASE, 
LDCASE, NRMISS, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length MAXDEG2 + 8 * MAXDEG + 8 * NOBS + 5

IWK — Work vector of length NOBS.
2. Informational errors
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Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279-285). The data set 
contains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service 
coffee dispensers. Responses for fourteen similar cafeterias are in the data set. Some of the cafeterias have the 
same number of dispensers so that lack of fit of the model can be assessed.

      USE RPOLY_INT

      IMPLICIT   NONE
      INTEGER    LDCASE, LDCOEF, LDSQSS, LDTLOF, LDX, MAXDEG, NCOL, &
                 NOBS, J
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDCASE=NOBS, &
                 LDCOEF=MAXDEG+1, LDSQSS=MAXDEG, LDTLOF=MAXDEG, &
                 LDX=NOBS)
!
      INTEGER    ICRIT, IFRQ, IND, IPRED, IPRINT, IRSP, IWT, LOF, &
                 NDEG, NRMISS
      REAL       AOV(15), CASE(LDCASE,12), COEF(LDCOEF,4), CONPCM, &
                 CONPCP, CRIT, SQSS(LDSQSS,4), TLOF(LDTLOF,4), &
                 X(LDX,NCOL)
!
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/
      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
      DATA (X(14,J),J=1,2) /1.0, 577.3/
!

Type Code Description

4 1 An invalid weight is encountered. Weights must be nonnegative.

4 2 An invalid frequency is encountered. Frequencies must be nonnegative.

4 7 The independent variable is constant. At least two distinct settings of the 
independent variable are needed.

4 8 The number of future observations for a prediction interval must be positive.

3 4 The response is constant. A zero degree polynomial is fit.

3 5 There are too few observations to fit the desired degree polynomial. NDEG is 
set to one less than the number of valid observations.

3 6 A perfect fit to the data was obtained with a polynomial of lower degree 
than MAXDEG.
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      IRSP   = 2
      IND    = 1
      LOF    = 1
      IPRINT = 1
      CALL RPOLY (X, IRSP, IND, MAXDEG, NDEG, COEF, lof=lof, IPRINT=IPRINT,&
      aov=aov,sqss=sqss, tlof=tlof, case=case, nrmiss=nrmiss)
!
      END

Output

R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   99.685     99.628           8.037       711.0            1.13

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             2    225031.9    112515.9   1741.748    0.0000
Residual              11       710.6        64.6
Corrected Total       13    225742.5

          * * * Inference on Coefficients * * *
                      Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
   1       503.3       4.791      105.054      0.0000
   2        78.9       3.453       22.865      0.0000
   3        -4.0       0.482       -8.242      0.0000

             * * * Sequential Statistics * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           1    220644.1     3415.574    0.0000
         2           1      4387.7       67.922    0.0000

             * * * Tests of Lack of Fit * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           5      4793.7       22.031    0.0004
         2           4       406.0        2.332    0.1547
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RCOMP

Generates an orthogonal central composite design.

Required Arguments
XMIN — Vector of length NVAR with the minimum values.  (Input) 

XMIN(i) is the minimum for the i-th variable.
XMAX — Vector of length NVAR with the maximum values.  (Input) 

XMAX(i) is the maximum for the i-th variable.
NCENTR — Number of center points.  (Input) 

NCENTR must be greater than 0.
X — NPTS by NVAR matrix containing the orthogonal central composite design.  (Output) 

Design settings for variable I are contained in column I of X. (I = 1, 2, …, NVAR)

Optional Arguments
NVAR — Number of explanatory variables.  (Input) 

NVAR must be greater than or equal to 2 and less than or equal to 12.
Default: NVAR = size (XMIN,1).

IFREP — Option for the fractional replicate of the 2NVAR design selected.  (Input)
IFREP is referenced only if NVAR is greater than or equal to 5. In the following table, the design points 
in the fractional replicate part of the design are defined using modulo 2 arithmetic. Each variable is 
coded 0 or 1 to represent the low and high values of the variable.
Default: IFREP = 0.

NVAR Defining Equations

5

6

7

8
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NPTS — Number of design points.  (Output)

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

9

10

11

12

NVAR NPTS

2 thru 4 2NVAR + 2 * NVAR + NCENTR

5 thru 7 2NVAR−1 + 2 * NVAR + NCENTR

8 or 9 2NVAR−2 + 2 * NVAR + NCENTR

10 2NVAR−3 + 2 * NVAR + NCENTR

11 or 12 2NVAR−4 + 2 * NVAR + NCENTR

NVAR Defining Equations
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FORTRAN 90 Interface
Generic: CALL RCOMP (XMIN, XMAX, NCENTR, X [, …])
Specific: The specific interface names are S_RCOMP and D_RCOMP.

FORTRAN 77 Interface
Single: CALL RCOMP (NVAR, XMIN, XMAX, NCENTR, IFREP, NPTS, X, LDX)
Double: The double precision name is DRCOMP.

Description

Routine RCOMP generates an orthogonal central composite design from the minimum and maximum value 

for each of n (input in NVAR) variables, where 2 ≤ n ≤ 12. An orthogonal central composite design is a 2−k 

replicate of a 2n factorial design, i.e., a 2n−k fractional factorial, augmented by 2n axial points and m (input in 
NCENTR) center points. The values of n and k used by RCOMP are given by the following table:

The fractional factorial part of all designs generated by RCOMP are of resolution V or greater. This means the 
fractions allow the overall mean, all the main effects, and all the two-factor interactions to be estimated. For a 
further discussion, see John (1971, pages 148-157). 

Experimental designs for fitting a second-order response surface must contain at least three levels of each 
variable in order for the regression coefficients to be estimated. Orthogonal central composite designs pro-

vide a useful alternative to the 3n factorial design, which can require an excessive number of design points. 

On a per observation basis, the orthogonal central composite design is no worse than the 3n factorial design 
with regard to efficiency for estimating the regression coefficients of the square and crossproduct variables 
(see Meyers 1971, pages 134-136). The design assumes three factor and higher-way interactions are 
negligible.

Meyers (1971, chapter 7) and John (1971, pages 204-206) discuss the generation of the design. The number of 

design points (stored in NPTS) is 2n–k + 2n + m. Each variable in the design appears at five different levels. 
For a second-order response surface model with the x variables coded {-α, -1, 0, 1, α } and with pure qua-
dratic terms corrected for the mean

the design produces a diagonal XTX matrix. Let

N k

2, 3, 4 0

5, 6, 7 1

8, 9 2

10 3

11, 12 4
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and let the minimum and maximum value of the j-th variable be denoted by x1j and x2j, respectively. The fol-
lowing table gives the formulas for the coded and decoded variable settings:

Example

This example uses two variables and their respective minimum and maximum values to generate an orthog-
onal central composite design with four center points.

      USE RCOMP_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    NVAR, NCENTR, LDX, NPTS, NOUT
      PARAMETER  (NVAR=2, NCENTR=4, LDX=2**NVAR+2*NVAR+NCENTR)
      REAL       X(LDX,NVAR), XMAX(NVAR), XMIN(NVAR)
      DATA       XMIN /251.0,73.0/ XMAX/295.0, 87.0/
!
      CALL RCOMP (XMIN, XMAX, NCENTR, X, NPTS=NPTS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'NPTS = ', NPTS
      CALL WRRRN ('X', X)
      END

Output

NPTS =   12

         X
         1       2
 1   291.2    85.8
 2   291.2    74.2
 3   254.8    85.8

Coded Setting for Variable j Decoded Setting for Variable j

-α x1j

-1

0

1

α x2j
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 4   254.8    74.2
 5   273.0    80.0
 6   273.0    80.0
 7   273.0    80.0
 8   273.0    80.0
 9   251.0    80.0
10   295.0    80.0
11   273.0    73.0
12   273.0    87.0

Figure 2.8 — Orthogonal Central Composite Design With Four Center Points
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RFORP

Fits an orthogonal polynomial regression model.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
IND — Column number IND of X contains the data for the independent (explanatory) variable.  (Input)
MAXDEG — Maximum degree of polynomial to be fit.  (Input)
NDEG — Degree of final polynomial regression.  (Output)
A — Vector of length MAXDEG containing constants used to generate orthogonal polynomials.  (Output) 

Only the first NDEG elements of A are referenced.
B — Vector of length MAXDEG containing constants used to generate orthogonal polynomials.  (Output) 

Only the first NDEG elements of B are referenced.
SCOEF — Vector of length 1 + MAXDEG containing the regression coefficients α of the fitted model using 

the scaled version of x(z).  (Output) 
Only the first 1 + NDEG elements of SCOEF are referenced.

is the estimated intercept and equals the response mean. 

contains the estimated coefficient for the i-th order orthogonal polynomial using the scaled version of 
x(z).

D — Vector of length MAXDEG + 1 containing the diagonal elements of the (diagonal) sums of squares and 
crossproducts matrix.  (Output) 
The sum of squares due to the i-th degree orthogonal polynomial is given by 

Only the first NDEG + 1 elements of D are referenced.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).
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IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies. If X(i, IFRQ) = 0.0, none of the remaining elements of row i of X are referenced, and updat-
ing of statistics is skipped for row i.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

ICRIT — Criterion option.  (Input) 
Default: ICRIT = 0.

CRIT — Criterion in percent.  (Input, if ICRIT = 1 or ICRIT = 2) 
Default: CRIT = 95.0.

LOF — Lack-of-fit option.  (Input) 
If ICRIT = 2, LOF must equal 1.
Default: LOF = 0.

SMULTC — Multiplicative constant used to compute a scaled version of x, say z, on the interval -2 to 2, 
inclusive.  (Output)

SADDC — Additive constant used to compute a scaled version of x(z) on the interval -2 to 2, inclusive.  
(Output)

DFE — Degrees of freedom for error.  (Output)
SSE — Sum of squares for error.  (Output)
DFPE — Degrees of freedom for pure error.  (Output, if LOF = 1)
SSPE — Sum of squares for pure error.  (Output, if LOF = 1)

ICRIT Meaning

0 Fit a MAXDEG-th degree polynomial.

1 Fit the lowest degree polynomial with an R2 (in percent) of at 
least CRIT.

2 Fit the lowest degree polynomial with a lack-of-fit F test not sig-
nificant at level CRIT percent.

ICRIT Meaning of CRIT

1 R2 (in percent) that the fitted polynomial must achieve. A com-
mon choice is 95.0.

2 Significance level (in percent) for the lack-of-fit test that the fit-
ted polynomial must not exceed. A common choice is 5.0.

LOF Action

0 DFPE and SSPE are not computed.

1 DFPE and SSPE are computed.
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NRMISS — Number of rows of data encountered that contain any missing values for the independent, 
response, weight, or frequency variables.  (Output) 
NaN (not a number) is used as the missing value code. Any row of X containing NaN as a value of the 
independent, response, weight, or frequency variables is omitted from the fit.

FORTRAN 90 Interface
Generic: CALL RFORP (X, IRSP, IND, MAXDEG, NDEG, A, B, SCOEF, D [, …])
Specific: The specific interface names are S_RFORP and D_RFORP.

FORTRAN 77 Interface
Single: CALL RFORP (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, MAXDEG, ICRIT, CRIT, LOF, 

NDEG, SMULTC, SADDC, A, B, SCOEF, D, DFE, SSE, DFPE, SSPE, NRMISS)
Double: The double precision name is DRFORP.

Description

Routine RFORP computes estimates of the regression coefficients in a polynomial regression model using 
orthogonal polynomials. The reparameterization of the polynomial model in terms of orthogonal polynomi-
als has the advantage that the loss of accuracy resulting from forming powers of the x values is avoided. The 
design of RFORP assumes that further computations such as summary statistics or case statistics are needed. 
For this reason, the results returned by RFORP are for the reparameterized model in terms of orthogonal 
polynomials. This enables computational accuracy to be maintained for the subsequent computations. Rou-
tine RSTAP can be used to compute summary statistics for the original polynomial model given the results 
from RFORP. Routine RCASP can be used to compute case statistics for the original polynomial model given 
the results from RFORP.

The degree of the polynomial can be specified, or the degree of the polynomial can be determined by RFORP 
under one of two criteria:

1. If some of the x values are repeated, the lowest degree polynomial can be fitted whose lack of fit is not 
significant at a specified level.

2. The lowest degree polynomial can be fitted with an R2 that meets a specified lower bound.

Routine RFORP is based on the algorithm of Forsythe (1957). A modification to Forsythe’s algorithm is made 
for the inclusion of weights (Kelly 1967, page 68). 

Let xi be a value of the independent variable. The xi’s are scaled to the interval [-2, 2] for computational accu-
racy. The scaled version of the independent variable is computed by the formula zi = mxi + c. The 
multiplicative scaling constant m (stored in SMULTC) is

The additive constant c (stored in SADDC) is
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Orthogonal polynomials are evaluated using the three-term recurrence relationship

beginning with the initial polynomials

The aj’s and bj’s (stored in A and B) are computed to make the pj(z)’s orthogonal with respect to the the set of 
weights wi, and over the set zi. 

The fitted model is

The

(stored in SCOEF) are computed (Shampine 1975) by

where ei = yi - pj−1(zi) and 

The dj’s (stored in D) can be used to compute the sum of squares due to the j-th orthogonal polynomial by 

A more complete description of Forsythe’s algorithm and the modification of Shampine appears in Kennedy 
and Gentle (1980, pages 342-347).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2ORP/DR2ORP. The reference is:

CALL R2ORP (NOBS, NCOL, X, LDX, IRSP, IND, IFRQ, IWT, MAXDEG, ICRIT, CRIT, LOF, NDEG, 
SMULTC, SADDC, A, B, SCOEF, D, DFE, SSE, DFPE, SSPE, NRMISS, WK, IWK)
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The additional arguments are as follows:

WK — Work vector of length 8 * NOBS.

IWK — Work vector of length NOBS.
2. Informational errors

3. The orthogonal polynomials evaluated at each scaled x value (z) are computed from A and B as 
follows: 
POLY(I, 1) = Z(I) - A(1) 
POLY(I, 2) = (Z(I) - A(2)) * POLY(I, 1) - B(2) 
POLY (I, J) = (Z(I) - A(J)) * POLY(I, J - 1) - B(J) * POLY(I, J - 2) 
for J = 3 through NDEG.

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279-285). The data set 
contains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service 
coffee dispensers. Responses for fourteen similar cafeterias are in the data set, some of the cafeterias have the 
same number of dispensers so that lack of fit of the model can be assessed.

      USE RFORP_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDX, MAXDEG, NCOL, NOBS, J
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDX=NOBS)
!
      INTEGER    IND, IRSP, LOF, NDEG, NOUT, NRMISS
      REAL       A(MAXDEG), B(MAXDEG), CRIT, D(MAXDEG+1), DFE, DFPE, &
                 SADDC, SCOEF(MAXDEG+1), SMULTC, SSE, SSPE, X(LDX,NCOL)
!
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/

Type Code Description

3 4 The response variable is constant. A zero order polynomial is fit. High order 
coefficients are set to zero.

3 5 There are too few observations to fit the desired degree polynomial. High 
order coefficients are set to zero.

3 6 A perfect fit is obtained with a polynomial of lower degree than MAXDEG.

4 1 An invalid weight is encountered.

4 2 An invalid frequency is encountered.

4 3 Each row of X contains a missing value.

4 7 The independent variable is constant. At least two distinct settings of the 
independent variable are needed.
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      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
      DATA (X(14,J),J=1,2) /1.0, 577.3/
!
      IRSP  = 2
      IND   = 1
      LOF   = 1
      CALL RFORP (X, IRSP, IND, MAXDEG, NDEG, A, B, SCOEF, D, lof=lof, &
                  smultc=smultc, saddc=saddc, dfe=dfe, sse=sse, &
                  dfpe=dfpe, sspe=sspe, nrmiss=nrmiss)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'NDEG =   ', NDEG
      CALL WRRRN ('A', A, 1, NDEG, 1)
      CALL WRRRN ('B', B, 1, NDEG, 1)
      WRITE (NOUT,*) 'SMULTC = ', SMULTC
      WRITE (NOUT,*) 'SADDC  = ', SADDC
      CALL WRRRN ('SCOEF', SCOEF, 1, NDEG+1, 1)
      CALL WRRRN ('D', D, 1, NDEG+1, 1)
      WRITE (NOUT,*) 'DFE =    ', DFE
      WRITE (NOUT,*) 'SSE =    ', SSE
      WRITE (NOUT,*) 'DFPE =   ', DFPE
      WRITE (NOUT,*) 'SSPE =   ', SSPE
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Output

NDEG = 2

        A
      1         2
0.04082  -0.07996

      B
    1       2
0.000   1.946
SMULTC =    0.571429
SADDC  =    -2.00000

        SCOEF
    1       2       3
711.0    90.0   -12.2

          D
    1       2       3
14.00   27.24   29.69
DFE =        11.0000
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SSE =        710.594
DFPE =       7.00000
SSPE =       304.626
NRMISS =   0
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RSTAP

Computes summary statistics for a polynomial regression model given the fit based on orthogonal 
polynomials.

Required Arguments
A — Vector of length NDEG containing constants used to generate orthogonal polynomials.  (Input)
B — Vector of length NDEG containing constants used to generate orthogonal polynomials.  (Input)
SMULTC — Multiplicative constant used to compute the scaled version of x, say z, on the interval -2 to 2, 

inclusive.  (Input)
SADDC — Additive constant used to compute the scaled version of x(z) on the interval -2 to 2, inclusive.  

(Input)
SCOEF — Vector of length NDEG + 1 containing the regression coefficients of the fitted model using the 

scaled version of the original data.  (Input) 
SCOEF(1) is the estimated intercept. SCOEF(1 + i) contains the estimated coefficient for the i-th order 
orthogonal polynomial using z.

D — Vector of length NDEG + 1 containing the diagonal elements of the (diagonal) sums of squares and 
crossproducts matrix.  (Input)

DFE — Degrees of freedom for error.  (Input)
SSE — Sum of squares for error.  (Input)
COEF — NDEG + 1 by 4 matrix containing statistics relating to the coefficients of the polynomial model.  

(Output) 
Row 1 corresponds to the intercept. Row 1 + i corresponds to the coefficient of xi. The columns are 
described as follows:

Optional Arguments
NDEG — Degree of the polynomial regression.  (Input)

Default: NDEG = size (A,1).
LOF — Lack of fit test option.  (Input)

Default: LOF = 0.

Col. Description

1 Estimated coefficient

2 Estimated standard error of estimated coefficient 

3 t-statistic for the test that the coefficient is zero

4 p-value for the two-sided t test

LOF Action

0 No lack of fit test is performed.

1 Lack of fit test is performed.
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DFPE — Degrees of freedom for pure error.  (Input, if LOF = 1) 
If LOF = 0, DFPE is not referenced.
Default: DFPE = 1.0.

SSPE — Sum of squares for pure error.  (Input, if LOF = 1) 
If LOF = 0, SSPE is not referenced.
Default: SSPE = 0.0.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

AOV — Vector of length 15 that contains statistics relating to the analysis of variance.  (Output)

SQSS — NDEG by 4 matrix containing sequential statistics for the polynomial model.  (Output) 
Row i corresponds to xi(i = 1, 2, …, NDEG). The columns are described as follows: 

IPRINT Action

0 No printing is performed.

1 AOV, SQSS, COEF are printed.

I AOV(I)

1 Degrees of freedom for the model

2 Degrees of freedom for error

3 Total (corrected) degrees of freedom

4 Sum of squares for the model

5 Sum of squares for error

6 Total (corrected) sum of squares

7 Model mean square

8 Error mean square

9 Overall F -statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimate of the standard deviation

14 Overall mean of y

15 Coefficient of variation (in percent)

Col. Description

1 Degrees of freedom

2 Sum of squares

3 F -statistic

4 p-value
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LDSQSS — Leading dimension of SQSS exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDSQSS = size (SQSS,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

TLOF — NDEG by 4 matrix containing tests of lack of fit for each degree of the polynomial.  (Output, if 
LOF = 1)
If LOF = 0, TLOF is not referenced and can be a 1 by 1 array. Row i corresponds to xi(i = 1, 2, …, NDEG). 
The columns are described as follows:

LDTLOF — Leading dimension of TLOF exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDTLOF = size (TLOF,1).

FORTRAN 90 Interface
Generic: CALL RSTAP (A, B, SMULTC, SADDC, SCOEF, D, DFE, SSE, COEF [, …])
Specific: The specific interface names are S_RSTAP and D_RSTAP.

FORTRAN 77 Interface
Single: CALL RSTAP (NDEG, A, B, SMULTC, SADDC, SCOEF, D, DFE, SSE, LOF, DFPE, SSPE, 

IPRINT, AOV, SQSS, LDSQSS, COEF, LDCOEF, TLOF, LDTLOF)
Double: The double precision name is DRSTAP.

Description

Routine RSTAP transforms a polynomial regression model, fitted using orthogonal polynomials, into a poly-
nomial function of the original independent variable. In addition, summary statistics (analysis of variance, t 
tests, tests for lack of fit) are computed. Results from routine RFORP, which produces the fit using orthogonal 
polynomials, are used for input.

The fitted model from RFORP is

where the zi’s are the settings of the independent variable x scaled to the interval [-2, 2] and where the pj(z)’s 

are the orthogonal polynomials. The “XT X” matrix for this model is a diagonal matrix with elements dj 
(stored in D). The orthogonal polynomials can be expressed as 

Col. Description

1 Degrees of freedom

2 Lack of fit sum of squares

3 F test for lack of fit of the polynomial model of degree i

4 p-value for the F test
RSTAP         Chapter 2: Regression      296



First, RSTAP computes 

to produce the fit for the polynomial function in terms of the scaled independent variable as given by 

The variances and covariances for the estimated coefficients in this model are given by

Second, RSTAP computes 

as a linear combination of the 

by the formula

in order to produce the fit for the polynomial function in terms of the original independent variable as given 
by

The variance of 

computed from the variances and covariances of the
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using the usual formula for computing variances of linear combinations of correlated random variables. The 

sequential sum of squares due to xj(stored in SQSS) is computed by

Comments
Workspace may be explicitly provided, if desired, by use of R2TAP/DR2TAP. 

The reference is:

CALL R2TAP (NDEG, A, B, SMULTC, SADDC, SCOEF, D, DFE, SSE, LOF, DFPE, SSPE, IPRINT, AOV, 
SQSS, LDSQSS, COEF, LDCOEF, TLOF, LDTLOF, WK)

The additional argument is:

WK — Work vector of length (NDEG + 1) * (NDEG + 7).

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279-285). The data set 
contains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service 
coffee dispensers. Responses for fourteen similar cafeterias are in the data set and some of the cafeterias have 
the same number of dispensers so that lack of fit of the model can be assessed.

      USE RSTAP_INT
      USE RFORP_INT
      IMPLICIT NONE

      INTEGER    LDCOEF, LDSQSS, LDTLOF, LDX, MAXDEG, NCOL, NOBS, J
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDCOEF=MAXDEG+1, &
                 LDSQSS=MAXDEG, LDTLOF=MAXDEG, LDX=NOBS)
!
      INTEGER    IND, IPRINT, IRSP, LOF, NDEG, NRMISS
      REAL       A(MAXDEG), AOV(15), B(MAXDEG), COEF(MAXDEG+1,4), &
                 CRIT, D(MAXDEG+1), DFE, DFPE, SADDC, SCOEF(MAXDEG+1), &
                 SMULTC, SQSS(LDSQSS,4), SSE, SSPE, TLOF(MAXDEG,4), &
                 X(LDX,NCOL)
!
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/
      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
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      DATA (X(14,J),J=1,2) /1.0, 577.3/
!
      IRSP  = 2
      IND   = 1
      LOF   = 1
      CALL RFORP (X, IRSP, IND, MAXDEG, NDEG, A, B, SCOEF, D, LOF=LOF, &
                  SMULTC=SMULTC, SADDC=SADDC, DFE=DFE, SSE=SSE, &
                  DFPE=DFPE, SSPE=SSPE)
!
      IPRINT = 1
      CALL RSTAP (A, B, SMULTC, SADDC, SCOEF, D, DFE, SSE, COEF, &
                  NDEG=NDEG, LOF=LOF, DFPE=DFPE, SSPE=SSPE, IPRINT=IPRINT, &
                  AOV=AOV, SQSS=SQSS, TLOF=TLOF)
      END

Output

R-squared   Adjusted  Est. Std. Dev.              Coefficient of
(percent)  R-squared  of Model Error        Mean  Var. (percent)
   99.685     99.628           8.037       711.0            1.13

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Regression             2    225031.9    112515.9   1741.748    0.0000
Residual              11       710.6        64.6
Corrected Total       13    225742.5

          * * * Inference on Coefficients * * *
                      Standard                Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       503.3       4.791      105.054      0.0000
    2        78.9       3.453       22.865      0.0000
    3        -4.0       0.482       -8.242      0.0000

             * * * Sequential Statistics * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           1    220644.1     3415.574    0.0000
         2           1      4387.7       67.922    0.0000

            * * * Tests of Lack of Fit * * *
Degree of   Degrees of      Sum of               Prob. of
Polynomial     Freedom     Squares  F-statistic  Larger F
         1           5      4793.7       22.031    0.0004
         2           4       406.0        2.332    0.1547
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RCASP

Computes case statistics for a polynomial regression model given the fit based on orthogonal polynomials.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
IND — Column number IND of X contains the data for the independent (explanatory) variable.  (Input)
NDEG — Degree of the polynomial regression.  (Input)
SMULTC — Multiplicative constant used to compute a scaled version of x on the interval -2 to 2, inclusive.  

(Input)
SADDC — Additive constant used to compute a scaled version of x on the interval -2 to 2, inclusive.  

(Input)
A — Vector of length NDEG containing constants used to generate orthogonal polynomials.  (Input)
B — Vector of length NDEG containing constants used to generate orthogonal polynomials.  (Input)
SCOEF — Vector of length NDEG + 1 containing the regression coefficients

of the fitted model using the scaled version of x(z).  (Input)

is the estimated intercept and equals the response mean.

contains the estimated coefficient for the i-th order orthogonal polynomial using the scaled version of 
x(z).

D — Vector of length NDEG + 1 containing the diagonal elements of the (diagonal) sums of squares and 
crossproducts matrix.  (Input)

SSE — Sum of squares for error.  (Input)
DFE — Degrees of freedom for error.  (Input)
CASE — NOBS by 12 matrix containing the case statistics.  (Output) 

Columns 1 through 12 contain the following: 

Col. Description

1 Observed response

2 Predicted response

3 Residual

4 Leverage

5 Standardized residual

6 Jackknife residual
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Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights, and the computed prediction interval uses SSE/(DFE * X(i, IWT)) for the estimated variance 
of a future response.
Default: IWT = 0.

IPRED — Prediction interval option.  (Input) 
IPRED = 0 means that prediction intervals are desired for a single future response. For positive IPRED, 
column number IPRED of X contains the number of future responses for which a prediction interval is 
desired on the average of the future responses.
Default: IPRED = 0.

CONPCM — Confidence level for two-sided interval estimates on the mean, in percent.  (Input)
Default: CONPCM = 95.0.

CONPCP — Confidence level for two-sided prediction intervals, in percent.  (Input)
Default: CONPCP = 95.0.

PRINT — Printing option.  (Input) 
Default: PRINT = ‘N’.
PRINT is a character string indicating what is to be printed. The PRINT string is composed of one-
character print codes to control printing. These print codes are given as follows: 

7 Cook’s distance

8 DFFITS

9, 10 Confidence interval on the mean

11, 12 Prediction interval

PRINT(I:I) Printing that occurs

‘A’ All

‘N’ None

‘1’ Observed response

‘2’ Predicted response

‘3’ Residual

‘4’ Leverage

‘5’ Standardized residual

‘6’ Jackknife residual

Col. Description
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The concatenated print codes ‘A’, ‘N’, ‘1’, …, ‘P’ that comprise the PRINT string give the combination of 
statistics to be printed. Concatenation of these codes with print codes ‘X’ or ‘Y’ restricts printing to 
cases determined to be influential or outliers. Here are a few examples: 

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of CASE containing NaN (not a number).  (Output)

FORTRAN 90 Interface
Generic: CALL RCASP (X, IRSP, IND, NDEG, SMULTC, SADDC, A, B, SCOEF, D, SSE, DFE, CASE 

[, …])
Specific: The specific interface names are S_RCASP and D_RCASP.

FORTRAN 77 Interface
Single: CALL RCASP (NOBS, NCOL, X, LDX, IRSP, IND, IWT, IPRED, CONPCM, CONPCP, NDEG, 

SMULTC, SADDC, A, B, SCOEF, D, SSE, DFE, PRINT, CASE, LDCASE, NRMISS)
Double: The double precision name is DRCASP.

Description

Routine RCASP assumes a polynomial model

‘7’ Cook’s distance

‘8’ DFFITS

‘M’ Confidence interval on the mean

‘P’ Prediction interval

‘X’ Influential cases (unusual “x-value”)

‘Y’ Outlier cases (unusual “y-value”)

PRINT Printing Action

‘A’ All.

‘N’ None.

‘46’ Leverage and jackknife residual for all cases.

‘AXY’ All statistics are printed for cases that are highly influential or are outliers.

‘46XY’ Leverage and jackknife residual are printed for cases that are highly influential or are 
outliers.

PRINT(I:I) Printing that occurs
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where the observed values of the yi’s constitute the response, the xi’s are the settings of the independent vari-
able, the βj’s are the regression coefficients and the ɛi’s are the errors that are independently distributed 

normal with mean 0 and variance σ2/wi. Given the results of a polynomial regression, fitted using orthogo-
nal polynomials and weights wi, routine RCASP produces predicted values, residuals, confidence intervals, 
prediction intervals, and diagnostics for outliers and influential cases. 

Often a predicted value and confidence interval are desired for a setting of the independent variable not used 
in computing the regression fit. This can be accomplished by including the independent variable setting as 
part of the data matrix and by setting the response equal to NaN (not a number). NaN can be retrieved by 
AMACH(6). 

Results from routine RFORP, which produces the fit using orthogonal polynomials, are used for input. The 
fitted model from RFORP is

where the zi’s are settings of the independent variable x scaled to the interval [-2, 2] and where the pj(z)’s are 

the orthogonal polynomials. The “XT X” matrix for this model is a diagonal matrix with elements dj (stored 
in D). The case statistics are easily computed from this model and are equal to those from the original polyno-
mial model with the βj’s as the regression coefficients.

The leverage is computed as

The estimated variance of 

is given by his
2/wi. The computation of the remainder of the case statistics follows easily from their defini-

tions. See the Diagnostics for Individual Cases section in the chapter introduction for definitions of the case 
diagnostics.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2ASP/DR2ASP. The reference is:

CALL R2ASP (NOBS, NCOL, X, LDX, IRSP, IND, IWT, IPRED, CONPCM, CONPCP, NDEG, SMULTC, 
SADDC, A, B, SCOEF, D, SSE, DFE, PRINT, CASE, LDCASE, NRMISS, WK)

The additional argument is:

WK — Work vector of length NDEG + 1.
RCASP         Chapter 2: Regression      303



2. Informational errors 

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279-285). The data set 
contains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service 
coffee dispensers. Responses for fourteen similar cafeterias are in the data set.

      USE RCASP_INT
      USE RFORP_INT

      IMPLICIT   NONE
      INTEGER    LDCASE, LDCOEF, LDSQSS, LDTLOF, LDX, MAXDEG, NCOL, &
                 NOBS,  J
      PARAMETER  (MAXDEG=2, NCOL=2, NOBS=14, LDCASE=NOBS, &
                 LDCOEF=MAXDEG+1, LDSQSS=MAXDEG, LDTLOF=MAXDEG, &
                 LDX=NOBS)
!
      INTEGER    ICRIT, IFRQ, IND, IPRED, IRSP, IWT, LOF, NDEG, NRMISS
      REAL       A(MAXDEG), B(MAXDEG), CASE(LDCASE,12), CONPCM, &
                 CONPCP, CRIT, D(MAXDEG+1), DFE, DFPE, SADDC, &
                 SCOEF(MAXDEG+1), SMULTC, SSE, SSPE, X(LDX,NCOL)
      CHARACTER  PRINT*1
!
      DATA (X(1,J),J=1,2)  /0.0, 508.1/
      DATA (X(2,J),J=1,2)  /5.0, 787.6/
      DATA (X(3,J),J=1,2)  /0.0, 498.4/
      DATA (X(4,J),J=1,2)  /1.0, 568.2/
      DATA (X(5,J),J=1,2)  /2.0, 651.7/
      DATA (X(6,J),J=1,2)  /7.0, 854.7/
      DATA (X(7,J),J=1,2)  /2.0, 657.0/
      DATA (X(8,J),J=1,2)  /4.0, 755.3/
      DATA (X(9,J),J=1,2)  /6.0, 831.8/
      DATA (X(10,J),J=1,2) /4.0, 758.9/
      DATA (X(11,J),J=1,2) /5.0, 792.1/
      DATA (X(12,J),J=1,2) /6.0, 841.4/
      DATA (X(13,J),J=1,2) /7.0, 871.4/
      DATA (X(14,J),J=1,2) /1.0, 577.3/
!
      IRSP  = 2
      IND   = 1
      LOF   = 1
      CALL RFORP (X, IRSP, IND, MAXDEG, NDEG, A, B, SCOEF, D, LOF=LOF, &
                  SMULTC=SMULTC, SADDC=SADDC, DFE=DFE, SSE=SSE)
!

Type Code Description

4 1 A weight is negative. Weights must be nonnegative.

4 8 The number of future observations for a prediction interval must be positive.

3 9 A leverage much greater than one is computed. It is set to one.

3 10 A deleted residual mean square much less than zero is computed. It is set to 
0.0.
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      PRINT  = 'A'
      CALL RCASP (X, IRSP, IND, NDEG, SMULTC, SADDC, A, B, SCOEF, D, SSE, &
                  DFE, CASE, PRINT=PRINT)
!
      END

Output

                       * * * Case Analysis * * *
Obs.   Observed  Predicted   Residual   Leverage  Std. Res.  Jack. Res
        Cook’s D     DFFITS   95.0% CI   95.0% CI   95.0% PI   95.0% PI
   1   508.1000   503.3459     4.7541     0.3554     0.7367     0.7204
          0.0997     0.5349   492.8003   513.8916   482.7510   523.9409
   2   787.6000   798.8150   -11.2150     0.1429    -1.5072    -1.6132
          0.1262    -0.6586   792.1288   805.5012   779.9034   817.7266
   3   498.4000   503.3459    -4.9460     0.3554    -0.7664    -0.7511
          0.1079    -0.5577   492.8003   513.8916   482.7510   523.9409
   4   568.2000   578.3177   -10.1177     0.1507    -1.3660    -1.4293
          0.1104    -0.6021   571.4498   585.1857   559.3412   597.2943
   5   651.7000   645.3505     6.3495     0.1535     0.8586     0.8476
          0.0446     0.3609   638.4200   652.2810   626.3513   664.3498
   6   854.7000   861.4297    -6.7297     0.3650    -1.0508    -1.0563
          0.2116    -0.8008   850.7420   872.1175   840.7617   882.0978
   7   657.0000   645.3505    11.6495     0.1535     1.5753     1.7069
          0.1500     0.7268   638.4200   652.2810   626.3513   664.3498
   8   755.3000   755.5992    -0.2992     0.1897    -0.0414    -0.0394
          0.0001    -0.0191   747.8945   763.3038   736.3040   774.8943
   9   831.8000   834.0919    -2.2919     0.1429    -0.3080    -0.2949
          0.0053    -0.1204   827.4056   840.7782   815.1804   853.0035
  10   758.9000   755.5992     3.3008     0.1897     0.4562     0.4392
         0.0162     0.2125   747.8945   763.3038   736.3040   774.8943
  11   792.1000   798.8150    -6.7150     0.1429    -0.9024    -0.8942
          0.0452    -0.3650   792.1288   805.5012   779.9034   817.7266
  12   841.4000   834.0919     7.3081     0.1429     0.9821     0.9804
          0.0536     0.4002   827.4056   840.7782   815.1804   853.0035
  13   871.4000   861.4297     9.9703     0.3650     1.5567     1.6809
          0.4643     1.2745   850.7420   872.1175   840.7617   882.0978
  14   577.3000   578.3177    -1.0178     0.1507    -0.1374    -0.1311
          0.0011    -0.0552   571.4498   585.1857   559.3412   597.2943
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Figure 2.9 — Second Degree Polynomial Fit With 95% One-at-a-Time Prediction Intervals
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OPOLY

Generates orthogonal polynomials with respect to x-values and specified weights.

Required Arguments
X — Vector of length N containing the x-values.  (Input)
NDEG — Degree of highest degree orthogonal polynomial to be generated.  (Input)
SMULTC — Multiplicative constant used to compute a scaled version of x on the interval -2 to 2, inclusive.  

(Output)
SADDC — Additive constant used to compute a scaled version of x on the interval -2 to 2, inclusive.  

(Output)
SX — Vector of length N containing the scaled version of x on the interval -2 to 2, inclusive, computed as 

follows: SX(i) = SMULTC * X(i) + SADDC where i = 1, 2, …, N.  (Output) 
If X is not needed, SX and X can occupy the same storage locations.

A — Vector of length NDEG containing constants used to generate orthogonal polynomials.  (Output)
B — Vector of length NDEG containing constants used to generate orthogonal polynomials.  (Output)
POLY — Matrix, N by NDEG, containing the orthogonal polynomials evaluated at SX(i) for i = 1, 2, …, N.  

(Output)

Optional Arguments
N — Number of x-values.  (Input)

Default: N = size (POLY,1).
IWT — Weighting option.  (Input) 

IWT = 0 means that all weights are 1.0. For IWT = 1, WT contains the weights.
Default: IWT = 0.

WT — Vector of length N containing the weights.  (Input, if IWT = 1) 
If IWT = 0, WT is not referenced and can be a vector of length one.

LDPOLY — Leading dimension of POLY exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDPOLY = size (POLY,1).

FORTRAN 90 Interface
Generic: CALL OPOLY (X, NDEG, SMULTC, SADDC, SX, A, B, POLY [, …])
Specific: The specific interface names are S_OPOLY and D_OPOLY.

FORTRAN 77 Interface
Single: CALL OPOLY (N, X, IWT, WT, NDEG, SMULTC, SADDC, SX, A, B, POLY, LDPOLY)
Double: The double precision name is DOPOLY.
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Description

Routine OPOLY generates orthogonal polynomials over a set of xi’s and with respect to weights wi. The rou-
tine OPOLY is based on the algorithm of Forsythe (1957). (See also Kennedy and Gentle 1980.) A modification 
to Forsythe’s algorithm is made for the inclusion of weights (Kelly 1967, page 68). 

Let xi be a value of the independent variable. The xi’s are scaled to the interval [-2, 2] for computational accu-
racy. The scaled version of the independent variable is computed by the formula zi = mxi + c. The 
multiplicative scaling constant m (stored in SMULTC) is

The additive constant c (stored in SADDC) is

Orthogonal polynomials are generated using the three-term recurrence relationship

beginning with the initial polynomials

The aj’s and bj’s (stored in A and B) are computed to make the pj(z)’s orthogonal, with respect to the the set of 
weights wi, and over the set zi.

Comments
1. Informational error

2. The orthogonal polynomials evaluated at each scaled X value are computed from A and B as follows: 
POLY(I, 1) = SX(I) - A(1) 
POLY(I, 2) = (SX(I) - A(2)) * POLY(I, 1) - B(2)
POLY(I, J) = (SX(I) - A(J)) * POLY(I, J - 1) - B(J) * POLY(I, J - 2) for J = 3 through NDEG.

3. If NDEG is greater than 10, the accuracy of the results may be questionable.

Type Code Description

3 8 N must be greater than NDEG in order for higher order polynomials to be 
nonzero. Columns N + 1 through NDEG of POLY are set to zero.
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Example

First-degree and second-degree orthogonal polynomials are generated using equally spaced x values 
1, 2, …, 12. (Equally spaced x values are not required by OPOLY.)

      USE OPOLY_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDPOLY, N, NDEG
      PARAMETER  (N=12, NDEG=2, LDPOLY=N)
!
      INTEGER    NOUT
      REAL       A(NDEG), B(NDEG), POLY(LDPOLY,NDEG), SADDC, SMULTC, &
                 SX(N), WT(1), X(N)
!
      DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, &
           12.0/
!
      CALL OPOLY (X, NDEG, SMULTC, SADDC, SX, A, B, POLY)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) SMULTC, SADDC
99999 FORMAT (' SMULTC = ', F7.3, '  SADDC = ', F7.3)
      CALL WRRRN ('A', A, 1, NDEG, 1)
      CALL WRRRN ('B', B, 1, NDEG, 1)
      CALL WRRRN ('POLY', POLY)
      END

Output

SMULTC =   0.364  SADDC =  -2.364

           A
         1           2
-5.960E-08  -1.009E-07

      B
    1       2
0.000   1.576

       POLY
         1       2
 1  -2.000   2.424
 2  -1.636   1.102
 3  -1.273   0.044
 4  -0.909  -0.749
 5  -0.545  -1.278
 6  -0.182  -1.543
 7   0.182  -1.543
 8   0.545  -1.278
 9   0.909  -0.749
10   1.273   0.044
11   1.636   1.102
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12   2.000   2.424
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GCSCP

Generates centered variables, squares, and crossproducts.

Required Arguments
X — NRX by NVAR matrix containing the data.  (Input)
XMEAN — Vector of length NVAR containing the means of the variables.  (Input)
CSCP — NRX by NVAR * (NVAR + 3)/2 matrix containing the centered variables, squares, and crossprod-

ucts.  (Output)

If X is not needed, X and the first NVAR columns of CSCP may occupy the same storage locations.

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NRX — Number of rows of data in X.  (Input)
Default: NRX = size (X,1).

NVAR — Number of variables.  (Input)
Default: NVAR = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

Columns Description

1 to NVAR Centered variables

NVAR+ 1 to 2 * NVAR Squared variables

2 * NVAR + 1 to NVAR * (NVAR + 3)/2 Crossproducts

IDO Action

0 This is the only invocation of GCSCP for this data set, and all the 
data are input at once.

1 This is the first invocation, and additional calls to GCSCP will be 
made. Initialization and updating for the data in X are performed.

2 This is an intermediate or final invocation of GCSCP and updating 
for the data in X is performed.
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ICEN — Centering option.  (Input) 
If IDO = 1 or IDO = 2, ICEN must equal 0. 
Default: ICEN = 0.

SCPM — Vector of length NVAR * (NVAR + 1)/2 containing the means of the generated square and 
crossproduct variables.  (Output, if IDO = 0 or 1; input/output, if IDO = 2) 

LDCSCP — Leading dimension of CSCP exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCSCP = size (CSCP,1).

NRMISS — Number of rows of data encountered in calls to GCSCP that contain any missing values for the 
variables.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2) 
NaN (not a number) is used as the missing value code.
Default: NRMISS = 0.

NVOBS — Number of valid observations.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2) 
Number of rows of data encountered in calls to GCSCP that do not contain any missing values for the 
variables.

FORTRAN 90 Interface
Generic: CALL GCSCP (X, XMEAN, CSCP [, …])
Specific: The specific interface names are S_GCSCP and D_GCSCP.

FORTRAN 77 Interface
Single: CALL GCSCP (IDO, NRX, NVAR, X, LDX, ICEN, XMEAN, SCPM, CSCP, LDCSCP, NRMISS, 

NVOBS)
Double: The double precision name is DGCSCP.

Description
Routine GCSCP centers a data set consisting of independent variable settings and generates (using the cen-
tered variables) the settings for all possible squared and crossproduct variables in standard order. The 
routine GCSCP is designed so that you can partition a large data set into submatrices (requiring less space) 
and make multiple calls to GCSCP (with IDO = 1, 2, 2  …, 2). Alternatively, one invocation of GCSCP (with 
IDO = 0) can be made with the entire data set contained in X. 

ISUB Action

0 CSCP contains the centered variables in columns 1 through NVAR. Square and 
crossproduct variables are generated from these centered variables in the 
remaining columns of CSCP.

1 First, the action taken when ICEN = 0 is performed. Next, the means of the 
square and crossproduct variables are subtracted from the square and 
crossproduct variables.

Elements Description

1 to NVAR Squared variable means

NVAR+ 1 to NVAR * (NVAR + 1)/2 Crossproduct variable means
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Let n be the number of rows in the entire data set, and let m (stored in NVAR) be the number of variables. 
Let xij be the i-th setting of the j-th variable (i = 1, 2, …, n; j = 1, 2, …, m). Denote the means (stored in 
XMEAN) by 

The settings of the j-th centered variable (stored in the j-th column of CSCP) are given by

The settings of the j-th squared variable (stored in the (m + j)-th column of CSCP) are given by 

where 

(stored in the (m + j)-th column of SCPM) is the mean of the j-th squared variable. The settings of the jk 
crossproduct variable (stored in the 

column of CSCP) are given by 

where 

(stored in the

location of SCPM) is the mean of the jk-th (j < k) crossproduct variable.
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Comments
Crossproduct variables are ordered as follows: (1, 2), (1, 3), …, (1, NVAR), (2, 3), (2, 4), …, (2, NVAR), …, 

(NVAR - 1, NVAR).

Examples

Example 1

With data containing 4 rows and 3 variables, GCSCP is used to center the variables and to generate (using the 
centered variables) the square and crossproduct variables. The data is input in one invocation (IDO = 0), and 
the generated squared and crossproduct variables are centered (ICEN = 1). On output, SCPM contains the 
means in standard order, i.e.,

Also, CSCP contains the variables in standard order, i.e.,

      USE GCSCP_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDCSCP, LDX, NRX, NVAR, J, ICEN
      PARAMETER  (NRX=4, NVAR=3, LDCSCP=NRX, LDX=NRX)
!
      INTEGER    NOUT, NRMISS, NVOBS
      REAL       CSCP(LDCSCP,NVAR*(NVAR+3)/2), SCPM(NVAR*(NVAR+1)/2), &
                 X(LDX,NVAR), XMEAN(NVAR)
!
      DATA (X(1,J),J=1,NVAR)/10.0,  8.0, 11.0/
      DATA (X(2,J),J=1,NVAR)/ 5.0, 15.0,  1.0/
      DATA (X(3,J),J=1,NVAR)/ 3.0,  2.0,  4.0/
      DATA (X(4,J),J=1,NVAR)/ 6.0,  3.0,  4.0/
      DATA XMEAN/6.0, 7.0, 5.0/
!
      ICEN = 1
      CALL GCSCP (X, XMEAN, CSCP, ICEN=ICEN, scpm=scpm, nrmiss=nrmiss, &
                  nvobs=nvobs)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' NRMISS = ', NRMISS
      CALL WRRRN ('SCPM', SCPM, 1, NVAR*(NVAR+1)/2, 1)
      CALL WRRRN ('CSCP', CSCP)
      END
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Output

NRMISS =   0

                  SCPM
   1       2       3       4       5        
6.50   26.50   13.50    2.75    7.75   -4.25

                                   CSCP
        1       2       3       4       5       6       7       8       9
1    4.00    1.00    6.00    9.50  -25.50   22.50    1.25   16.25   10.25
2   -1.00    8.00   -4.00   -5.50   37.50    2.50  -10.75   -3.75  -27.75
3   -3.00   -5.00   -1.00    2.50   -1.50  -12.50   12.25   -4.75    9.25
4    0.00   -4.00   -1.00   -6.50  -10.50  -12.50   -2.75   -7.75    8.25

Example 2

With data containing 4 rows and 3 variables, GCSCP is used to center the variables and to generate (using the 
centered variables) the square and crossproduct variables. The data is input in multiple invocations 
(IDO = 1, 2, 2, 2). Here, the square and crossproduct variables, generated using the centered variables, cannot 
be centered (ICEN = 0).

      USE GCSCP_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDCSCP, LDX, NRX, NVAR, J
      PARAMETER  (LDX=4, NRX=1, NVAR=3, LDCSCP=NRX)
!
      INTEGER    I, IDO, MISS, NOUT, NRMISS, NVOBS
      REAL       CSCP(LDCSCP,NVAR*(NVAR+3)/2), SCPM(NVAR*(NVAR+1)/2), &
                 X(LDX,NVAR), XMEAN(NVAR)
!
      DATA (X(1,J),J=1,NVAR)/10.0,  8.0, 11.0/
      DATA (X(2,J),J=1,NVAR)/ 5.0, 15.0,  1.0/
      DATA (X(3,J),J=1,NVAR)/ 3.0,  2.0,  4.0/
      DATA (X(4,J),J=1,NVAR)/ 6.0,  3.0,  4.0/
      DATA XMEAN/6.0, 7.0, 5.0/
!
      CALL UMACH (2, NOUT)
      MISS = 0
      DO 10  I=1, 4
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE
            IDO = 2
         END IF
         CALL GCSCP (X(I:,1:), XMEAN, CSCP, IDO=IDO, NRX=NRX, scpm=scpm,  &
                     nrmiss=nrmiss, nvobs=nvobs)
         MISS = MISS + NRMISS
         CALL WRRRN ('CSCP', CSCP)
   10 CONTINUE
      CALL WRRRN ('SCPM', SCPM, 1, NVAR*(NVAR+1)/2, 1)
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      WRITE (NOUT,*) ' MISS = ', MISS
      END

Output

                                   CSCP
    1       2       3       4       5       6       7       8       9
 4.00    1.00    6.00   16.00    1.00   36.00    4.00   24.00    6.00

                                  CSCP
    1       2       3       4       5       6       7       8       9
-1.00    8.00   -4.00    1.00   64.00   16.00   -8.00    4.00  -32.00

                                  CSCP
    1       2       3       4       5       6       7       8       9
-3.00   -5.00   -1.00    9.00   25.00    1.00   15.00    3.00    5.00

                                  CSCP
    1       2       3       4       5       6       7       8       9
 0.00   -4.00   -1.00    0.00   16.00    1.00    0.00    0.00    4.00

                      SCPM
    1       2       3       4       5       6
 6.50   26.50   13.50    2.75    7.75   -4.25
MISS =   0
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TCSCP

Transforms coefficients from a second order response surface model generated from squares and crossprod-
ucts of centered variables to a model using uncentered variables.

Required Arguments
XMEAN — Vector of length NVAR containing the means of the variables.  (Input)
SCPM — Vector of length NVAR(NVAR + 1)/2 containing the means of the generated square and crossprod-

uct variables.  (Input) 

BC — Vector of length NVAR * (NVAR + 3)/2 + 1 containing the coefficients for the centered variables.  
(Input) 
Here, the fitted model is

where zj = xj - XMEAN(j) and mjk = j * NVAR - j(j - 1)/2 + k - j. These regression coefficients can come 
from a regression using variables generated by routine GCSCP with the option ICEN = 1.

B — Vector of length NVAR * (NVAR + 3)/2 + 1 containing the coefficients of the uncentered variables.  
(Output) 
Here, the model uses the original x variables, i.e.,

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (XMEAN,1).

FORTRAN 90 Interface
Generic: CALL TCSCP (XMEAN, SCPM, BC, B [, …])
Specific: The specific interface names are S_TCSCP and D_TCSCP.

Elements Description

1 to NVAR Squared variable means 

NVAR+ 1 to NVAR * (NVAR + 1)/2 Crossproduct variable means
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FORTRAN 77 Interface
Single: CALL TCSCP (NVAR, XMEAN, SCPM, BC, B)
Double: The double precision name is DTCSCP.

Description

Routine TCSCP transforms coefficients from a second-order response surface model fitted using squares and 
crossproducts of centered variables into a model using the original uncentered variables. Let xij be the i-th 
setting of the j-th variable (i = 1, 2, …, n; j = 1, 2, …, m). Denote the means (stored in XMEAN) by

The settings of the j-th centered variable are given by

The settings of the j-th squared variable are given by

where

(stored in (m + j)-th column of SCPM) is the mean of the j-th squared variable. The settings of the jk crossprod-
uct variable are given by

where

(stored in the 

location of SCPM) is the mean of the jk-th (j < k) crossproduct variable. The fitted model is
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TCSCP transforms the

to regression coefficients for the original independent variables. The fitted transformed model is

where

Comments
Crossproduct variables are ordered as follows: (1, 2), (1, 3), …, (1, NVAR), (2, 3), (2, 4), …, (2, NVAR), …, 

(NVAR - 1, NVAR).

Example

This example transforms coefficients from a second-order response surface model with three independent 
variables fitted using squares and crossproducts of centered variables into a model using the original uncen-
tered variables.

      USE TCSCP_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    NVAR
      PARAMETER  (NVAR=3)
!
      REAL       B(NVAR*(NVAR+3)/2+1), BC(NVAR*(NVAR+3)/2+1), &
                 SCPM(NVAR*(NVAR+1)/2), XMEAN(NVAR)
!
      DATA XMEAN/10.0, 11.0, 6.0/
      DATA SCPM/12.0, 5.0, 2.0, 3.0, 7.0, 1.0/
      DATA BC/1.0, 2.0, 3.0, 0.0, 5.0, 0.0, 7.0, 0.0, 9.0, 10.0/
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!
      CALL TCSCP (XMEAN, SCPM, BC, B)
!
      CALL WRRRN ('B', B, 1, NVAR*(NVAR+3)/2+1, 1)
!
      END

Output

                                  B
     1        2        3        4        5        6        7        8
1753.0   -152.0    -57.0   -284.0      5.0      0.0      7.0      0.0

  9       10
9.0     10.0
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RNLIN

Fits a nonlinear regression model.

Required Arguments
FUNC — User-supplied SUBROUTINE to return the weight, frequency, residual, and optionally the deriva-

tive of the residual at the given parameter vector THETA for a single observation. The usage is:

CALL FUNC (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, IEND),
where
NPARM – Number of unknown parameters in the regression function.  (Input)
THETA – Vector of length NPARM containing parameter values.  (Input)
IOPT – Function/derivative evaluation option.  (Input)

If IDERIV = 0, only IOPT = 0 is used.
IOBS – Observation number.  (Input) 

The function is evaluated at the IOBS-th observation.
FRQ – Frequency for the observation.  (Output)
WT – Weight for the observation.  (Output) 

Use WT = 1.0 for equal weighting (unweighted least squares).
E – Error (residual) for the IOBS-th observation.  (Output, if IOPT = 0)
DE – Vector of length NPARM containing the partial derivatives of the residual for the  IOBS-th observa-

tion.  (Output, if IOPT = 1) 
If IDERIV = 0, DE is not referenced and can be a vector of length one.

IEND – Completion indicator.  (Output)

FUNC must be declared EXTERNAL in the calling program.
THETA — Vector of length NPARM containing parameter values.  (Input/Output)

On input, THETA must contain the initial estimate. On output, THETA contains the final estimate.

Optional Arguments
NPARM — Number of unknown parameters in the regression function.  (Input)

Default: NPARM = size (THETA,1).

IOPT Meaning

0 Evaluate the function.

1 Evaluate the derivative

IEND Meaning

0 IOBS is less than or equal to the number of 
observations.

1 IOBS is greater than the number of observations. 
WT, FRQ, E, and DE are not output.
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IDERIV — Derivative option.  (Input)
Default: IDERIV = 0.

R — NPARM by NPARM upper triangular matrix containing the R matrix from a QR decomposition of the 
Jacobian.  (Output)

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R, 1).

IRANK — Rank of R.  (Output) 
IRANK less than NPARM may indicate the model is overparameterized.

DFE — Degrees of freedom for error.  (Output)
SSE — Sums of squares for error.  (Output)

FORTRAN 90 Interface
Generic: CALL RNLIN (FUNC, THETA [, …])
Specific: The specific interface names are S_RNLIN and D_RNLIN.

FORTRAN 77 Interface
Single: CALL RNLIN (FUNC, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE, SSE)
Double: The double precision name is DRNLIN.

Description

Routine RNLIN fits a nonlinear regression model using least squares. The nonlinear regression model is

where the observed values of the yi’s constitute the responses or values of the dependent variable, the known 
xi’s are the vectors of the values of the independent (explanatory) variables, θ is the vector of p regression 

parameters, and the ɛi’s are independently distributed normal errors with mean zero and variance σ2. For 
this model, a least squares estimate of θ is also a maximum likelihood estimate of θ. 

The residuals for the model are 

IDERIV Meaning

0 Derivatives are obtained by finite 
differences.

1 Derivatives are supplied by FUNC.
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A value of θ that minimizes

is a least squares estimate of θ. Routine RNLIN is designed so that these residuals are input one at a time from 
a user-supplied subroutine. This permits RNLIN to handle the case when n is large and the data cannot reside 
in an array but must reside on some secondary storage device. 

Routine RNLIN is based on MINPACK routines LMDIF and LMDER by Moré et al. (1980). The routine RNLIN 
uses a modified Levenberg-Marquardt method to generate a sequence of approximations to a minimum 
point. Let

be the current estimate of θ. A new estimate is given by

where sc is a solution to

Here, 

is the Jacobian evaluated at 

The algorithm uses a “trust region” approach with a step bound of δc. A solution of the equations is first 
obtained for μc = 0. If ∥sc∥2 < δc, this update is accepted. Otherwise, μc is set to a positive value and another 
solution is obtained. The method is discussed by Levenberg (1944), Marquardt (1963), and Dennis and Schna-
bel (1983, pages 129-147, 218-338).

If IDERIV = 0, forward finite differences are used to estimate the Jacobian numerically. If IDERIV = 1, the 
Jacobian is computed analytically via the user-supplied subroutine. With IDERIV = 0 and single precision 
arithmetic, the estimate of the Jacobian may be so poor that the algorithm terminates at a noncritical point. In 
such instances, IDERIV = 1 or double precision arithmetic is recommended. 

Routine RNLIN does not actually store the Jacobian but uses fast Givens transformations to construct an 
orthogonal reduction of the Jacobian to upper triangular form (stored in R). The reduction is based on fast 
Givens transformations (see routines SROTMG and SROTM, Golub and Van Loan 1983, pages 156-162, Gentle-
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man 1974). This method has two main advantages: (1) the loss of accuracy resulting from forming the 
crossproduct matrix used in the equations for sc is avoided, and (2) the n × p Jacobian need not be stored sav-
ing space when n > p.

A weighted least squares fit can also be performed. This is appropriate when the variance of ɛi in the nonlin-

ear regression model is not constant but instead is σ2/wi. Here, the wi’s are weights input via the user-
supplied subroutine. For the weighted case, RNLIN computes a minimum weighted sum of squares for error 
(stored in SSE).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2LIN/DR2LIN. The reference is:

CALL R2LIN (FUNC, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE, SSE, IPARAM, RPARAM, SCALE, 
IWK, WK)

The additional arguments are as follows:

IPARAM — Vector of length 6 containing convergence parameters.  (Input/Output)
On input, set IPARAM(1) = 0 for default convergence parameter settings. If IPARAM(1) = 0, the 
remaining elements of IPARAM, and the arguments RPARAM and SCALE need not be 
initialized.

I Name IPARAM(I)

1 INIT Initialization flag.  (Input)
INIT = 0 means use default settings for IPARAM, RPARAM, and 
SCALE.
INIT = 1 means use the input IPARAM and RPARAM settings.

2 NDIGIT Number of good digits in the residuals.  (Input, if 
IPARAM(1) = 1)

3 ITER Number of iterations.  (Input/Output, if IPARAM(1) = 1; Out-
put, otherwise)
On input, this is the maximum number of iterations allowed. 
The default is 100. On output, it is the actual number of 
iterations.

4 NFCN Number of SSE evaluations.  (Input/Output, if 
IPARAM(1) = 1; Output, if IPARAM(1) = 0)
On input, this is the maximum number of evaluations 
allowed. The default is 400. On output, it is the actual num-
ber of evaluations.

5 NJAC Number of Jacobian evaluations.  (Input, if IPARAM(1) = 1 
and IDERIV = 1; Output, if IDERIV = 1)
On input, this is the maximum number of Jacobian evalua-
tions allowed. The default is 100. On output, it is the number 
of Jacobian evaluations.

6 MODE Scaling option.  (Input, if IPARAM(1) = 1)
If IPARAM(6) = 1, the values for SCALE are set internally. The 
default is 1. Otherwise, SCALE must be input.
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RPARAM — Vector of length 7 containing convergence parameters.  (Input, if IPARAM(1) = 1) 
In the following table, the default settings are given in parentheses. EPS = AMACH(4)(see the 
documentation for IMSL routine AMACH).

SCALE — Vector of length NPARM.  (Input/Output, if IPARAM(1) = 1 and IPARAM(6) = 0; Output, if 
IPARAM(6) = 1) 
A common choice is to set all elements of SCALE to 1.0. If good starting values for THETA are 
known and nonzero, a good choice is SCALE(I) = 1.0/∣THETA(I)∣. Otherwise, for example, if 
THETA(I) is known to be in the interval (-105, 105), set SCALE(I) = 10−5. Or, for example, if 
THETA(I) is known to be in the interval (103, 105), set SCALE(I) = 10−4.

IWK — Work vector of length NPARM.

WK — Work vector of length 11 * NPARM + 4.  (Output)
The first NPARM components of WK are the gradient at the solution. The second NRARM compo-
nents of WK give the last step.

I Name RPARAM(I)

1 FJACTL Scaled gradient tolerance (SQRT(EPS) for single precision; 

EPS1∕3 for double precision)
Convergence is declared if 
∣WK(I)∣ * max{∣THETA(I)∣, 1.0/SCALE(I)}/SSE is less than 
FJACTL for I = 1, 2, …, NPARM, where WK(I) is the I-th com-
ponent of the gradient vector.

2 STEPTL Scaled step tolerance (EPS2∕3)
Convergence is declared if 
∣WK(NPARM + I)∣/max{∣THETA(I)∣, 1.0/SCALE(I)} is less than 
STEPTL for I = 1, 2, …, NPARM, where WK(NPARM + I) is the 
I-th component of the last step.

3 RFTOL Relative function tolerance (max{10−10 EPS2/3} for single 

precision, max{10−20, EPS2/3} for double precision)
Convergence is declared if the change in SSE is less than or 
equal to RFTOL * SSE in absolute value.

4 AFTOL Absolute function tolerance (max{10−20, EPS2} for single pre-

cision; max{10−40, EPS2} for double precision)
Convergence is declared if SSE is less than AFTOL.

5 FALSTL False convergence tolerance (100.0 * EPS)

6 STEPMX Maximum allowable step size (1000 * MAX(TOL1, TOL2) 
where TOL1 = SNRM2(NPARM, SCXTH, 1); 
TOL2 = SNRM2(NPARM, SCALE, 1) and SCXTH is the 
elementwise product of SCALE and THETA, i.e., 
SCXTH(I) = SCALE(I) * THETA(I).)

7 DELTA Size of initial trust region radius (based on the initial scaled 
Cauchy step)
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2. Informational errors

3. The first stopping criterion for RNLIN occurs when SSE is less than the absolute function tolerance. 
The second stopping criterion occurs when the norm of the scaled gradient is less than the given gradi-
ent tolerance. The third stopping criterion occurs when the scaled distance between the last two steps 
is less than the step tolerance. The third stopping criterion also generates error code 7. The fourth stop-
ping criterion occurs when the relative change in SSE is less than RFTOL. The fourth stopping criterion 
also generates error code 1. See Dennis and Schnabel (1983, pages 159-161, 278-280, and 347-348) for 
a discussion of stopping criteria and choice of tolerances.

4. To use some nondefault convergence parameters, first call R8LIN, then reset the corresponding con-
vergence parameters to the desired value and call R2LIN. For example, the following code could be 
used if nondefault convergence parameters are to be used:

!
      CALL R8LIN (IPARAM, RPARAM)
!  R8LIN outputs IPARAM(1) = 1 to indicate some 
!  nondefault convergence parameters are to be set. 
!  R8LIN outputs the remaining elements of IPARAM 
!  and RPARAM as their default values.
!
!  Set some nondefault convergence parameters.
       IPARAM(3) = 20
       IPARAM(6) = 0
       SCALE(1) = 0.1
       SCALE(2) = 10.0
!
       CALL R2LIN (FUNC, NPARM, IDERIV, THETA, R, &
                   LDR,IRANK, DFE, SSE, IPARAM, &
                   RPARAM, SCALE, IWK, WK)
If double precision is being used, then DR8LIN and DR2LIN are called and RPARAM is declared double 
precision.

Type Code Description

3 1 Both the scaled actual and predicted reductions in the function are less than 
or equal to the relative function convergence tolerance.

3 2 The iterates appear to be converging to a noncritical point. Incorrect gradient 
information, a discontinuous function, or stopping tolerances being too tight 
may be the cause.

4 3 Maximum number of iterations is exceeded.

4 4 Maximum number of function evaluations is exceeded.

4 5 Maximum number of Jacobian evaluations is exceeded for IDERIV = 1.

3 6 Five consecutive steps of the same size have been taken. Either the function 
is unbounded below, or it has a finite asymptote in some direction, or the 
stepsize is too small.

2 7 Scaled step tolerance is satisfied, the current point may be an approximate 
local solution, or the algorithm is making very slow progress and is not near 
a solution, or STEPTL is too big.
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Programming Notes

Nonlinear regression allows substantial flexibility over linear regression because the user can specify the 
functional form of the model. This added flexibility can cause unexpected convergence problems for users 
that are unaware of the limitations of the software. Also, in many cases, there are possible remedies that may 
not be immediatedly obvious. The following is a list of possible convergence problems and some remedies 
that the user can try. There is not a one-to-one correspondence between the problems and the remedies. Rem-
edies for some problems may also be relevant for the other problems.

1. A local minimum is found. Try a different starting value. Good starting values often can be obtained 
by fitting simpler models. For example, for a nonlinear function

good starting values can be obtained from the estimated linear regression coefficients 

from a simple linear regression of ln y on ln x. The starting values for the nonlinear regression in this 
case would be

If an approximate linear model is not clear, then simplify the model by reducing the number of nonlin-
ear regression parameters. For example, some nonlinear parameters for which good starting values are 
known could be set to these values in order to simplify the model for computing starting values for the 
remaining parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the initial estimate
∙ The scale of the problem may be orders of magnitude smaller than the assumed default of 1 

causing premature stopping. For example, in single precision if SSE is less than AMACH(4)**2, 
the routine stops. See Example 3, which shows how to shut down some of the stopping criteria 
that may not be relevant for your particular problem and which also shows how to improve the 
speed of convergence by the input of the scale of the model parameters.

∙ The scale of the problem may be orders of magnitude larger than the assumed default causing 
premature stopping. The information with regard to the input of the scale of the model parame-
ters in Example 3 is also relevant here. In addition, the maximum allowable step size, RPARAM(6) 
in Example 3, may need to be increased.

∙ The residuals are input with accuracy much less than machine accuracy causing premature stop-
ping because a local minimum is found. Again see Example 3 to see generally how to change 
some default tolerances. If you cannot improve the precision of the computations of the residual, 
you need to set IPARAM(2) to indicate the actual number of good digits in the residuals.

3. The model is discontinuous as a function of θ. You may have a mistake in the subroutine you sup-
plied. Note that the function f(x; θ) can be a discontinuous function of x.

4. The R matrix returned by RNLIN is inaccurate. Use the double precision version DRNLIN. If 
IDERIV = 1, check your derivatives or try using IDERIV = 0. If IDERIV = 0, try using IDERIV = 1.

5. Overflow occurs during the computations. Print out θ and the residual in the subroutine you sup-
plied. Make sure the code you supply does not overflow at some value of θ.
RNLIN         Chapter 2: Regression      327



6. The estimate of θ is going to infinity. You may need to reparameterize or change your function. For 
example, a parameterization in terms of the reciprocals may be appropriate.

7. Some components of θ are outside known bounds. Routine RNLIN does not handle bounds on the 
parameters, but you can artificially impose some by setting the residuals unusually large outside the 
bounds. Although this introduces a discontinuity in the model function, this often works and allows 
you to use RNLIN without having to resort to a more general nonlinear optimization routine.

Examples

Example 1

This example uses data discussed by Neter, Wasserman, and Kutner (1983, pages 475-478). A nonlinear 
model

is fitted. The option IDERIV = 0 is used. 

The user must supply a SUBROUTINE to return the residual, weight, and frequency for a single observation 
at the given value of the regression parameter vector θ. This subroutine, called EXAMPL here, must be 
declared EXTERNAL in the calling program and must have the specified calling sequence.

      USE RNLIN_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDR, NOBS, NPARM
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
!
      INTEGER    IRANK, NOUT
      REAL       DFE, R(LDR,NPARM), SSE, THETA(NPARM)
      EXTERNAL   EXAMPL
!
      DATA THETA/60.0, -0.03/
!
      CALL UMACH (2, NOUT)
!
      CALL RNLIN (EXAMPL, THETA, r=r, irank=irank, dfe=dfe, sse=sse)
      WRITE (NOUT,*) 'THETA = ', THETA
      WRITE (NOUT,*) 'IRANK = ', IRANK, '  DFE = ', DFE, '  SSE = ', &
                    SSE
      CALL WRRRN ('R', R)
      END
!
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, &
                         IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(1)
!
      INTEGER    NOBS
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      PARAMETER  (NOBS=15)
!
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
!
      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0, &
           13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, &
           38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
!
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         E    = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output

THETA =     58.6045   -3.95835E-02
IRANK =   2  DFE =     13.0000  SSE =     49.4593

         R
         1        2
1      1.9   1139.8
2      0.0   1139.7
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Figure 2.10 — Plot of the Nonlinear Fit

Example 2

This example fits the model in Example 1 with the option IDERIV = 1.

      USE RNLIN_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDR, NOBS, NPARM
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
!
      INTEGER    IDERIV, IRANK, NOUT
      REAL       DFE, R(LDR,NPARM), SSE, THETA(NPARM)
      EXTERNAL   EXAMPL
!
      DATA THETA/60.0, -0.03/
!
      CALL UMACH (2, NOUT)
!
      IDERIV = 1
      CALL RNLIN (EXAMPL, THETA, IDERIV=IDERIV, r=r, irank=irank, dfe=dfe, &
                  sse=sse)
      WRITE (NOUT,*) 'THETA = ', THETA
      WRITE (NOUT,*) 'IRANK = ', IRANK, '  DFE = ', DFE, '  SSE = ', &
                    SSE
      CALL WRRRN ('R', R)
      END
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!
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, &
                         IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(NPARM)
!
      INTEGER    NOBS
      PARAMETER  (NOBS=15)
!
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
!
      DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0, &
           13.0, 8.0, 11.0, 8.0, 4.0, 6.0/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, &
           38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
!
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         IF (IOPT .EQ. 0) THEN
            E = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
         ELSE
            DE(1) = -EXP(THETA(2)*XDATA(IOBS))
            DE(2) = -THETA(1)*XDATA(IOBS)*EXP(THETA(2)*XDATA(IOBS))
         END IF
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output

THETA =     58.6034   -3.95812E-02
IRANK =   2  DFE =     13.0000  SSE =     49.4593

         R
         1        2
1      1.9   1140.1
2      0.0   1139.9

Example 3

This example fits the model in Example 1, but the data for y is 10−10 times the values in Example 1. In order 
to solve this problem without rescaling y, we use some nondefault convergence tolerances and scales. This is 
accomplished by invoking routine R8LIN, setting some elements of IPARAM, RPARAM, and SCALE, and then 
invoking R2LIN. Here, we set the absolute function tolerance to 0.0. The default value would cause the pro-

gram to terminate after one iteration because the residual sum of squares is roughly 10−19 Also, we set the 
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relative function tolerance to 0.0. The gradient stopping condition is properly scaled for this problem so we 
leave it at its default value. Finally, we set SCALE(I) equal to the absolute value of the reciprocal of the start-
ing value.

Note in the output that the estimate of θ1 is 10−10 times the estimate in Example 1. Note also that the invoca-
tion of R2LIN in place of RNLIN allows the printing of additional information that is output in IPARAM 
(number iterations and number of SSE evaluations) and output in WK (gradient at solution and last step).

      USE UMACH_INT
      USE R8LIN_INT
      USE R2LIN_INT
      USE WROPT_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDR, NOBS, NPARM, IDERIV, ISETNG
      PARAMETER  (NOBS=15, NPARM=2, LDR=NPARM)
!
      INTEGER    IPARAM(6), IRANK, IWK(NPARM), NOUT
      REAL       ABS, DFE, R(LDR,NPARM), RPARAM(7), SCALE(NPARM), SSE, &
                 THETA(NPARM), WK(11*NPARM+4)
      INTRINSIC  ABS
      EXTERNAL   EXAMPL
!
      DATA THETA/6.0E-9, -0.03/
!
      CALL UMACH (2, NOUT)
!
      CALL R8LIN (IPARAM, RPARAM)
      RPARAM(3) = 0.0
      RPARAM(4) = 0.0
      IPARAM(6) = 0
      SCALE(1)  = 1.0/ABS(THETA(1))
      SCALE(2)  = 1.0/ABS(THETA(2))
      CALL R2LIN (EXAMPL, NPARM, IDERIV, THETA, R, LDR, IRANK, DFE, &
                  SSE, IPARAM, RPARAM, SCALE, IWK, WK)
      WRITE (NOUT,*) 'THETA = ', THETA
      WRITE (NOUT,*) 'IRANK = ', IRANK, '  DFE = ', DFE, '  SSE = ', &
                    SSE
      WRITE (NOUT,*) 'Number of iterations = ', IPARAM(3)
      WRITE (NOUT,*) 'Number of SSE evaluations = ', IPARAM(4)
      ISETNG=2   
      CALL WROPT (-6, ISETNG, 1)
      CALL WRRRN ('Gradient at solution', WK, 1, NPARM, 1)
      CALL WRRRN ('Last step taken', WK((NPARM+1):), 1, NPARM, 1)
      CALL WRRRN ('R', R)
      END
!
      SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, &
                         IEND)
      INTEGER    NPARM, IOPT, IOBS, IEND
      REAL       THETA(NPARM), FRQ, WT, E, DE(1)
!
      INTEGER    NOBS
RNLIN         Chapter 2: Regression      332



      PARAMETER  (NOBS=15)
!
      REAL       EXP, XDATA(NOBS), YDATA(NOBS)
      INTRINSIC  EXP
!
      DATA YDATA/54.0E-10, 50.0E-10, 45.0E-10, 37.0E-10, 35.0E-10, &
           25.0E-10, 20.0E-10, 16.0E-10, 18.0E-10, 13.0E-10, 8.0E-10, &
           11.0E-10, 8.0E-10, 4.0E-10, 6.0E-10/
      DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, &
           38.0, 45.0, 52.0, 53.0, 60.0, 65.0/
!
      IF (IOBS .LE. NOBS) THEN
         WT   = 1.0E0
         FRQ  = 1.0E0
         IEND = 0
         E    = YDATA(IOBS) - THETA(1)*EXP(THETA(2)*XDATA(IOBS))
      ELSE
         IEND = 1
      END IF
      RETURN
      END

Output

THETA =     5.86076E-09   -3.95879E-02
RANK =   2  DFE =     13.0000  SSE =     4.94593E-19
Number of iterations =   5
Number of SSE evaluations =   13

    Gradient at solution
          1             2
6.86656E-14  -1.73762E-20

       Last step taken
           1             2
-3.24588E-14   3.65805E-07

             R
              1             2
1   1.87392E+00   1.13981E-07
2   0.00000E+00   1.13934E-07

Example 4

For an extended version of Example 2 that in addition computes the estimated asymptotic variance-covari-
ance matrix of the estimated nonlinear regression parameters, see Example 2 for routine RCOVB. The example 
also computes confidence intervals for the parameters.

Example 5

For an extended version of Example 2 that in addition computes standardized residuals, leverages, and con-
fidence intervals on the mean response, see Example 2 for routine ROTIN.
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RLAV

Fits a multiple linear regression model using the least absolute values criterion.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IIND — Independent variable option.  (Input) 

The absolute value of IIND is the number of independent (explanatory) variables. The sign of IIND 
specifies the following options: 

The regressors are the constant regressor (if INTCEP = 1) and the independent variables.
INDIND — Index vector of length IIND containing the column numbers of X that are the independent 

(explanatory) variables.  (Input, if IIND is positive) 
If IIND is negative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
B — Vector of length INTCEP + ∣IIND∣ containing a LAV solution for the regression coefficients.  (Output) 

If INTCEP = 1, B(1) contains the intercept estimate. B(INTCEP + I) contains the coefficient estimate for 
the I-th independent variable.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

IRANK — Rank of the matrix of regressors.  (Output) 
If IRANK is less than INTCEP + ∣IIND∣, linear dependence of the regressors was declared.

SAE — Sum of the absolute values of the errors.  (Output)

IIND Meaning

< 0 The data for the -IIND independent variables are given in the first -IIND columns of 
X.

> 0 The data for the IIND independent variables are in the columns of X whose column 
numbers are given by the elements of INDIND.

= 0 There are no independent variables.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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ITER — Number of iterations performed.  (Output)
NRMISS — Number of rows of data containing NaN (not a number) for the dependent or independent 

variables.  (Output) 
If a row of data contains NaN for any of these variables, that row is excluded from the computations.

FORTRAN 90 Interface
Generic: CALL RLAV (X, IIND, INDIND, IRSP, B [, …])
Specific: The specific interface names are S_RLAV and D_RLAV.

FORTRAN 77 Interface
Single: CALL RLAV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, B, IRANK, SAE, ITER, 

NRMISS)
Double: The double precision name is DRLAV.

Description

Routine RLAV computes estimates of the regression coefficients in a multiple linear regression model. The cri-
terion satisfied is the minimization of the sum of the absolute values of the deviations of the observed 
response yi from the fitted response

for a set on n observations. Under this criterion, known as the L1 or LAV (least absolute value) criterion, the 
regression coefficient estimates minimize

The estimation problem can be posed as a linear programming problem. The special nature of the problem, 
however, allows for considerable gains in efficiency by the modification of the usual simplex algorithm for 
linear programming. These modifications are described in detail by Barrodale and Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares solution prior to the invoca-
tion of RLAV. This is particularly useful when a least-squares solution has already been computed. The 
procedure is as follows:

1. Fit the model using least squares and compute the residuals from this fit.
2. Fit the residuals from Step 1 on the regressor variables in the model using RLAV.
3 Add the two estimated regression coefficient vectors from Steps 1 and 2. The result is an L1 solution.

When multiple solutions exist for a given problem, routine RLAV may yield different estimates of the regres-
sion coefficients on different computers, however, the sum of the absolute values of the residuals should be 
the same (within rounding differences). The informational error indicating nonunique solutions may result 
from rounding accumulation. Conversely, because of rounding the error may fail to result even when the 
problem does have multiple solutions.
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Comments
1. Workspace may be explicitly provided, if desired, by use of R2AV/DR2AV. The reference is:

CALL R2AV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, 
IRSP, B, IRANK, SAE, ITER, NRMISS, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length NOBS

WK — Work vector of length NOBS * (∣IIND∣ + 5) + 2 * ∣IIND∣ + 4
2. Informational error

Example

A straight line fit to a data set is computed under the LAV criterion.

      USE RLAV_INT
      USE UMACH_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    LDX, NCOEF, NCOL, NOBS, J
      PARAMETER  (NCOEF=2, NCOL=2, NOBS=8, LDX=NOBS)
!
      INTEGER    IIND, INDIND(1), IRANK, IRSP, ITER, NOUT, &
                 NRMISS
      REAL       B(NCOEF), SAE, X(LDX,NCOL)
      CHARACTER  CLABEL(1)*4, RLABEL(1)*4
!
      DATA (X(1,J),J=1,NCOL) /1.0, 1.0/
      DATA (X(2,J),J=1,NCOL) /4.0, 5.0/
      DATA (X(3,J),J=1,NCOL) /2.0, 0.0/
      DATA (X(4,J),J=1,NCOL) /2.0, 2.0/
      DATA (X(5,J),J=1,NCOL) /3.0, 1.5/
      DATA (X(6,J),J=1,NCOL) /3.0, 2.5/
      DATA (X(7,J),J=1,NCOL) /4.0, 2.0/
      DATA (X(8,J),J=1,NCOL) /5.0, 3.0/
!
      IIND   = -1
      IRSP   = 2
!
      CALL RLAV (X, IIND, INDIND, IRSP, B, irank=irank, sae=sae, &
                 iter=iter, nrmiss=nrmiss)
!
      CALL UMACH (2, NOUT)
      RLABEL(1) = 'B ='
      CLABEL(1) = 'NONE'

Type Code Description

3 1 The solution may not be unique.

4 1 Calculations terminated prematurely due to rounding. This occurs only 
when rounding errors cause a pivot to be encountered whose magnitude is 
less than AMACH(4) and is indicative of a large ill-conditioned problem.
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      CALL WRRRL (' ', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(F6.2)')
      WRITE (NOUT,*) 'IRANK = ', IRANK
      WRITE (NOUT,*) 'SAE = ', SAE
      WRITE (NOUT,*) 'ITER = ', ITER
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Output

B =    0.50    0.50
IRANK =   2
SAE =     6.00000
ITER =   2
NRMISS =   0

Figure 2.11 — Least Squares and Least Absolute Value Fitted Lines
RLAV         Chapter 2: Regression      337



RLLP

Fits a multiple linear regression model using the Lp norm criterion.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IIND — Independent variable option.  (Input) 

There are NCOEF = INTCEP + ∣IIND∣ regressors—the constant regressor (if INTCEP = 1) and the inde-
pendent variables.

INDIND — Index vector of length IIND containing the column numbers of X that are the independent 
(explanatory) variables.  (Input, if IIND is positive) 
If IIND is negative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
P — The p in the Lp norm.  (Input) 

p must be greater than or equal to 1.0. A common choice for p is between 1.0 and 2.0, inclusively.
B — Vector of length NCOEF containing an Lp solution for the regression coefficients.  (Output) 

If INTCEP = 1, B(1) contains the intercept estimate. B(INTCEP + I) contains the coefficient estimate for 
the I-th independent variable.

Optional Arguments
NOBS — Number of rows in X.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

IIND Meaning

< 0 The first -IIND columns of X contain the independent (explanatory) variables.

> 0 The IIND independent variables are specified by the column numbers in INDIND.

= 0 There are no independent variables.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the 
weights.
Default: IWT = 0.

TOL — Tolerance used in determining linear dependence.  (Input) 
TOL = 100 * AMACH(4) is a common choice. See documentation for IMSL routine AMACH in the Reference 
Material.
Default: TOL = 1.e-5 for single precision and 2.d –14 for double precision.

MAXIT — Maximum number of iterations permitted.  (Input) 
A common choice is MAXIT = 100.
Default: MAXIT = 100.

EPS — Convergence criterion.  (Input) 
If the maximum relative difference in residuals from the k-th to (k + 1)-st iterations is less than EPS, 
convergence is declared. EPS = 100 * AMACH(4) is a common choice. 
Default: EPS = 1.e-5 for single precision and 2.d –14 for double precision. 

R — NCOEF by NCOEF upper triangular matrix containing the R matrix from a QR decomposition of the 
matrix of regressors.  (Output)

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

IRANK — Rank of the matrix of regressors.  (Output) 
If IRANK is less than NCOEF, linear dependence of the regressors is declared.

DFE — Sum of the frequencies minus IRANK.  (Output) In a least squares fit (p = 2), DFE is called the 
degrees of freedom for error.

E — Vector of length NOBS containing the residuals.  (Output)
SCALE2 — Square of the scale constant used in an Lp analysis.  (Output) 

An estimated asymptotic variance-covariance matrix of the regression coefficients is 
SCALE2 * (RTR)−1.

ELP — Lp norm of the residuals.  (Output)

ITER — Number of iterations performed.  (Output)
NRMISS — Number of rows of data that contain any missing values for the independent, dependent, 

weight, or frequency variables.  (Output) 
NaN (not a number) is used as the missing value code. Any row of X containing NaN as a value of the 
independent, dependent, weight, or frequency variables is omitted from the analysis.

FORTRAN 90 Interface
Generic: CALL RLLP (X, IIND, INDIND, IRSP, P, B [, …])
Specific: The specific interface names are S_RLLP and D_RLLP.
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FORTRAN 77 Interface
Single: CALL RLLP (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, IFRQ, IWT, P, TOL, 

MAXIT, EPS, B, R, LDR, IRANK, DFE, E, SCALE2, ELP, ITER, NRMISS)
Double: The double precision name is DRLLP.

Description

Routine RLLP computes estimates of the regression coefficients in a multiple linear regression model 
y = X β + ɛ under the criterion of minimizing the Lp norm of the deviations for i = 1, …, n of the observed 
response yi from the fitted response

for a set on n observations and for p ≥ 1. For the case IWT = 0 and IFRQ = 0 the estimated regression coeffi-
cient vector,

(output in B) minimizes the Lp norm 

The choice p = 1 yields the maximum likelihood estimate for β when the errors have a Laplace distribution. 
The choice p = 2 is best for errors that are normally distributed. Sposito (1989, pages 36-40) discusses other 
reasonable alternatives for p based on the sample kurtosis of the errors. 

Weights are useful if the errors in the model have known unequal variances

In this case, the weights should be taken as

Frequencies are useful if there are repetitions of some observations in the data set. If a single row of data cor-
responds to ni observations, set the frequency fi = ni. In general, RLLP minimizes the Lp norm

The asymptotic variance-covariance matrix of the estimated regression coefficients is given by 
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where R is from the QR decomposition of the matrix of regressors (output in R) and where an estimate of λ2 
is output in SCALE2. An estimated asymptotic variance-covariance matrix of the estimated regression coeffi-
cients can be computed following the call to RLLP by invoking routine RCOVB with R and SCALE2.

In the discussion that follows, we will first present the algorithm with frequencies and weights all taken to be 
one. Later, we will present the modifications to handle frequencies and weights different from one. 

Routine RLLP uses Newton’s method with a line search for p > 1.25 and, for p ≤ 1.25, uses a modification due 
to Ekblom (1973, 1987) in which a series of perturbed problems are solved in order to guarantee convergence 
and increase the convergence rate. The cutoff value of 1.25 as well as some of the other implementation 
details given in the remaining discussion were investigated by Sallas (1990) for their effect on CPU times. 

In each case, for the first iteration a least-squares solution for the regression coefficients is computed using 
routine RGIVN. If p = 2, the computations are finished. Otherwise, the residuals from the k-th iteration,

are used to compute the gradient and Hessian for the Newton step for the (k + 1)-st iteration for minimizing 
the p-th power of the Lp norm. (The exponent 1/p in the Lp norm can be omitted during the iterations.) 

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the gradient and Hessian at the 
(k + 1)-st iteration depend upon

and 

In the case 1.25 < p < 2 and 

and the Hessian are undefined; and we follow the recommendation of Merle and Spath (1974). Specifically, 
we modify the definition of 

to the following:
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where  equals 100 * AMACH(4)  times the square root of the residual mean square from the least-squares fit. 
(See routine AMACH , which is documented in the section “Machine-Dependent Constants” in the Reference 
Material.)

Let V(k+1) be a diagonal matrix with diagonal entries

and let z(k+1) be a vector with elements

In order to compute the step on the (k + 1)-st iteration, the R from the QR decomposition of [V(k+1)]1∕2X is 

computed using fast Givens transformations. Let R(k+1) denote the upper triangular matrix from the QR 
decomposition. Routine GIRTS (see Chapter 20, Mathematical Support) is used to solve the linear system 

[R(k+1)]TR(k+1)d(k+1) = XT z(k+1) for d(k+1) where R(k+1) is from the QR decomposition of [V(k+1)]1∕2X. The step 
taken on the (k + 1)-st iteration is

The first attempted step on the (k + 1)-st iteration is with α (k+1) = 1. If all of the

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, pages 528-529) for further 
discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the predicted decrease in the p-th 
power of the Lp norm of the residuals, a backtracking linesearch procedure is used. The backtracking proce-
dure uses a one-dimensional quadratic model to estimate the backtrack constant p. The value of ρ is 
constrained to be no less that 0.1. An approximate upper bound for p is 0.5. If after 10 successive backtrack 

attempts, α(k) = ρ1ρ2…ρ10 does not produce a step with a sufficient decrease, then RLLP issues a message 
with error code 5. For further details on the backtrack line-search procedure, see Dennis and Schnabel (1983, 
pages 126-127). 

Convergence is declared when the maximum relative change in the residuals from one iteration to the next is 
less than or equal to EPS. The relative change
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in the i-th residual from iteration k to iteration k + 1 is computed as follows:

where s is the square root of the residual mean square from the least-squares fit on the first iteration.

For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous procedure that incorporate Ekblom’s 
(1973) results. A sequence of perturbed problems are solved with a successively smaller perturbation con-
stant c. On the first iteration, the least-squares problem is solved. This corresponds to an infinite c. For the 
second problem, c is taken equal to s, the square root of the residual mean square from the least-squares fit. 
Then, for the (j + 1)-st problem, the value of c is computed from the previous value of c according to

Each problem is stated as 

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend upon

and

where

The linear system [R(k+1)]TR(k+1)d(k+1) = XTz(k+1) is solved for d(k+1) where R(k+1) is from the QR decomposi-

tion of [V (k+1)]1∕2X. The step taken on the (k + 1)-st iteration is

where the first attempted step is with α (k+1) = 1. If necessary, the backtracking line-search procedure dis-
cussed earlier is used.
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Convergence for each problem is relaxed somewhat by using a convergence epsilon equal to max(EPS, 10−j) 
where j = 1, 2, 3, … indexes the problems (j = 0 corresponds to the least-squares problem). 

After the convergence of a problem for a particular c, Ekblom’s (1987) extrapolation technique is used to com-

pute the initial estimate of β for the new problem. Let R(k), ,  and c be from the last iteration of the last 

problem. Let

and let t be the vector with elements ti. The initial estimate of β for the new problem with perturbation con-
stant 0.01c is 

where Δc = (0.01c - c) = -0.99c, and where d is the solution of the linear system [R(k)]ΤR(k)d = XTt.

Convergence of the sequence of problems is declared when the maximum relative difference in residuals 
from the solution of successive problems is less than EPS. 

The preceding discussion was limited to the case for which IWT = 0 and IFRQ = 0, i.e., the weights and fre-
quencies are all taken equal to one. The necessary modifications to the preceding algorithm to handle 
weights and frequencies not all equal to one are as follows:

1. Replace 

in the definitions of

and ti.

2. Replace

These replacements have the same effect as multiplying the i-th row of X and y by

and repeating the row fi times except for the fact that the residuals returned by RLLP are in terms of the orig-
inal y and X. 
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Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because on output it corresponds to 

the R from the initial QR decomposition for least squares. The formula for the estimate of λ− depends on p. 

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)

with 

where z0.975 is the 97.5 percentile of the standard normal distribution, and where 

are the ordered residuals where IRANK zero residuals are excluded. (Note that 

For p = 2, the estimator of λ2 is the customary least-squares estimator given by

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 1989)

with 

Comments
1. Workspace may be explicitly provided, if desired, by use of R2LP/DR2LP. The reference is:
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CALL R2LP (NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, IFRQ, IWT, P, TOL, MAXIT, EPS, 
B, R, LDR, IRANK, DFE, E, SCALE2, ELP, ITER, NRMISS, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length NOBS + ∣IIND∣ + 3.

WK — Work array of length 2 * NOBS + 8 * NCOEF + 4.
2. Informational errors

Example

Different straight line fits to a data set are computed under the criterion of minimizing the Lp norm by using 
p equal to 1, 1.5, 2.0 and 2.5.

      USE RLLP_INT
      USE UMACH_INT
      USE WRRRL_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, LDR, LDX, NCOEF, NCOL, NIND, NOBS, J
      PARAMETER  (INTCEP=1, NCOL=2, NIND=1, NOBS=8, LDX=NOBS, &
                 NCOEF=INTCEP+NIND, LDR=NCOEF)
!
      INTEGER    IIND, INDIND(NIND), IRANK, IRSP, ITER, NOUT, NRMISS
      REAL       B(NCOEF), DFE, E(NOBS), ELP, EPS, P, &
                 R(LDR,NCOEF), SCALE2, X(LDX,NCOL)
      CHARACTER  CLABEL(1)*4, RLABEL(1)*12
!
      DATA (X(1,J),J=1,NCOL)/1.0, 1.0/
      DATA (X(2,J),J=1,NCOL)/4.0, 5.0/
      DATA (X(3,J),J=1,NCOL)/2.0, 0.0/
      DATA (X(4,J),J=1,NCOL)/2.0, 2.0/
      DATA (X(5,J),J=1,NCOL)/3.0, 1.5/
      DATA (X(6,J),J=1,NCOL)/3.0, 2.5/
      DATA (X(7,J),J=1,NCOL)/4.0, 2.0/
      DATA (X(8,J),J=1,NCOL)/5.0, 3.0/
!

Type Code Description

4 1 A negative weight was encountered.

4 2 A negative frequency was encountered.

4 3 The p-th power of the absolute value of one or more of the current residuals 
will result in overflow or underflow in subsequent computations. A solution 
cannot be computed because of a serious loss of accuracy. For large p, con-
sider the use of IMSL routine RLMV, which uses the L∞ (minimax) criterion.

3 4 Convergence has not been achieved after MAXIT iterations. MAXIT or EPS 
may be too small. Try increasing MAXIT or EPS.

3 5 Convergence is not declared. The line-search procedure failed to find an 
acceptable solution after 10 successive attempts. EPS may be too small. Try 
increasing its value.
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      CALL UMACH (2, NOUT)
      IIND      = NIND
      INDIND(1) = 1
      IRSP      = 2
      EPS       = 0.001
!
      DO 10  P=1.0, 2.5, 0.5
         CALL RLLP (X, IIND, INDIND, IRSP, P, B, eps=eps, r=r, &
                    irank=irank, DFE=DFE, e=e, scale2=scale2, elp=elp, &
                    ITER=ITER, nrmiss=nrmiss)
!
         WRITE (NOUT,99997)
         RLABEL(1) = 'Coefficients'
         CLABEL(1) = 'NONE'
         CALL WRRRL ('%/', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(F6.2)')
         RLABEL(1) = 'Residuals'
         CLABEL(1) = 'NONE'
         CALL WRRRL ('%/', E, RLABEL, CLABEL, 1, NOBS, 1, FMT='(F6.2)')
         WRITE (NOUT,*)
         WRITE (NOUT,99998) 'p', P
         WRITE (NOUT,99998) 'Lp norm of the residuals', ELP
         WRITE (NOUT,99999) 'Rank of the matrix of regressors', IRANK
         WRITE (NOUT,99998) 'Degrees of freedom error', DFE
         WRITE (NOUT,99999) 'Number of iterations', ITER
         WRITE (NOUT,99999) 'Number of missing values', NRMISS
         WRITE (NOUT,99998) 'Square of the scale constant', SCALE2
         CALL WRRRN ('R matrix', R)
   10 CONTINUE
99997 FORMAT (/1X, 72('-'))
99998 FORMAT (1X, A, T34, F5.2)
99999 FORMAT (1X, A, T34, I5)
      END

Output

------------------------------------------------------------------------
Coefficients    0.50    0.50
Residuals    0.00    2.50   -1.50    0.50   -0.50    0.50   -0.50    0.00

p                                1.00
Lp norm of the residuals         6.00
Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                8
Number of missing values            0
Square of the scale constant     6.25

   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464

------------------------------------------------------------------------

Coefficients    0.39    0.55
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Residuals    0.06    2.39   -1.50    0.50   -0.55    0.45   -0.61   -0.16

p                                1.50
Lp norm of the residuals         3.71
Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                6
Number of missing values            0
Square of the scale constant     1.06

   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464

------------------------------------------------------------------------

Coefficients   -0.12    0.75
Residuals    0.38    2.12   -1.38    0.62   -0.62    0.38   -0.88   -0.62

p                                2.00
Lp norm of the residuals         2.94
Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                1
Number of missing values            0
Square of the scale constant     1.44

   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464

------------------------------------------------------------------------

Coefficients   -0.44    0.87
Residuals    0.57    1.96   -1.30    0.70   -0.67    0.33   -1.04   -0.91
p                                2.50
Lp norm of the residuals         2.54
Rank of the matrix of regressors    2
Degrees of freedom error         6.00
Number of iterations                4
Number of missing values            0
Square of the scale constant     0.79

   R matrix
        1       2
1   2.828   8.485
2   0.000   3.464
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Figure 2.12 — Various Lp Fitted Lines
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RLMV

Fits a multiple linear regression model using the minimax criterion.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IIND — Independent variable option.  (Input) 

The absolute value of IIND is the number of independent (explanatory) variables. The sign of IIND 
specifies the following options :

The regressors are the constant regressor (if INTCEP = 1) and the independent variables.
INDIND — Index vector of length IIND containing the column numbers of X that are the independent 

(explanatory) variables.  (Input, if IIND is positive) 
If IIND is negative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains the data for the response (dependent) variable.  (Input)
B — Vector of length INTCEP + ∣IIND∣ containing a minimax solution for the regression coefficients.  

(Output) 
If INTCEP = 1, B(1) contains the intercept estimate. B(INTCEP + I) contains the coefficient estimate for 
the I-th independent variable.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1.

IRANK — Rank of the matrix of regressors.  (Output) 
If IRANK is less than INTCEP + ∣IIND∣, linear dependence of the regressors was declared.

IIND Meaning

< 0 The data for the -IIND independent variables are given in the 
first -IIND columns of X.

> 0 The data for the IIND independent variables are in the columns 
of X whose column numbers are given by the elements of INDIND.

= 0 There are no independent variables.

INTCEP Action

0 An intercept is not in the model.

1 An intercept is in the model.
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AEMAX — Magnitude of the largest residual.  (Output)
ITER — Number of iterations performed.  (Output)
NRMISS — Number of rows of data containing NaN (not a number) for the dependent or independent 

variables.  (Output) 
If a row of data contains NaN for any of these variables, that row is excluded from the computations.

FORTRAN 90 Interface
Generic: CALL RLMV (X, IIND, INDIND, IRSP, B [, …])
Specific: The specific interface names are S_RLMV and D_RLMV.

FORTRAN 77 Interface
Single: CALL RLMV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, B, IRANK, AEMAX, ITER, 

NRMISS)
Double: The double precision name is DRLMV.

Description

Routine RLMV computes estimates of the regression coefficients in a multiple linear regression model. The cri-
terion satisfied is the minimization of the maximum deviation of the observed response yi from the fitted 

response  for a set on n observations. Under this criterion, known as the minimax or LMV (least maximum 
value) criterion, the regression coefficient estimates minimize 

The estimation problem can be posed as a linear programming problem. A dual simplex algorithm is appro-
priate, however, the special nature of the problem allows for considerable gains in efficiency by modification 
of the dual simplex iterations so as to move more rapidly toward the optimal solution. The modifications are 
described in detail by Barrodale and Phillips (1975). 

When multiple solutions exist for a given problem, RLMV may yield different estimates of the regression coef-
ficients on different computers, however, the largest residual in absolute value should have the same 
absolute value (within rounding differences). The informational error indicating nonunique solutions may 
result from rounding accumulation. Conversely, because of rounding, the error may fail to result even when 
the problem does have multiple solutions.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2MV/DR2MV. The reference is:

CALL R2MV (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, B, IRANK, AEMAX, ITER, 
NRMISS, WK)

The additional argument is: 

WK — Workspace of length NOBS * (∣IIND∣ + 5) + 2 * ∣IIND∣ + 3.
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2. Informational errors

3. If X is not needed, LDX = NOBS, and IIND < 0, then X and the first NOBS * (-IIND + 1) elements of WK 
may occupy the same storage locations. The reference would be:

CALL R2MV (NOBS, NCOL, WK, NOBS, INTCEP, IIND,INDIND, IRSP, B, IRANK, AEMAX, ITER, 
NRMISS, WK)

Example

A straight line fit to a data set is computed under the LMV criterion.

!                                 SPECIFICATIONS FOR PARAMETERS
      USE RLMV_INT
      USE UMACH_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    LDX, NCOEF, NCOL, NOBS, J
      PARAMETER  (NCOEF=2, NCOL=2, NOBS=7, LDX=NOBS)
!
      INTEGER    IIND, INDIND(1), IRANK, IRSP, ITER, NOUT, &
                 NRMISS
      REAL       B(NCOEF), AEMAX, X(LDX,NCOL)
      CHARACTER  CLABEL(1)*4, RLABEL(1)*4
!
      DATA (X(1,J),J=1,NCOL)/0.0, 0.0/
      DATA (X(2,J),J=1,NCOL)/1.0, 2.5/
      DATA (X(3,J),J=1,NCOL)/2.0, 2.5/
      DATA (X(4,J),J=1,NCOL)/3.0, 4.5/
      DATA (X(5,J),J=1,NCOL)/4.0, 4.5/
      DATA (X(6,J),J=1,NCOL)/4.0, 6.0/
      DATA (X(7,J),J=1,NCOL)/5.0, 5.0/
!
      IIND   = -1
      IRSP   = 2
!
      CALL RLMV (X, IIND, INDIND, IRSP, B, IRANK=IRANK, AEMAX=AEMAX, &
                 iter=iter, nrmiss=nrmiss)
!
      CALL UMACH (2, NOUT)
      RLABEL(1) = 'B ='
      CLABEL(1) = 'NONE'
      CALL WRRRL (' ', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(F6.2)')
      WRITE (NOUT,*) 'IRANK = ', IRANK
      WRITE (NOUT,*) 'AEMAX = ', AEMAX
      WRITE (NOUT,*) 'ITER = ', ITER
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Type Code Description

3 1 The solution may not be unique.

4 1 Calculations terminated prematurely due to rounding.
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Output

B =    1.00    1.00
IRANK =   2
AEMAX =     1.00000
ITER =   3
NRMISS =   0

Figure 2.13 — Least Squares and Least Maximum Value Fitted Lines
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PLSR

Performs partial least squares regression for one or more response variables and one or more predictor 
variables.

Required Arguments
Y — Array of size ny by h containing the values of the responses, where ny ≥ NOBS is the number of rows 

of Y and h is the number of response variables.  (Input)
X — Array of size nx by p containing the values of the predictor variables, where nx ≥ NOBS is the number 

of rows of X and p is the number of predictor variables.  (Input)
COEF — Array of size SIZE(IXIND) by SIZE(IYIND) containing the final PLS regression coefficient 

estimates.  (Output)

Optional Arguments
NOBS — Positive integer specifying the number of observations to be used in the analysis.  (Input)

Default : NOBS = min(size (Y,1), size (X,1)).
IYIND — Array containing column indices of Y specifying which response variables to use in the analysis. 

MAXVAL(IYIND) ≤ h.  (Input)
Default: IYIND = 1, 2, …, h.

IXIND — Array containing column indices of X specifying which predictor variables to use in the analy-
sis. MAXVAL(IXIND) ≤ p.  (Input)
Default: IXIND = 1, 2,…, p.

NCOMPS — The number of PLS components to fit. NCOMPS ≤ SIZE(IXIND).  (Input)
Default: NCOMPS = size (IXIND).
Note: If CV = .TRUE., models with 1 up to NCOMPS components are tested using cross-validation. The 
model with the lowest predicted residual sum of squares is reported.

CV — Logical. If .TRUE., the routine performs K-fold cross validation to select the number of compo-
nents. If .FALSE., the routine fits only the model specified by NCOMPS.  (Input)
Default: CV = .TRUE.

K — Integer specifying the number of folds to use in K-fold cross validation. K must be between 1 and 
NOBS, inclusive. K is ignored if CV = .FALSE.  (Input)
Default:  K = 5.
Note: If NOBS/K ≤ 3, the routine performs leave-one-out cross validation as opposed to K-fold cross 
validation.

more...
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SCALE — Logical. If .TRUE., Y and X are centered and scaled to have mean 0 and standard deviation  of 
1. If .FALSE., Y and X are centered only.  (Input)
Default:  SCALE  = .FALSE.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

YHAT — Array of size NOBS by h containing the predicted values for the response variables using the final 
values of the coefficients.  (Output)

RESIDS — Array of size NOBS by h containing residuals of the final fit for each response variable.  
(Output)

SE — Array of size p by h containing the standard errors of the PLS coefficients.  (Output)
PRESS — Array of size NCOMPS by h providing the predicted residual error sum of squares obtained by 

cross-validation for each model of size j = 1, …, NCOMPS components. The argument PRESS is ignored 
if  CV = .FALSE..  (Output)

XSCRS — Array of size NOBS by NCOMPS containing X-scores.  (Output)
YSCRS — Array of size NOBS by NCOMPS containing Y-scores.  (Output)
XLDGS — Array of size p by NCOMPS containing X-loadings.  (Output)
YLDGS — Array of size h by NCOMPS containing Y-loadings.  (Output)
WTS — Array of size p by NCOMPS containing the weight vectors.  (Output)

FORTRAN
Generic: CALL PLSR (X, Y, COEF [, …])
Specific: The specific interface names are S_PLSR and D_PLSR.

Description

Routine PLSR performs partial least squares regression for a response matrix , and a set of p 

explanatory variables, . PLSR finds linear combinations of the predictor variables that have high-
est covariance with Y. In so doing, PLSR produces a predictive model for Y using components (linear 
combinations) of the individual predictors. Other names for these linear combinations are scores, factors, or 
latent variables. Partial least squares regression is an alternative method to ordinary least squares for prob-
lems with many, highly collinear predictor variables. For further discussion see, for example, Abdi (2009), 
and Frank and Friedman (1993).

In Partial Least Squares (PLS), a score, or component matrix, T, is selected to represent both X and Y as in,

X = TPT + Ex

and

IPRINT Action

0 No printing is performed.

1 Prints final results only.

2 Prints final results and intermediate results.
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Y = TQT + Ey

The matrices P and Q are the least squares solutions of X and Y regressed on T.

That is,

QT = (TTT)–1TTY

and

PT = (TTT)–1TTX

The columns of T in the above relations are often called X-scores, while the columns of P are the X-loadings. 

The columns of the matrix U in Y = UQT + G are the corresponding Y scores, where G is a residual matrix and 
Q as defined above contains the Y-loadings.

Restricting T to be linear in X , the problem is to find a set of weight vectors (columns of W) such that T = XW 
predicts both X and Y  reasonably well. 

Formally,  where each wj is a column vector of length p, M ≤ p is the number of 
components, and where the m-th partial least squares (PLS) component wm solves:

where  and  is the Euclidean norm. For further details see Hastie, et. al., 
pages 80-82 (2001).

That is, wm is the vector which maximizes the product of the squared correlation between Y and Xα and the 
variance of Xα, subject to being orthogonal to each previous weight vector left multiplied by S. The PLS 

regression coefficients  arise from 

Algorithms to solve the above optimization problem include NIPALS (nonlinear iterative partial least 
squares) developed by Herman Wold (1966, 1985) and numerous variations, including the SIMPLS algorithm 
of de Jong (1993). Subroutine PLSR implements the SIMPLS method. SIMPLS is appealing because it finds a 
solution in terms of the original predictor variables, whereas NIPALS reduces the matrices at each step. For 
univariate Y it has been shown that SIMPLS and NIPALS are equivalent (the score, loading, and weights 
matrices will be proportional between the two methods).

If CV=.TRUE., PLSR searches for the best number of PLS components using K-fold cross-validation. That is, 
for each M = 1, 2, …, p, PLSR estimates a PLS model with M components using all of the data except a hold-
out set of size roughly equal to NOBS/K. Using the resulting model estimates, PLSR predicts the outcomes in 
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the hold-out set and calculates the predicted residual sum of squares (PRESS). The procedure then selects the 
next hold-out sample and repeats for a total of K times (i.e., folds). For further details see Hastie, et. al., pages 
241-245 (2001).

For each response variable, PLSR returns results for the model with lowest PRESS. The best model (the num-
ber of components giving lowest PRESS), generally will be different for different response variables.

When requested via the optional argument SE, PLSR calculates modifed jackknife estimates of the standard 
errors as described in Martens and Martens (2000).

Comments
1. PLSR defaults to leave-one-out cross-validation when there are too few observations to form K folds in 

the data. The user is cautioned that there may be too few observations to make strong inferences from 
the results:

2. Informational errors

3. This implementation of PLSR does not handle missing values. The user should remove missing values 
in the data. The user should removes missing data or NaN’s from the data input.

Examples

Example 1

The following artificial data set is provided in de Jong (1993).

The first call to PLSR fixes the number of components to 3 for both response variables,  and the second call 
sets cv = .true. in order to perform K-fold cross validation. Note that because n is small,  PLSR performs 
leave-one-out (LOO) cross–validation.

      use plsr_int
      use umach_int
      implicit none

      integer, parameter :: n=4, p=3, h=2

Type Code Description

2 1 For response #, residuals converged in # components, while # is the 
requested number of components. 
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      integer :: ncomps, iprint, nout
      logical :: cvflag
      real(kind(1e0)) :: x(n,p), y(n,h), yhat(n,h), coef(p,h), se(p,h)
           
      data x/-4.0, -4.0, 4.0, 4.0, 2.0, -2.0, 2.0, -2.0, 1.0, -1.0, &
             -1.0, 1.0/
      data y/430.0, -436.0, -361.0, 367.0, -94.0, 12.0, -22.0, 104.0/
     
      !                            Print out informational error.
      call erset(2, 1, 0)
      call umach(2,nout)
      cvflag = .false. 
      iprint =  1     
      ncomps = 3
      
      write(nout,*) 'Example 1a:  no cross-validation, request', &
         ncomps, 'components.'
      call plsr(y, x, coef, ncomps=ncomps, cv=cvflag, yhat=yhat, &
         iprint=iprint, se=se)
         
      write(nout,*) 
      write(nout,*) 'Example 1b: cross-validation '
      call plsr(y, x, coef, iprint=iprint, yhat=yhat, se=se)
      end

Output

Example 1a:  no cross-validation, request 3 components.
  
     PLS Coeff
         1       2
 1     0.7    10.2
 2    17.2   -29.0
 3   398.5     5.0
  
    Predicted Y
         1       2
 1   430.0   -94.0
 2  -436.0    12.0
 3  -361.0   -22.0
 4   367.0   104.0
  
    Std. Errors
         1       2
 1   131.5     5.1
 2   263.0    10.3
 3   526.0    20.5

 *** ALERT    ERROR 1 from s_plsr.  For response 2, residuals converged in 2
 ***          components, while 3 is the requested number of components.
 
 Example 1b: cross-validation 
 
Cross-validated results for response  1:
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 Comp      PRESS
  1   542903.8
  2   830049.8
  3   830049.8
 
The best model has  1 component(s).
 
Cross-validated results for response  2:
  
 Comp      PRESS
   1   5079.6
   2   1263.4
   3   1263.4
 
The best model has  2 component(s).
  
     PLS Coeff
         1       2
 1    15.9    12.7
 2    49.2   -23.9
 3   371.1     0.6
  
    Predicted Y
         1       2
 1   405.8   -97.8
 2  -533.3    -3.5
 3  -208.8     2.2
 4   336.4    99.1
  
    Std. Errors
         1       2
 1   134.1     7.1
 2   269.9     3.8
 3   478.5    19.5

 *** ALERT    ERROR 1 from s_plsr.  For response 2, residuals converged in 2
 ***          components, while 3 is the requested number of components.

Example 2

The data, as appears in S. Wold, et.al. (2001), is a single response variable, the “free energy of the unfolding of 
a protein”, while the predictor variables are 7 different, highly correlated measurements taken on 19 amino 
acids.

      use plsr_int
      use umach_int
      implicit none

      integer, parameter :: n=19, p=7, h=1 
      integer :: ncomps, iprint, nout
      logical :: cvflag, scale   
      real(kind(1e0)) :: x(n,p), y(n,h), yhat(n,h), coef(p,h), se(p,h)
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      data x/0.23, -0.48, -0.61, 0.45, -0.11, -0.51, 0.0, 0.15, 1.2, &
             1.28, -0.77, 0.9, 1.56, 0.38, 0.0, 0.17, 1.85, 0.89, &
             0.71, 0.31, -0.6, -0.77, 1.54, -0.22, -0.64, 0.0, 0.13, &
             1.8, 1.7, -0.99, 1.23, 1.79, 0.49, -0.04, 0.26, 2.25, &
             0.96, 1.22, -0.55, 0.51, 1.2, -1.4, 0.29, 0.76, 0.0, &
             -0.25, -2.1, -2.0, 0.78, -1.6, -2.6, -1.5, 0.09, -0.58, &
             -2.7, -1.7, -1.6, 254.2, 303.6, 287.9, 282.9, 335.0, &
             311.6, 224.9, 337.2, 322.6, 324.0, 336.6, 336.3, 366.1, &
             288.5, 266.7, 283.9, 401.8, 377.8, 295.1, 2.126, 2.994, &
             2.994, 2.933, 3.458, 3.243, 1.662, 3.856, 3.35, 3.518, &
             2.933, 3.86, 4.638, 2.876, 2.279, 2.743, 5.755, 4.791, &
             3.054, -0.02, -1.24, -1.08, -0.11, -1.19, -1.43, 0.03, &
             -1.06, 0.04, 0.12, -2.26, -0.33, -0.05, -0.31, -0.4, &
             -0.53, -0.31, -0.84, -0.13, 82.2, 112.3, 103.7, 99.1, &
             127.5, 120.5, 65.0, 140.6, 131.7, 131.5, 144.3, 132.3, &
             155.8, 106.7, 88.5, 105.3, 185.9, 162.7, 115.6/

      data y/8.5, 8.2, 8.5, 11.0, 6.3, 8.8, 7.1, 10.1, 16.8, 15.0, &
             7.9, 13.3, 11.2, 8.2, 7.4, 8.8, 9.9, 8.8, 12.0/

      call umach(2, nout)

      cvflag = .false. 
      iprint =  2     
      ncomps = 7
      scale = .true.
      
      write(nout,*) 'Example 2a:  no cross-validation, request', &
                    ncomps,'components.'
      call plsr(y, x, coef, ncomps=ncomps, cv=cvflag, scale=scale, &
                iprint=iprint, yhat=yhat, se=se)
         
      write(nout,*) 
      write(nout,*) 'Example 2b: cross-validation '
      call plsr(y, x, coef, scale=scale, iprint=iprint, &
                yhat=yhat, se=se)
      end

Output

Example 2a:  no cross-validation, request 7 components.
  
 Standard PLS Coefficients
         1  -5.459
         2   1.668
         3   0.625
         4   1.430
         5  -2.550
         6   4.862
         7   4.859
  
 PLS Coeff
 1  -20.04
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 2    4.63
 3    1.42
 4    0.09
 5   -7.27
 6   20.90
 7    0.46
  
 Predicted Y
  1    9.38
  2    7.30
  3    8.09
  4   12.02
  5    8.79
  6    6.76
  7    7.24
  8   10.44
  9   15.79
 10   14.35
 11    8.41
 12    9.95
 13   11.52
 14    8.64
 15    8.23
 16    8.40
 17   11.12
 18    8.97
 19   12.39
  
 Std. Errors
  1   3.599
  2   2.418
  3   0.812
  4   3.214
  5   1.641
  6   3.326
  7   3.529
  
 Corrected Std. Errors
       1   13.21
       2    6.71
       3    1.84
       4    0.20
       5    4.68
       6   14.30
       7    0.33
 
 Variance Analysis
 =============================================
 Pctge of Y variance explained
 Component    Cum. Pctge
  1         39.7
  2         42.8
  3         58.3
  4         65.1
  5         68.2
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  6         75.1
  7         75.5
 =============================================
 Pctge of X variance explained
 Component    Cum. Pctge
  1         64.1
  2         96.3
  3         97.4
  4         97.9
  5         98.2
  6         98.3
  7         98.4
 
 Example 2b: cross-validation 
 
Cross-validated results for response  1:
  
 Comp      PRESS
    1   0.669
    2   0.675
    3   0.885
    4   1.042
    5   2.249
    6   1.579
    7   1.194
 
The best model has  1 component(s).
  
 Standard PLS Coefficients
        1   0.1486
        2   0.1639
        3  -0.1492
        4   0.0617
        5   0.0669
        6   0.1150
        7   0.0691
  
  PLS Coeff
 1   0.5453
 2   0.4546
 3  -0.3384
 4   0.0039
 5   0.1907
 6   0.4942
 7   0.0065
  
 Predicted Y
  1    9.18
  2    7.97
  3    7.55
  4   10.48
  5    8.75
  6    7.89
  7    8.44
  8    9.47
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  9   11.76
 10   11.80
 11    7.37
 12   11.14
 13   12.65
 14    9.96
 15    8.61
 16    9.27
 17   13.47
 18   11.33
 19   10.71
  
 Std. Errors
 1   0.06312
 2   0.07055
 3   0.06272
 4   0.03911
 5   0.03364
 6   0.06386
 7   0.03955
  
 Corrected Std. Errors
      1   0.2317
      2   0.1957
      3   0.1423
      4   0.0025
      5   0.0959
      6   0.2745
      7   0.0037
 
 Variance Analysis
 =============================================
 Pctge of Y variance explained
 Component    Cum. Pctge
  1         39.7
 =============================================
 Pctge of X variance explained
 Component    Cum. Pctge
  1         64.1
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Usage Notes

This chapter is concerned with measures of correlation for bivariate data. The usual multivariate measures of 
correlation and covariance for continuous random variables are produced by routine CORVC. For data 
grouped by some auxiliary variable, routine COVPL can be used to compute the pooled covariance matrix 
along with the means for each group. Partial correlations or covariances, given the correlation or covariance 
matrix computed from CORVC or COVPL, are computed by PCORR. Routine RBCOV computes robust estimates 
of the covariance matrix and mean vector. If data are grouped by some auxiliary variable, routine RBCOV can 
also be used to estimate the pooled covariance matrix and means for each group. The remaining routines are 
concerned with rank and/or discrete data. General references for these routines are Conover (1980) or Gib-
bons (1971). 

CTRHO and TETCC produce measures of correlation for contingency tables. In CTRHO, the inverse normal 
scores obtained from the row and column marginal distributions are assumed known, and the correlation 
coefficient is estimated by assuming bivariate normality. In TETCC, a 2 × 2 table is produced from continuous 
input data using estimates for the sample medians. The correlation coefficient is estimated from the resulting 
2 × 2 table. 

If one of the variables is dichotomous while the second variable can be ranked, the routines BSPBS or BSCAT 
can be used. The difference between these routines is in whether the class values for the ranked variable are 
given by the user (BSPBS) or are estimated as inverse normal scores from the marginal cumulative distribu-
tion (BSCAT). Routine CNCRD computes Kendall’s coefficient of concordance, and routine KENDL computes 

Kendall’s rank correlation coefficient . Probabilities for  are computed by routine KENDP.

Other Routines

Other IMSL routines compute measures of correlation or association and may be of interest. Routine CTTWO 
described in Chapter 5, “Categorical and Discrete Data Analysis,” computes measures of association for the 2 × 2 
contingency table. Routine CTCHI in the same chapter computes measures of association for the general r ×  
c contingency table. Routine CDIST in Chapter 11, “Cluster Analysis,” computes measures of similarity and 
dissimilarity, including the correlation coefficient. Measures of multivariate association or correlation are 
computed in Chapter 2, “Regression,” and in “Independence of Sets of Variables and Canonical Correlation 
Analysis.”
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CORVC

Computes the variance-covariance or correlation matrix.

Required Arguments
NVAR — Number of variables.  (Input) 

The weight or frequency variables, if used, are not counted in NVAR.
X — ∣NROW∣ by NVAR + m matrix containing the data, where m is 0, 1, or 2 depending on whether any col-

umn(s) of X correspond to weights and/or frequencies.  (Input)
COV — NVAR by NVAR matrix containing either the correlation matrix (possibly with the standard devia-

tions on the diagonal), the variance-covariance matrix, or the corrected sums of squares and 
crossproducts matrix, as controlled by the COV option, ICOPT.  (Output, if IDO = 0 or 1; input/output, 
if IDO = 2 or 3) 
The elements of COV correspond to the columns of X, except for the columns of  X containing weights 
or frequencies (see XMEAN).

Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

It is possible to call CORVC twice in succession with IDO = 3 in order to first compute covariances 
(ICOPT = 1) and then compute correlations (ICOPT = 2 or 3). This ability is most important when pair-
wise deletion of missing values is used (MOPT = 3). The workspace arrays (or the workspace) must not 
be altered in between calls.

NROW — The absolute value of NROW is the number of rows of data currently input in X.  (Input) 
Default: NROW = size (X,1).
NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be 
deleted from (most aspects of) the analysis. This should be done only if IDO is 2 or 3 and the wrap-up 
computations for COV have not been performed. When a negative value is input for NROW, it is 
assumed that each of the -NROW rows of X has been input (with positive NROW ) in previous invoca-
tions of CORVC. Use of negative values of NROW should be made with care since it is possible that a 
constant variable in the remaining data will not be recognized as such.

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IDO Action

0 This is the only invocation of CORVC for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to CORVC will be made. Initialization and 
updating for the NROW observations are performed. The means (in XMEAN) are output 
correctly, but the quantities output in COV are intermediate results.

2 This is an intermediate invocation of CORVC, and updating for the NROW observations is 
performed.

3 This is the final invocation of this routine. If NROW is not zero, updating is performed. 
The wrap-up computations for COV are performed.
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IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column IFRQ of X contains the frequen-
cies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X contains the weights. Obser-
vations with zero weight are counted as observations in the frequencies, but do not contribute to the 
means, variances, covariances, or correlations. Observations with negative weights are missing.
Default: IWT = 0.

MOPT — Missing value option.  (Input) 
NaN (not a number) is interpreted as the missing value code, and any value in X equal to NaN is 
excluded from the computations. If MOPT is positive, various pairwise exclusion methods are used. See 
routine AMACH/DMACH in the Reference Material.
Default: MOPT = 0.

ICOPT — COV option.  (Input) 
Default: ICOPT = 0.

XMEAN — Vector of length NVAR containing the variable means.  (Output, if IDO = 0 or 1; input/output, if 
IDO = 2 or 3) 
The elements of XMEAN correspond to the columns of X, except that if weights and/or frequencies are 
used, the elements of XMEAN beyond the IWT or IFRQ element are shifted relative to the columns of X.

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

MOPT Action

0 The exclusion is listwise. (The entire row of X is excluded if any of the values of the row 
is equal to the missing value code.)

1 Raw crossproducts are computed from all valid pairs and means, and variances are 
computed from all valid data on the individual variables. Corrected crossproducts, 
covariances and correlations are computed using these quantities.

2 Raw crossproducts, means and variances are computed as in the case of MOPT = 1. How-
ever, corrected crossproducts and covariances are computed only from the valid pairs of 
data. Correlations are computed using these covariances and the variances from all 
valid data. 

3 Raw crossproducts, means, variances, and covariances are computed as in the case of 
MOPT = 2. Correlations are computed using these covariances, but the variances used are 
computed only from the valid pairs of data.

ICOPT Action

0 COV contains the variance-covariance matrix.

1 COV contains the corrected sums of squares and crossproducts matrix.

2 COV contains the correlation matrix.

3 COV contains the correlation matrix, except for the diagonal elements, which are the 
standard deviations.
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INCD — Incidence matrix.  (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
If MOPT is zero, INCD is 1 by 1, and contains the number of valid observations. If MOPT is positive, 
INCD is NVAR by NVAR and contains the numbers of pairs of valid observations that are used in calcu-
lating the crossproducts for COV.

LDINCD — Leading dimension of INCD exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDINCD = size(INCD,1).

NOBS — Total number of observations (that is, the total of the frequencies).  (Output, if  IDO = 0 or 1; 
input/output, if IDO = 2 or 3) 
If MOPT = 0, observations with missing values are not included in NOBS. For other values of MOPT, all 
observations are included except for observations with missing values for the weight or the frequency.

NMISS — Total number of observations that contain any missing values.  (Output, if IDO = 0 or 1; 
input/output, if IDO = 2 or 3)

SUMWT — Sum of the weights of all observations that are processed. (Output, if IDO = 0, or 1; input/out-
put, if IDO = 2 or 3) 
If MOPT = 0, observations with missing values are not included in SUMWT. For other values of MOPT, all 
observations are included except for observations with missing values for the weight or the frequency.

FORTRAN 90 Interface
Generic: CALL CORVC (NVAR, X, COV [, …])
Specific: The specific interface names are S_CORVC and D_CORVC.

FORTRAN 77 Interface
Single: CALL CORVC (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, ICOPT, XMEAN, COV, LDCOV, 

INCD, LDINCD, NOBS, NMISS, SUMWT)
Double: The double precision name is DCORVC.

Description

Routine CORVC computes estimates of correlations, covariances, or sums of squares and crossproducts for a 
data matrix X. Weights and frequencies are allowed but not required. Also allowed are listwise or pairwise 
deletion of missing values. Routine CORVC is an “IDO routine,” so it may be called with all of the data in one 
invocation, or it may be called in several invocations with some (or none) of the data input during each call. 
By setting NROW to a negative integer, observations that have previously been added to the covariance/cor-
relation statistics may be deleted from the statistics. Exercise care with this option, however, since the 
program may not be able to detect constant variables when negative NROW is used. 

The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed using the 
method of provisional means. Let 

denote the mean based upon i observations for the k-th variable, fi denote the frequency of the i-th observa-
tion, wi denote the weight of the i-th observation, and let cjki denote the sum of crossproducts (or sum of 
squares if j = k) based upon i observations. Then, the method of provisional means finds new means and 
sums of crossproducts as follows: 
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The means and crossproducts are initialized as:

where p denotes the number of variables. Letting xk(i+1) denote the k-th variable on observation 
i + 1, each new observation leads to the following updates for

and cjki using update constant ri+1:

If there is no weight variable, weights of 1.0 are used. If there is no frequency column, frequencies of 1.0 are 
used. Means and variances are computed based upon all of the valid data for each variable or, if required, 
based upon all of the valid data for each pair of variables.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2RVC/DC2RVC.The reference is:

CALL C2RVC (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, ICOPT, XMEAN, COV, LDCOV, INCD, 
LDINCD, NOBS, NMISS, SUMWT, WK)

The additional argument is:

WK — Workspace of the length specified in the table below. WK should not be changed between 
calls to C2RVC.

The workspace may contain statistics of interest. Let

m = NVAR

k = m(m + 1)/2
Statistics that are stored in the workspace that are part of symmetric matrices are stored in symmetric stor-

age mode, i.e., only the lower triangular elements are stored. The workspace utilization is :

MOPT IWT Start Length Contents

All All 1 m Indicators of constant data

All All  m + 1 m First nonmissing data

0 All  2m+1 m Deviation from temporary 
mean

0 Positive 3m + 1 1 Sum of weights
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2. Informational errors

Usage Notes

In CORVC, each observation xki with weight wi is assumed to have mean μk and variance 

With these assumptions, CORVC uses the following definition of a sample mean: 

1, 2 All 2m + 1 m2 Pairwise means

1, 2 Positive 2m + m2 + 1 k Pairwise sums of weights

3 All 2m + 1 m2 Pairwise means

3 0 2m + m2 + 1 m2 Pairwise sums of products

3 Positive 2m + m2 + 1 k Pairwise sums of weights

3 Positive 2m + k + m2 + 1 m2 Pairwise sums of products

Type Code Description

3 12 The sum of the weights is zero. The means, variance and covariances are set 
to NaN.

3 13 The sum of the weights is zero. The means and correlations are set to NaN.

3 14 Correlations are requested but the observations on a variable are constant. 
The pertinent correlations are set to NaN.

3 15 Variances and covariances are requested but fewer than two valid observa-
tions are present for some variables. The corresponding variances or 
covariances are set to NaN.

3 16 Pairwise correlations are requested but the observations on a variable are 
constant. The pertinent correlations are set to NaN.

3 17 Correlations are requested but fewer than two valid observations are present 
for some variables. The corresponding variances or covariances are set to 
NaN.

4 10 More observations have been deleted than were originally entered.

4 11 More observations have been deleted from COV(i, j) than were originally 
entered. INCD(i, j) is less than zero.

4 18 Different observations have been deleted from COV(i, j) than were originally 
entered. COV(i, j) is less than zero.

MOPT IWT Start Length Contents
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where nr is the number of cases. The following formula defines the sample covariance, sjk, between variables 
j and k:

The sample correlation between variables j and k, rjk, is defined as:

Examples

Example 1

The first example illustrates the use of CORVC when inputing all of the data at once. The first 50 observations 
in the Fisher iris data (see routine GDATA, Chapter 19, “Utilities”) are used. Note in this example that the first 
variable is constant over the first 50 observations.

      USE GDATA_INT
      USE UMACH_INT
      USE CORVC_INT
      USE WRRRN_INT
      USE WRIRN_INT    

      IMPLICIT   NONE
      INTEGER    LDCOV, LDINCD, LDX, NVAR
      PARAMETER  (LDCOV=5, LDINCD=1, LDX=150, NVAR=5)
!
      INTEGER   INCD(LDINCD,1), NMISS, NOBS, NOUT, NROW, NV
      REAL       COV(LDCOV,NVAR), SUMWT, X(LDX,NVAR), XMEAN(NVAR)
!
      CALL GDATA (3, X, NOBS, NV)
!
      CALL UMACH (2, NOUT)
      NROW  = 50
!
      CALL CORVC (NVAR, X, COV, NROW=NROW, XMEAN=XMEAN, INCD=INCD, &
      NOBS=NOBS, NMISS=NMISS, SUMWT=SUMWT)
!
      CALL WRRRN ('XMEAN', XMEAN, 1, NVAR, 1, 0)
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      CALL WRRRN ('COV', COV)
      CALL WRIRN ('INCD', INCD)
      WRITE (NOUT,*) ' NOBS = ', NOBS, ' NMISS = ', NMISS, ' SUMWT = ', &
                   SUMWT
      END

Output

                XMEAN
    1        2        3        4        5
1.000    5.006    3.428    1.462    0.246

                          COV
             1        2        3        4        5
    1   0.0000   0.0000   0.0000   0.0000   0.0000
    2   0.0000   0.1242   0.0992   0.0164   0.0103
    3   0.0000   0.0992   0.1437   0.0117   0.0093
    4   0.0000   0.0164   0.0117   0.0302   0.0061
    5   0.0000   0.0103   0.0093   0.0061   0.0111

INCD 
  50 
NOBS =   50 NMISS =   0 SUMWT =     50.0000

Example 2

In the second example, the IDO option is used. After the initialization step in which IDO = 1, the first 53 
observations in the Fisher iris data are input, one observation at a time. The last three observations input are 
then deleted from the covariances by setting NROW = - 1. Finally, the wrap-up step is accomplished by calling 
CORVC with IDO = 3. The output is identical to the output above.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDCOV, LDINCD, LDX, LDY, NVAR
      PARAMETER  (LDCOV=5, LDINCD=1, LDX=150, LDY=1, NVAR=5)
!
      INTEGER   I, IDO, INCD(LDINCD,1), NMISS, NOBS, NOUT, NROW, NV
      REAL       COV(LDCOV,NVAR), SUMWT, X(LDX,NVAR), XMEAN(NVAR), &
      Y(LDY,NVAR)
!
      CALL GDATA (3, X, NOBS, NV)
!
      CALL UMACH (2, NOUT)
!
!
      IDO  = 1
      NROW = 0
!                                 Initialization
      CALL CORVC (NVAR, Y, COV, IDO=IDO, NROW=NROW, XMEAN=XMEAN, &
      INCD=INCD, NOBS=NOBS, NMISS=NMISS, SUMWT=SUMWT)
!
      IDO  = 2
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      NROW = 1
!                                 Add the observations
      DO 10  I=1, 53
         CALL SCOPY (NVAR, X(I:,1), LDX, Y(1:,1), 1)
         CALL CORVC (NVAR, Y, COV, IDO=IDO, NROW=NROW, XMEAN=XMEAN, &
      INCD=INCD, NOBS=NOBS, NMISS=NMISS, SUMWT=SUMWT)
   10 CONTINUE
!                                 Delete the last 3 added
      NROW = -1
      DO 20  I=51, 53
         CALL SCOPY (NVAR, X(I:,1), LDX, Y(1:,1), 1)
         CALL CORVC (NVAR, Y, COV, IDO=IDO, NROW=NROW, XMEAN=XMEAN, &
      INCD=INCD, NOBS=NOBS, NMISS=NMISS, SUMWT=SUMWT)
   20 CONTINUE
!                                 Wrap-up
      IDO  = 3
      NROW = 0
      CALL CORVC (NVAR, Y, COV, IDO=IDO, NROW=NROW, XMEAN=XMEAN, INCD=INCD,&
      NOBS=NOBS, NMISS=NMISS, SUMWT=SUMWT)
      CALL WRRRN ('XMEAN', XMEAN, 1, NVAR, 1)
      CALL WRRRN ('COV', COV)
      CALL WRIRN ('INCD', INCD)
      WRITE (NOUT,*) ' NOBS = ', NOBS, ' NMISS = ', NMISS, ' SUMWT = ', &
             SUMWT
      END

Output

                 XMEAN
    1       2       3       4       5
1.000   5.006   3.428   1.462   0.246

                      COV
         1        2        3        4        5
1   0.0000   0.0000   0.0000   0.0000   0.0000
2   0.0000   0.1242   0.0992   0.0164   0.0103
3   0.0000   0.0992   0.1437   0.0117   0.0093
4   0.0000   0.0164   0.0117   0.0302   0.0061
5   0.0000   0.0103   0.0093   0.0061   0.0111

INCD
  50
NOBS =   50 NMISS =   0 SUMWT =     50.0000
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COVPL

Computes a pooled variance-covariance matrix from the observations.

Required Arguments
NROW — The absolute value of NROW is the number of rows of X that contain an observation.  (Input) 

NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be 
deleted from (most aspects of) the analysis. This should be done only if IDO is 2 or 3 and the wrap-up 
computations for COV have not been performed. When a negative value is input for NROW, it is 
assumed that each of the -NROW rows of X has been input (with positive NROW ) in previous invoca-
tions of CORVC. Use of negative values of NROW should be made with care since it is possible that a 
constant variable in the remaining data will not be recognized as such.

NVAR — Number of variables to be used in computing the covariance matrix.  (Input) 
The weight, frequency or group variables, if used, are not counted in NVAR.

X — ∣NROW∣ by NVAR + m matrix containing the data.  (Input) 
The number of columns of X that are used is NVAR + m, where m is 0, 1, 2, or 3 depending upon 
whether any columns in X contain frequencies, weights or group numbers.

NGROUP — Number of groups in the data.  (Input)
COV — NVAR by NVAR matrix of covariances.  (Output, if IDO = 0 or 1; input/ output, if IDO = 2 or 3)

Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

NCOL — Number of columns in matrix X.
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IND — Vector of length NVAR containing the column numbers in X to be used in computing the covariance 
matrices.  (Input)
By default: IND(I) = I.

IDO Action

0 This is the only invocation of COVPL and all the data are input at once.

1 This is the first invocation of COVPL with this data, and additional calls will be made. Ini-
tialization of program variables and updating for the NROW observations are performed.

2 This is an intermediate invocation of COVPL, and updating for the NROW observations is 
performed.

3 All statistics are updated for the NROW observations. The covariance matrix is computed.
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IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column number IFRQ of X 
contains the frequencies. All frequencies should be integer values. The NINT (nearest integer) function 
is used to obtain integer frequencies if this is not the case.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X contains the weights. 
Negative weights are not allowed.
Default: IWT = 0.

IGRP — Column of X giving the group numbers.  (Input) 
If IGRP = 0, one group is assumed. If IGRP > 0, then column number IGRP of X contains the group 
number for the observation. Group numbers must be numbered 1, 2, …, NGROUP. The NINT function is 
used to get integer values for the group numbers.
Default: IGRP = NVAR + 1.

NI — Vector of length NGROUP containing the numbers of observations in the groups.  (Output, if IDO = 0 
or 1; input/output, if IDO = 2 or 3) 
The i-th element of NI contains the number of observations in group i.

SWT — Vector of length NGROUP containing the sum of the weights times the frequencies in the groups.  
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)

XMEAN — NGROUP by NVAR matrix.  (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3) 
The i-th row of XMEAN contains the group i variable means.

LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDXMEAN = size (XMEAN ,1).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

NRMISS — Number of rows of data encountered in calls to COVPL containing missing values (NaN) for 
any of the variables used.  (Output, if IDO = 0 or 1; input/ output, if IDO = 2 or 3)

FORTRAN 90 Interface
Generic: CALL COVPL (NROW, NVAR, X, NGROUP, COV [, …])
Specific: The specific interface names are S_COVPL and D_COVPL.

FORTRAN 77 Interface
Single: CALL COVPL (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, NGROUP, IGRP, NI, SWT, 

XMEAN, LDXMEA, COV, LDCOV, NRMISS)
Double: The double precision name is DCOVPL.

Description

Routine COVPL computes the pooled variance-covariance matrix from a matrix of observations. The within-
groups means are also computed. Listwise deletion of missing values is assumed so that all observations 
used are “complete”; in any row of X, if an element in the “list” IND, IGRP, IFRQ or IWT is missing, then the 
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row is not used. Routine COVPL should be used whenever one suspects that the data has been sampled from 
populations with different means but identical variance-covariance matrices. If these assumptions cannot be 
made, a different variance-covariance matrix should be estimated within each group. 

When IDO = 0, the same computations occur as if COVPL were consecutively called with IDO equal to 1, 2, 
and 3. For brevity, the following discusses the computations with IDO > 0. 

When IDO = 1 variables are initialized, workspace is allocated, and input variables are checked for errors. 

If NROW ≠ 0 (for any value of IDO), the group observation totals, Ti, for i = 1,…, g, where g is the number of 
groups, are updated for the ∣NROW∣ observations in X. The group totals are computed as: 

where ωij is the observation weight, xij is the j-th observation in the i-th group, and fij is the observation 
frequency. 

Modified Givens rotations (see routines SROTM and SROTMG in the IMSL MATH/LIBRARY) are used in com-
puting the Cholesky decomposition of the pooled sums of squares and crossproducts matrix. The interested 
reader is referred to Golub and Van Loan (1983) for details. 

The group means and the pooled sample covariance matrix S are computed from the intermediate results 
when IDO = 3. These quantities are defined by

Occasionally, the Cholesky factorization, such that S = UTU where U is lower triangular of the pooled sample 
cross-products matrix, may be desired. U may be computed from the output array COV, and the workspace 
array D returned in calls to C2VPL. The Cholesky factor U can be computed prior to calling C2VPL with 
IDO = 3 by multiplying the elements in the i-th row of COV by

If subsequent calls to C2VPL are to be made, COV must not be modified in computing U.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2VPL/DC2VPL. The reference is:

CALL C2VPL (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, NGROUP, IGRP, NI, SWT, XMEAN, 
LDXMEA, COV, LDCOV, NRMISS, D, OB, XVAL, DIF)

The additional arguments are as follows:

D — Real work vector of length NVAR.

OB — Real work vector of length NVAR.
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XVAL — Real work vector of length NVAR * NGROUP.

DIF — Real work vector of length NVAR.
2. Informational error

Example

The following example computes a pooled variance-covariance matrix for the Fisher iris data (see routine 
GDATA, Chapter 19, “Utilities”). The first column in this data set is the group indicator. To illustrate the use of 
the IDO argument, multiple calls to COVPL are made.

!                                 Specifications
      USE GDATA_INT
      USE COVPL_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE

      INTEGER    IFRQ, IGRP, IWT, LDCOV, LDX, LDXMEA, NCOL, NGROUP, &
      NROW, NVAR
      PARAMETER  (IFRQ=0, IGRP=1, IWT=0, LDX=150, NCOL=5, NGROUP=3, &
      NROW=1, NVAR=4, LDCOV=NVAR, LDXMEA=NGROUP)
!
      INTEGER    I, IDO, IND(4), NI(NGROUP), NOBS, NOUT, NRMISS, NV
      REAL       COV(LDCOV,LDCOV), SWT(NGROUP), X(LDX,5), XMEAN(LDXMEA,NVAR)
!
      DATA IND/2, 3, 4, 5/
!
      CALL GDATA (3, X, NOBS, NV)
!
      IDO = 1
      CALL COVPL (0, NVAR, X, NGROUP, COV, IDO=IDO, IND=IND, IGRP=IGRP, &
      NI=NI, SWT=SWT, XMEAN=XMEAN, NRMISS=NRMISS)
!                                 Add the observations
      IDO = 2
      DO 10  I=1, NOBS
      CALL COVPL (NROW, NVAR, X(I:, 1:NCOL), NGROUP, COV, IDO=IDO, &
      IND=IND, IGRP=IGRP, NI=NI,SWT=SWT, XMEAN=XMEAN, NRMISS=NRMISS)
   10 CONTINUE
!                                 Summarize the statistics
      IDO = 3
      CALL COVPL (0, NVAR, X, NGROUP, COV, IDO=IDO, IND=IND, IGRP=IGRP, &
      NI=NI,SWT=SWT, XMEAN=XMEAN, NRMISS=NRMISS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' NRMISS = ', NRMISS
      CALL WRRRN ('XMEAN', XMEAN)
      CALL WRRRN ('COV', COV)
      END

Type Code Description

3 1 The group number is not between 1 and NGROUP. The observation is ignored.
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Output

NRMISS = 0
              XMEAN
        1       2       3       4
1   5.006   3.428   1.462   0.246
2   5.936   2.770   4.260   1.326
3   6.588   2.974   5.552   2.026

                 COV
         1        2        3        4
1   0.2650   0.0927   0.1675   0.0384
2   0.0927   0.1154   0.0552   0.0327
3   0.1675   0.0552   0.1852   0.0427
4   0.0384   0.0327   0.0427   0.0419
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PCORR

Computes partial correlations or covariances from the covariance or correlation matrix.

Required Arguments
COR — NVAR by NVAR correlation or covariance matrix.  (Input)
NIND — Number of “independent” variables to to be used in the partial correlations.  (Input) 

If NIND is -1, the independent variables are taken to be the NVAR - NDEP variables not in INDDEP. If 
NIND is zero, no independent variables are used, and p-values for the input dependent (see INDDEP) 
correlations (or covariances) are computed. The partial correlations (covariances) are the correlations 
(covariances) between the dependent variables after removing the linear effect of the independent 
variables. NIND and NDEP cannot simultaneously be -1.

IND — Vector of length NIND containing the column (or row) numbers in COR of the independent vari-
ables.  (Input, if NIND > 0; not referenced otherwise)
If NIND is negative or zero, IND is not used and can be dimensioned of length 1 in the calling program.

NDEP — Number of variables for which partial correlations (covariances) are desired (the number of 
“dependent” variables).  (Input) 
If NDEP is -1, the dependent variables are taken as the NVAR - NIND variables not in IND. NIND and 
NDEP cannot simultaneously be -1.

INDDEP — Vector of length NDEP containing the indices of the dependent variables.  (Input, if NDEP > 0; 
not referenced otherwise)
If NDEP is 1, INDDEP is not used and can be dimensioned of length 1 in the calling program.

PCOR — Matrix of size m by m containing the partial correlations or partial covariances.  (Output) 
m = NDEP if NDEP > 0, and m = NVAR - NIND otherwise. If NIND = 0, then COR and PCOR can share the 
same memory location.

Optional Arguments
NVAR — Number of variables in COR.  (Input)

Default: NVAR = size (COR,1).
LDCOR — Leading dimension of COR exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOR = size (COR,1).

NDF — Number of degrees of freedom in COR.  (Input) 
If the number of degrees of freedom in COR varies from element to element, then a conservative choice 
for NDF is the minimum degrees of freedom for all elements in COR. If NDF is not known, then NDF ≤ 0 
defaults to NDF = 100.
Default: NDF = 0.

ICOR — Partial correlations/covariances option.  (Input)
Default: ICOR = 0.

ICOR Action

1 Partial correlations are desired.

0 Partial covariances are desired.
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Partial correlations can be computed when either a correlation or a covariance matrix in input in COR. 
To compute partial covariances, COR must contain a covariance matrix.

LDPCOR — Leading dimension of PCOR exactly as specified in the dimension statement of the calling 
program.  (Input)
Default: LDPCOR = size (PCOR,1).

NDFP — Number of degrees of freedom in the test that the partial correlation (covariance) is zero.  (Out-
put) 
This will usually be NDF - NIND but will be greater than this value if the variables in IND are computa-
tionally linearly related.

PVAL — Matrix of size m by m (see PCOR) containing the p-values for testing the null hypothesis that the 
associated partial correlation (covariance) is zero.  (Output) 
The p-values reported in PVAL assume that the observations from which COR was computed follow a 
multivariate normal distribution and that each element in COR has NDF degrees of freedom.

LDPVAL — Leading dimension of PVAL exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDPVAL = size(PVAL, 1).

FORTRAN 90 Interface
Generic: CALL PCORR (COR, NIND, IND, NDEP, INDDEP, PCOR [, …])
Specific: The specific interface names are S_PCORR and D_PCORR.

FORTRAN 77 Interface
Single: CALL PCORR (NVAR, COR, LDCOR, NDF, ICOR, NIND, IND, NDEP, INDDEP, PCOR, LDPCOR, 

NDFP, PVAL, LDPVAL)
Double: The double precision name is DPCORR.

Description

Routine PCORR computes partial correlations or partial covariances from an input correlation or covariance 
matrix. If the “independent” variables (the linear “effect” of the independent variables is removed in com-
puting the partial correlations/covariances) are linearly related to one another, PCORR detects the linearity 
and eliminates one or more of the independent variables from the list of independent variables. The number 
of variables eliminated, if any, can be determined from argument NDFP.

Given a correlation or covariance matrix Σ partitioned as

Routine PCORR computes the partial covariances (of the standardized variables if Σ is a correlation matrix) as
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If partial correlations are desired, these are computed as

where “diag” denotes the matrix containing the diagonal of its argument along its diagonal with zeros off the 
diagonal. If Σ11is singular, then as many variables as required are deleted from 
Σ11 (and Σ12) in order to eliminate the linear dependency(ies). The computations then proceed as above.

The p-value for a partial correlation (covariance) tests the null hypothesis  H0 : ρij∣1 = 0 (H0 : σij∣1 = 0), where 
ρij∣1(σij∣1) is the (i, j) element in matrix P22∣1 (Σ22∣1). The p-values are returned in PVAL. If NDF is not known, 
the p-values are computed as if each element in COR had 100 degrees of freedom. When NDF is not known, 
the resulting p-values may be useful for comparison, but they should not be used as an approximation to the 
actual probabilities.

Comments
1. Workspace may be explicitly provided, if desired, by use of P2ORR/DP2ORR. The reference is:

CALL P2ORR (NVAR, COR, LDCOR, NDF, ICOR, NIND, IND, NDEP, INDDEP, PCOR, LDPCOR, NDFP, 
PVAL, LDPVAL, SXY, SXX, LDSXX, IY, IX)

The additional arguments are as follows:

SXY — Work vector of length m * n.

SXX — Work vector of length n2.

LDSXX — The value of n.

IY — Work vector of length NVAR.

IX — Work vector of length NVAR.
2. Informational errors

Example

The following example computes partial correlations from a 9 variable correlation matrix originally given by 
Emmett (1949). The partial correlations between the remaining variables, after adjusting for variables 1, 3, 
and 9, are computed. Note in the output that the row and column labels are column numbers, not variable 
numbers. The corresponding variable numbers would be 2, 4, 5, 6, 7, and 8, respectively.

Type Code Description

4 1 COR is incorrectly specified for two independent variables.

4 2 COR is incorrectly specified for an independent variable and a dependent 
variable.

4 3 COR is incorrectly specified for two dependent variables.

4 4 A computed partial correlation is greater than one.
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!                                 SPECIFICATIONS FOR PARAMETERS
      USE PCORR_INT
      USE UMACH_INT
      USE WRRRN_INT
      IMPLICIT NONE

      INTEGER    ICOR, LDCOR, LDP, LDPCOR, NDEP, NDF, NIND, NVAR
      PARAMETER  (ICOR=1, LDCOR=9, LDP=6, LDPCOR=6, NDEP=-1, NDF=30, &
                 NIND=3, NVAR=9)
!
      INTEGER    IND(NIND), INDDEP(1), NDFP, NOUT
      REAL       COR(LDCOR,NVAR), P(LDP,LDP), PCOR(LDPCOR,LDPCOR)
!
      DATA IND/1, 3, 9/
!
      DATA COR/1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, &
          0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, &
          0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254, &
          0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, 0.691, &
          0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691, &
          1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254, &
          0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547, &
          0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434, &
          0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470, &
          0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, &
          1.000/
!
      CALL PCORR (COR, NIND, IND, NDEP, INDDEP, PCOR, NDF=NDF, &
                  ICOR=ICOR, NDFP=NDFP, PVAL=P)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'The degrees of freedom are ', NDFP
      CALL WRRRN ('PCOR', PCOR)
      CALL WRRRN ('P', P)
!
      END

Output

The degrees of freedom are   27

                      PCOR
        1       2       3       4       5       6
1   1.000   0.224   0.194   0.211   0.125  -0.061
2   0.224   1.000   0.605   0.720   0.092   0.025
3   0.194   0.605   1.000   0.598   0.123  -0.077
4   0.211   0.720   0.598   1.000   0.035   0.086
5   0.125   0.092   0.123   0.035   1.000   0.062
6  -0.061   0.025  -0.077   0.086   0.062   1.000

                           P
         1        2        3        4        5        6
1   0.0000   0.2525   0.3232   0.2801   0.5249   0.7576
2   0.2525   0.0000   0.0006   0.0000   0.6417   0.9000
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3   0.3232   0.0006   0.0000   0.0007   0.5328   0.6982
4   0.2801   0.0000   0.0007   0.0000   0.8602   0.6650
5   0.5249   0.6417   0.5328   0.8602   0.0000   0.7532
6   0.7576   0.9000   0.6982   0.6650   0.7532   0.0000
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RBCOV

Computes a robust estimate of a covariance matrix and mean vector.

Required Arguments
WGHTS — User-supplied SUBROUTINE to compute observation weights. The form is 

CALL WGHTS (R, NVAR, PERCNT, UU, WW, UP), where

R – Distance of observation from the mean vector at which weights are to be computed.  (Input)
UU, WW, and UP are to be computed at distance R.

NVAR – Number of variables.  (Input)

PERCNT – Percentage of outliers expected.  (Input)

UU – Value of covariance matrix weighting function at distance R.  (Output)

WW – Value of mean vector weighting function at distance R.  (Output)

UP – Value of first derivative of UU with respect to R.  (Output)
WGHTS must be declared EXTERNAL in the calling program. A standard weighting subroutine is pro-
vided as routine R5COV/DR5COV. See the Description section for further description of the subroutine 
WGHTS.

X — NOBS by NVAR + m matrix containing the data.  (Input) 
m is 0, 1, 2, or 3 depending upon whether any columns in X contain frequencies, weights or group 
numbers.

IND — Vector of length NVAR containing the column numbers in X for which covariances are desired.  
(Input)

XMEAN — NGROUP by NVAR matrix containing the estimates of the location parameters in each group.  
(Output, if INIT ≠ 2; input/output, otherwise)
Row i of XMEAN contains the location estimates for the variables in group i. The columns of XMEAN are 
in the order specified by IND.

COV — NVAR by NVAR matrix of estimated covariances.  (Output, if INIT ≠ 2; input/output, otherwise)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NVAR — Number of variables in the covariance matrix.  (Input)

Default: NVAR = size (IND,1).
NCOL — Number of columns in matrix X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column number IFRQ of X 
contains the frequencies. All frequencies should be positive integer values. The NINT (nearest integer) 
function is used to obtain integer frequencies from X.
Default: IFRQ = 0.
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IWT — Weighting option.  (Input)
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X contains the positive 
weights. Negative weights are not allowed. Note that weights in column IWT are the proportionality 
constants used in computing a covariance matrix from observations with proportional covariance 
matrices. The weights used for robust estimation are computed in the estimation procedure.
Default: IWT = 0.

NGROUP — Number of groups (populations) in the data.  (Input) 
If the data comes from a single population, NGROUP = 1.
Default: NGROUP = 1.

IGRP — Column of X giving the group numbers.  (Input) 
If IGRP = 0, one group is assumed. If IGRP > 0, then column number IGRP of X contains the group 
number for the observation. Group numbers must be 
1, 2, …, NGROUP. The NINT intrinsic function is used to obtain integer group numbers
Default: IGRP = 0.

INIT — Estimate initialization option.  (Input)
Default: INIT = 0.

IMTH — Option parameter giving the algorithm to be used in computing the estimates.  (Input) 
Default: IMTH = 0.

PERCNT — Percentage of gross errors expected in the data.  (Input) 
PERCNT is in the range from zero to 100 and contains the percentage of outliers expected in the data. 
PERCNT is usually only used if IMSL supplied weighting subroutine R5COV/DR5COV is used as the 
subroutine WGHTS.
Default: PERCNT = 0.e0.

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 30 is typical.
Default: MAXIT = 30.

EPS — Convergence criterion.  (Input) 
When the maximum absolute change in a location or covariance estimate is less than EPS, conver-
gence is assumed.
Default: EPS = 1.e-4.

NI — Vector of length NGROUP containing the number of observations in each group.  (Output)
SWT — Vector of length NGROUP containing the sum of the weights times the frequencies for the observa-

tions in each group.  (Output)

INIT Method

0 Initial estimates are obtained as the usual estimate of a mean vector and of a covariance 
matrix.

1 Initial estimates based upon the median and interquartile range are used.

2 User input initial estimates are used.

IMTH Method

0 Huber’s conjugate-gradient algorithm is used.

1 Stahel’s algorithm is used.
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LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDXMEA = size (XMEAN,1).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

CNST — Vector of length 4 containing some constants computed by RBCOV.  (Output) 
CNST(1) contains the constant beta (see the Description section) used to ensure that the estimated 
covariance matrix has unbiased expectation (for given mean vector) for a multivariate normal density. 
CNST(2), CNST(3), and CNST(4) are the parameters a, b, and c, respectively, in IMSL-supplied subrou-
tine R5COV/DR5COV. They are set to NaN (not a number) if R5COV is not used.

NRMISS — Number of rows of data in X containing any missing values (NaN, not a number) in the col-
umns IND, IWT, IFRQ, or IGRP.  (Output) 
Rows of X contributing to NRMISS are ignored in all other computations.

FORTRAN 90 Interface
Generic: CALL RBCOV (WGHTS, X, IND, XMEAN, COV [, …])
Specific: The specific interface names are S_RBCOV and D_RBCOV.

FORTRAN 77 Interface
Single: CALL RBCOV (WGHTS, NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, NGROUP, IGRP, INIT, 

IMTH, PERCNT, MAXIT, EPS, NI, SWT, XMEAN, LDXMEA, COV, LDCOV, CNST, NRMISS)
Double: The double precision name is DRBCOV.

Description

Routine RBCOV computes robust M-estimates of the mean and covariance matrix from a matrix of observa-
tions. A pooled estimate of the covariance matrix is computed when multiple groups are present in the input 
data. M-estimate weights are obtained from a user specified weighting subroutine. In addition, user specified 
observation weights and frequencies may be given for each row in X. Listwise deletion of missing values is 
assumed so that all observations used are “complete.” In any row of X, if any column in the list determined 
by IND, IFRQ, IWT, or IGRP is missing, the row is not used. 

Let f(x; μi, Σ) denote the density of an observation p-vector x in population (group) i with mean vector μi, for 

groups i = 1, …,  . Let the covariance matrix Σ be such that Σ = RTR. If 

then 

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

In RBCOV, Σ and μi are estimated as the solutions
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of the estimation equations

and

where i indexes the  groups, ni is the number of observations in group i, fij is the frequency for the j-th 
observation in group i, ωij is the observation weight specified in column IWT of X, Ip is a 
p × p identity matrix,

w(r) and u(r) are weighting functions specified by the user through subroutine WGHTS, and where β is a con-

stant computed by the program to make the expected weighted Mahalanobis distance (yTy) equal the 
expected Mahalanobis distance from a multivariate normal distribution (see Marazzi 1985). The constant β is 
described more fully below. 

Routine RBCOV uses one of two algorithms for solving the estimation equations. The first algorithm is dis-
cussed in detail in Huber (1981) and is a variant of the conjugate gradient method. The second algorithm is 
due to Stahel (1981) and is discussed in detail by Marazzi (1985). In both algorithms, correction vectors Tki for 
the group i means and correction matrix Wk = Ip + Uk for the Cholesky factorization of Σ are found such that 
the updated mean vectors are given by

and the updated matrix R is given

where k is the iteration number and

When all elements of Uk and Tki are less that ɛ = EPS, convergence is assumed. 

Three methods for obtaining initial estimates are allowed. In the first method, the sample weighted estimate 
of Σ is computed (using routine COVPL). In the second method, estimates based upon the median and the 
interquartile range are used. Finally, in the last method, the user inputs initial estimates. 
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Routine RBCOV computes estimates for any weighting functions u and w. The constant β is chosen such that 

E(u(r)r2) = pβ where the expectation is with respect to a standard p-variate multivariate normal distribution. 
This yields estimates with the correct expectation for the multivariate normal distribution (for given mean 
vector). The expectation is computed via integration of estimated spline functions. 200 knots are used on an 
equally spaced grid from 0.0 to the 99.999 percentile of a

distribution. An error estimate is computed based upon 100 of these knots. If the estimated relative error is 
greater than 0.001, a warning message is issued. If β is not computed accurately (i.e., if the warning message 
is issued), the computed estimates are still optimal, but the scale of the estimated covariance matrix may 
need to be multiplied by a constant in order for

to have the correct multivariate normal covariance expectation.

The Weighting Subroutine

The name of the weighting subroutine (WGHTS) is input into RBCOV. User-supplied weights may be used. 
Alternatively, the user may input the name of the IMSL-supplied subroutine, S_R5COV in single precision, or 
D_R5COV in double precision. The weights computed by this subroutine are the “minimax” weights of 
Huber (1981, pages 231 - 235), with PERCNT expected gross errors. Huber’s (1981) weighting equations are 
given by:

The constants a, b, and c depend upon the number of variables p and upon the expected percentage of gross 
errors. They are computed by R5COV as the zeroes of equations given by Huber and are returned in the array 
CNST from RBCOV.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2COV/DR2COV. The reference is:

CALL R2COV (WGHTS, NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, NGROUP, IGRP, INIT, IMTH, 
PERCNT, MAXIT, EPS, NI, SWT, XMEAN, LDXMEA, COV, LDCOV, CNST, NRMISS, D, U, GXB, OB, 
OB1, OB2, SWW, WK, IRN, ISF)

The additional arguments are as follows:

D — Work vector of length NVAR.
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U — Work vector of length max(m * NVAR, NGROUP) * NVAR; where m = 2 if IMTH = 0, and m = 1 
otherwise.

GXB — Work vector of length NVAR * NGROUP.

OB — Work vector of length NVAR.

OB1 — Work vector of length NVAR.

OB2 — Work vector of length NVAR.

SWW — Work vector of length NGROUP.

WK — Work vector of length NOBS.

IRN — Work vector of length NOBS.

ISF — Work vector of length NGROUP.
2. Informational errors 

Example

The following example computes estimates of the mean vectors and the pooled covariance matrix for the 
Fisher iris data (routine GDATA provides these data with the group indicator in the first column.). For com-
parison, these estimates are first computed via routine COVPL. Routine RBCOV with PERCNT = 0.02 is then 
used to compute the robust estimates. As can be seen from the output, the resulting estimates are quite 
similar. 

To study the behavior of RBCOV, three observations are made into outliers, and, again, both COVPL and 
RBCOV are used to compute estimates. When outliers are present, COVPL gives estimates that have clearly 
been adversely affected, while the estimates produced by RBCOV are close to the estimates produced when 
no outliers are present. 

In both calls to RBCOV, the usual pooled estimates were used for the initial estimates, and IMSL supplied rou-
tine R5COV with argument PERCNT = 0.02 was used. Because neither NOBS or PERCNT changed in the two 
calls, the values returned in CNST are identical. If the percentage of gross errors expected in the data, 
PERCNT, is not known, a reasonable strategy is to use a value of PERCNT that is such that larger values do not 
result in significant changes in the estimates.

      USE IMSL_LIBRARIES

      IMPLICIT  NONE
      INTEGER   IGRP, LDCOV, LDX, LDXMEA, MAXIT, NCOL, NGROUP, NOBS, &
      NV, NVAR
      REAL      PERCNT
      PARAMETER  (IGRP=1, NCOL=5, NGROUP=3, NOBS=150, NV=5, NVAR=4, &
      PERCNT=2.0,  LDCOV=NVAR, LDX=NOBS, LDXMEA=NGROUP)
!
      INTEGER    IND(NVAR), NI(NGROUP), NOB1, NOUT, NRMISS, NV1
      REAL       CNST(4), COV(LDCOV,NVAR), SWT(NGROUP), X(LDX,NCOL), &
      XMEAN(NGROUP,NVAR)
      EXTERNAL S_R5COV
!

Type Code Description

4 1 The derivative of UU with respect R is not correctly specified.
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      DATA IND/2, 3, 4, 5/
!
      CALL GDATA (3, X, NOB1, NV1)
!
      CALL COVPL (NOBS, NVAR, X, NGROUP, COV, IND=IND, IGRP=IGRP, &
      XMEAN=XMEAN)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'COVPL estimates with no outliers'
      CALL WRRRN ('XMEAN', XMEAN)
      CALL WRRRN ('COV', COV, ITRING=1)
!
      CALL RBCOV (S_R5COV, X, IND, XMEAN, COV, NGROUP=NGROUP, &
      IGRP=IGRP, PERCNT=PERCNT, NI=NI, SWT=SWT, CNST=CNST)
!
      WRITE (NOUT,*) 'RBCOV estimates with no outliers'
      CALL WRRRN ('XMEAN', XMEAN)
      CALL WRRRN ('COV', COV, ITRING=1)
      CALL WRRRN ('SWT', SWT, 1, NGROUP, 1)
      CALL WRIRN ('NI', NI, 1, NGROUP, 1)
      CALL WRRRN ('CNST', CNST, 1, 4, 1)
!
      X(1,2)   = 100.0
      X(5,5)   = 100.0
      X(100,3) = -100.0
!
      CALL COVPL (NOBS, NVAR, X, NGROUP, COV, IND=IND, IGRP=IGRP, &
      XMEAN=XMEAN)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'COVPL estimates with three outliers'
      CALL WRRRN ('XMEAN', XMEAN)
      CALL WRRRN ('COV', COV, ITRING=1)
!
      CALL RBCOV (S_R5COV, X, IND, XMEAN, COV, NGROUP=NGROUP, IGRP=IGRP, &
      PERCNT=PERCNT, NI=NI, SWT=SWT, CNST=CNST)
!
      WRITE (NOUT,*) 'RBCOV estimates with three outliers'
      CALL WRRRN ('XMEAN', XMEAN)
      CALL WRRRN ('COV', COV, ITRING=1)
      CALL WRRRN ('SWT', SWT, 1, NGROUP, 1)
      CALL WRIRN ('NI', NI, 1, NGROUP, 1)
      CALL WRRRN ('CNST', CNST, 1, 4,1)
!
      END

Output

COVPL estimates with no outliers

               XMEAN
         1       2       3       4
 1   5.006   3.428   1.462   0.246
 2   5.936   2.770   4.260   1.326
 3   6.588   2.974   5.552   2.026
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                  COV
          1        2        3        4
 1   0.2650   0.0927   0.1675   0.0384
 2            0.1154   0.0552   0.0327
 3                     0.1852   0.0427
 4                              0.0419

RBCOV estimates with no outliers

            XMEAN
      1       2       3       4
 1   4.989   3.411   1.465   0.244
 2   5.951   2.784   4.265   1.324
 3   6.529   2.970   5.489   2.026

                  COV
          1        2        3        4
 1   0.2474   0.0872   0.1535   0.0360
 2            0.1073   0.0538   0.0322
 3                     0.1705   0.0412
 4                              0.0401

         SWT
    1       2       3
50.00   50.00   50.00

      NI
  1    2    3
 50   50   50

              CNST
    1       2       3       4
0.972   0.000   3.093   1.717

COVPL estimates with three outliers

              XMEAN
        1       2       3       4
1   6.904   3.428   1.462   2.242
2   5.936   0.714   4.260   1.326
3   6.588   2.974   5.552   2.026

               COV
        1       2       3       4
1   60.43    0.30    0.13   -1.28
2           70.53    0.17    0.17
3                    0.19    0.00
4                           66.38

RBCOV estimates with three outliers

               XMEAN
        1       2       3       4
1   4.999   3.405   1.468   0.253
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2   5.959   2.772   4.271   1.324
3   6.528   2.970   5.489   2.026

                 COV
         1        2        3        4
1   0.2567   0.0885   0.1553   0.0361
2            0.1133   0.0546   0.0324
3                     0.1723   0.0412
4                              0.0424

          SWT
    1       2       3
50.00   50.00   50.00

    NI
 1    2    3
50   50   50

            CNST
    1       2       3       4
0.972   0.000   3.093   1.717
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CTRHO

Estimates the bivariate normal correlation coefficient using a contingency table.

Required Arguments
TABLE — NROW by NCOL contingency table containing the observed counts.  (Input)
RHO — Maximum likelihood estimate of the correlation coefficient.  (Output)
VAR — Estimated asymptotic variance of RHO.  (Output)
PLTMY — Vector of length NROW + NCOL - 2 containing the points of polytomy of the marginal rows and 

columns of TABLE.  (Output) 
The first NROW - 1 elements of PLTMY are the points of polytomy for the rows while the last NCOL -  
elements are the points of polytomy for the columns.

PROB — NROW by NCOL matrix containing the bivariate normal probabilities corresponding to RHO and 
PLTMY.  (Output)

DRIV — NROW by NCOL matrix containing the partial derivatives of the bivariate normal probability with 
respect to RHO.  (Output)

Optional Arguments
NROW — Number of rows in the table.  (Input)

Default: NROW = size (TABLE,1).
NCOL — Number of columns in the table.  (Input)

Default: NCOL = size (TABLE,2).
LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement of the calling 

program.  (Input)
Default: LDTABL = size (TABLE,1).

EPS — Convergence criterion in the iterative estimation.  (Input) 
RHO will be within EPS of the maximum likelihood estimate unless roundoff errors prevent this preci-
sion. EPS must be less than 2. EPS less than or equal to zero defaults to 0.00001.
Default: EPS = .00001.

LDPROB — Leading dimension of PROB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDPROB = size (PROB,1).

LDDRIV — Leading dimension of DRIV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDDRIV = size (DRIV,1).

FORTRAN 90 Interface
Generic: CALL CTRHO (TABLE, RHO, VAR, PLTMY, PROB, DRIV [, …])
Specific: The specific interface names are S_CTRHO and D_CTRHO.
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FORTRAN 77 Interface
Single: CALL CTRHO (NROW, NCOL, TABLE, LDTABL, EPS, RHO, VAR, PLTMY, PROB, LDPROB, DRIV, 

LDDRIV)
Double: The double precision name is DCTRHO.

Description

Routine CTRHO computes the maximum likelihood estimate and the asymptotic variance for the correlation 
coefficient of a bivariate normal population from a two-way contingency table. The maximum likelihood 
estimates are conditional upon the points of polytomy in the marginal distribution. The resulting estimate for 
the correlation coefficient should be very close to the unconditional estimate (see Martinson and Hamdan 
1972).

The points of polytomy for the row and column marginal probabilities are first computed. If the i-th cumula-
tive column marginal is denoted by pci, then the point of polytomy xi is given as

where Φ denotes the cumulative normal distribution. Let αi, i = 0, …, r denote these points for the row mar-
ginal cumulative probabilities where r = NROW, α0 = -∞, and αr =∞. Similarly, let βj, j = 0, …, c denote the 
points of polytomy for the columns where c = NCOL. Then, the probability of the (i, j) cell in the table, pij, is 
defined as

where X and Y are the bivariate random variables. Maximum likelihood estimates for the correlation coeffi-
cient are computed based upon the bivariate normal density. The likelihood is specified by the multinomial 
distribution of the table using probabilities pij.

Routine CTRHO assumes that the row random variable decreases with increasing row number while the col-
umn variable increases with the column number. If this is not the case, the sign of the estimated correlation 
coefficient may need to be changed.

Example

The data are taken from Martinson and Hamdan (1972), who attribute it to Karl Pearson. The row variable is 
head breadth (in millimeters) for a human male while the column variable is the head breadth of his sister. 
Head breadth increases across the columns and decreases down the row. The row and column variables have 
been categorized into one of three intervals. The original table is as follows:
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Note that routine CTRHO can accept other than integer counts. It is not clear from Martinson and Hamdan 
(1972) how the non-integral counts arise in the table here. The correlation is estimated to be 0.5502.

      USE CTRHO_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDDRIV, LDPROB, LDTABL, NCOL, NROW
      PARAMETER  (LDDRIV=3, LDPROB=3, LDTABL=3, NCOL=3, NROW=3)
!
      INTEGER    NOUT
      REAL       DRIV(LDDRIV, NCOL), PLTMY(NROW+NCOL-2),PROB(LDPROB,NCOL), &
      RHO, TABLE(LDTABL, NCOL), VAR
!
      DATA TABLE/1.0, 52.5, 40.5, 36.5, 340.5, 58.0, 77.5, 143.5, 9.0/
!
!
      CALL CTRHO (TABLE, RHO, VAR, PLTMY, PROB, DRIV)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'RHO =', RHO, '    VAR =', VAR
      CALL WRRRN ('PLTMY', PLTMY, 1, NROW+NCOL-2, 1, 0)
      CALL WRRRN ('PROB', PROB)
      CALL WRRRN ('DRIV', DRIV)
      END

Output

RHO =   0.549125    VAR =    1.33199E-03
              PLTMY
     1       2       3       4
-1.073   1.030  -1.156   0.516

            PROB
         1        2        3
1   0.0015   0.0517   0.0983
2   0.0700   0.4398   0.1970
3   0.0523   0.0816   0.0077

            DRIV
         1        2        3
1  -0.0134  -0.0984   0.1118
2  -0.0717   0.1388  -0.0672
3   0.0851  -0.0404  -0.0447

1.0 36.5 77.5

52.5 340.5 143.5

40.5 58.0 9.0
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TETCC

Categorizes bivariate data and compute the tetrachoric correlation coefficient.

Required Arguments
NROW — The absolute value of NROW is the number of observations currently in X and Y.  (Input) 

NROW may be positive, zero, or negative. Negative NROW means delete the -NROW observations in X 
and Y from the analysis. In the usual case, in which all of the data have already been categorized into 
counts in ICOUNT, NROW should be set to 0 and IDO set to 3.

X — Vector of length ∣NROW∣ containing the observations on one variable.  (Input)
Y — Vector of length ∣NROW∣ containing the observations on the second variable.  (Input)
HX — Constant used to categorize values of X.  (Input) 

See description of ICOUNT.
HY — Constant used to categorize values of Y.  (Input) 

See description of ICOUNT.
ICOUNT — 2 by 2 matrix containing counts.  (Output, if IDO = 0 or 1; input/output, if 

IDO = 2 or 3.) 
The elements of ICOUNT are the numbers of observations satisfying the following relations: 
ICOUNT(1, 1) : X(i) < HX and Y(i) < HY 
ICOUNT(1, 2) : X(i) < HX and Y(i) ≥ HY 
ICOUNT(2, 1) : X(i) ≥ HX and Y(i) < HY 
ICOUNT(2, 2) : X(i) ≥ HX and Y(i) ≥ HY 

NR — Number of real roots in the interval ( -1.0, 1.0) of the seventh-degree polynomial used to estimate 
the correlation coefficient.  (Output)

R — Vector of length 7 containing in the first NR positions estimates of the correlation coefficient.  (Output)
RS — Estimate of the standard error of the estimates of the correlation coefficient(s).  (Output)

Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

LDICOU — Leading dimension of ICOUNT exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDICOU = size (ICOUNT,1).

IDO Action

0 This is the only invocation of TETCC, and all the data are input at once in X and Y.

1 This is the first invocation of TETCC with this data, and additional calls will be made. Ini-
tialization and updating for the data in X and Y are performed.

2 This is an intermediate invocation of TETCC, and updating for the observations in X and 
Y is performed.

3 Updating for the observations in X and Y is performed, and the tetrachoric correlation 
coefficient is computed using the values in ICOUNT.
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FORTRAN 90 Interface
Generic: CALL TETCC (NROW, X, Y, HX, HY, ICOUNT, NR, R, RS [, …])
Specific: The specific interface names are S_TETCC and D_TETCC.

FORTRAN 77 Interface
Single: CALL TETCC (IDO, NROW, X, Y, HX, HY, ICOUNT, LDICOU, NR, R, RS)
Double: The double precision name is DTETCC.

Description

Routine TETCC computes the tetrachoric correlation coefficient for a bivariate sample, using either the sam-
ple itself or a two by two table of counts of the data. The tetrachoric correlation coefficient is taken as the 
solution to the seventh-degree polynomial obtained from the first seven terms of the expansion given by 
Kendall and Stuart (1979, page 326).

The standard error estimate results from an approximate, asymptotic expression derived under the assump-
tion of bivariate normality with zero correlation. The zero correlation assumption is not overly restrictive 
since most uses of this standard error would be in tests of zero correlation.

If all of the data is available, the Pearson product-moment correlation coefficient (which can be computed 
using routine CORVC) is a much better estimate for the population correlation coefficient than is the tetracho-
ric correlation coefficient. If the counts in ICOUNT are all that is available, call TETCC with IDO = 3 and 
NROW = 0.

Comments
1. Informational errors

2. If data for X and Y are available, it is better to use the Pearson product moment correlation coefficient 
(as computed by routine CORVC, for example) than to use the tetrachoric correlation coefficient.

3. The tetrachoric correlation coefficient should be considered somewhat questionable if the sample size 
is less than 200, if the cutpoints HX and HY are not close to the medians, or if there are multiple roots of 
the estimating equation in the interval (-1.0, 1.0). Also, the tetrachoric correlation coefficient is a better 
estimate of the true correlation coefficient if the true coefficient is large in absolute value.

Type Code Description

3 1 Fewer than 200 observations are used.

3 2 The polynomial used to estimate the correlation coefficient has more than 
one root in the interval ( -1.0, 1.0). It is probable that the numerical precision 
is not good enough to obtain an estimate.

4 4 The proportion of counts in a row or column is so close to one that the 
inverse normal cdf cannot be computed.

4 6 The polynomial used to estimate the correlation coefficient has no roots in 
the interval ( -1.0, 1.0). It is probable that the numerical precision is not good 
enough to obtain an estimate.
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Examples

Example 1

In the first example, the data are counts. The 374 in ICOUNT(1, 1) indicates that in the raw data there were 374 
pairs having both values less than some cutoff point. The 186 in ICOUNT(1, 2) indicates that there were 186 
pairs in the raw data for which the first value was less than its cutoff value and the second value was greater 
than or equal to its cutoff value.

      USE UMACH_INT
      USE TETCC_INT

      IMPLICIT   NONE
      INTEGER    I, ICOUNT(2,2), IDO, NOUT, NR, NROW
      REAL       HX, HY, R(7), RS, X(1), Y(1)
!
      CALL UMACH (2, NOUT)
      ICOUNT(1,1) = 374
      ICOUNT(1,2) = 186
      ICOUNT(2,1) = 167
      ICOUNT(2,2) = 203
      IDO         = 3
      NROW        = 0
      CALL TETCC (NROW, X, Y, HX, HY, ICOUNT, NR, R, RS, IDO=IDO)
      WRITE (NOUT,99998) NR, (R(I),I=1,NR)
99998 FORMAT (' Number of roots (estimates) is ', I1, /, ' ', &
      'Estimate(s) = ',7F10.5)
      WRITE (NOUT,99999) RS
99999 FORMAT (' The estimated standard error is ', F10.5)
      END

Output

Number of roots (estimates) is 1
Estimate(s) =    0.33511
The estimated standard error is    0.05255

Example 2

In this example, some artificial bivariate normal data are generated using IMSL routine RNMVN, and then, the 
tetrachoric correlation coefficient is computed. Since the mean (and median) of each variable is 0.0, the cut-
points HX and HY are set to 0.0.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    I, ICOUNT(2,2), IRANK, NOUT, NR, NROW
      REAL       COV(2,2), HX, HY, R(7), RS, RSIG(2,2), X(1000), &
                 XY(1000,2), Y(1000)
!
      EQUIVALENCE (X, XY), (Y, XY(1,2))
!
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      CALL UMACH (2, NOUT)
!                                 Generate random sample from
!                                 bivariate normal with correlation
!                                 of 0.5.
      COV(1,1) = 1.0
      COV(1,2) = 0.5
      COV(2,1) = 0.5
      COV(2,2) = 1.0
!                                 Obtain the Cholesky factorization.
      CALL CHFAC (COV, IRANK, RSIG)
!                                 Initialize seed of random number
!                                 generator.
      CALL RNSET (123457)
      CALL RNMVN (RSIG, XY)
!
      NROW   = 1000
      HX     = 0.0
      HY     = 0.0
      CALL TETCC (NROW, X, Y, HX, HY, ICOUNT, NR, R, RS)
      WRITE (NOUT,99997) ICOUNT
99997 FORMAT (' ICOUNT = ', 4I4)
      WRITE (NOUT,99998) NR, (R(I),I=1,NR)
99998 FORMAT (' Number of roots (estimates) is ', I1, /, ' ', &
              'Estimate(s) = ',7F10.5)
      WRITE (NOUT,99999) RS
99999 FORMAT (' The estimated standard error is ',F10.5)
      END

Output

ICOUNT =  326 163 171 340
Number of roots (estimates) is 1
Estimate(s) =    0.49824
The estimated standard error is    0.04968
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BSPBS

Computes the biserial and point-biserial correlation coefficients for a dichotomous variable and a numeri-
cally measurable classification variable.

Required Arguments
A — 3 by K matrix containing the frequencies and the class marks of the measured classification variable.  

(Input) 
The first row of A contains frequencies for the classification variable when the dichotomous variable 
takes on one of its values, and the second row of A contains the frequencies when the dichotomous 
variable takes on its other value. The third row of A contains the values (class marks) of the classifica-
tion variable. The elements of the first two rows of A must be nonnegative.

STAT — Vector of length 11 containing various statistics.  (Output)

Optional Arguments
K — Number of classes for the measured classification variable.  (Input)

Default: K = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL BSPBS (A, STAT [, …])
Specific: The specific interface names are S_BSPBS and D_BSPBS.

I STAT(I)

1 Total count of the first value of the dichotomous variable (the sum of 
the first row of A)

2 Total count for the second value

3 Total count (sum of STAT(1) and STAT(2))

4 Mean of the measured variable

5 Mean of the measured variable in the first class of the dichotomy

6 Mean of the measured variable in the second class of the dichotomy

7 Standard deviation of the measured variable

8 Biserial correlation coefficient estimate

9 Standard deviation estimate for the biserial correlation coefficient 
estimate 

10 Asymptotic significance level of the biserial correlation coefficient, that 
is, the probability of a more extreme value

11 Point-biserial correlation coefficient estimate
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FORTRAN 77 Interface
Single: CALL BSPBS (K, A, LDA, STAT)
Double: The double precision name is DBSPBS.

Description

Routine BSPBS computes the biserial and point-biserial correlation coefficient for a dichotomous variable 
and a numerically measurable (classification) variable. Input to BSPBS is a 3 × K array, A. The first two rows 
of A contain the frequencies for the dichotomous variable as measured at each level of the classification vari-
able. The third row contains the values (class marks) to be used for the classification variable.

The biserial correlation coefficient should be used in situations where the dichotomous variable and the clas-
sification variable are assumed to come from a bivariate normal distribution. If this is not the case (i.e., if the 
bivariate normal assumption cannot be made), then the point-biserial correlation should be used (see Kend-
all and Stuart 1979, page 331).

Let a∙1 and a∙2 denote the total count in rows one and two of A, respectively, and let n = a∙1+ a∙2. Let Φ denote 
the cumulative normal distribution; let aij, i = 1, 2, j = 1, …, K, denote the counts in rows 1 and 2 of A, and let 
xj denote the values in row 3 of A. The biserial correlation coefficient rb is computed as follows:

Let 

If the underlying distributions are normal with zero correlation, then z is asymptotically a standard normal 
deviate that may be used to test that the correlation is zero. The p-value for z is reported in STAT(10).
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The point-biserial correlation coefficient is computed as

Example

The example is taken from Kendall and Stuart (1979, page 327). The data involve the classification of crimi-
nals as alcoholic (first row) or nonalcoholic for each level of a crimetype classification. The severity of the 
crime decreases with increasing column number. In the example, the column number is used for the column 
score. The biserial correlation of -0.17 indicates that more criminals responsible for the most serious crimes 
tend to be alcoholic.

      USE IMSL_LIBRARIES
     
      IMPLICIT   NONE
      INTEGER    K, LDA
      PARAMETER  (K=6, LDA=3)
!
      REAL       A(LDA,K), STAT(11)
      CHARACTER  CLABEL(2)*10, RLABEL(11)*10
!
      DATA A/50, 43, 1, 88, 62, 2, 155, 110, 3, 379, 300, 4, &
          18, 14, 5, 63, 144, 6/
      DATA RLABEL/'Count-1', 'Count-2', 'Count', 'Mean(X)', &
          'Mean(X-1)', 'Mean(X-2)', 'S-X', 'r-b', 'std(r-b)', &
          'p-value', 'r-p'/
      DATA CLABEL/'Statistic', '    '/
!
      CALL WRRRN('A', A)
!
      CALL BSPBS (A, STAT)
!
      CALL WRRRL ('    ', STAT, RLABEL, CLABEL, FMT='(W12.8)')
      END

Output

                        A
        1       2       3       4       5       6
1    50.0    88.0   155.0   379.0    18.0    63.0
2    43.0    62.0   110.0   300.0    14.0   144.0
3     1.0     2.0     3.0     4.0     5.0     6.0
Statistic
Count-1          753.00
Count-2          673.00
Count           1426.00
Mean(X)            3.72
Mean(X-1)          3.55
Mean(X-2)          3.91
S-X                1.31
r-b               -0.17
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std(r-b)           0.03
p-value            0.00
r-p               -0.14
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BSCAT

Computes the biserial correlation coefficient for a dichotomous variable and a classification variable.

Required Arguments
A — 2 by K matrix containing the frequencies.  (Input) 

The first row of A contains frequencies for the classification variable when the dichotomous variable 
takes on one of its values, and the second row of A contains the frequencies when the dichotomous 
variable takes on its other value. No ordering is assumed for the values of the classification variable. 
The elements of A must be nonnegative.

STAT — Vector of length 5 containing various statistics.  (Output)

Optional Arguments
K — Number of classes for the classification variable.  (Input)

Default: K = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL BSCAT (A, STAT [, …])
Specific: The specific interface names are S_BSCAT and D_BSCAT.

FORTRAN 77 Interface
Single: CALL BSCAT (K, A, LDA, STAT)
Double: The double precision name is DBSCAT.

Description

Routine BSCAT computes the biserial correlation coefficient for a dichotomous variable and a classification 
variable. The data are input in a 2 × k array, A, where the row indicates the value of the dichotomous vari-
able, and the column indicates the value of the classification variable. In BSCAT, column scores are computed 

as xi = φ-1(a1i/(a1i + a2i)), and the row score is computed as y = φ -1(a∙1/(a∙1 + a∙2)), where a∙1 is the sum of 

I STAT(I)

1 Total count of the first value of the dichotomous variable (the sum of 
the first row of A)

2 Total count for the second value

3 Total count (sum of STAT(1) and STAT(2))

4 Absolute value of the biserial correlation coefficient

5 Square of the biserial correlation coefficient
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the counts in row 1, a∙2 is the sum of the counts for row 2, and φ denotes the cumulative normal distribution. 
Let N denote the total number of observations (the sum of the elements of A). Then, the biserial correlation is 
computed as

An underlying bivariate normal distribution is assumed. The validity of the estimate depends heavily upon 
this assumption.

Example

The example is taken from Kendall and Stuart (1979, page 327). The data involve the classification of crimi-
nals as alcoholic (first row) or nonalcoholic for each level of a crimetype classification. The severity of the 
crime decreases with increasing column number. The absolute value of the biserial correlation is 0.23.

      USE WRRRN_INT
      USE BSCAT_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    K, LDA
      PARAMETER  (K=6, LDA=2)
!
      REAL       A(LDA,K), STAT(5)
      CHARACTER  CLABEL(2)*10, RLABEL(5)*10
!
      DATA A/50, 43, 88, 62, 155, 110, 379, 300, 18, 14, 63, 144/
      DATA RLABEL/'Count-1', 'Count-2', 'Count', 'r-b', '(r-b)**2'/
      DATA CLABEL/'Statistic', '    '/
!
      CALL WRRRN ('A', A)
!
      CALL BSCAT (A, STAT)
!
      CALL WRRRL ('    ', STAT, RLABEL, CLABEL, FMT='(W12.6)')
      END

Output

                        A
        1       2       3       4       5       6
1    50.0    88.0   155.0   379.0    18.0    63.0
2    43.0    62.0   110.0   300.0    14.0   144.0
Statistic
Count-1          753.00
Count-2          673.00
Count           1426.00
r-b                0.23
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(r-b)**2           0.05
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CNCRD

Calculates and test the significance of the Kendall coefficient of concordance.

Required Arguments
X — NOBS by K matrix containing the data.  (Input) 

Each column of X is a set of observations (which can be converted to ranks) or a set of ranks.
FUZZ — Value to be used for determining ties.  (Input) 

If within a column of X, the difference between two elements is less than or equal to FUZZ in absolute 
value, then the elements are said to be tied.

SUMS — Vector of length NOBS containing the sums of the K ranks in the corresponding row of X.  
(Output)

STAT — Vector of length 4 containing the output statistics.  (Output) 

Optional Arguments
NOBS — Number of observations per set of rankings.  (Input)

Default: NOBS = size (SUMS,1).
K — Number of sets of rankings.  (Input) 

K must be greater than or equal to two.
Default: K = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

FORTRAN 90 Interface
Generic: CALL CNCRD (X, FUZZ, SUMS, STAT [, …])
Specific: The specific interface names are S_CNCRD and D_CNCRD.

FORTRAN 77 Interface
Single: CALL CNCRD (NOBS, K, X, LDX, FUZZ, SUMS, STAT)
Double: The double precision name is DCNCRD.

i STAT(i)

1 W, the coefficient of concordance

2 Chi-squared statistic corresponding to W with NOBS -1 degrees of freedom

3 Asymptotic probability of exceeding STAT(2) under the null hypothesis of 
independence

4 Kendall S statistic. This is the sum of the squared deviations from the 
expected sum of the ranks
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Description

Routine CNCRD computes and tests the significance of the Kendall coefficient of concordance.

The coefficient of concordance is computed as follows: Within each of the k sets the n = NOBS observations 
are ranked. Tied ranks are used for tied observations where two observations are tied if they are within FUZZ 
of each other. Let xi denote the sum of the ranks for the i-th observation over the k sets. The mean of the xi is

Using this mean, compute the sums of squares of the xi about their mean as

This is the Kendall S statistic (STAT(4)). If there are tied ranks within a set i, compute the adjustment 

where tj is the number of ties in the j-th group of ties, and the summation is over all tie groups for the set. 
Kendall’s coefficient of concordance, W, is computed as

Kendall’s coefficient of concordance is related to the Friedman one-way analysis of variance on ranks chi-
squared test statistic T (see IMSL routine FRDMN as 

When n or k is small, tables of the exact distribution of W exist. See Owen (1962, pages 396 - 397). The proba-
bility reported in STAT(3) is asymptotic. It is only approximate when k and n are small.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2CRD/DC2CRD. The reference is:

CALL C2CRD (NOBS, K, X, LDX, FUZZ, SUMS, STAT, IWK, XWK)
The additional arguments are as follows:

IWK — Work vector of length NOBS.

XWK — Work vector of length NOBS * K.
CNCRD         Chapter 3: Correlation      409



2. Informational errors

Example

The example is taken from Kendall (1962, pages 97 - 98). It involves ten observations in three sets. The result-
ing coefficient of concordance, 0.828, is quite large, indicating a strong relationship.

      USE WRRRN_INT
      USE CNCRD_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    K, LDX, NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001, K=3, LDX=10, NOBS=10)
!
      REAL       STAT(4), SUMS(NOBS), X(LDX,K)
      CHARACTER  CLABEL(2)*11, RLABEL(4)*11
!
      DATA RLABEL/'W', 'Chi-squared', 'p-value', 'S'/
      DATA CLABEL/'Statistic', '  '/
      DATA X/1, 4.5, 2, 4.5, 3, 7.5, 6, 9, 7.5, 10, 2.5, 1, 2.5, 4.5, &
          4.5, 8, 9, 6.5, 10, 6.5, 2, 1, 4.5, 4.5, 4.5, 4.5, 8, 8, 8, &
          10/
!
      CALL WRRRN ('X', X)
!
      CALL CNCRD (X, FUZZ, SUMS, STAT)
!
      CALL WRRRN ('SUMS', SUMS, 1, NOBS, 1, 0)
      CALL WRRRL ('  %/%/', STAT, RLABEL, CLABEL, FMT='(W10.6)')
      END

Output

               X
         1       2       3
 1    1.00    2.50    2.00
 2    4.50    1.00    1.00
 3    2.00    2.50    4.50
 4    4.50    4.50    4.50
 5    3.00    4.50    4.50
 6    7.50    8.00    4.50
 7    6.00    9.00    8.00
 8    9.00    6.50    8.00
 9    7.50   10.00    8.00

Type Code Description

3 6 Within each of the K sets of rankings all observations are tied. 
STAT(1) - STAT(3) cannot be computed and are set to NaN (not a number).

3 7 The chi-squared degrees of freedom is less than 7. STAT(3) should be 
regarded with suspicion.
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10   10.00    6.50   10.00
                                    SUMS
   1      2       3       4       5       6       7       8       9      10
5.50   6.50    9.00   13.50   12.00   20.00   23.00   23.50   25.50   26.50

Statistic
W                 0.828
Chi-squared      22.349
p-value           0.008
S               591.000
CNCRD         Chapter 3: Correlation      411



KENDL

Computes and test Kendall’s rank correlation coefficient.

Required Arguments
X — Vector of length NOBS containing the observations for the first variable.  (Input)
Y — Vector of length NOBS containing the observations for the second variable.  (Input)
FUZZ — Value used to determine ties in X or Y.  (Input) 

Two observations are said to be tied if the absolute value of their difference is less than or equal to 
FUZZ.

STAT — Vector of length 9 containing some output statistics.  (Output) 
See the “Description” section for full definitions. The output statistics are;

Optional Arguments
NOBS — Number of observations.  (Input) 

NOBS must be 3 or more.
Default: NOBS = size (X,1).

FRQ — Vector of length NOBS * (NOBS - 1)/2 + 1 containing the frequencies of occurrence of the possible 
values of the statistic S, STAT(5), under the null hypothesis of no relationship.  (Output)
FRQ is not calculated if there are ties or if NOBS is too large (34 on many computers).

FORTRAN 90 Interface
Generic: CALL KENDL (X, Y, FUZZ, STAT [, …])
Specific: The specific interface names are S_KENDL and D_KENDL.

i STAT(i)

1 Kendall a (assumes no ties)

2 Kendall b (corrects for ties)

3 Ties statistic for variable X

4 Ties statistic for variable Y

5 Statistic S corresponding to Kendall’s 

6 Exact probability of achieving a score at least as large as S. S is not calculated 
if NOBS is too large (34 on many computers) or there are ties. In either case, 
STAT(6) is set to NaN (not a number).

7 The same probability as STAT(6) but using a normal approximation. (Set to 
NaN if NOBS is less than 8.

8 The same probability as STAT(6) but using a continuity correction with a 
normal approximation. (Set to NaN if NOBS is less than 8.)

9 Index in FRQ corresponding to the frequency of the observed S statistic. 
STAT(9) is not computed when there are ties.
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FORTRAN 77 Interface
Single: CALL KENDL (NOBS, X, Y, FUZZ, STAT, FRQ)
Double: The double precision name is DKENDL.

Description

Routine KENDL performs Kendall’s test of the hypothesis of no correlation (independence) by calculating a 

and b ( b handles ties), the Kendall sum S, and associated probabilities. The frequencies of occurrence of S 
are also computed if the sample size (NOBS) is not too large. 

Kendall’s (1962) method is used in computing the  statistics. Each pair (xi, yi) is compared with every other 
pair (xj, yj). The Kendall S statistic is incremented if the two pairs are concordant 
((xi > xj and yi > yj) or (xi < xj and yi < yj)) and decremented if the pairs are discordant ((xi > xj and 

yi < yj) or (xi < xj and yi > yj)). Ties (xi = xj or yi = yj) are not counted. Generally, when ties exist, b is a better 

measure of correlation than is a. The untied form of the denominator is used to calculate a. That is,

where n = NOBS. Ties enter into the denominator of b as follows:

where D = n(n - 1)/2 and 

where ti is the number of ties in the x variable with the i-th tie value. Ty is calculated in a similar manner. 

For NOBS less than 34 (on many machines other values on machines with a different value for the largest real 
number that can be represented), the array FRQ is computed. FRQ contains the frequency distribution of S 
under the null hypothesis of independence. The probability distribution of S can be obtained directly from 
these frequencies by dividing each frequency by the sum of the frequencies. See routine KENDP for further 
discussion on the use of the FRQ array. 

For a two-sided test, if the appropriate probability p of achieving or exceeding S is small (less than α/2, 
where α is the significance level of the test) or if 1 - p is small (less than α/2), then the two-sided hypothesis 
of no correlation can be rejected. Alternatively, for small p or 1 - p, the appropriate one-sided hypothesis can 
be rejected. 

For n > 7, asymptotic normal probabilities are determined using the fact that
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is approximately standard normal for large n. Here,

where ti is the number of observations in the i-th tie group for the x (or y) summation variable. 

STAT(7) contains the probability associated with the z statistic while STAT(8) contains the same probability 
but with the value of S reduced by 1. This reduction is for “continuity correction.” For n less than 25, these 
probabilities are conservative at the 1% level of significance.

Comments
1. Workspace may be explicitly provided, if desired, by use of K2NDL/DK2NDL. The reference is:

CALL K2NDL (NOBS, X, Y, FUZZ, STAT, FRQ, IWK, WK, XRNK, YRNK)
The additional arguments are as follows:

IWK — Work vector of length NOBS.

WK — Work vector of length (NOBS - 1) * (NOBS - 2)/2 + 1.

XRNK — Work vector of length NOBS.

YRNK — Work vector of length NOBS.
2. Informational errors

Example

In this example, the Kendall test is performed on a sample of size 8. The test fails to reject the null hypothesis 
of no correlation.

Type Code Description

3 4 Ties are detected in the two samples. STAT(6) is set to NaN (not a number) 
and FREQ is not calculated.

3 5 NOBS is less than 8 so the asymptotic normal probabilities are not deter-
mined. STAT(7) and STAT(8) are set to NaN (not a number).

3 6 NOBS is too large (34 on many computers). STAT(6) is set to NaN (not a num-
ber) and FREQ is not calculated.

4 2 All the elements of X are tied. The output statistics are not defined.

4 3 All the elements of Y are tied. The output statistics are not defined.
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!                                 SPECIFICATIONS FOR PARAMETERS
      USE KENDL_INT
      USE WRRRL_INT
      USE WRRRN_INT

      IMPLICIT   NONE

      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001)
!
      REAL       FRQ(29), STAT(9), X(8), Y(8)
      CHARACTER  CLABEL(2)*10, RLABEL(9)*10
!
      DATA RLABEL/'tau(a)', 'tau(b)', 'ties(X)', 'ties(Y)', &
          'S', 'Pr(S)', 'Pr(S)-n', 'Pr(S)-na', 'IFRQ'/
!
      DATA CLABEL/'Statistic', '    '/
!
      DATA X/6, 4, 7, 3, 8, 1, 5, 2/
      DATA Y/7, 1, 5, 8, 6, 4, 2, 3/
!
      CALL KENDL (X, Y, FUZZ, STAT, FRQ=FRQ)
!
      CALL WRRRL ('STAT', STAT, RLABEL, CLABEL, FMT='(W10.6)')
      CALL WRRRN ('FRQ', FRQ, 1, 29, 1, 0)
      END

Output

          STAT
Statistic
tau(a)         0.1429
tau(b)         0.1429
ties(X)        0.0000
ties(Y)        0.0000
S              4.0000
Pr(S)          0.3598
Pr(S)-n        0.3103
Pr(S)-na       0.3553
IFREQ         17.0000

                                  FRQ
     1        2        3        4        5        6        7        8 
   1.0      7.0     27.0     76.0    174.0    343.0    602.0    961.0

     9       10       11       12       13       14       15       16
1415.0   1940.0   2493.0   3017.0   3450.0   3736.0   3836.0   3736.0

    17       18       19       20       21       22       23       24
3450.0   3017.0   2493.0   1940.0   1415.0    961.0    602.0    343.0

    25       26       27       28       29
 174.0     76.0     27.0      7.0      1.0
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KENDP

Computes the frequency distribution of the total score in Kendall’s rank correlation coefficient.

Required Arguments
NOBS — Sample size.  (Input) 

Must be greater than 1 and less than 34 (56 on some computers).
K — Score for which the probability is to be calculated.  (Input) 

K must be in the range from minus to plus NOBS * (NOBS - 1)/2, inclusive.
FRQ — Vector of length NOBS * (NOBS - 1)/2 + 1 containing the frequency distribution of possible values 

of K.  (Output) 
K will range from minus to plus NOBS * (NOBS - 1)/2, inclusive, in increments of 2, with frequency 
FRQ(i), for a possible K = 2 * (i - 1) - NOBS * (NOBS - 1)/2, where i = 1, 2, …, NOBS * (NOBS - 1)/2 + 1.

PROB — Probability of equaling or exceeding K if the samples on which K is based are uncorrelated.  
(Output)

FORTRAN 90 Interface
Generic: CALL KENDP (NOBS, K, FRQ, PROB)
Specific: The specific interface names are S_KENDP and D_KENDP.

FORTRAN 77 Interface
Single: CALL KENDP (NOBS, K, FRQ, PROB)
Double: The double precision name is DKENDP.

Description

Routine KENDP computes the frequency distribution of the Kendall S statistic and the probability that S 
equals or exceeds a given value K. Routine KENDP requires the sample size, n = NOBS, on input. The frequen-
cies reported in position i of FRQ correspond to

S = 2(i - 1) - n(n - 1)/2

To obtain the probability distribution of S, divide each frequency by the sum of the frequencies in FRQ. 

The upper bound on NOBS that can be handled by KENDP depends upon the largest real number that can be 
represented in the computer being used (AMACH(2)). If this value is 1.0E+46 or less, NOBS cannot be greater 
than 33.

Comments
Workspace may be explicitly provided, if desired, by use of K2NDP/DK2NDP. 

The reference is:

CALL K2NDP (NOBS, K, FRQ, PROB, FWK)
The additional argument is:
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FWK — Work vector of length (NOBS - 1) * (NOBS - 2)/2 + 1.

Example

The frequency distribution S for NOBS of 4 is computed. The probability is computed for S = 4.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    K, NOBS
      PARAMETER  (K=4, NOBS=4)
!
      INTEGER    I, M, NOUT
      REAL       FRQ(NOBS*(NOBS-1)/2+1,3), PROB, SUM
      CHARACTER  CLABEL(4)*10, RLABEL(1)*10
!
      DATA RLABEL/'NONE'/
      DATA CLABEL/'  ', 'S', 'FRQ', 'pf'/
!
      M = NOBS*(NOBS-1)/2 + 1
      DO 10  I=1, M
         FRQ(I,1) = 2*(I-1) - NOBS*(NOBS-1)/2
   10 CONTINUE
!
      CALL KENDP (NOBS, K, FRQ(1:,2), PROB)
!                                 Compute the probabilities
      SUM = SSUM(M,FRQ(1:,2),1)
      CALL SCOPY (M, FRQ(1:,2), 1, FRQ(1:,3), 1)
      CALL SSCAL (M, 1.0/SUM, FRQ(1:,3), 1)
!                                 Print results
      CALL UMACH (2, NOUT)
      CALL WRRRL (' ', FRQ, RLABEL, CLABEL, FMT='(W10.4)')
      WRITE (NOUT,*) 'PROB = ', PROB
      END

Output

          S        FRQ           pf
     -6.000       1.000       0.042
     -4.000       3.000       0.125
     -2.000       5.000       0.208
      0.000       6.000       0.250
      2.000       5.000       0.208
      4.000       3.000       0.125
      6.000       1.000       0.042
      PROB =    0.16666667
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Chapter 4: Analysis of Variance
Routines

4.1 General Analysis

One-way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AONEW     421

One-way analysis of covariance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AONEC     424

Randomized block or two-way balanced design  . . . . . . . . . . . . . . . . . . . . . ATWOB     437

Balanced incomplete block design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABIBD     443

Latin square design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALATN     449

Factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANWAY     454

Balanced complete design for mixed models. . . . . . . . . . . . . . . . . . . . . . . . . ABALD     461

Completely random nested design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANEST     476

4.2 Inference on Means and Variance Components

Contrast estimates and sums of squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . CTRST     485

Simultaneous confidence intervalson differences of means  . . . . . . . . . . . . . SCIPM     488

Student-Newman-Keuls multiple comparisons  . . . . . . . . . . . . . . . . . . . . . . SNKMC     494

CI on a difference of expected mean squares . . . . . . . . . . . . . . . . . . . . . . . . CIDMS     497

4.3 Service Routine

Reorder data for a balanced experimental design . . . . . . . . . . . . . . . . . . . . ROREX     501
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Usage Notes

The routines described in this chapter are for commonly-used experimental designs. Typically, responses are 
stored in the input vector Y in a pattern that takes advantage of the balanced design structure. Consequently, 
the full set of model subscripts is not needed to identify each response. The routines assume the usual pat-
tern, which requires that the last model subscript change most rapidly, the next to last model subscript 
change next most rapidly, and so forth, with the first subscript changing the slowest. This pattern is referred 
to as lexicographical ordering. 

Routines AONEW, AONEC, and ANEST allow missing responses. NaN (not a number) is the missing value code 
used by these routines. Use routine AMACH  to retrieve NaN. Any element of Y that is missing must be set to 
AMACH(6). For a description of AMACH, see the section Machine-Dependent Constants in the Reference Material 
Other routines described in this chapter do not allow missing responses because they generally deal with 
balanced designs. 

As a diagnostic tool for determination of the validity of a model, routines in this chapter typically perform a 
test for lack of fit when n (n > 1) responses are available in each cell of the experimental design. Routines in 
Chapter 2, “Regression,” are useful for analysis of generalizations of many of the models treated in this chap-
ter. In particular, Chapter 2 provides routines for the general linear model.
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AONEW

Analyzes a one-way classification model.

Required Arguments
NI — Vector of length NGROUP containing the number of responses for each group.  (Input)
Y — Vector of length NI(1) + NI(2) + + NI(NGROUP) containing the responses for each group.  (Input)
AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output) 

Optional Arguments
NGROUP — Number of groups.  (Input)

Default: NGROUP = size (NI,1).
IPRINT — Printing option.  (Input) 

Default: IPRINT = 0.

I AOV(I)

1 Degrees of freedom for among groups

2 Degrees of freedom for within groups

3 Total (corrected) degrees of freedom

4 Sum of squares for among groups

5 Sum of squares for within groups

6 Total (corrected) sum of squares

7 Among-groups mean square

8 Within-groups mean square

9 F -statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the error within groups

14 Overall mean of Y

15 Coefficient of variation (in percent)

IPRINT Action

0 No printing is performed.

1  AOV is printed only.

2 STAT is printed only.

3 All printing is performed.
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STAT — NGROUP by 4 matrix containing information concerning the groups.  (Output) 
Row I contains information pertaining to the I-th group. The information in the columns is as follows:

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSTAT= size (STAT , 1)

NMISS — Number of missing values.  (Output) 
Elements of Y containing NaN (not a number) are omitted from the computations.

FORTRAN 90 Interface
Generic: CALL AONEW (NI, Y, AOV [, …])
Specific: The specific interface names are S_AONEW and D_AONEW.

FORTRAN 77 Interface
Single: CALL AONEW (NGROUP, NI, Y, IPRINT, AOV, STAT, LDSTAT, NMISS)
Double: The double precision name is DAONEW.

Description

Routine AONEW performs an analysis of variance of responses from a one-way classification design. The 
model is

yij = μi + ɛ ij i = 1, 2, …, k; j = 1, 2, …, ni

where the observed value of yij constitutes the j-th response in the i-th group, μi denotes the population mean 
for the i-th group, and the ɛ ij’s are errors that are identically and independently distributed normal with 

mean zero and variance σ2. AONEW requires the yij’s as input into a single vector Y with responses in each 
group occupying contiguous locations. The analysis of variance table is computed along with the group sam-
ple means and standard deviations. A discussion of formulas and interpretations for the one-way analysis of 
variance problem appears in most elementary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 10).

Col Description

1 Group number

2 Number of nonmissing observations

3 Group mean

4 Group standard deviation
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Example

This example computes a one-way analysis of variance for data discussed by Searle (1971, Table 5.1, pages 
165-179). The responses are plant weights for 6 plants of 3 different types-3 normal, 2 off-types, and 1 aber-
rant. The responses are given by type of plant in the following table:

Note that for the group with only one response, the standard deviation is undefined and is set to NaN (not a 
number).

      USE AONEW_INT

      IMPLICIT   NONE
      INTEGER    NGROUP, NOBS
      PARAMETER  (NGROUP=3, NOBS=6)
!
      INTEGER    IPRINT, NI(NGROUP)
      REAL       AOV(15), Y(NOBS)
!
      DATA NI/3, 2, 1/
      DATA Y/101.0, 105.0, 94.0, 84.0, 88.0, 32.0/
!
      IPRINT = 3
      CALL AONEW (NI, Y, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             98.028     96.714            4.83          84           5.751

                  * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Among Groups           2        3480      1740.0     74.571    0.0028
Within Groups          3          70        23.3
Corrected Total        5        3550

             Group Statistics
                                  Standard
 Group           N        Mean   Deviation
     1           3         100       5.568
     2           2          86       2.828
     3           1          32         NaN

Type of Plant

Normal Off-Type Aberrant

101 84 32

105 88

94
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AONEC

Analyzes a one-way classification model with covariates.

Required Arguments
NI — Vector of length NGROUP containing the number of responses for each group.  (Input)
XY — (NI(1) + NI(2) + … + NI(NGROUP)) by (NCOV + 1) matrix containing the data for each covariate and 

the response variable.  (Input)
Data for each group must appear in contiguous rows of XY, and the responses must appear in the last 
column.

AOV — Vector of length 15 that contains statistics relating to the analysis of variance for the model assum-
ing parallelism.  (Output)

Optional Arguments
NGROUP — Number of groups.  (Input)

Default: NGROUP = size (NI,1).
NCOV — Number of covariates.  (Input)

Default: NCOV = size (XY,2) – 1.
LDXY — Leading dimension of XY exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDXY = size (XY,1).

I AOV(I)

1 Degrees of freedom for model (groups + covariates)

2 Degrees of freedom for error

3 Total (corrected) degrees of freedom

4 Sum of squares for model

5 Sum of squares for error

6 Total (corrected) sum of squares

7 Model mean square

8 Error mean square

9 F -statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimate of the error standard deviation

14 Overall response mean

15 Coefficient of variation (in percent)
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ITEST — Indicator for test for parallelism (equal covariate coefficients across groups).  (Input) 
Default: ITEST = 0.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

COEF — NGROUP + NCOV by 4 matrix containing statistics relating to the regression coefficients for the 
model assuming parallelism.  (Output) 
Each row corresponds to a coefficient in the model. For I = 1, 2, …, NGROUP, row I is for the Y inter-
cept for the I-th group. The remaining NCOV rows are for the covariate coefficients. The statistics in the 
columns are as follows: 

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default:  LDCOEF = size (COEF,1).

R — NGROUP + NCOV by NGROUP + NCOV upper triangular matrix containing the R matrix from the QR 
decomposition.  (Output) 
The R matrix is from the regression assuming parallelism.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

PTSS — Vector of length 8 containing statistics relating to the partial sums of squares for groups and for 
covariates in the model assuming parallelism.  (Output)

ITEST Action

0 Test for parallelism is not performed.

1 Test for parallelism is performed.

IPRINT Action

0 No printing is performed.

1 Printing for model assuming parallelism is performed.

2 Printing for separate regression models for each group is performed as 
well as for the model assuming parallelism.

Col. Description

1 Coefficient estimate

2 Estimated standard error of the estimate

3  t-statistic

4 p-value

I PTSS(I)

1 Degrees of freedom for groups after covariates

2 Degrees of freedom for covariates after groups

3 Sum of squares for groups after covariates

4 Sum of squares for covariates after groups
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TESTPL — Vector of length 10 containing statistics relating to the test for parallelism.  (Output if 
ITEST = 1) 
If ITEST = 0, TESTPL is not referenced and can be a vector of length one. 

XYMEAN — NGROUP + 1 by NCOV + 3 matrix containing means.  (Output) 
Each row for I = 1, 2, …, NGROUP corresponds to a group. Row NGROUP + 1 contains overall statistics. 
The statistics in the columns are as follows: 

LDXYME — Leading dimension of XYMEAN exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDXYME = size (XYMEAN,1).

COVM — NGROUP by NGROUP matrix containing the estimated variance-covariance matrix of the adjusted 
group means in the model assuming parallelism.  (Output)

LDCOVM — Leading dimension of COVM exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCOVM = size (COVM,1).

5 F -statistic for groups

6 F -statistic for covariates

7 p-value for groups

8 p-value for covariates

I TESTPL(I)

1 Extra degrees of freedom for model not assuming parallelism

2 Degrees of freedom for error for model not assuming parallelism

3 Degrees of freedom for error for model assuming parallelism

4 Extra sum of squares for model not assuming parallelism

5 Sum of squares for error for model not assuming parallelism

6 Sum of squares for error for model assuming parallelism

7 Mean square for TESTPL(1)

8 Mean square for TESTPL(2)

9  F -statistic

10 p-value

Column Description

1 Number of nonmissing cases.

2 thru NCOV+1 Covariate means.

NCOV + 2 Response mean.

NCOV + 3 Adjusted mean assuming parallelism

I PTSS(I)
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COVB — NGROUP + NCOV by NGROUP + NCOV matrix containing the estimated variance-covariance matrix 
of the estimated coefficients in the model assuming parallelism.  (Output) 
If R is not needed, R and COVB can occupy the same storage locations.

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOVB = size (COVB,1).

NRMISS — Number of rows of XY that contain any missing values.  (Output) 
Rows of XY containing NaN (not a number) are omitted from computations.

FORTRAN 90 Interface
Generic: CALL AONEC (NI, XY, AOV [, …])
Specific: The specific interface names are S_AONEC and D_AONEC.

FORTRAN 77 Interface
Single: CALL AONEC (NGROUP, NI, NCOV, XY, LDXY, ITEST, IPRINT, COEF, LDCOEF, R, LDR, AOV, 

PTSS, TESTPL, XYMEAN, LDXYME, COVM, LDCOVM, COVB, LDCOVB, NRMISS)
Double: The double precision name is DAONEC.

Description

Routine AONEC performs analyses for models that combine the features of a one-way analysis of variance 
model with that of a multiple linear regression model. The basic one-way analysis of covariance model is

where the observed value of yij constitutes the j-th response in the i-th group, β0 ι denotes the y intercept for 
the regression function for the i-th group, β1, β2, …, βm are the regression coefficients for the covariates, and 

the ɛ ij’s are independently distributed normal errors with mean zero and variance σ2. This model allows the 
regression function for each group to have different intercepts. However, the remaining m regression coeffi-
cients are the same for each group, i.e., the regression functions are parallel. Often in practice, the regression 
functions are not parallel. In addition to estimates for the model assuming parallelism, AONEC computes esti-
mates and summary statistics for the separate regressions for each group. With IPRINT = 2, the estimates 
and summary statistics for each group are printed. If ITEST = 1, a test for parallelism is performed. 

AONEC requires (xij1, xij2, …, xijk, yij) as input into a single data matrix XY with the data for each group occu-
pying contiguous rows of XY. 

Estimates for the β0i’s and β1, β2, …, βm in the model assuming parallelism are computed and stored in COEF. 
Summary statistics are also computed for this model. The adjusted group means (stored in column m + 3 of 
XYMEAN) are given by

The estimated covariance between the i1-th and i2-th adjusted group mean is given by
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where vpq is the pq-th entry in COVB and is the estimated covariance between the p-th and q-th estimated coef-
ficients in the regression function. 

The design of AONEC can be used with routines described in Chapter 2, “Regression.” For example, confidence 
intervals and diagnostics for the individual cases can be computed by using the output matrices R and COEF 
as input into regression routines for case analysis. 

A discussion of formulas and interpretations for the one-way analysis of covariance problem appears in most 
elementary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 14).

Comments
Workspace may be explicitly provided, if desired, by use of A2NEC/DA2NEC. The reference is:

CALL A2NEC (NGROUP, NI, NCOV, XY, LDXY, ITEST, IPRINT, COEF, LDCOEF, R, LDR, AOV, PTSS, 
TESTPL, XYMEAN, LDXYME, COVM, LDCOVM, COVB, LDCOVB, NRMISS, WK)

The additional argument is:

WK — Work vector of length 4 * (NGROUP + NCOV + 1).

Examples

Example 1

This example fits a one-way analysis of covariance model assuming parallelism using data discussed by Sne-
decor and Cochran (Table 14.6.1, pages 432-436). The responses are concentrations of cholesterol (in mg/100 
ml) in the blood of two groups of women: women from Iowa and women from Nebraska. Age of a woman is 
the single covariate. The cholesterol concentrations and ages of the women according to state are shown in 
the following table. (There are 11 Iowa women and 19 Nebraska women in the study. Only the first 5 women 
from each state are shown here.)
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There is no evidence from the data to indicate that the regression lines for cholesterol concentration as a func-
tion of age are not parallel for Iowa and Nebraska women (p-value is 0.5425). The parallel line model 
suggests that Nebraska women may have higher cholesterol concentrations than Iowa women. The choles-
terol concentrations (adjusted for age) are 195.5 for Iowa women versus 224.2 for Nebraska women. The 
difference is 28.7 with an estimated standard error of

      USE AONEC_INT

      IMPLICIT   NONE
      INTEGER    LDXY, NCOV,  NGROUP, NOBS
      PARAMETER  (NCOV=1, NGROUP=2, NOBS=30, LDXY=NOBS)
!
      INTEGER    IPRINT, ITEST, NI(NGROUP)
      REAL       AOV(15), XY(LDXY,NCOV+1)
!
      DATA NI/11, 19/
      DATA XY/46.0, 52.0, 39.0, 65.0, 54.0, 33.0, 49.0, 76.0, 71.0, &
          41.0, 58.0, 18.0, 44.0, 33.0, 78.0, 51.0, 43.0, 44.0, 58.0, &
          63.0, 19.0, 42.0, 30.0, 47.0, 58.0, 70.0, 67.0, 31.0, 21.0, &
          56.0, 181.0, 228.0, 182.0, 249.0, 259.0, 201.0, 121.0, &
          339.0, 224.0, 112.0, 189.0, 137.0, 173.0, 177.0, 241.0, &
          225.0, 223.0, 190.0, 257.0, 337.0, 189.0, 214.0, 140.0, &
          196.0, 262.0, 261.0, 356.0, 159.0, 191.0, 197.0/
!
      ITEST  = 1
      IPRINT = 2
      CALL AONEC (NI, XY, AOV, ITEST=ITEST, IPRINT=IPRINT)
!
      END

Output

SEPARATE REGRESSION FOR GROUP  1

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             47.120     41.245            48.9       207.7           23.54

Iowa Nebraska

Age Cholesterol Age Cholesterol

46 181 18 137

52 228 44 173

39 182 33 177

65 249 78 241

54 259 51 225
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                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  1     19177.2     19177.2      8.020    0.0197
Error                  9     21521.0      2391.2
Corrected Total       10     40698.2

                Inference on Coefficients
                    Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       35.81       62.47        0.573      0.5805
    2        3.24        1.14        2.832      0.0197

SEPARATE REGRESSION FOR GROUP  2
Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             56.812     54.272           39.76       217.1           18.31

                   * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  1     35351.9     35351.9     22.363    0.0002
Error                 17     26873.9      1580.8
Corrected Total       18     62225.8

                Inference on Coefficients
                     Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       101.3       26.13        3.876      0.0012
    2         2.5        0.53        4.729      0.0002

SAME REGRESSION FOR ALL GROUPS

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             47.303     45.421           44.14       213.7           20.66

                  * * * Analysis of Variance * * *
                              Sum of        Mean             Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  1     48976.3     48976.3     25.134    0.0000
Error                 28     54560.4      1948.6
Corrected Total       29    103536.7

                Inference on Coefficients
                     Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       91.57       25.65        3.570      0.0013
    2        2.51        0.50        5.013      0.0000

REGRESSION ASSUMING PARALLELISM
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Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             52.573     49.060           42.65       213.7           19.96

                   * * * Analysis of Variance * * *
                               Sum of        Mean            Prob. of
Source                DF     Squares      Square  Overall F  Larger F
Model                  2     54432.8     27216.4     14.965    0.0000
Error                 27     49103.9      1818.7
Corrected Total       29    103536.7

                   Partial Sums of Squares
                                Sum of            Prob. of
Source                 DF     Squares          F  Larger F
Groups after
   Covariates           1      5456.5      3.000    0.0947
Covariates after
   Groups               1     53820.1     29.593    0.0000

        R Matrix
        1       2       3
1     3.3     0.0   176.1
2             4.4   200.3
3                    86.0

                Inference on Coefficients
                     Standard                 Prob. of
Coef.    Estimate       Error  t-statistic  Larger |t|
    1       64.49        29.3        2.201      0.0365
    2       93.14        24.8        3.756      0.0008
    3        2.70         0.5        5.440      0.0000

                          Test for Parallelism
                                Sum of        Mean             Prob. of
Source                  DF     Squares      Square          F  Larger F
Extra due to
   nonparallelism        1       709.0       709.0      0.381    0.5425
Error assuming
   nonparallelism       26     48394.9      1861.3
Error assuming
   parallelism          27     49103.9

                      XYMEAN
            1           2           3           4
1          11       53.09       207.7       195.5
2          19       45.95       217.1       224.2
3          30       48.57       213.7       213.7

Variance-Covariance Matrix of the Adjusted Group Means
                           1       2
                   1   170.4    -2.9
                   2            97.4

Variance-Covariance Matrix of the Estimated Coefficients
                        1       2       3
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                1   858.6   600.0   -13.1
                2           615.0   -11.3
                3                     0.2

Figure 4.1 — Plot of Cholesterol Concentrations and Fitted Parallel Lines by State

Example 2

This example fits a one-way analysis of covariance model and performs a test for parallelism using data dis-
cussed by Snedecor and Cochran (1967, Table 14.8.1, pages 438-443). The responses are weight gains (in 
pounds per day) of 40 pigs for 4 groups of pigs under varying treatments. Two covariates-initial age (in days) 
and initial weight (in pounds)-are used. For each treatment, there are 10 pigs. Only the first 5 pigs from each 
treatment are shown here.

      USE AONEC_INT

      IMPLICIT   NONE
      INTEGER    LDXY, NCOV, NGROUP, NOBS
      PARAMETER  (NCOV=2, NGROUP=4, NOBS=40, LDXY=NOBS)

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Age Wt. Gain Age Wt. Gain Age Wt. Gain Age Wt. Gain

78 61 1.40 78 74 1.61 78 80 1.67 77 62 1.40

90 59 1.79 99 75 1.31 83 61 1.41 71 55 1.47

94 76 1.72 80 64 1.12 79 62 1.73 78 62 1.37

71 50 1.47 75 48 1.35 70 47 1.23 70 43 1.15

99 61 1.26 94 62 1.29 85 e59 1.49 95 57 1.22
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!
      INTEGER    IPRINT, ITEST, NI(NGROUP)
      REAL       AOV(15), XY(LDXY,NCOV+1)
!
      DATA NI/10, 10, 10, 10/
      DATA XY/78.0, 90.0, 94.0, 71.0, 99.0, 80.0, 83.0, 75.0, 62.0, &
          67.0, 78.0, 99.0, 80.0, 75.0, 94.0, 91.0, 75.0, 63.0, 62.0, &
          67.0, 78.0, 83.0, 79.0, 70.0, 85.0, 83.0, 71.0, 66.0, 67.0, &
          67.0, 77.0, 71.0, 78.0, 70.0, 95.0, 96.0, 71.0, 63.0, 62.0, &
          67.0, 61.0, 59.0, 76.0, 50.0, 61.0, 54.0, 57.0, 45.0, 41.0, &
          40.0, 74.0, 75.0, 64.0, 48.0, 62.0, 42.0, 52.0, 43.0, 50.0, &
          40.0, 80.0, 61.0, 62.0, 47.0, 59.0, 42.0, 47.0, 42.0, 40.0, &
          40.0, 62.0, 55.0, 62.0, 43.0, 57.0, 51.0, 41.0, 40.0, 45.0, &
          39.0, 1.40, 1.79, 1.72, 1.47, 1.26, 1.28, 1.34, 1.55, 1.57, &
          1.26, 1.61, 1.31, 1.12, 1.35, 1.29, 1.24, 1.29, 1.43, 1.29, &
          1.26, 1.67, 1.41, 1.73, 1.23, 1.49, 1.22, 1.39, 1.39, 1.56, &
          1.36, 1.40, 1.47, 1.37, 1.15, 1.22, 1.48, 1.31, 1.27, 1.22, &
          1.36/
!
      ITEST  = 1
      IPRINT = 2
      CALL AONEC (NI, XY, AOV, ITEST=ITEST, IPRINT=IPRINT)
!
      END

Output

SEPARATE REGRESSION FOR GROUP  1

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             13.271      0.000          0.2013       1.464           13.75

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.0434     0.02170      0.536    0.6075
 Error                  7      0.2836     0.04052
 Corrected Total        9      0.3270

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.357      0.4639        2.925      0.0222
     2      -0.006      0.0105       -0.572      0.5849
     3       0.011      0.0114        0.948      0.3749

SEPARATE REGRESSION FOR GROUP  2

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             21.989      0.000          0.1292       1.319           9.799

                   * * * Analysis of Variance * * *
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                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.0330     0.01648      0.987    0.4193
 Error                  7      0.1169     0.01670
 Corrected Total        9      0.1499

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.401      0.2694        5.199      0.0013
     2      -0.005      0.0040       -1.164      0.2825
     3       0.005      0.0040        1.301      0.2343

SEPARATE REGRESSION FOR GROUP  3

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             49.246     34.745          0.1369       1.445           9.473

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.1273     0.06364      3.396    0.0931
 Error                  7      0.1312     0.01874
 Corrected Total        9      0.2584

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.452      0.4709        3.082      0.0178
     2      -0.008      0.0075       -1.017      0.3429
     3       0.011      0.0043        2.544      0.0384

SEPARATE REGRESSION FOR GROUP  4

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             17.076      0.000          0.1141       1.325           8.609
                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2      0.0188     0.00938      0.721    0.5193
 Error                  7      0.0911     0.01301
 Corrected Total        9      0.1098

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.044      0.2574        4.055      0.0048
     2       0.001      0.0038        0.251      0.8094
     3       0.004      0.0051        0.833      0.4324

SAME REGRESSION FOR ALL GROUPS

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
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Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             17.724     13.277          0.1508       1.388           10.86

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  2       0.181     0.09064      3.985    0.0271
 Error                 37       0.842     0.02274
 Corrected Total       39       1.023

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.251      0.1708        7.327      0.0000
     2      -0.003      0.0028       -1.178      0.2464
     3       0.007      0.0027        2.743      0.0093

REGRESSION ASSUMING PARALLELISM

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             34.467     24.829          0.1404       1.388           10.11

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  5       0.353     0.07050      3.576    0.0105
 Error                 34       0.670     0.01971
 Corrected Total       39       1.023

                   Partial Sums of Squares
                                Sum of             Prob. of
 Source                 DF     Squares          F  Larger F
 Groups after
    Covariates           3      0.1712      2.895    0.0493
 Covariates after
    Groups               2      0.1750      4.438    0.0194
                     R Matrix
         1       2       3       4       5       6
 1     3.2     0.0     0.0     0.0   252.7   172.0
 2             3.2     0.0     0.0   247.9   173.9
 3                     3.2     0.0   236.9   164.4
 4                             3.2   237.2   156.5
 5                                    67.4    42.7
 6                                            55.3

                Inference on Coefficients
                      Standard                 Prob. of
 Coef.    Estimate       Error  t-statistic  Larger |t|
     1       1.337      0.1724        7.751      0.0000
     2       1.182      0.1697        6.965      0.0000
     3       1.318      0.1626        8.109      0.0000
     4       1.217      0.1624        7.493      0.0000
     5      -0.003      0.0026       -1.314      0.1978
     6       0.007      0.0025        2.919      0.0062
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                          Test for Parallelism
                                 Sum of        Mean             Prob. of
 Source                  DF     Squares      Square          F  Larger F
 Extra due to
    nonparallelism        6      0.0474     0.00790      0.355    0.9007
 Error assuming
    nonparallelism       28      0.6228     0.02224
 Error assuming
    parallelism          34      0.6703

                            XYMEAN
             1           2           3           4           5
 1          10       79.90       54.40       1.464       1.461
 2          10       78.40       55.00       1.319       1.307
 3          10       74.90       52.00       1.445       1.443
 4          10       75.00       49.50       1.325       1.342
 5          40       77.05       52.72       1.388       1.388

 Variance-Covariance Matrix of the Adjusted Group Means
                 1          2          3          4
      1   0.002007   0.000016  -0.000027  -0.000024
      2              0.001992  -0.000007  -0.000030
      3                         0.001994   0.000011
      4                                    0.002014

   Variance-Covariance Matrix of the Estimated Coefficients
           1         2         3         4         5         6
 1   0.02974   0.02729   0.02605   0.02602  -0.00033  -0.00002
 2             0.02880   0.02561   0.02556  -0.00032  -0.00003
 3                       0.02642   0.02441  -0.00031  -0.00003
 4                                 0.02638  -0.00032  -0.00001
 5                                           0.00001   0.00000
 6                                                     0.00001
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ATWOB

Analyzes a randomized block design or a two-way balanced design.

Required Arguments
NBLK — Number of blocks.  (Input)
NTRT — Number of treatments.  (Input)
NRESP — Number of repeated responses within each block-treatment combination.  (Input)
Y — Vector of length NBLK * NTRT * NRESP containing the responses.  (Input)

The first NRESP elements of Y contain the responses for block one, treatment one, the second NRESP 
elements of Y contain the responses for block one, treatment two; …; the last NRESP elements of Y con-
tain the responses for block NBLK, treatment NTRT.

AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output)

Optional Arguments
IPRINT — Printing option.  (Input)

Default: IPRINT = 0.

I AOV(I)

1 Degrees of freedom for the model (blocks and treatments)

2 Degrees of freedom for error (interaction is pooled with the within-cell error)

3 Total (corrected) degrees of freedom

4 Sum of squares for the model (blocks and treatments)

5 Sum of squares for error (interaction is pooled with the within-cell error)

6 Total (corrected) sum of squares

7 Model mean square

8 Error mean square

9 F -statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Overall mean of Y

15 Coefficient of variation (in percent)

IPRINT AOV(I)

0 No printing is performed.

1 Print AOV, EFSS, and TESTLF (if NRESP > 1).
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EFSS — Vector of length 8 containing statistics relating to the sums of squares for the effects in the model.  
(Output) 
Elements of EFSS are described as follows: 

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the two-way model 
without interaction.  (Output if NRESP > 1) 
If NRESP = 1, TESTLF is not referenced and can be a vector of length one. Elements of TESTLF are 
described as follows: 

YMEANS — Vector of length NBLK + NTRT + NBLK * NTRT containing the block means, treatment means 
and block-by-treatment means, respectively.  (Output)

FORTRAN 90 Interface
Generic: CALL ATWOB (NBLK, NTRT, NRESP, Y, AOV [, …])
Specific: The specific interface names are S_ATWOB and D_ATWOB.

FORTRAN 77 Interface
Single: CALL ATWOB (NBLK, NTRT, NRESP, Y, IPRINT, AOV, EFSS, TESTLF, YMEANS)
Double: The double precision name is DATWOB.

2 Print YMEANS only.

3 All printing is performed.

Elem. Description

1, 2 Degrees of freedom for blocks and treatments, respectively

3, 4 Sum of squares for blocks and treatments, respectively

5, 6 F-statistics for blocks and treatments, respectively. F-statistics are computed using 
AOV(8) as the estimated error variance.

7, 8 p-values associated with the F -statistics

Elem. Description

1 Degrees of freedom for interaction

2 Degrees of freedom for within-cell error

3 Degrees of freedom for error 
(TESTLF(1) + TESTLF(2))

4 Sum of squares for interaction

5 Sum of squares for interaction

6 Sum of squares for within-cell error

7 Mean square for interaction

8 Mean square for within-cell error

9 F-statistic

10 p-value
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Description

Routine ATWOB performs an analysis for a two-way classification design with balanced data. For balanced 
data, there must be an equal number of responses in each cell of the two-way layout. The basic model is the 
same as for the randomized block design. The block and treatment effects are additive, i.e., there are no inter-
actions. The model is

yijk = μ + α i + βj + ɛ ij  i = 1, 2, …, n1; j = 1, 2, …, n2; k = 1, 2, …, n3

where the observed value of yijk constitutes the k-th response in the ij-th cell of the two-way layout, 
μ + αi + βj is the population mean for the ij-th cell, and the ɛijk’s are identically and independently distrib-

uted normal errors with mean zero and variance σ2. This model assumes that the effects for the two factors 
are additive. Often in practice, there are interactions between the two factors. For this reason, in addition to 
summary statistics for the additive model, ATWOB computes a test for nonadditivity (lack of fit). The test used 
here requires at least two responses in each cell. Tests for nonadditivity with one response per cell are given 
by Tukey (1949) and Mandel (1961). Tukey’s test is discussed by Snedecor and Cochran (1967, pages 
331-334). 

The routine ATWOB requires yijk’s as input into a single vector Y with the data for each cell occupying contig-
uous elements. The cells must be in standard order, i.e., (1, 1), (1, 2), …, (1, n2), (2, 1), (2, 2), …, (2, n2), …, (n1, 
1), (n1, 2), …, (n1, n2): 

Examples

Example 1

This example performs an analysis for a randomized block design using data discussed by Neter and Was-
serman (1974,Table 23.2, pages 725-730). Fifteen businessmen were shown one of three methods for 
quantifying the maximum risk premium they would be willing to pay to avoid uncertainty. The responses 
are a stated degree of confidence, on a scale of 0 (no confidence) to 20 (highest confidence). The fifteen busi-
nessmen were grouped into five blocks by age. The three businessmen in each block were randomly assigned 
to a rating method. The data are given in the following table:

      USE ATWOB_INT

      IMPLICIT   NONE

Confidence Rating

Block Method 1 Method 2 Method 3

1 1 5 8

2 2 8 14

3 7 9 16

4 6 13 18

5 12 14 17
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      INTEGER    NBLK, NRESP, NTRT
      PARAMETER  (NBLK=5, NRESP=1, NTRT=3)
!
      INTEGER    IPRINT
      REAL       AOV(15), Y(NBLK*NTRT*NRESP)
!
      DATA Y/1.0, 5.0, 8.0, 2.0, 8.0, 14.0, 7.0, 9.0, 16.0, 6.0, 13.0, &
          18.0, 12.0, 14.0, 17.0/
!
      IPRINT = 3
      CALL ATWOB (NBLK, NTRT, NRESP, Y, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             94.003     89.506           1.727          10           17.27

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  6       374.1       62.36     20.901    0.0002
 Error                  8        23.9        2.98
 Corrected Total       14       398.0

 * * * Decomposition of Variation Attributable to the Model * * *
                                Sum of             Prob. of
        Source          DF     Squares          F  Larger F
        Blocks           4       171.3     14.358    0.0010
        Treatment        2       202.8     33.989    0.0001

 * * * Block Means * * *
    Block  Mean (N=3)
        1      4.6667
        2      8.0000
        3     10.6667
        4     12.3333
        5     14.3333

 * * * Treatment Means * * *
    Treatment  Mean (N=5)
            1      5.6000
            2      9.8000
            3     14.6000

    * * * Cell Means * * *
 Block  Treatment  Mean (N=1)
     1          1      1.0000
     1          2      5.0000
     1          3      8.0000
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     2          1      2.0000
     2          2      8.0000
     2          3     14.0000
     3          1      7.0000
     3          2      9.0000
     3          3     16.0000
     4          1      6.0000
     4          2     13.0000
     4          3     18.0000
     5          1     12.0000
     5          2     14.0000
     5          3     17.0000

Example 2

This example fits an additive two-way analysis of variance model and performs a test for nonadditivity (lack 
of fit) using data discussed by Kirk (1982,Table 8.3-1, pages 354-359). The data for the two-way layout is 
given in the following table:

      USE ATWOB_INT

      IMPLICIT   NONE
      INTEGER    NBLK, NRESP, NTRT
      PARAMETER  (NBLK=3, NRESP=5, NTRT=3)
!
      INTEGER    IPRINT
      REAL       AOV(15), Y(NBLK*NTRT*NRESP)
!
      DATA Y/24.0, 33.0, 37.0, 29.0, 42.0, 30.0, 21.0, 39.0, 26.0, &
          34.0, 21.0, 18.0, 10.0, 31.0, 20.0, 44.0, 36.0, 25.0, 27.0, &
          43.0, 35.0, 40.0, 27.0, 31.0, 22.0, 41.0, 39.0, 50.0, 36.0, &
          34.0, 38.0, 29.0, 28.0, 47.0, 48.0, 26.0, 27.0, 36.0, 46.0, &
          45.0, 42.0, 52.0, 53.0, 49.0, 64.0/
!
      IPRINT = 3
      CALL ATWOB (NBLK, NTRT, NRESP, Y, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             33.206     26.526           9.336          35           26.68

BLOCK

TREATMENT 1 2 3

1 24, 33, 37, 29, 42 44, 36, 25, 27, 43 38, 29, 28, 47, 48

2 30, 21, 39, 26, 34 35, 40, 27, 31, 22 26, 27, 36, 46, 45

3 21, 18, 10, 31, 20 41, 39, 50, 36, 34 42, 52, 53, 49, 64
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                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  4      1733.3       433.3      4.971    0.0024
 Error                 40      3486.7        87.2
 Corrected Total       44      5220.0

 * * * Decomposition of Variation Attributable to the Model * * *
                                Sum of             Prob. of
        Source          DF     Squares          F  Larger F
        Blocks           2      1543.3      8.853    0.0007
        Treatment        2       190.0      1.090    0.3460

                  * * * Test for Lack of Fit * * *
                           Sum of        Mean              Prob. of
 Source            DF     Squares      Square          F   Larger F
 Interaction        4      1236.7       309.2      4.947     0.0028
 Within cell       36      2250.0        62.5
 Error             40      3486.7

 * * * Block Means * * *
    Block  Mean (N=3)
        1     27.6667
        2     35.3333
        3     42.0000

 * * * Treatment Means * * *
    Treatment  Mean (N=3)
            1     35.3333
            2     32.3333
            3     37.3333

    * * * Cell Means * * *
 Block  Treatment  Mean (N=5)
     1          1     33.0000
     1          2     30.0000
     1          3     20.0000
     2          1     35.0000
     2          2     31.0000
     2          3     40.0000
     3          1     38.0000
     3          2     36.0000
     3          3     52.0000
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ABIBD

Analyzes a balanced incomplete block design or a balanced lattice design.

Required Arguments
NTRT — Number of treatments.  (Input)
NREP — Number of replications.  (Input)
NBLK — Number of blocks.  (Input)
NTBLK — Number of treatments within each block.  (Input)
NRESP — Number of responses within each treatment-block combination.  (Input)
Y — Vector of length NBLK * NTBLK * NRESP containing the responses.  (Input)

The first NRESP elements of Y contain the responses for the first treatment in the first block in the first 
replicate. The second NRESP elements of Y contain the responses for the second treatment in the first 
block in the first replicate. The NTBLK-th NRESP elements of Y contain the responses for the NTBLK-th 
treatment in the first block in the first replicate. The last NRESP elements of Y contain the responses for 
the NTBLK-th treatment in the NBLK-th block in the NREP-th replicate.

ITRT — Vector of length NBLK * NTBLK containing the treatment numbers for the responses in Y.  (Input) 
The treatment numbers must be from the set 1, 2, …, NTRT. For 
I = 1, 2, …, NBLK * NTBLK, element numbers (I - 1) * NRESP + 1 thru 
(I - 1) * NRESP + NRESP of Y correspond to treatment number ITRT(I).

AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output)

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)
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Optional Arguments
INTER — Interblock analysis option.  (Input)

Default: INTER = 0.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

SQSS — Vector of length 12 containing statistics relating to the sequential sum of squares for the model.  
(Output) 

SSALT — Vector of length 2 containing an alternative partitioning of the model sum of squares.  (Output) 
SSALT(1) is the treatment sum of squares (unadjusted) and SSALT(2) is the block sum of squares 
(adjusted).

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model.  (Output, 
if NRESP > 1) 
If NRESP = 1, TESTLF is not referenced and can be a vector of length one. Elements of TESTLF are 
described as follows: 

INTER Means

0 Intrablock analysis is requested. (Blocks are fixed effects.)

1 Interblock analysis is requested. (Blocks are random effects.)

INTER Means

0 No printing is performed.

1 Print AOV, SQSS, and TESTLF (if NRESP > 1).

2 Print YMEANS only.

3 All printing is performed.

Elem. Description

1, 2, 3 Degrees of freedom for replicates, blocks within replicates, and treatments 
(adjusted), respectively

4, 5, 6 Sum of squares for replicates, blocks within replicates, and treatments (adjusted), 
respectively

7, 8, 9 F -statistics for replicates, blocks, and treatments, respectively, computed using 
AOV(8) as the estimated error variance

10-12 p-values associated with the F -statistics

Elem Description

1 Degrees of freedom for experimental error

2 Degrees of freedom for within-cell error

3 Degrees of freedom for error (TESTLF(1) + TESTLF(2))

4 Sum of squares for experimental error

5 Sum of squares for within-cell error

6 Sum of squares for error
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YMEANS — Vector of length NREP + NBLK + NTRT + NTBLK * NBLK containing the replicate means, block 
by replicate means, treatment means (adjusted), and treatment by block means, respectively.  (Output) 
The treatment means (adjusted) in YMEANS are used for estimating treatment differences.

SETRTD — Estimated standard error of a treatment difference.  (Output)
EFNCY — Estimated efficiency of this design relative to a randomized complete block design.  (Output) 

The randomized complete block design has NBLK * NTBLK/NTRT complete blocks.

FORTRAN 90 Interface
Generic: CALL ABIBD (NTRT, NREP, NBLK, NTBLK, NRESP, Y, ITRT, AOV [, …])
Specific: The specific interface names are S_ABIBD and D_ABIBD.

FORTRAN 77 Interface
Single: CALL ABIBD (NTRT, NREP, NBLK, NTBLK, NRESP, Y, ITRT, INTER, IPRINT, AOV, SQSS, 

SSALT, TESTLF, YMEANS, SETRTD, EFNCY)
Double: The double precision name is DABIBD.

Description

Routine ABIBD performs analyses for balanced incomplete block designs. The basic model used is the ran-
domized block design with the source of variation for “blocks” subdivided into replications and blocks 
within replications. For INTER = 0, the model is

yijtm = μ + αi + βjj + δt + ɛ ijkm   i = 1, …, r; j = 1, …, k; t = 1, …, p; m = 1, …, n

where the observed value of yijtm constitutes the m-th response with treatment t in block j within the i repli-
cate, μ + α i + βij + δt is the population mean for the response, and the ɛijtm’s are independently distributed 

normal errors with mean zero and variance σ2. This model assumes the block effects and treatment effects 
are additive. Often in practice, there are interactions between the blocks and treatments. For this reason, 
ABIBD computes a test for nonadditivity (lack of fit), in addition to summary statistics for the additive 
model. This test requires at least two responses in each cell.

The analysis performed with the βij’s regarded as fixed effects in the model (INTER = 0) is called an “intra-
block analysis.” For INTER = 1, the βij’s are assumed to be random effects in the model, the analysis 
performed for this mixed model is called an “interblock analysis.” 

7 Mean square for experimental error

8 Mean square for within-cell error

9 F-statistic

10 p-value

Elem Description
ABIBD         Chapter 4: Analysis of Variance      445



Routine ABIBD requires the yijtm’s to be entered in a single vector Y ordered lexicographically, so that the i 
subscript varies least rapidly, the j subscript the next most rapidly, and so forth. Formulas and interpretations 
for the analysis of balanced incomplete block designs are discussed by Anderson and Bancroft (1952, Chap-
ters 19 and 24) and Kempthorne (1975, pages 532-539).

Comments
Workspace may be explicitly provided, if desired, by use of A2IBD/DA2IBD. The reference is:

CALL A2IBD (NTRT, NREP, NBLK, NTBLK, NRESP, Y, ITRT, INTER, IPRINT, AOV, SQSS, SSALT, 
TESTLF, YMEANS, SETRTD, EFNCY, WK)

The additional argument is:

WK — Work vector of length NTRT or 2 * NTRT.

Example

This example performs an intrablock analysis for a balanced incomplete block design using data discussed 
by Anderson and Bancroft (1952, pages 254-256). The responses are weight gains of rats fed p = 9 different 

rations. There are four replications with k = 3 blocks within each replicate. (Since p = k2, this balanced incom-
plete block design is a balanced lattice design.) The data with the treatment numbers in parentheses are given 
in the following table:

      USE ABIBD_INT
 
      IMPLICIT   NONE
      INTEGER    NBLK, NREP, NRESP, NTBLK, NTRT
      PARAMETER  (NBLK=12, NREP=4, NRESP=1, NTBLK=3, NTRT=9)
!
      INTEGER    IPRINT, ITRT(NBLK*NTBLK)

Replicate Block (Treatment):  Weight Gain

1 1 (1): 20 (4): 15 (7): 11

1 2 (3): 8 (6): 18 (9): 26

1 3 (2): 18 (5): 16 (8): 2

2 1 (7): 8 (8): 12 (9): 16

2 2 (1): 20 (2): 2 (3): 2

2 3 (4): 20 (5): 6 (6): 2

3 1 (1): 13 (9): 19 (5): 14

3 2 (8): 14 (4): 34 (3): 2

3 3 (6): 14 (2): 20 (7): 14

4 1 (5): 19 (7): 23 (3): 6

4 2 (1): 22 (6): 12 (8): 2

4 3 (9): 27 (2): 7 (4): 20
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      REAL       AOV(15), Y(NBLK*NTBLK*NRESP)
!
      DATA Y/20.0, 15.0, 11.0, 8.0, 18.0, 26.0, 18.0, 16.0, 2.0, 8.0, &
          12.0, 16.0, 20.0, 2.0, 2.0, 20.0, 6.0, 2.0, 13.0, 19.0, &
          14.0, 14.0, 34.0, 2.0, 14.0, 20.0, 14.0, 19.0, 23.0, 6.0, &
          22.0, 12.0, 2.0, 27.0, 7.0, 20.0/
      DATA ITRT/1, 4, 7, 3, 6, 9, 2, 5, 8, 7, 8, 9, 1, 2, 3, 4, 5, 6, &
          1, 9, 5, 8, 4, 3, 6, 2, 7, 5, 7, 3, 1, 6, 8, 9, 2, 4/
!
      IPRINT = 3
      CALL ABIBD (NTRT, NREP, NBLK, NTBLK, NRESP, Y, ITRT, &
                 AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             79.771     55.748           5.345          14           38.18

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 19      1802.8       94.88      3.321    0.0095
 Error                 16       457.2       28.57
 Corrected Total       35      2260.0

 * * * Decomposition of Variation Attributable to the Model * * *
                                  Sum of             Prob. of
      Source              DF     Squares          F  Larger F
      Replicates           3       219.6      2.561    0.0913
      Blocks within
         Replicates        8       127.1      0.556    0.7980
      Treatments
         (adjusted)        8      1456.1      6.370    0.0009

 * * * Replicate means * * *
    Replicate  Mean (N=4)
            1     14.8889
            2      9.7778
            3     16.0000
            4     15.3333

 * * * Block by Replicate Means * * *
   Replicate        Block  Mean (N=3)
           1            1     15.3333
           1            2     17.3333
           1            3     12.0000
           2            1     12.0000
           2            2      8.0000
           2            3      9.3333
           3            1     15.3333
           3            2     16.6667
           3            3     16.0000
           4            1     16.0000
ABIBD         Chapter 4: Analysis of Variance      447



           4            2     12.0000
           4            3     18.0000

 * * * Adjusted Treatment Means * * *
         Treatment  Mean (N=1)
                 1       22.11
                 2       11.67
                 3        0.67
                 4       23.89
                 5       14.78
                 6       11.11
                 7       12.89
                 8        6.44
                 9       22.44

      * * * Treatment by Block Means * * *
  Replicate       Block   Treatment  Mean (N=1)
          1           1           1     20.0000
          1           1           4     15.0000
          1           1           7     11.0000
          1           2           3      8.0000
          1           2           6     18.0000
          1           2           9     26.0000
          1           3           2     18.0000
          1           3           5     16.0000
          1           3           8      2.0000
          2           1           7      8.0000
          2           1           8     12.0000
          2           1           9     16.0000
          2           2           1     20.0000
          2           2           2      2.0000
          2           2           3      2.0000
          2           3           4     20.0000
          2           3           5      6.0000
          2           3           6      2.0000
          3           1           1     13.0000
          3           1           9     19.0000
          3           1           5     14.0000
          3           2           8     14.0000
          3           2           4     34.0000
          3           2           3      2.0000
          3           3           6     14.0000
          3           3           2     20.0000
          3           3           7     14.0000
          4           1           5     19.0000
          4           1           7     23.0000
          4           1           3      6.0000
          4           2           1     22.0000
          4           2           6     12.0000
          4           2           8      2.0000
          4           3           9     27.0000
          4           3           2      7.0000
          4           3           4     20.0000
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ALATN

Analyzes a Latin square design.

Required Arguments
NTRT — Number of treatments.  (Input)

NTRT must also be the number of rows and the number of columns.
NRESP — Number of repeated responses within each row-column position.  (Input)
Y — Vector of length NTRT * NTRT * NRESP containing the responses.  (Input)

The first NRESP elements of Y contain the responses for row 1, column 1; the second NRESP elements 
of Y contain the responses for row 1, column 2. The last NRESP elements of Y contain the responses for 
row NTRT, column NTRT.

ITRT — Vector of length NTRT * NTRT containing the treatment numbers for the responses in Y.  (Input) 
The treatment numbers must be from the set 1, 2, …, NTRT. For I = 1, 2, …, NTRT**2, element num-
bers (I - 1) * NRESP + 1 through (I - 1) * NRESP + NRESP of Y correspond to treatment number 
ITRT(I).

AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output)

Optional Arguments
IPRINT — Printing option.  (Input) 

Default: IPRINT = 0.

I AOV(I)

1 Degrees of freedom for the model (blocks and treatments)

2 Degrees of freedom for error (interaction is pooled with the within-cell error)

3 Total (corrected) degrees of freedom

4 Sum of squares for the model (blocks and treatments)

5 Sum of squares for error (experimental error pooled with the within-cell error)

6 Total (corrected) sum of squares

7 Model mean square

8 Error mean square

9 F -statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Overall mean of Y

15 Coefficient of variation (in percent)
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EFSS — Vector of length 12 containing statistics relating to the sums of squares for the effects in the model.  
(Output) 
Elements of EFSS are described as follows:

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model.(Output if 
NRESP > 1) 
If NRESP = 1, TESTLF is not referenced and can be a vector of length one. Elements of TESTLF are 
described as follows: 

YMEANS — Vector of length 3 * NTRT + NTRT * NTRT containing the row means, column means, treat-
ment means, and the row-column means, respectively.  (Output)

FORTRAN 90 Interface
Generic: CALL ALATN (NTRT, NRESP, Y, ITRT, AOV [, …])
Specific: The specific interface names are S_ALATN and D_ALATN.

IPRINT Action

0 No printing is performed.

1 Print AOV, EFSS, and TESTLF (if NRESP > 1) only.

2 Print YMEANS only.

3 All print is performed.

Elem Description

1, 2, 3 Degrees of freedom for rows, columns, and treatments, respectively.

4, 5, 6 Sum of squares for rows, columns, and treatments, respectively.

7, 8, 9 F-statistics for rows, columns, and treatments, respectively. F-statistics 
are computed using AOV(8) as the estimated error variance.

10-12 p-values associated with the F-statistics.

Elem. Description

1 Degrees of freedom for experimental error

2 Degrees of freedom for within-cell error

3 Degrees of freedom for error (TESTLF(1) + TESTLF(2))

4 Sum of squares for experimental error

5 Sum of squares for within-cell error

6 Sum of squares for error

7 Mean square for experimental error

8 Mean square for within-cell error

9 F -statistic

10 p-value
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FORTRAN 77 Interface
Single: CALL ALATN (NTRT, NRESP, Y, ITRT, IPRINT, AOV, EFSS, TESTLF, YMEANS)
Double: The double precision name is DALATN.

Description

Routine ALATN performs an analysis for a Latin square design. The model is

yijkm = μ + α i + βj + δk + ɛijkm i, j, k = 1, 2, …, p; m = 1, 2, …, n

where the observed value of yijkm constitutes the m-th response on the k-th treatment in row i column j of the 
Latin square design; μ + αi + βj + δk is the population mean for the response, and the ɛ ijkm’s are identically 

and independently distributed normal errors with mean zero and variance σ2. This model assumes the row 
effects (αi), column effects (βj), and treatment effects (δk) are additive. Often in practice, there are interactions 
between two or more of these factors. For this reason, ALATN computes a test for nonadditivity (lack of fit), in 
addition to summary statistics for the additive model. This test requires at least two responses in each cell. A 
test for nonadditivity with one response per cell in a Latin square design is discussed by Snedecor and 
Cochran (1967, pages 334-337). 

Routine ALATN requires yijk’s to be entered in single vector Y with the data for each cell occupying contiguous 
elements. The cells must be in standard order, i.e., (1, 1), (1, 2), …, (1, p), (2, 1), (2, 2), …, (2, p), …, (p, 1), (p, 2), 
…, (p, p). A discussion of formulas and interpretations for the analysis of a Latin square design appears in 
many elementary statistics texts, e.g., Snedecor and Cochran (1967, pages 312-317).

Example

This example performs an analysis for a Latin square design using data discussed by Kirk (1982, Table 7.3-2, 
pages 312-317). The responses are thickness of tread remaining on each of 32 tires after 10,000 miles of driv-
ing. The tires are divided equally among four different types, labeled A, B, C, and D. Four cars are used in the 
study. The experiment is performed twice, sixteen tires are used in each experiment. Each of the sixteen tires 
occupies one of the four wheel positions on one of the cars. The data are given in the following table:

      USE ALATN_INT

      IMPLICIT   NONE
      INTEGER    NRESP, NTRT
      PARAMETER  (NRESP=2, NTRT=4)
!
      INTEGER    IPRINT, ITRT(NTRT*NTRT)

Wheel Position Car 1 Car 2 Car 3 Car 4

Right Front A: 1, 2 B: 2, 3 C: 5, 6 D: 9, 8

Left Front B: 3, 4 C: 8, 6 D: 9, 8 A: 2, 3

Right Rear C: 5, 7 D: 10, 11 A: 3, 2 B: 5, 4

Left Rear D: 7, 10 A: 6, 3 B: 3, 4 C: 6, 6
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      REAL       AOV(15), Y(NTRT*NTRT*NRESP)
!
      DATA Y/1.0, 2.0, 2.0, 3.0, 5.0, 6.0, 9.0, 8.0, 3.0, 4.0, 8.0, &
          6.0, 9.0, 8.0, 2.0, 3.0, 5.0, 7.0, 10.0, 11.0, 3.0, 2.0, &
          5.0, 4.0, 7.0, 10.0, 6.0, 3.0, 3.0, 4.0, 6.0, 7.0/
      DATA ITRT/1, 2, 3, 4, 2, 3, 4, 1, 3, 4, 1, 2, 4, 1, 2, 3/
      DATA IPRINT/3/
!
      CALL ALATN (NTRT, NRESP, Y, ITRT, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             89.809     85.640           1.044       5.375           19.43

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  9       211.5       23.50     21.542    0.0000
 Error                 22        24.0        1.09
 Corrected Total       31       235.5

 * * * Decomposition of Variation Attributable to the Model * * *
        Source                  Sum of             Prob. of
                        DF     Squares          F  Larger F
        Row              3         9.2      2.826    0.0622
        Column           3         7.8      2.368    0.0983
        Treatment        3       194.5     59.431    0.0000

                           Test for Lack of Fit
 Source                           Sum of        Mean             Prob. of
                          DF     Squares      Square          F  Larger F
 Experimental Error        6           5       0.833      0.702    0.6525
 Within Cell              16          19       1.188
 Error                    22          24

 * * * Row Means * * *
    Row  Mean (N=4)
      1       4.500
      2       5.375
      3       5.875
      4       5.750

 * * * Column Means * * *
    Column  Mean (N=4)
         1       4.875
         2       6.125
         3       5.000
         4       5.500

 * * * Treatment Means * * *
    Treatment  Mean (N=4)
            1         2.8
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            2         3.5
            3         6.2
            4         9.0

 * * * Cell Means * * *
    Row      Column  Mean (N=2)
      1           1       1.500
      1           2       2.500
      1           3       5.500
      1           4       8.500
      2           1       3.500
      2           2       7.000
      2           3       8.500
      2           4       2.500
      3           1       6.000
      3           2      10.500
      3           3       2.500
      3           4       4.500
      4           1       8.500
      4           2       4.500
      4           3       3.500
      4           4       6.500
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ANWAY

Analyzes a balanced n-way classification model with fixed effects.

Required Arguments
NF — Number of factors (number of subscripts) in the model including 

error.  (Input)
NL — Vector of length NF containing the number of levels for each of the factors.  (Input)
Y — Vector of length NL(1) * NL(2) * … * NL(NF) containing the responses.  (Input)

Y must not contain NaN (not a number) for any of its elements, i.e., missing values are not allowed.
INTERA — Interaction option.  (Input) 

The absolute value of INTERA is the number of factors to be included in the highest-way interaction in 
the model. The sign of INTERA indicates if factor NF is error.

AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output)

INTERA Meaning

< 0 Factor NF is not error. Only (-INTERA + 1)-way and 
higher-way interactions are included in error.

> 0 Factor NF is error. Its main effect and all its interaction 
effects are pooled into the error with the other 
(INTERA + 1)-way and higher-way

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)
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Optional Arguments
IPRINT — Printing option.  (Input)

Default: IPRINT = 0.

EFSS — NEF by 4 matrix containing statistics relating to the sums of squares for the effects in the model.  
(Output) 
Here, NEF= BINOM(n, 1) + BINOM(n, 2) + … + BINOM(n, ∣INTERA∣) where the IMSL subroutine BINOM 
(IMSL MATH/LIBRARY Special Functions) returns the binomial coefficient, and n is given by 

Suppose the factors are A, B, C, and error. With INTERA = 3, rows 1 through NEF would correspond to 
A, B, C, AB, AC, BC, and ABC, respectively. The columns of EFSS are as follows: 

LDEFSS — Leading dimension of EFSS exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Deafult: LDEFSS = size (EFSS , 1)

YMEANS — Vector of length (NL(1) + 1) * (NL(2) + 1) * … * (NL(n) + 1) containing subgroup means.  (Out-
put) 
See argument EFSS for a definition of n. Suppose that the factors are A, B, C, and error. The ordering of 
the means is grand mean, A means, B means, C means, AB means, AC means, BC means, and ABC 
means.

FORTRAN 90 Interface
Generic: CALL ANWAY (NF, NL, Y, INTERA, AOV [, …])
Specific: The specific interface names are S_ANWAY and D_ANWAY.

IPRINT Action

0 Printing is not performed.

1 AOV and EFSS are printed.

2, -2 Only marginal means are printed. If IPRINT = 2, then all of YMEANS is printed. If 
IPRINT = -2, then marginal means higher than (∣INTERA∣) -way are not printed.

3, -3 AOV, EFSS, and all or some of YMEANS is printed. If IPRINT = 3, then all of YMEANS is 
printed. If IPRINT = -3, then marginal means higher than(∣INTERA∣) -way are not 
printed.

Column Description

1 Degrees of freedom

2 Sum of squares

3 F -statistic

4  p-value
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FORTRAN 77 Interface
Single: CALL ANWAY (NF, NL, Y, INTERA, IPRINT, AOV, EFSS, LDEFSS, YMEANS)
Double: The double precision name is DANWAY.

Description

Routine ANWAY performs an analysis for an n-way classification design with balanced data. For balanced 
data, there must be an equal number of responses in each cell of the n-way layout. The effects are assumed to 
be fixed effects. The model is an extension of the twoway model to include n factors. The interactions (two-
way, three-way, up to n-way) can be included in the model, or some of the higher-way interactions can be 
pooled into error. The argument INTERA specifies which interactions are to be pooled into error. For exam-
ple, if three-way and higher-way interactions are to be pooled into error, set INTERA = - 2 or INTERA = 2. A 
positive INTERA indicates there are repeated responses within the n-way cells, while a negative INTERA 
indicates otherwise. 

Routine ANWAY requires the responses as input into a single vector Y in lexicographical order so that the 
response subscript associated with the first factor varies least rapidly, the subscript associated with the sec-
ond factor varies next most rapidly, and so forth. Hemmerle (1967, Chapter 5) discusses the computational 
method.

Comments
Workspace may be explicitly provided, if desired, by use of A2WAY/DA2WAY. The reference is:

CALL A2WAY (NF, NL, Y, INTERA, IPRINT, AOV, EFSS, LDEFSS, YMEANS, WK, IWK)
The additional arguments are as follows:

WK — Work vector of length 5 * 2n + NMEANS + 4.

IWK — Work vector of length (NF + 2) * 2NF-1 + (n + 2) * 2n−1 + n - 2.

Examples

Example 1

A two-way analysis of variance is performed with balanced data discussed by Snedecor and Cochran (1967, 
Table 12.5.1, page 347). The responses are the weight gains (in grams) of rats fed diets varying in two compo-
nents—source of protein (A) and level of protein (B). Here, INTERA = 2 is used. The model is

yijk = μ + αi + βj + γij + ɛijk i = 1, 2; j = 1, 2, 3; k = 1, 2, …, 10

where

for j = 1, 2, 3; and
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for i = 1, 2.

The first responses in each cell in the two-way layout are given in the following table:

      USE ANWAY_INT

      IMPLICIT   NONE
      INTEGER    NF, NOBS
      PARAMETER  (NF=3, NOBS=60)
!
      INTEGER    INTERA, IPRINT, NL(NF)
      REAL       AOV(15), Y(NOBS)
!
      DATA Y/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, &
          117.0, 111.0, 90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, &
          90.0, 95.0, 78.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, &
          82.0, 77.0, 86.0, 92.0, 107.0, 95.0, 97.0, 80.0, 98.0, &
          74.0, 74.0, 67.0, 89.0, 58.0, 94.0, 79.0, 96.0, 98.0, &
          102.0, 102.0, 108.0, 91.0, 120.0, 105.0, 49.0, 82.0, 73.0, &
          86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0/
      DATA NL/3, 2, 10/
!
      INTERA = 2
      IPRINT = 3
      CALL ANWAY (NF, NL, Y, INTERA, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             28.477     21.854           14.65       87.87           16.67

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                  5      4612.9       922.6      4.300    0.0023
 Error                 54     11586.0       214.6

Protein Source (A)

Protein Level 
(B)

Beef Cereal Pork

High 73, 102, 118, 104, 81, 
107, 100, 87, 117, 111

98, 74, 56, 111, 95, 88,
82, 77, 86, 92

94, 79, 96, 98, 102, 
102, 108, 91, 120, 105

Low 90, 76, 90, 64, 86, 
51, 72, 90, 95, 78

107, 95, 97, 80, 98, 74,
74, 67, 89, 58

49, 82, 73, 86, 81, 97, 
106, 70, 61, 82
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 Corrected Total       59     16198.9

         * * * Variation Due to the Model * * *
                            Sum of             Prob. of
 Source             DF     Squares          F  Larger F
 A                   2      266.53      0.621    0.5411
 B                   1     3168.27     14.767    0.0003
 A*B                 2     1178.13      2.746    0.0732

 * * * Subgroup Means * * *
  A Means (N=20)
  1       89.6000
  2       84.9000
  3       89.1000
  B Means (N=30)
  1       95.1333
  2       80.6000
   A*B Means (N=10)
  1   1      100.0000
  1   2       79.2000
  2   1       85.9000
  2   2       83.9000
  3   1       99.5000
  3   2       78.7000

Example 2

This example performs a three-way analysis of variance using data discussed by John (1971, pages 91-92). 
The responses are weights (in grams) of roots of carrots grown with varying amounts of applied nitrogen (A), 
potassium (B), and phosphorus (C). There is one response within each cell of the three-way layout. INTERA is 
set to -2 in order to pool the ABC three-factor interaction into error. (Note that the ABC interaction sum of 
squares, which is 186, is given incorrectly by John [1971, Table 5.2].) IPRINT is set to -3 so that the ABC 
means will not be printed (since ∣INTERA∣ is equal to 2). The three-way layout is given in the following table:

      USE ANWAY_INT

      IMPLICIT   NONE
      INTEGER    NF, NOBS
      PARAMETER  (NF=3, NOBS=27)
!
      INTEGER    INTERA, IPRINT, NL(NF)
      REAL       AOV(15), Y(NOBS)
!

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87
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      DATA Y/88.76, 87.45, 86.01, 91.41, 98.27, 104.20, 97.85, 95.85, &
          90.09, 94.83, 84.57, 81.06, 100.49, 97.20, 120.8, 99.75, &
          112.30, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39, &
          104.51, 110.94, 102.87/
      DATA NL/3, 3, 3/
!
      INTERA = -2
      IPRINT = -3
      CALL ANWAY (NF, NL, Y, INTERA, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             92.804     76.612           4.819       98.96           4.869

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 18      2395.7       133.1      5.731    0.0083
 Error                  8       185.8        23.2
 Corrected Total       26      2581.5

         * * * Variation Due to the Model * * *
                            Sum of             Prob. of
 Source             DF     Squares          F  Larger F
 A                   2      488.37     10.515    0.0058
 B                   2     1090.66     23.483    0.0004
 C                   2       49.15      1.058    0.3911
 A*B                 4      142.59      1.535    0.2804
 A*C                 4       32.35      0.348    0.8383
 B*C                 4      592.62      6.380    0.0131

 * * * Subgroup Means * * *
   A Means (N=9)
  1       93.3211
  2       99.9744
  3      103.5900

   B Means (N=9)
  1       90.0311
  2      104.3067
  3      102.5478
   C Means (N=9)
  1       97.5256
  2       98.5922
  3      100.7678
    A*B Means (N=3)
  1   1       87.4067
  1   2       97.9600
  1   3       94.5967
  2   1       86.8200
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  2   2      106.1633
  2   3      106.9400
  3   1       95.8667
  3   2      108.7967
  3   3      106.1067
    A*C Means (N=3)
  1   1       92.6733
  1   2       93.8567
  1   3       93.4333
  2   1       98.3567
  2   2       98.0233
  2   3      103.5433
  3   1      101.5467
  3   2      103.8967
  3   3      105.3267
    B*C Means (N=3)
  1   1       94.4967
  1   2       88.3333
  1   3       87.2633
  2   1       97.3767
  2   2      101.0800
  2   3      114.4633
  3   1      100.7033
  3   2      106.3633
  3   3      100.5767
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ABALD

Analyzes a balanced complete experimental design for a fixed, random, or mixed model.

Required Arguments
NL — Vector of length NF containing the number of levels for each of the factors.  (Input)
Y — Vector of length NL(1) * NL(2) *…* NL(NF) containing the responses.  (Input)

Y must not contain NaN (not a number) for any of its elements, i.e., missing values are not allowed.
NRF — For positive NRF, NRF is the number of random factors.  (Input) 

For negative NRF, -NRF is the number of random effects (sources of variation).
INDRF — Index vector of length ∣NRF∣ containing either the factor numbers to be considered random (for 

NRF positive) or containing the effect numbers to be considered random (for NRF negative).  (Input) 
If NRF = 0, INDRF is not referenced and can be a vector of length one.

NFEF — Vector of length NEF containing the number of factors associated with each effect in the model.  
(Input)

INDEF — Index vector of length NFEF(1) + NFEF(2) + … + NFEF(NEF).  (Input)
The first NFEF(1) elements give the factor numbers in the first effect. The next NFEF(2) elements give 
the the factor numbers in the second effect. The last NFEF(NEF) elements give the factor numbers in 
the last effect. Main effects must appear before their interactions. In general, an effect E cannot appear 
after an effect F if all of the indices for E appear also in F .

AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output)

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)
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Optional Arguments
NF — Number of factors (number of subscripts) in the model, including 

error.  (Input)
Default: NF = size (NL,1).

NEF — Number of effects (sources of variation) due to the model excluding the overall mean and error.  
(Input)
Default: NEF = size (NFEF,1).

CONPER — Confidence level for two-sided interval estimates on the variance components, in percent.  
(Input) 
CONPER percent confidence intervals are computed, hence, CONPER must be in the interval [0.0, 100.0). 
CONPER often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence level ONECL, ONECL in 
the interval [50.0, 100.0), set 
CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

Let

The value of IPRINT must be between -n and 1, inclusively.
MODEL — Model Option.  (Input)

Default: MODEL = 0.

For the Scheffe model, effects corresponding to interactions of fixed and random factors have their 
sum over the subscripts corresponding to fixed factors equal to zero. Also, the variance of a random 
interaction effect involving some fixed factors has a multiplier for the associated variance component 
that involves the number of levels in the fixed factors. The Searle model has no summation restrictions 
on the random interaction effects and has a multiplier of one for each variance component.

EMS — Vector of length (NEF + 1) * (NEF + 2)/2 containing expected mean square coefficients.  (Output) 
Suppose the effects are A, B, and AB. The ordering of the coefficients in EMS is as follows:

IPRINT Action

0 No printing is performed.

1 All is performed.

-k Printing restricted to exclude marginal means higher than k ways. For 
example, only one-way and two-way marginal means will be printed if 
IPRINT = -2.

MODEL Meaning

0 Searle model

1 Scheffe model
ABALD         Chapter 4: Analysis of Variance      462



VC — NEF + 1 by 9 matrix containing statistics relating to the particular variance components or effects in 
the model and the error.  (Output) 
Rows of VC correspond to the NEF effects plus error. Columns of VC are as follows: 

Columns 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if there is no variance com-
ponent to be estimated. If the variance component estimate is negative, columns 8 and 9 contain NaN.

LDVC — Leading dimension of VC exactly as specified in the dimension statement of the calling program.  
(Input)
Deafult:  LDVC = size( VC ,1).

YMEANS — Vector of length (NL(1) + 1) * (NL(2) + 1) * … * (NL(n) + 1) containing the subgroup means.  
(Output) 
Suppose the factors are A, B, and C. The ordering of the means is grand mean, A means, B means, C 
means, AB means, AC means, BC means, and ABC means.

FORTRAN 90 Interface
Generic: CALL ABALD (NL, Y, NRF, INDRF, NFEF, INDEF, AOV [, …])
Specific: The specific interface names are S_ABALD and D_ABALD.

FORTRAN 77 Interface
Single: CALL ABALD (NF, NL, Y, NRF, INDRF, NEF, NFEF, INDEF, CONPER, IPRINT, MODEL, AOV, 

EMS, VC, LDVC, YMEANS)
Double: The double precision name is DABALD.

Error AB B A

A EMS(1) EMS(2) EMS(3) EMS(4)

B EMS(5) EMS(6) EMS(7)

AB EMS(8) EMS(9)

Error EMS(10)

Column Description

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F -statistic

5 p-value for F test

6 Variance component estimate

7 Percent of variance of y explained by random effect

8 Lower endpoint for a confidence interval on the variance component

9 Upper endpoint for a confidence interval on the variance component
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Description

Routine ABALD analyzes a balanced complete experimental design for a fixed, random, or mixed model. The 
analysis includes an analysis of variance table, and computation of subgroup means and variance compo-
nent estimates. A choice of two parameterizations of the variance components for the model can be made. 

Scheffé (1959, pages 274-289) discusses the parameterization for MODEL = 1. For example, consider the fol-
lowing model equation with fixed factor A and random factor B:

yijk = μ + αi + bj + cij + eijk i = 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n

The fixed effects α i’s are subject to the restriction

the bj’s are random effects identically and independently distributed

cij are interaction effects each distributed

and are subject to the restrictions

and the eijk’s are errors identically and independently distributed N(0, σ2). In general, interactions of fixed 
and random factors have sums over subscripts corresponding to fixed factors equal to zero. Also in general, 
the variance of a random interaction effect is the associated variance component times a product of ratios for 
each fixed factor in the random interaction term. Each ratio depends on the number of levels in the fixed fac-
tor. In the earlier example, the random interaction AB has the ratio (a - 1)/a as a multiplier of 

and

In a three-way crossed classification model, an ABC interaction effect with A fixed, B random, and C fixed 
would have variance
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Searle (1971, pages 400-401) discusses the parameterization for MODEL = 0. This parameterization does not 
have the summation restrictions on the effects corresponding to interactions of fixed and random factors. 
Also, the variance of each random interaction term is the associated variance component, i.e., without the 
multiplier. This parameterization is also used with unbalanced data, which is one reason for its popularity 
with balanced data also. In the earlier example,

Searle (1971, pages 400-404) compares these two parameterizations. Hocking (1973) considers these different 
parameterizations and concludes they are equivalent because they yield the same variance-covariance struc-
ture for the responses. Differences in covariances for individual terms, differences in expected mean square 
coefficients and differences in F tests are just a consequence of the definition of the individual terms in the 
model and are not caused by any fundamental differences in the models. For the earlier two-way model, 
Hocking states that the relations between the two parameterizations of the variance components are

where 

are the variance components in the parameterization with MODEL = 0.

The computations for degrees of freedom and sums of squares are the same regardless of the option specified 
by MODEL. ABALD first computes degrees of freedom and sum of squares for a full factorial design. Degrees of 
freedom for effects in the factorial design that are missing from the specified model are pooled into the model 
effect containing the fewest subscripts but still containing the factorial effect. If no such model effect exists, 
the factorial effect is pooled into error. If more than one such effect exists, a terminal error message is issued 
indicating a misspecified model.

The analysis of variance method is used for estimating the variance components. This method solves a linear 
system in which the mean squares are set to the expected mean squares. A problem that Hocking (1985, 
pages 324-330) discusses is that this method can yield a negative variance component estimate. Hocking 
suggests a diagnostic procedure for locating the cause of the negative estimate. It may be necessary to re-
examine the assumptions of the model.

The percentage of variation explained by each random effect is computed (output in VC(i, 7)) as the variance 
of the associated random effect divided by the variance of y. The two parameterizations can lead to different 
values because of the different definitions of the individual terms in the model. For example, the percentage 
associated with the AB interaction term in the earlier two-way mixed model is computed for MODEL = 1 using 
the formula
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while for the parameterization MODEL = 0, the percentage is computed using the formula

In each case, the variance compenents are replaced by their estimates (stored in VC(i, 6)).

Confidence intervals on the variance components are computed using the method discussed by Graybill 
(1976, Theorem 15.3.5, page 624, and Note 4, page 620). Routine CIDMS is used.

Comments
Workspace may be explicitly provided, if desired, by use of A2ALD/DA2ALD. The reference is:

CALL A2ALD (NF, NL, Y, NRF, INDRF, NEF, NFEF, INDEF, CONPER, IPRINT, MODEL, AOV, EMS, VC, 
LDVC, YMEANS, WK, IWK, CHWK)

The additional arguments are as follows:

WK — Work vector of length 3 * 2NF + 2 * NEF+ m + 4.

IWK — Work vector of length max(2NF, NF + NEF + LINDEF)+ 2NF -1 + NF * 2NF−1.

CHWK — CHARACTER * 13 vector of length max(NEF + 3, 2n - 1). If IPRINT = 0, CHWK is not refer-
enced and can be a vector of length one.

Examples

Example 1

An analysis of a generalized randomized block design is performed using data discussed by Kirk (1982, 
Table 6.10-1, pages 293-297). The model is

yijk = μ + α i + bj + cij + eijk  i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for the k-th experimental unit in block j with treatment i; the α i’s are the treatment 
effects and are subject to the restriction

the bj’s are block effects identically and independently distributed

cij are interaction effects each distributed
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and are subject to the restrictions

and the eijk’s are errors, identically and independently distributed N(0, σ2). The interaction effects are 
assumed to be distributed independently of the errors. 

The data are given in the following table:

      USE ABALD_INT

      IMPLICIT   NONE
      INTEGER    LINDEF, NEF, NF, NOBS, NRF
      PARAMETER  (LINDEF=4, NEF=3, NF=3, NOBS=32, NRF=2)
!
      INTEGER    INDEF(LINDEF), INDRF(NRF), IPRINT, MODEL, NFEF(NEF), &
                 NL(NF)
      REAL       AOV(15), Y(NOBS)
!
      DATA NL/4, 4, 2/
      DATA INDRF/2, 3/
      DATA NFEF/1, 1, 2/
      DATA INDEF/1, 2, 1, 2/
      DATA Y/3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0, &
          2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0, &
          6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0/
!
      IPRINT = 1
      MODEL  = 1
      CALL ABALD  (NL, Y, NRF, INDRF, NFEF, INDEF, AOV, IPRINT=IPRINT, &
      MODEL=MODEL)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)

Block

Treatment 1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11
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Y             91.932     84.368            1.09       5.375           20.27

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 15       216.5       14.43     12.154    0.0000
 Error                 16        19.0        1.19
 Corrected Total       31       235.5

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      3      194.50     64.8333     32.873    0.0000
 B                      3        4.25      1.4167      1.193    0.3440
 AB                     9       17.75      1.9722      1.661    0.1802

      * * * EMS * * *
        Error  AB   B   A
 A          1   2   0   8
 B          1   0   8
 AB         1   2
 Error      1

                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 B               0.0286       1.897       0.00000        2.3168
 AB              0.3924      19.483       0.00000        2.7580
 Error           1.1875      78.621       0.65868        2.7506

 * * * Subgroup Means * * *
  A Means (N=8)
 1        2.7500
 2        3.5000
 3        6.2500
 4        9.0000
  B Means (N=8)
 1        6.0000
 2        5.1250
 3        5.1250
 4        5.2500
   AB  Means (N=2)
 1  1        4.5000
 1  2        2.0000
 1  3        2.0000
 1  4        2.5000
 2  1        4.5000
 2  2        3.0000
 2  3        3.5000
 2  4        3.0000
 3  1        7.5000
 3  2        6.0000
 3  3        5.5000
 3  4        6.0000
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 4  1        7.5000
 4  2        9.5000
 4  3        9.5000
 4  4        9.5000

Example 2

An analysis of a split-plot design is performed using data discussed by Milliken and Johnson (1984, Table 
24.1, page 297). Label the two treatment factors A and C. Denote the treatment combination aick as that at the 
i-th level of A and the k-th level of C. The model is

yijk = μ + α i + bj + dij + δik + eijk     i = 1, 2; j = 1, 2; k = 1, 2, 3, 4

where yijk is the response for the j-th experimental unit with treatment combination aick; the α i’s are the 
effects due to treatment factor A, the bj’s are block effects identically and independently distributed

the dij are split plot errors that are identically and independently distributed

the k’s are the effects due to treatment factor C, the δik’s are interaction effects between factors A and C, and 

the eijk’s are identically and independently distributed N(0, σ2). The block effects, whole plot errors, and split 
plot errors are independent. 

The data are given in the following table. 

      USE ABALD_INT

      IMPLICIT   NONE
      INTEGER    LDVC, LINDEF, NEF, NF, NOBS, NRF
      PARAMETER  (LINDEF=7, NEF=5, NF=3, NOBS=16, NRF=1)
!
      INTEGER    INDEF(LINDEF), INDRF(NRF), IPRINT, NFEF(NEF), NL(NF)

C

A Block 1 2

1 1
2

35.4
41.6

37.9
40.3

2 1
2

36.7
42.7

38.2
41.6

3 1
2

34.8
43.6

36.4
42.8

4 1
2

39.5
44.5

40.0
47.6
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      REAL       AOV(15), Y(NOBS)
!
      DATA NL/4, 2, 2/
      DATA INDRF/2/
      DATA NFEF/1, 1, 2, 1, 2/
      DATA INDEF/1, 2, 1, 2, 3, 1, 3/
      DATA Y/35.4, 37.9, 41.6, 40.3, 36.7, 38.2, 42.7, 41.6, 34.8, &
          36.4, 43.6, 42.8, 39.5, 40.0, 44.5, 47.6/
!
      IPRINT = -2
      CALL ABALD (NL, Y, NRF, INDRF, NFEF, INDEF, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             95.574     83.401           1.452       40.22           3.609

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 11       182.0       16.55      7.852    0.0306
 Error                  4         8.4        2.11
 Corrected Total       15       190.4

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      3      40.190      13.397      5.802    0.0914
 B                      1     131.102     131.102     56.775    0.0048
 AB                     3       6.928       2.309      1.096    0.4476
 C                      1       2.250       2.250      1.068    0.3599
 AC                     3       1.550       0.517      0.245    0.8612

          * * * EMS * * *
        Error  AC   C  AB   B   A
 A          1   0   0   2   0   4
 B          1   0   0   2   8
 AB         1   0   0   2
 C          1   0   8
 AC         1   2
 Error      1

                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 B               16.099      87.938        2.2597       16686.7
 AB               0.101       0.551        0.0000          15.1
 Error            2.108      11.512        0.7565          17.4

 * * * Subgroup Means * * *
  A Means (N=4)
 1       38.8000
 2       39.8000
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 3       39.4000
 4       42.9000
  B Means (N=8)
 1       37.3625
 2       43.0875
  C Means (N=8)
 1       39.8500
 2       40.6000
   AB  Means (N=2)
 1  1       36.6500
 1  2       40.9500
 2  1       37.4500
 2  2       42.1500
 3  1       35.6000
 3  2       43.2000
 4  1       39.7500
 4  2       46.0500
   AC  Means (N=2)
 1  1       38.5000
 1  2       39.1000
 2  1       39.7000
 2  2       39.9000
 3  1       39.2000
 3  2       39.6000
 4  1       42.0000
 4  2       43.8000
   BC  Means (N=4)
 1  1       36.6000
 1  2       38.1250
 2  1       43.1000
 2  2       43.0750

Example 3

An analysis of a split-plot factorial design is performed using data discussed by Kirk (1982, Table 11.2-1, 
pages 493-496). Label the two treatment factors A and C. Denote the treatment combination aick as that at the 
i-th level of A and the k-th level of C. The model is 

yijk = μ + α i + bjj + γk + δik + eijk  i = 1, 2; j = 1, 2, 3, 4; k = 1, 2, 3, 4

where yijk is the response for the j-th experimental unit with treatment combination aick; the α i’s are the 
effects due to treatment factor A and are subject to the restriction 

the bij’s are block effects identically and independently distributed

the k’s are the effects due to treatment factor C and are subject to the restriction 
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the δik’s are interaction effects between factors A and C and are subject to the restrictions 

for each k, and

for each i, and the eijk’s are identically and independently distributed N(0, σ2). The block effects are assumed 
to be distributed independently of the errors. 

The data are given in the following table:

      USE ABALD_INT

      IMPLICIT   NONE
      INTEGER    LINDEF, NEF, NF, NOBS, NRF
      PARAMETER  (LINDEF=6, NEF=4, NF=3, NOBS=32, NRF=-1)
!
      INTEGER    INDEF(LINDEF), INDRF(-NRF), IPRINT, MODEL, NFEF(NEF), &
                 NL(NF)
      REAL       AOV(15), Y(NOBS)
!
      DATA NL/2, 4, 4/
      DATA INDRF/2/
      DATA NFEF/1, 2, 1, 2/
      DATA INDEF/1, 1, 2, 3, 1, 3/
      DATA Y/3.0, 4.0, 7.0, 7.0, 6.0, 5.0, 8.0, 8.0, 3.0, 4.0, 7.0, 9.0, &
           3.0, 3.0, 6.0, 8.0, 1.0, 2.0, 5.0, 10.0, 2.0, 3.0, 6.0, &
            10.0, 2.0, 4.0, 5.0, 9.0, 2.0, 3.0, 6.0, 11.0/

C

A Block 1 2 3 4

1 1 3 4 7 7

2 6 5 8 8

3 3 4 7 9

4 3 3 6 8

2 5 1 2 5 10

6 2 3 6 10

7 2 4 5 9

8 2 3 6 11
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!
      IPRINT = 1
      MODEL  = 1
      CALL ABALD (NL, Y, NRF, INDRF, NFEF, INDEF, AOV, IPRINT=IPRINT, &
      MODEL=MODEL)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             96.125     93.327           0.712       5.375           13.25

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 13       226.4       17.41     34.350    0.0000
 Error                 18         9.1        0.51
 Corrected Total       31       235.5

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      1       3.125      3.1250      2.000    0.2070
 AB                     6       9.375      1.5625      3.082    0.0296
 C                      3     194.500     64.8333    127.890    0.0000
 AC                     3      19.375      6.4583     12.740    0.0001
        * * * EMS * * *
        Error  AC   C  AB   A
 A          1   0   0   4  16
 AB         1   0   0   4
 C          1   0   8
 AC         1   4
 Error      1
                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 AB             0.26389      34.234       0.00000        1.7760
 Error          0.50694      65.766       0.28944        1.1086

 * * * Subgroup Means * * *
 A Means (N=16)
 1        5.6875
 2        5.0625
  B Means (N=8)
 1        4.8750
 2        6.0000
 1        5.3750
 2        5.2500
  C Means (N=8)
 1        2.7500
 2        3.5000
 1        6.2500
 2        9.0000
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   AB  Means (N=4)
 1  1        5.2500
 1  2        6.7500
 1  3        5.7500
 1  4        5.0000
 2  1        4.5000
 2  2        5.2500
 2  3        5.0000
 2  4        5.5000
   AC  Means (N=4)
 1  1        3.7500
 1  2        4.0000
 1  3        7.0000
 1  4        8.0000
 2  1        1.7500
 2  2        3.0000
 2  3        5.5000
 2  4       10.0000
   BC  Means (N=2)
 1  1        2.0000
 1  2        3.0000
 1  3        6.0000
 1  4        8.5000
 2  1        4.0000
 2  2        4.0000
 2  3        7.0000
 2  4        9.0000
 1  1        2.5000
 1  2        4.0000
 1  3        6.0000
 1  4        9.0000
 2  1        2.5000
 2  2        3.0000
 2  3        6.0000
 2  4        9.5000
   ABC   Means (N=1)
 1  1  1        3.0000
 1  1  2        4.0000
 1  1  3        7.0000
 1  1  4        7.0000
 1  2  1        6.0000
 1  2  2        5.0000
 1  2  3        8.0000
 1  2  4        8.0000
 1  3  1        3.0000
 1  3  2        4.0000
 1  3  3        7.0000
 1  3  4        9.0000
 1  4  1        3.0000
 1  4  2        3.0000
 1  4  3        6.0000
 1  4  4        8.0000
 2  1  1        1.0000
 2  1  2        2.0000
 2  1  3        5.0000
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 2  1  4       10.0000
 2  2  1        2.0000
 2  2  2        3.0000
 2  2  3        6.0000
 2  2  4       10.0000
 2  3  1        2.0000
 2  3  2        4.0000
 2  3  3        5.0000
 2  3  4        9.0000
 2  4  1        2.0000
 2  4  2        3.0000
 2  4  3        6.0000
 2  4  4       11.0000
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ANEST

Analyzes a completely nested random model with possibly unequal numbers in the subgroups.

Required Arguments
NF — Number of factors (number of subscripts) in the model including

error.  (Input)
IEQ — Equal numbers option.  (Input) 

NL — Vector with the number of levels.  (Input)
If IEQ = 1, NL is of length NF and contains the number of levels for each of the factors. In this case, the 
following additional variables are referred to in the description of ANEST: 

If IEQ = 0, NL contains the number of levels of each factor at each level of the factor in which it is 
nested. In this case, the following additional variables are referred to in the description of ANEST: 

For example, a random one-way model with two groups, five responses in the first group and ten in 
the second group, would have LNL = 3, LNLNF = 2, NOBS = 15, NL(1) = 2, NL(2) = 5, and NL(3) = 10.

Y — Vector of length NOBS containing the responses.  (Input) 
The elements of Y are ordered lexicographically, i.e., the last model subscript changes most rapidly, the 
next next to last model subscript changes the next most rapidly, and so forth, with the first subscript 
changing the slowest.

AOV — Vector of length 15 containing statistics relating to the analysis of variance.  (Output)

IEQ Description

0 Unequal numbers in the subgroups

1 Equal numbers in the subgroups

Variable Description

LNL NL(1) + NL(1) * NL(2) + … + NL(1) * NL(2) * … * NL(NF - 1)

LNLNF NL(1) * NL(2) * …* NL(NF - 1)

NOBS The number of observations. NOBS equals NL(1) * NL(2) * … * NL(NF).

Variable Description

LNL Length of NL.

LNLNF Length of the subvector of NL for the last factor.

NOBS Number of observations. NOBS equals the sum of the last LNLNF elements of NL.

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression
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Optional Arguments
CONPER — Confidence level for two-sided interval estimates on the variance components, in percent.  

(Input)
Default: CONPER = 95.0.
CONPER percent confidence intervals are computed, hence, CONPER must be in the interval [0.0, 100.0). 
CONPER often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence level ONECL, ONECL in 
the interval [50.0, 100.0), set 
CONPER = 100.0 - 2.0 * (100.0 - ONECL).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

EMS — Vector of length (NF + 1) * NF/2 with expected mean square coefficients.  (Output)
VC — NF by 9 matrix containing statistics relating to the particular variance components in the model.  

(Output) 
Rows of VC correspond to the NF factors. Columns of VC are as follows: 

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

11 R2 (in percent)

12 Adjusted R2 (in percent)

13 Estimated standard deviation of the model error

14 Mean of the response (dependent) variable

15 Coefficient of variation (in percent)

IPRINT Action

0 No printing is performed.

1 Printing is performed.

Column Description

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for F test

6 Variance component estimate

I AOV(I)
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A test for the error variance equal to zero cannot be performed. VC(NF, 4) and 
VC(NF, 5) are set to NaN (not a number).

LDVC — Leading dimension of VC exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDVC= size(VC ,1)

YMEANS — Vector containing the subgroup means.  (Output) 

If the factors are labeled A, B, C, and error, the ordering of the means is grand mean, 
A means, AB means, and then ABC means.

NMISS — Number of missing values in Y.  (Output) 
Elements of Y equal to NaN (not a number) are omitted from the computations.

FORTRAN 90 Interface
Generic: CALL ANEST (NF, IEQ, NL, Y, AOV [, …])
Specific: The specific interface names are S_ANEST and D_ANEST.

FORTRAN 77 Interface
Single: CALL ANEST (NF, IEQ, NL, Y, CONPER, IPRINT, AOV, EMS, VC, LDVC, YMEANS, NMISS)
Double: The double precision name is DANEST.

Description

Routine ANEST analyzes a nested random model with equal or unequal numbers in the subgroups. The anal-
ysis includes an analysis of variance table and computation of subgroup means and variance component 
estimates. Anderson and Bancroft (1952, pages 325-330) discuss the methodology. The analysis of variance 
method is used for estimating the variance components. This method solves a linear system in which the 
mean squares are set to the expected mean squares. A problem that Hocking (1985, pages 324-330) discusses 
is that this method can yield negative variance component estimates. Hocking suggests a diagnostic proce-
dure for locating the cause of a negative estimate. It may be necessary to reexamine the assumptions of the 
model.

Comments
Workspace may be explicitly provided, if desired, by use of A2EST/DA2EST. The reference is:

7 Percent of variance explained by variance component

8 Lower endpoint for a confidence interval on the variance component

9 Upper endpoint for a confidence interval on the variance component

IEQ Length of YMEANS

0 1 + NL(1) + NL(2) + … NL(LNL - LNLNF) (See the description of argument NL for defini-
tions of LNL and LNLNF.)

1 1 + NL(1) + NL(1) * NL(2) + … + NL(1) * NL(2) * … * NL(NF - 1)

Column Description
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CALL A2EST (NF, IEQ, NL, Y, CONPER, IPRINT, AOV, EMS, VC, LDVC, YMEANS, NMISS, WK, IWK, 
CHWK)

The additional arguments are as follows:

WK — Work vector of length NOBS.

IWK — Work vector of length 5 * NF + (2 * LNL - LNLNF).

CHWK — CHARACTER * 10 vector of length 2 * NF + 1. If IPRINT = 0, CHWK is not referenced and 
can be a vector of length one.

Examples

Example 1

An analysis of a three-factor nested random model with equal numbers in the subgroups is performed using 
data discussed by Snedecor and Cochran (1967, Table 10.16.1, pages 285-288). The responses are calcium 
concentrations (in percent, dry basis) as measured in the leaves of turnip greens. Four plants are taken at ran-
dom, then three leaves are randomly selected from each plant. Finally, from each selected leaf two samples 
are taken to determine calcium concentration. The model is

yijk = μ + α i + βjj + eijk i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the i-th plant, the α i’s are the 
plant effects and are taken to be independently distributed 

the βij’s are leaf effects each independently distributed

and the ɛ ijk’s are errors each independently distributed N(0, σ2). The effects are all assumed to be inde-
pendently distributed. The data are given in the following table:

Plant Leaf Samples

1 1
2
3

3.28
3.52
2.88

3.09
3.48
2.80

2 1
2
3

2.46
1.87
2.19

2.44
1.92
2.19
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      USE ANEST_INT

      IMPLICIT   NONE
      INTEGER    NF, NOBS
      PARAMETER  (NF=3, NOBS=24)
!
      INTEGER    IEQ, IPRINT, NL(NF)
      REAL       AOV(15), Y(NOBS)
!
      DATA Y/3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87, &
          1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78, &
          3.87, 4.07, 4.12, 3.31, 3.31/
      DATA NL/4, 3, 2/
!
      IEQ    = 1
      IPRINT = 1
      CALL ANEST (NF, IEQ, NL, Y, AOV, IPRINT=IPRINT)
      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             99.222     98.510         0.08158       3.012           2.708

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 11       10.19      0.9264    139.216    0.0000
 Error                 12        0.08      0.0067
 Corrected Total       23       10.27
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      3     7.56034     2.52011      7.665    0.0097
 B                      8     2.63020     0.32878     49.406    0.0000

 * * * Expected Mean Square Coefficients * * *
                 Error    Effect B    Effect A
 Effect A            1           2           6
 Effect B            1           2
 Error               1

                 * * * Variance Components * * *

3 1
2
3

2.77
3.74
2.55

2.66
3.44
2.55

4 1
2
3

3.78
4.07
3.31

3.87
4.12
3.31

Plant Leaf Samples
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                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 A              0.36522      68.530      0.039551        5.7867
 B              0.16106      30.221      0.069669        0.6004
 Error          0.00665       1.249      0.003422        0.0181

     A Means
 1        3.1750
 2        2.1783
 3        2.9517
 4        3.7433

      AB Means
 1  1        3.1850
 1  2        3.5000
 1  3        2.8400
 2  1        2.4500
 2  2        1.8950
 2  3        2.1900
 3  1        2.7150
 3  2        3.5900
 3  3        2.5500
 4  1        3.8250
 4  2        4.0950
 4  3        3.3100

Example 2

An analysis of a three-factor nested random model with unequal numbers in the subgroups is performed. 
The data are given in the following table:
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      USE ANEST_INT

      IMPLICIT   NONE
      INTEGER    LNL, NF, NOBS
      PARAMETER  (LNL=32, NF=3, NOBS=36)
!
      INTEGER    IEQ, IPRINT, NL(LNL)
      REAL       AOV(15), Y(NOBS)
!
      DATA Y/23.0, 19.0, 31.0, 37.0, 33.0, 29.0, 29.0, 36.0, 29.0, &
          33.0, 11.0, 21.0, 23.0, 18.0, 33.0, 23.0, 26.0, 39.0, 20.0, &
          24.0, 36.0, 25.0, 33.0, 28.0, 31.0, 25.0, 42.0, 32.0, 36.0, &
          41.0, 35.0, 16.0, 30.0, 40.0, 32.0, 44.0/
      DATA NL/6, 2, 2, 1, 9, 1, 10, 2, 2, 2, 1, 3, 2, 2, 1, 1, 1, 1, &
          1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1/
!
      IEQ    = 0
      IPRINT = 1
      CALL ANEST (NF, IEQ, NL, Y, AOV, IPRINT=IPRINT)

A B C

1 1
2

23.0
31.0

19.0
37.0

2 1
2

33.0
29.0

29.0

3 1 36.0 29.0 33.0

4 1
2
3
4
5
6
7
8
9

11.0
23.0
33.0
23.0
26.0
39.0
20.0
24.0
36.0

21.0
18.0

5 1 25.0 33.0

6 1
2
3
4
5
6
7
8
9
10

28.0
25.0
32.0
41.0
35.0
16.0
30.0
40.0
32.0
44.0

31.0
42.0
36.0
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      END

Output

Dependent  R-squared   Adjusted  Est. Std. Dev.              Coefficient of
Variable   (percent)  R-squared  of Model Error        Mean  Var. (percent)
Y             85.376     53.470            5.31       29.53           17.98

                   * * * Analysis of Variance * * *
                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square  Overall F  Larger F
 Model                 24      1810.8       75.45      2.676    0.0459
 Error                 11       310.2       28.20
 Corrected Total       35      2121.0

                               Sum of        Mean             Prob. of
 Source                DF     Squares      Square          F  Larger F
 A                      5      461.42     92.2845      0.988    0.4601
 B                     19     1349.38     71.0202      2.519    0.0597

 * * * Expected Mean Square Coefficients * * *
                 Error    Effect B    Effect A
 Effect A      1.00000     1.96503     5.37778
 Effect B      1.00000     1.28990
 Error         1.00000

                 * * * Variance Components * * *
                                     95.0% Confidence Interval
 Variance                            --------------------------
 Component     Estimate     Percent   Lower Limit   Upper Limit
 A               -0.214         NaN           NaN           NaN
 B               33.199      54.073          0.00        100.59
 Error           28.197      45.927         14.15         81.29

     A Means
 1       27.5000
 2       30.3333
 3       32.6667
 4       24.9091
 5       29.0000
 6       33.2308
      AB Means
  1   1       21.0000
  1   2       34.0000
  2   1       31.0000
  2   2       29.0000
  3   1       32.6667
  4   1       16.0000
  4   2       20.5000
  4   3       33.0000
  4   4       23.0000
  4   5       26.0000
  4   6       39.0000
  4   7       20.0000
  4   8       24.0000
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  4   9       36.0000
  5   1       29.0000
  6   1       29.5000
  6   2       33.5000
  6   3       34.0000
  6   4       41.0000
  6   5       35.0000
  6   6       16.0000
  6   7       30.0000
  6   8       40.0000
  6   9       32.0000
  6  10       44.0000
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CTRST

Computes contrast estimates and sums of squares.

Required Arguments
NI — Vector of length NGROUP containing the number of responses for each of the NGROUP groups.  (Input)
YMEANS — Vector of length NGROUP containing the sample mean for each group or each level of a classi-

fication variable.  (Input)
C — NGROUP by NCTRST matrix containing in each column the coefficients for a particular contrast.  

(Input)
EST — Vector of length NCTRST containing the contrast estimates.  (Output)
SS — Vector of length NCTRST containing the sum of squares associated with each contrast.  (Output)

Optional Arguments
NGROUP — Number of groups or number of sample means involved in the 

contrasts.  (Input)
Default: NGROUP = size (NI,1).

NCTRST — Number of contrasts.  (Input)
Default: NCTRST = size (C,2).

LDC — Leading dimension of C exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDC = size (C,1).

FORTRAN 90 Interface
Generic: CALL CTRST (NI, YMEANS, C, EST, SS [, …])
Specific: The specific interface names are S_CTRST and D_CTRST.

FORTRAN 77 Interface
Single: CALL CTRST (NGROUP, NI, YMEANS, NCTRST, C, LDC, EST, SS)
Double: The double precision name is DCTRST.

Description

Routine CTRST computes an estimate of a linear combination of means using the sample means input in 
YMEANS. The sum of squares associated with each estimate is also computed. 

Contrasts (linear combinations of means whose coefficients sum to zero) are customarily of interest. Orthog-
onal contrasts (Neter and Wasserman 1974, pages 470-471) are often used to partition the among-groups sum 
of squares from a one-way analysis of variance. The following discussion uses the term “contrast”, however, 
the term “linear combination of means,” which places no restriction on the coefficients, is equally valid. 
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Let

be the k(= NGROUP) sample means, and let μ1, μ2, …, μk be the associated population means. Let c1j, c2j, …, ckj 
be the contrast coefficients for contrast j (stored in column j of the matrix C). The estimate of

is

(stored as the j-th element of EST) computed by

The associated sum of squares Qj (stored as the j-th element of SS) is computed by

Comments
Informational Error

Example

The following example is taken from Neter and Wasserman (1974, Table 13.1, page 432, Table 14.3, page 463, 
pages 470-471). Three orthogonal contrasts are defined that partition the among-group sum of squares (258.0) 
from a one-way analysis of variance. The first contrast compares groups 1 and 2, the second contrast com-
pares groups 3 and 4, the third contrast compares a weighted average of groups 1 and 2 with a weighted 
average of groups 3 and 4.

      USE CTRST_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NGROUP, LDC, NCTRST, I

Type Code Description

1 1 A column of C does not sum to zero within the computed tolerance. Custom-
arily, contrasts (linear combinations of means whose coefficients sum to 
zero) are of interest.
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      PARAMETER  (NGROUP=4, LDC=NGROUP, NCTRST=3)
      INTEGER    NI(NGROUP), J, NOUT
      REAL       EST(NCTRST), SS(NCTRST), C(LDC,NCTRST), YMEANS(NGROUP)
!
      DATA YMEANS/15.0, 13.0, 19.0, 27.0/
      DATA NI/2, 3, 3, 2/
      DATA (C(I,1),I=1,NGROUP)/1.0, -1.0, 0.0, 0.0/
      DATA (C(I,2),I=1,NGROUP)/0.0, 0.0, 1.0, -1.0/
      DATA (C(I,3),I=1,NGROUP)/0.4, 0.6, -0.6, -0.4/
!
      CALL CTRST (NI, YMEANS, C, EST, SS)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'Contrast  Estimate  Sum of Squares'
      DO 10  J=1, NCTRST
         WRITE (NOUT,'(1X,I4,5X,F7.1,3X,F10.1)') J, EST(J), SS(J)
   10 CONTINUE
      END

Output

Contrast Estimate Sum of Squares
  1         2.0          4.8
  2        -8.0         76.8
  3        -8.4        176.4
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SCIPM

Computes simultaneous confidence intervals on all pairwise differences of means.

Required Arguments
NI — Vector of length NGROUP containing the number of observations in each mean.  (Input)
YMEANS — Vector of length NGROUP containing the means.  (Input)

DFS2 — Degrees of freedom for s2.  (Input)

S2 — s2, the estimated variance of an observation.  (Input) 
The variance of YMEANS(I) is estimated by S2/NI(I).

STAT — NGROUP * (NGROUP - 1)/2 by 5 matrix containing the statistics relating to the difference of means.  
(Output) 

Optional Arguments
NGROUP — Number of means.  (Input)

Default: NGROUP = size(NI,1).
IMETH — Method used for constructing confidence intervals on all pairwise differences of means.  (Input) 

Default: IMETH = 0.

CONPER — Confidence percentage for the simultaneous interval estimation.  (Input)
Default: CONPER = 95.0.

Col. Description

1 Group number for the i-th mean

2 Group number for the j-th mean

3 Difference of means (i-th mean) - (j-th mean)

4 Lower confidence limit for the difference

5 Upper confidence limit for the difference

IMETH Method

0 Tukey (if equal group sizes), Tukey-Kramer method (otherwise)

1 Dunn-Sidak method

2 Bonferroni method

3 Scheffe method

4 One-at-a-time t method-LSD test

IMETH CONPER

0 Percentage must be greater than or equal to 0.0 and less than 100.0.

≥ 1 Percentage must be greater than or equal to 90.0 and less than or equal to 99.0.
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IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSTAT = size (STAT,1).

FORTRAN 90 Interface
Generic: CALL SCIPM (NI, YMEANS, DFS2, S2, STAT [, …])
Specific: The specific interface names are S_SCIPM and D_SCIPM.

FORTRAN 77 Interface
Single: CALL SCIPM (NGROUP, NI, YMEANS, DFS2, S2, IMETH, CONPER, IPRINT, STAT, LDSTAT)
Double: The double precision name is DSCIPM.

Description

Routine SCIPM computes simultaneous confidence intervals on all k* = k(k - 1)/2 pairwise comparisons of k 
means μ1, μ2, …, μk in the one-way analysis of variance model. Any of several methods can be chosen. A 
good review of these methods is given by Stoline (1981). Also the methods are discussed in many elementary 
statistics texts, e.g., Kirk (1982, pages 114-127).

Let s2 (input in S2) be the estimated variance of a single observation. Let ν  be the degrees of freedom (input 

in DFS2) associated with s2: Let α =1 - CONPER/100.0. The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence intervals for all pairwise 
differences of means μi - μj in balanced (n1 = n2 = … = nk = n) one-way designs. The method is exact and uses 
the Studentized range distribution. The formula for the difference μi - μj is given by

where q1-α;k,ν is the (1 - α)100 percentage point of the Studentized range distribution with parameters k and 
ν.

Tukey-Kramer method: The Tukey-Kramer method is an approximate extension of the Tukey method for the 
unbalanced case. (The method simplifies to the Tukey method for the balanced case.) The method always 
produces confidence intervals narrower than the Dunn-Sidak and Bonferroni methods. Hayter (1984) proved 
that the method is conservative, i.e., the method guarantees a confidence coverage of at least (1 - α)100%. 

IPRINT Action

0 No printing is performed.

1 Printing is performed.
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Hayter’s proof gave further support to earlier recommendations for its use (Stoline 1981). (Methods that are 
currently better are restricted to special cases and only offer improvement in severely unbalanced cases, see, 
e.g., Spurrier and Isham 1985). The formula for the difference μi - μj is given by

Dunn-Šidák method: The Dunn-Šidák method is a conservative method. The method gives wider intervals 
than the Tukey-Kramer method. (For large ν and small α and k, the difference is only slight.) The method is 
slightly better than the Bonferroni method and is based on an improved Bonferroni (multiplicative) inequal-
ity (Miller, pages 101, 254-255). The method uses the t distribution (see IMSL routine TIN, in Chapter 17, 
“Probability Distribution Function and Inverses”). The formula for the difference μi - μj is given by

where tf;ν is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on the Bonferroni (additive) 
inequality (Miller, page 8). The method uses the t distribution. The formula for the difference μi - μj is given 
by

Scheffé method: The Scheffé method is an overly conservative method for simultaneous confidence intervals 
on pairwise difference of means. The method is applicable for simultaneous confidence intervals on all con-
trasts, i.e., all linear combinations 

The method can be recommended here only if a large number of confidence intervals on contrasts in addition 
to the pairwise differences of means are to be constructed. The method uses the F distribution (see IMSL rou-
tine FIN, in Chapter 17, “Probability Distribution Function and Inverses”. The formula for the difference μi - μj is 
given by

where F1-α;k-1,ν is the (1 - α)100 percentage point of the F distribution with k -1 and ν degrees of freedom.

One-at-a-time t method (Fisher’s LSD): The one-at-a-time t method is the method appropriate for construct-
ing a single confidence interval. The confidence percentage input is appropriate for one interval at a time. 
The method has been used widely in conjunction with the overall test of the null hypothesis μ1 = μ2 = … = μk 
by the use of the F statistic. Fisher’s LSD (least significant difference) test is a two-stage test that proceeds to 
make pairwise comparisons of means only if the overall F test is significant.
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Milliken and Johnson (1984, page 31) recommend LSD comparisons after a significant F only if the number of 
comparisons is small and the comparisons were planned prior to the analysis. If many unplanned compari-
sons are made, they recommend Scheffe’s method. If the F test is insignificant, a few planned comparisons 
for differences in means can still be performed by using either Tukey, Tukey-Kramer, Dunn-Šidák or Bonfer-
roni methods. Because the F test is insignificant, Scheffe’s method will not yield any significant differences. 
The formula for the difference μi - μj is given by 

Comments
Workspace may be explicitly provided, if desired, by use of S2IPM/DS2IPM. The reference is:

CALL S2IPM (NGROUP, NI, YMEANS, DFS2, S2, IMETH, CONPER, IPRINT, STAT, LDSTAT, WK, IWK)
The additional arguments are as follows:

WK — Real work vector of length NGROUP.

IWK — Integer work vector of length NGROUP.

Example

Simultaneous 99% confidence intervals are computed for all pairwise comparisons of 5 means from a one-
way analysis of variance design. In order to compare the results of each method, all the options for IMETH are 
used for input. The data are given by Kirk (1982, Table 3.5-1, page 117). In the output, pairs of means declared 
not equal are indicated by the letter N. The other pairs of means (for which there is insufficient evidence from 
the data to declare the means are unequal) are indicated by an equal sign (=).

      USE SCIPM_INT

      IMPLICIT   NONE
      INTEGER    LDSTAT, NGROUP
      PARAMETER  (NGROUP=5, LDSTAT=NGROUP*(NGROUP-1)/2)
!
      INTEGER    IMETH, IPRINT, NI(NGROUP)
      REAL       CONPER, DFS2, S2, STAT(LDSTAT,5), YMEANS(NGROUP)
!
      DATA YMEANS/36.7, 48.7, 43.4, 47.2, 40.3/
      DATA NI/10, 10, 10, 10, 10/
!
      DFS2   = 45.0
      S2     = 28.8
      CONPER = 99.0
      IPRINT = 1
      DO 10  IMETH=0, 4
      CALL SCIPM (NI, YMEANS, DFS2, S2, STAT, IMETH=IMETH, &
      CONPER=CONPER, IPRINT=IPRINT)
   10 CONTINUE
      END
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Output

                     Simultaneous Confidence Intervals
                    for All Pairwise Differences of Means
                             (Tukey Method)

                                        99.0% Confidence Interval
                                       --------------------------

    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -20.261        -3.739
 =        1        3             -6.7       -14.961         1.561
 N        1        4            -10.5       -18.761        -2.239
 =        1        5             -3.6       -11.861         4.661
 =        2        3              5.3        -2.961        13.561
 =        2        4              1.5        -6.761         9.761
 N        2        5              8.4         0.139        16.661
 =        3        4             -3.8       -12.061         4.461
 =        3        5              3.1        -5.161        11.361
 =        4        5              6.9        -1.361        15.161
                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                        (Dunn-Sidak Method)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -20.445        -3.555
 =        1        3             -6.7       -15.145         1.745
 N        1        4            -10.5       -18.945        -2.055
 =        1        5             -3.6       -12.045         4.845
 =        2        3              5.3        -3.145        13.745
 =        2        4              1.5        -6.945         9.945
 =        2        5              8.4        -0.045        16.845
 =        3        4             -3.8       -12.245         4.645
 =        3        5              3.1        -5.345        11.545
 =        4        5              6.9        -1.545        15.345

                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                        (Bonferroni Method)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -20.449        -3.551
 =        1        3             -6.7       -15.149         1.749
 N        1        4            -10.5       -18.949        -2.051
 =        1        5             -3.6       -12.049         4.849
 =        2        3              5.3        -3.149        13.749
 =        2        4              1.5        -6.949         9.949
 =        2        5              8.4        -0.049        16.849
 =        3        4             -3.8       -12.249         4.649
 =        3        5              3.1        -5.349        11.549
 =        4        5              6.9        -1.549        15.349
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                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                         (Scheffe Method)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -21.317        -2.683
 =        1        3             -6.7       -16.017         2.617
 N        1        4            -10.5       -19.817        -1.183
 =        1        5             -3.6       -12.917         5.717
 =        2        3              5.3        -4.017        14.617
 =        2        4              1.5        -7.817        10.817
 =        2        5              8.4        -0.917        17.717
 =        3        4             -3.8       -13.117         5.517
 =        3        5              3.1        -6.217        12.417
 =        4        5              6.9        -2.417        16.217
                 Simultaneous Confidence Intervals
               for All Pairwise Differences of Means
                (One-at-a-Time t Method--LSD Test)

                                       99.0% Confidence Interval
                                      --------------------------
    Group I  Group J  Mean I - Mean J   Lower Limit   Upper Limit
 N        1        2            -12.0       -18.455        -5.545
 N        1        3             -6.7       -13.155        -0.245
 N        1        4            -10.5       -16.955        -4.045
 =        1        5             -3.6       -10.055         2.855
 =        2        3              5.3        -1.155        11.755
 =        2        4              1.5        -4.955         7.955
 N        2        5              8.4         1.945        14.855
 =        3        4             -3.8       -10.255         2.655
 =        3        5              3.1        -3.355         9.555
 N        4        5              6.9         0.445        13.355
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SNKMC

Performs Student-Newman-Keuls multiple comparison test.

Required Arguments
YMEANS — Vector of length NGROUP containing the means.  (Input)
SEMEAN — Effective estimated standard error of a mean.  (Input) 

In fixed effects models, SEMEAN equals the estimated standard error of a mean. For example, in a one-
way model 

where s2 is the estimate of σ2 and n is the number of responses in a sample mean. In models with ran-
dom components, use 

where SEDIF is the estimated standard error of the difference of two means.
DFSE — Degrees of freedom associated with SEMEAN.  (Input)
ALPHA — Significance level of test.  (Input) 

ALPHA must be in the interval [0.01, 0.10].
IEQMNS — Vector of length NGROUP - 1 indicating the size of groups of means declared to be equal.  

(Output) 
IEQMNS(I) = J indicates the I-th smallest mean and the next J - 1 larger means are declared equal. 
IEQMNS(I) = 0 indicates no group of means starts with the I-th smallest mean.

Optional Arguments
NGROUP — Number of groups under consideration.  (Input)

Default: NGROUP = size (YMEANS,1).
IPRINT — Printing option.  (Input) 

Default: IPRINT = 0.

FORTRAN 90 Interface
Generic: CALL SNKMC (YMEANS, SEMEAN, DFSE, ALPHA, IEQMNS [, …])
Specific: The specific interface names are S_SNKMC and D_SNKMC.

FORTRAN 77 Interface
Single: CALL SNKMC (NGROUP, YMEANS, SEMEAN, DFSE, ALPHA, IPRINT, IEQMNS)
Double: The double precision name is DSNKMC.

IPRINT Action

0 No printing is performed.

1 Printing is performed.
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Description

Routine SNKMC performs a multiple comparison analysis of means using the Student-Newman-Keuls 
method. The null hypothesis is equality of all possible ordered subsets of a set of means. This null hypothesis 
is tested using the studentized range for each of the corresponding subsets of sample means. The method is 
discussed in many elementary statistics texts, e.g., Kirk (1982, pages 123-125).

Comments
Workspace may be explicitly provided, if desired, by use of S2KMC/DS2KMC. The reference is:

CALL S2KMC (NGROUP, YMEANS, SEMEAN, DFSE, ALPHA, IPRINT, IEQMNS, WK, IWK)
The additional arguments are as follows:

WK — Vector of length NGROUP containing YMEANS in ascending order.  (Output)

IWK — Work vector of length 2 * NGROUP.

Example

A multiple comparisons analysis is performed using data discussed by Kirk (1982, pages 123-125). In the 
output, means that are not connected by a common underline are declared different.

      USE UMACH_INT
      USE SNKMC_INT

      IMPLICIT   NONE
      INTEGER    IEQMNS(4), IPRINT, N, NOUT
      REAL       ALPHA, DFSE, S2, SEMEAN, SQRT, YMEANS(5)
      INTRINSIC  SQRT
!
      DATA YMEANS/36.7, 48.7, 43.4, 47.2, 40.3/
!
      CALL UMACH (2, NOUT)
      S2     = 28.8
      N      = 10
      SEMEAN = SQRT(S2/N)
      DFSE   = 45.0
      ALPHA  = .01
      IPRINT = 1
      CALL SNKMC (YMEANS, SEMEAN, DFSE, ALPHA, IEQMNS, IPRINT=IPRINT)
      WRITE (NOUT,99999) IEQMNS
99999 FORMAT (' IEQMNS = ', 4I3)
      END

Output

 Group           1           5           3           4           2
 Mean        36.70       40.30       43.40       47.20       48.70

        AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
                    BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
                                CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SNKMC         Chapter 4: Analysis of Variance      495



 IEQMNS =   3  3  3  0
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CIDMS

Computes a confidence interval on a variance component estimated as proportional to the difference in two 
mean squares in a balanced complete experimental design.

Required Arguments
DF1 — Degrees of freedom for effect 1.  (Input)
EFMS1 — Mean square for effect 1.  (Input)
DF2 — Degrees of freedom for effect 2.  (Input)
EFMS2 — Mean square for effect 2.  (Input)
VCHAT — Estimated variance component.  (Input) 

VCHAT = (EFMS1 - EFMS2)/a, where a is some positive constant.
CONINT — Vector of length 2 containing the lower and upper endpoints of the confidence interval, 

respectively.  (Output)

Optional Arguments
CONPER — Confidence level for two-sided interval estimate on the variance component, in percent.  

(Input) 
Default: CONPER = 95.0.
A CONPER percent interval is computed, hence, CONPER must be in the interval [0.0, 100.0). CONPER 
often will be 90.0, 95.0, or 99.0. For a one-sided interval with confidence level ONECL, ONECL in the 
interval [50.0, 100.0), set 
CONPER = 100.0 - 2.0 * (100.0 - ONECL).

IMETH — Method option.  (Input) 
Default: IMETH = 0.

FORTRAN 90 Interface
Generic: CALL CIDMS (DF1, EFMS1, DF2, EFMS2, VCHAT, CONINT [, …])
Specific: The specific interface names are S_CIDMS and D_CIDMS.

FORTRAN 77 Interface
Single: CALL CIDMS (DF1, EFMS1, DF2, EFMS2, VCHAT, CONPER, IMETH, CONINT)
Double: The double precision name is DCIDMS.

Description

Routine CIDMS computes a confidence interval on a variance component that has been estimated as propor-
tional to the difference of two mean squares. Let

IOPT Action

0 Graybill’s Method

1 Bross’ Method
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(stored in EFMS1 and EFMS2, respectively) be the two mean squares. The variance component estimate

(stored in VCHAT) is assumed to be of the form

where a is some positive constant. Two methods for computing a confidence interval on σ2 can be used. For 
IMETH = 0, the method discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620) is used. 
The result was proposed by Williams (1962). For IMETH = 1, the method due to Bross (1950) and discussed by 
Anderson and Bancroft (1952, page 322) is used. 

Routine CIDMS can also be used when a variance component is estimated by the difference of two linear 
combinations of mean squares, each linear combination contains nonnegative coefficients, and the two linear 
combinations do not use any of the same mean squares. Let

be the two linear combinations (stored in EFMS1 and EFMS2, respectively). The variance component estimate

(stored in VCHAT) is assumed to be of the form 

where a is some positive constant, the ci’s and di’s are nonnegative, and for i = 1, 2, …, k, cidi = 0. Satterthwaite 
(1946) approximations as discussed by Graybill (1976, pages 642- 643) can be used to arrive at approximate 
degrees of freedom for each linear combination of mean squares for input into CIDMS. Let νi be the degrees of 
freedom associated with the i-th mean square

The degrees of freedom stored in DF1 and DF2 should be taken to be

and
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respectively.

Comments
Informational error

Example

This example computes a confidence interval on a variance component estimated by a difference of mean 
squares using a nested design discussed by Graybill (1976, pages 635-636). The nested design gave the fol-
lowing analysis of variance table: 

A confidence interval of

is computed using the method of Graybill. (Note that the lower endpoint of the confidence interval, which is 
3.136, is given incorrectly by Graybill [page 636]. Graybill uses an incorrect value for F0.975;5, 18 in his 
computations.)

      USE CIDMS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       CONINT(2), DF1, DF2, EFMS1, EFMS2, VCHAT
!
      DF1    = 5.0
      EFMS1  = 385.4
      DF2    = 18.0
      EFMS2  = 85.4
      VCHAT  = (EFMS1-EFMS2)/12.0
!
      CALL CIDMS (DF1, EFMS1, DF2, EFMS2, VCHAT, CONINT)
!

Type Code Description

1 1 One or more endpoints of CI are set to zero.

Source DF MS EMS

A 5 385.4

B within A 18 85.4

Error 48 12.3
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      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) CONINT
99999 FORMAT (' Lower confidence limit', F9.3, /' Upper confidence ', &
            'limit', F9.3)
      END

Output

Lower confidence limit    3.136
Upper confidence limit  186.464
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ROREX

Reorders the responses from a balanced complete experimental design.

Required Arguments
NL — Vector of length NF containing the number of levels for each of the NF factors.  (Input) 

NL(I) is the number of levels for the I-th factor.
IORD — Vector of length NF indicating the ordering of the responses in vector YIN.  (Input) 

IORD(I) = J means the model subscript corresponding to factor I is altering J-th most rapidly.
YIN — Vector of length NL(1) * NL(2) * … * NL(NF) containing the responses in the order specified by 

IORD.  (Input)
JORD — Vector of length NF indicating the new ordering of the responses in vector YOUT.  (Input) 

JORD (K) = L means the model subscript corresponding to factor K is altering L-th most rapidly.
YOUT — Vector of length NL(1) * NL(2) * … * NL(NF) containing the responses in the order specified by 

JORD.  (Output)

Optional Arguments
NF — Number of factors (number of subscripts) in the model, including error.  (Input)

Default: NF = size (NL,1).

FORTRAN 90 Interface
Generic: CALL ROREX (NL, IORD, YIN, JORD, YOUT [, …])
Specific: The specific interface names are S_ROREX and D_ROREX.

FORTRAN 77 Interface
Single: CALL ROREX (NF, NL, IORD, YIN, JORD, YOUT)
Double: The double precision name is DROREX.

Description

Typically, responses from a balanced complete experimental design are stored in a pattern that takes advan-
tage of the design structure, consequently, the full set of model subscripts is not needed to identify each 
response. Routine ROREX assumes the usual pattern, which requires that one model subscript changes most 
rapidly, another changes next most rapidly, and so on, throughout the input data vector YIN. In many pro-
grams, including IMSL programs for this kind of data, the computations and ordering of output are 
dependent on which subscripts are moving most rapidly relative to others, within the pattern, in the input 
data. Data may be available in a form that needs reordering within the pattern before entry to an analysis 
routine. Routine ROREX reorders data in YIN, as controlled by JORD, and returns the reordered data in YOUT. 

Let k (stored in NF) be the number of factors, and for j = 1, 2, …, k, let nj (stored as the j-th element of NL) be 
the number of levels in the j-th factor. Let the data in YIN be denoted by 
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where for j = 1, 2, …, k, ij = 1, 2, …, nj. For every response in YIN, let pr denote the model subscript ij that is 
altering r-th most rapidly for r and j in the set {1, 2, …, k} For every response in YOUT, let qs have a similar 
definition. Let Pr and Qs equal the number of levels for the factor whose model subscript is altering r-th and 
s-th most rapidly in YIN and YOUT, respectively. 

The m-th element of YIN, denoted by 

with

can be found using p1 given by

and then for r = 2, 3, …, k, pr given by

The m-th element of YOUT, denoted by 

is given by replacing the p’s by q’s in the formulas in the preceding equations.

Comments
Workspace may be explicitly provided, if desired, by use of R2REX/DR2REX. The reference is:

CALL R2REX (NF, NL, IORD, YIN, JORD, YOUT, IWK)
The additional argument is:

IWK — Work vector of length 4 * NF.
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Example

The input responses yijk are ordered in YIN so that the subscript i varies most rapidly, j the next most rapidly, 
and k the least rapidly. Routine ROREX is used to reorder the responses into standard order, i.e., with the sub-
script i varying least rapidly, j the next most rapidly, and k the most rapidly.

      USE ROREX_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    NF, NOBS
      PARAMETER  (NF=3, NOBS=24)
!
      INTEGER    IORD(NF), JORD(NF), NL(NF)
      REAL       YIN(NOBS), YOUT(NOBS)
      CHARACTER  CLABEL(1)*6, RLABEL(1)*4
      DATA       CLABEL/'NUMBER'/, RLABEL/'NONE'/
!
      DATA NL/2, 3, 4/
      DATA IORD/1, 2, 3/
      DATA JORD/3, 2, 1/
      DATA YIN/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, &
          11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, &
          21.0, 22.0, 23.0, 24.0/
!
      CALL ROREX (NL, IORD, YIN, JORD, YOUT)
!
      CALL WRRRL ('YOUT', YOUT, RLABEL, CLABEL, 1, NOBS, 1, 0, '(F4.1)')
      END

Output

                                    YOUT
  1     2     3     4     5     6     7     8     9    10    11    12    13
1.0   7.0  13.0  19.0   3.0   9.0  15.0  21.0   5.0  11.0  17.0  23.0   2.0

 14    15    16    17    18    19    20    21    22    23    24
8.0  14.0  20.0   4.0  10.0  16.0  22.0   6.0  12.0  18.0  24.0
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Usage Notes

Routines for modeling and analyzing a two- or higher-dimensional contingency table are described in this 
chapter. Also included are routines for modeling responses from some discrete distributions when discrete or 
continuous covariates are measured.

The Basic Data Structures

The most common of the three data structures used by the routines in this chapter is a multidimensional (or 
multi-way) contingency table input as a real vector with length equal to the product of the number of catego-
ries for each dimension. This structure may be obtained from a data matrix X via the routine FREQ in Chapter 
1, “Basic Statistics”. Alternatively, multi-way tables may be created and input directly by the user. The 
multi-way structure is used by all of the log-linear modeling routines (PRPFT, CTLLN, CTPAR, CTASC, and 
CTSTP), and is also used in the randomization tests routine, CTRAN.

A second data structure used by the categorical generalized linear models routine, CTGLM, is the data matrix 
X. In CTGLM (and elsewhere), if X has many identical rows, at least on the variables of interest, consider using 
Chapter 1 routine CSTAT to add a frequency variable to a reduced matrix X. The transposed output from this 
routine can replace X as input to CTGLM, and CTGLM will perform its computations faster (with a linear speed 
up) on the reduced matrix.

Finally, two-way tables are input into routines CTCHI, CTTWO, CTPRB, CTEPR, and CTWLS as two-dimen-
sional real arrays. As with the multidimensional arrays, two-dimensional arrays may be created via Chapter 1 
routine FREQ, in which case the leading dimension must equal the number of categories for the first dimen-
sion in the table, or they can be created and input directly by the user. Alternatively, the routine TWFRQ from 
Chapter 1 may be used to obtain the two-way frequency table.

Types of Analysis

Routines CTCHI (r × c) and CTTWO (2 × 2) (see Chapter 1, “Basic Statistics”) compute many statistics of inter-
est in a two-way table. Statistics computed by these routines include the usual chi-squared statistics, 
measures of association, Kappa, and many others. Asymptotic statistics for a two-way table that are not com-
puted by either CTCHI or CTTWO can probably be computed by routines CTRAN or CTWLS, but note that these 
latter two routines require more setup since they require that the user indicate how the statistics are to be 
computed. Exact probabilities for two-way tables can be computed by CTPRB, but this routine uses the total 
enumeration algorithm and, thus, often uses orders of magnitude more computer time that CTEPR, which 
computes the same probabilities by use of the network algorithm (but can still be quite expensive).

The routines in the second section are all concerned with hierarchical log-linear models (see, e.g., Bishop, 
Fienberg, and Holland 1975). The routines in Chapter 1, “Basic Statistics” will often be used to obtain the 
multi-dimensional tables input into these routines, or the table will be input directly by the user. If the hierar-
chical is not known, routine CTASC will often be the first routine considered. The partial association statistics 
computed by this routine can be used to obtain a rough estimate of the model to be used. This rough model 
can then be refined through the use of CTSTP, which does stepwise model building. Of course, both of these 
routines are subject to the usual problems associated with building models once the data have been collected: 
the resulting models may not be correct.
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Once a model has been selected (provisional or otherwise), routine CTLLN can be used to compute and print 
many model statistics (parameter estimates, residuals, goodness of fit tests, etc.). If only the parameter esti-
mates and associated variance/covariance matrix are needed, CTPAR can be used instead. Both of these 
routines can compute estimates when sampling and/or structural zeros (cells in the table with observed or 
restricted counts of zero, respectively) are present in the table, as can all routines in this section.

The algorithm underlying all of the routines in the second section is the iterative proportional fitting algo-
rithm, which is implemented in routine PRPFT. When structural or sampling zeros are present in the table, 
this algorithm can be quite slow to converge. Also, only the expected cell counts are returned by PRPFT, it 
can be quite difficult to determine degrees of freedom when structural zeros are present in the data. Because 
a structural zero is a restriction on the parameter space, 1 degree of freedom must be subtracted for each 
structural zero in the multiway table. The difficulty is in determining where the subtraction should occur. All 

routines in this section use a Cholesky factorization of XT X where X is the “design matrix.” This is used to 
determine which effects should lose degrees of freedom because of structural zeros. Sampling zeros, 
although they can lead to infinite parameter estimates, do not subtract from the total degrees of freedom. See 
Clarkson and Jennrich (1991), or Baker, Clarke, and Lane (1985) for details.

Routine CTRAN computes generalized Mantel-Haenszel statistics in stratified r × c tables. Generalized 
Mantel-Haenszel statistics assume that the “direction” of departure from the null hypothesis is consistent 
from one table to the next. Under this assumption, statistics computed for each table are pooled across all 
strata yielding a more powerful test than could be obtained otherwise. The statistics computed include mea-
sures of correlation, location, and independence using user selected row and/or column scores. Details can 
be found in (Koch, Amara, and Atkinson 1983) or in the “Algorithm” section for CTRAN.

The routine CTGLM in the fourth section is concerned with generalized linear models (see McCullagh and 
Nelder 1983) in discrete data. This routine may be used to compute estimates and associated statistics in pro-
bit, logistic, minimum extreme value, Poisson, negative binomial (with known number of successes), and 
logarithmic models. Classification variables as well as weights, frequencies and additive constants may be 
used so that quite general linear models can be fit. Residuals, a measure of influence, the coefficient esti-
mates, and other statistics are returned for each model fit. When infinite parameter estimates are required, 
extended maximum likelihood estimation may be used. Log-linear models may be fit in CTGLM through the 
use of Poisson regression models. Results from Poisson regression models involving structural and sampling 
zeros will be identical to the results obtained from the log-linear model routines but will be fit by a 
quasi-Newton algorithm rather than through iterative proportional fitting.

The weighted least-squares analysis of Grizzle, Starmer, and Koch (1969) is implemented in routine CTWLS. 
In this routine, the user first transforms the observed probability estimates (in predefined ways) and then fits 
a linear model to the transformed estimates using generalized least squares. Multivariate hypotheses associ-
ated with the coefficient estimates for the linear model fit may then be tested. In this way, many statistics of 
interest such as generalized Kappa statistics and parameter estimates in logistic models may be estimated. Of 
course, the logistic models fit by CTWLS use a generalized least-squares criterion rather than the maximum 
likelihood criterion used to compute the logistic model estimates in CTGLM. The generalized least-squares 
estimates will generally differ somewhat from estimates computed via maximum likelihood.
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Other Routines

The routines in Chapter 1, “Basic Statistics” may be used to create the data structures discussed above. These 
routines can also create one-dimensional frequency tables, which may then be used by routine CHIGF 
(Chapter 7, “Tests of Goodness of Fit and Randomness”) to compute chi-squared goodness-of-fit test statistics or 
with routines VHSTP or HHSTP (see Chapter 16, “Line Printer Graphics”) to prepare histograms. Routines 
CTRHO, TETCC , BSCAT, and BSPBS  (see Chapter 3, “Correlation”) may be used to compute some measures of 
correlation in two-way contingency tables.
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CTTWO

Performs a chi-squared analysis of a 2 by 2 contingency table.

Required Arguments
TABLE — 2 by 2 matrix containing the observed counts in the contingency table.  (Input)
EXPECT — 3 by 3 matrix containing the expected values of each cell in TABLE under the null hypothesis 

of independence, in the first 2 rows and 2 columns, and the marginal totals in the last row and column.  
(Output)

CHICTR — 3 by 3 matrix containing the contributions to chi-squared for each cell in TABLE in the first 2 
rows and 2 columns.  (Output) 
The last row and column contain the total contribution to chi-squared for that row or column.

CHISQ — Vector of length 15 containing statistics associated with this contingency table.  (Output)
 

The following statistics are based upon the chi-squared statistic CHISQ(1)
.

I CHISQ(I)

1 Pearson chi-squared statistic

2 Probability of a larger Pearson chi-squared

3 Degrees of freedom for chi-squared

4 Likelihood ratio G2 (chi-squared)

5 Probability of a larger G2

6 Probability of a larger G2

7 Yates corrected chi-squared

8 Probability of a larger corrected chi-squared

9 Fisher’s exact test (one tail)

10 Exact mean

11 Exact standard deviation

I CHISQ(I)

12 Phi (Φ)

13 The maximum possible Φ
14 Contingency coefficient P

15 The maximum possible contingency coefficient
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STAT — 24 by 5 matrix containing statistics associated with this table.  (Output)
Each row of the matrix corresponds to a statistic. 

Row Statistic

1 Gamma

2 Kendall’s b

3 Stuart’s c

4 Somers’ D (row)

5 Somers’ D (column)

6 Product moment correlation

7 Spearman rank correlation

8 Goodman and Kruskal  (row)

9 Goodman and Kruskal  (column)

10 Uncertainty coefficient U (normed)

11 Uncertainty Ur|c (row)

12 Uncertainty Uc|r (column)

13 Optimal prediction λ (symmetric)

14 Optimal prediction λr|c (row)

15 Optimal prediction λc|r (column)

16 Optimal prediction λ*
r|c (row)

17 Optimal prediction λ*
c|r (column)

18 Yule’s Q

19 Yule’s Y

20 Crossproduct ratio

21 Log of crossproduct ratio

22 Test for linear trend

23 Kappa

24 McNemar test of symmetry
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If a statistic is not computed, its value is reported as NaN (not a number). The columns are as follows:
 

In the McNemar test, column 1 contains the statistic, column 2 contains the chi-squared degrees of 
freedom, column 4 contains the exact p-value, and column 5 contains the chi-squared asymptotic 
p-value.

Optional Arguments
LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement of the calling 

program.  (Input)
Default: LDTABL = size (TABLE,1).

ICMPT — Computing option.  (Input) 
If ICMPT = 0, all of the values in CHISQ and STAT are computed. ICMPT = 1 means compute only the 
first 11 values of CHISQ, and no values of STAT are computed.
Default: ICMPT = 0.

IPRINT — Printing option.  (Input) 
IPRINT = 0 means no printing is performed. If IPRINT = 1, printing is performed.
Default: IPRINT = 0.

LDEXPE — Leading dimension of EXPECT exactly as specified in the dimension statement of the calling 
program.  (Input)
Default: LDEXPE = size (EXPECT,1).

LDCHIC — Leading dimension of CHI exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDCHI = size (CHI,1).

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDSTAT = size (STAT,1).

FORTRAN 90 Interface
Generic: CALL CTTWO (TABLE, EXPECT, CHICTR, CHISQ, STAT [, …])
Specific: The specific interface names are S_CTTWO and D_CTTWO.

FORTRAN 77 Interface
Single: CALL CTTWO (TABLE, LDTABL, ICMPT, IPRINT, EXPECT, LDEXPE, CHICTR, LDCHIC, 

CHISQ, STAT, LDSTAT)
Double: The double precision name is DCTTWO.

Column Statistic

1 Estimated statistic

2 Its estimated standard error for any parameter value

3 Its estimated standard error under the null hypothesis

4 z-score for testing the null hypothesis

5 p-value for the test in column 4
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Description

Routine CTTWO computes statistics associated with 2 × 2 contingency tables. Always computed are 
chi-squared tests of independence, expected values based upon the independence assumption, contributions 
to chi-squared in a test of independence, and row and column marginal totals. Optionally, when ICMPT = 0, 
CTTWO can compute some measures of association, correlation, prediction, uncertainty, the McNemar test for 
symmetry, a test for linear trend, the odds and the log odds ratio, and the Kappa statistic.

Other IMSL routines that may be of interest include TETCC in Chapter 3, “Correlation” (for computing the 
tetrachoric correlation coefficient) and CTCHI in this chapter (for computing statistics in other than 2 × 2 con-
tingency tables).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote the total count in the table. Let 
pij = pi∙p∙j denote the predicted cell probabilities (under the null hypothesis of independence) where pi∙ and 
p∙j are the row and column relative marginal frequencies, respectively. Next, compute the expected cell 
counts as eij = n pij.

Also required in the following are auv and buv, u, v = 1, …, n. Let (rs, cs) denote the row and column response 
of observation s. Then, auv = 1, 0, or -1, depending upon whether ru < rv, ru = rv, or ru > rv, respectively. The 
buv are similarly defined in terms of the cs’s.

The Chi-squared Statistics

For each cell of the four cells in the table, the contribution to chi-squared is given as (xij - eij)
2/eij. The Pearson 

chi-squared statistic (denoted as X2) is computed as the sum of the cell contributions to chi-squared. It has, of 
course, 1 degree of freedom and tests the null hypothesis of independence, i.e., of H0 : pij = pi∙p∙j. Reject the 

null hypothesis if the computed value of X2 is too large.

Compute G2, the maximum likelihood equivalent of X2, as

G2 is asymptotically equivalent to X2 and tests the same hypothesis with the same degrees of freedom.

Measures Related to Chi-squared (Phi and the Contingency Coefficient)

Two measures related to chi-squared but which do not depend upon sample size are phi,

and the contingency coefficient,
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Since these statistics do not depend upon sample size and are large when the hypothesis of independence is 
rejected, they may be thought of as measures of association and may be compared across tables with different 
sized samples. While P has a range between 0.0 and 1.0 for any given table, the upper bound of P is actually 
somewhat less than 1.0 (see Kendall and Stuart 1979, page 577). In order to understand association within a 
table, consider also the maximum possible P(CHISQ(15)) and the maximum possible ɸ (CHISQ(13)). The sig-

nificance of both statistics is the same as that of the X2 statistic, CHISQ(1).

The distribution of the X2 statistic in finite samples approximates a chi-squared distribution. To compute the 

expected mean and standard deviation of the X2 statistic, Haldane (1939) uses the multinomial distribution 
with fixed table marginals. The exact mean and standard deviation generally differ little from the mean and 
standard deviation of the associated chi-squared distribution.

Fisher’s exact test

Fisher’s exact test is a conservative but uniformly most powerful unbiased test of equal row (or column) cell 
probabilities in the 2 × 2 table. In this test, the row and column marginals are assumed fixed, and the hyper-
geometric distribution is used to obtain the significance level of the test. A one- or a two-sided test is 
possible. See Kendall and Stuart (1979, page 582) for a discussion.

Standard Errors and p-values for Some Measures of Association

In rows 1 through 7 of STAT, estimated standard errors and asymptotic p-values are reported. Routine CTTWO 
computes these standard errors in two ways. The first estimate, in column 2 of matrix STAT, is asymptoti-
cally valid for any value of the statistic. The second estimate, in column 3 of STAT, is only correct under the 
null hypothesis of no association. The z-scores in column 4 are computed using this second estimate of the 
standard errors, and the p-values in column 5 are computed from these z-scores. See Brown and Benedetti 
(1977) for a discussion and formulas for the standard errors in column 3.

Measures of Association for Ranked Rows and Columns

The measures of association ɸ and P do not require any ordering of the row and column categories. Routine 
CTTWO also computes several measures of association for tables in which the rows and column categories 
correspond to ranked observations. Two of these measures, the product-moment correlation and the 
Spearman correlation, are correlation coefficients that are computed using assigned scores for the row and 
column categories. In the product-moment correlation, this score is the cell index, while in the Spearman 
rank correlation, this score is the average of the tied ranks of the row or column marginals. Other scores are 
possible.

Other measures of associations, Gamma, Kendall’s b, Stuart’s c and Somers’ D, are also computed simi-
larly to a correlation coefficient in that the numerator in these statistics in some sense is a “covariance.” In 
fact, these measures differ only in their denominators, their numerators being the “covariance” between the 
auv’s and the buv’s defined earlier. The numerator is computed as 
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Since the product auvbuv = 1 if both auv and buv are 1 or -1, it is easy to show that the “covariance” is twice the 
total number of agreements minus the number disagreements between the row and column variables where 
a disagreement occurs when auvbuv = -1.

Kendall’s b is computed as the correlation between the auv’s and the buv’s (see Kendall and Stuart 1979, page 

583). Stuart suggested a modification to the denominator of  in which the denominator becomes the largest 

possible value of the “covariance.” This value turns out to be approximately 2n2 in 2 × 2 tables, and this is 

the value used in the denominator of Stuart’s c. For large n, c ≈ 2 b.

Gamma can be motivated in a slightly different manner. Because the “covariance” of the auv’s and the buv’s 
can be thought of as two times the number of agreements minus the number of disagreements [2(A - D), 
where A is the number of agreements and D is the number of disagreements], gamma is motivated as the 
probability of agreement minus the probability of disagreement, given that either agreement or disagreement 
occurred. This is just (A - D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’ D for rows can be 
thought of as the regression coefficient for predicting auv from buv. Moreover, Somers’ D for rows is the prob-
ability of agreement minus the probability of disagreement, given that the column variable, buv, is not zero. 
Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall and Stuart (1979, 
starting on page 592).

The crossproduct ratio is also sometimes thought of as a measure of association (see Bishop, Feinberg and 
Holland 1975, page 14). It is computed as:

The log of the crossproduct ratio is the log of this quantity.

The Yule’s Q and Yule’s Y are related to the cross product ratio. They are computed as:

Measures of Prediction and Uncertainty

The Optimal Prediction Coefficients

The measures in this section do not require any ordering of the row or column variables. They are based 
entirely upon probabilities. Most are discussed in Bishop, Feinberg, and Holland (1975, page 385).
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Consider predicting or classifying the column variable for a given value of the row variable. The best classifi-
cation for each row under the null hypothesis of independence is the column that has the highest marginal 
probability (and thus the highest probability for the row under the independence assumption). The probabil-
ity of misclassification is then one minus this marginal probability. On the other hand, if independence is not 
assumed so that the row and columns variables are dependent, then within each row one would classify the 
column variables according to the category with the highest row conditional probability. The probability of 
misclassification for the row is then one minus this conditional probability.

Define the optimal prediction coefficient λc|r for predicting columns from rows as the proportion of the prob-
ability of misclassification that is eliminated because the random variables are not independent. It is 
estimated by:

where m is the index of the maximum estimated probability in the row (pim) or row margin (p∙m). A similar 
coefficient is defined for predicting the rows from the columns. The symmetric version of the optimal predic-
tion λ is obtained by summing the numerators and denominators of λr|c and λc|r and dividing. Standard 
errors for these coefficients are given in Bishop, Feinberg, and Holland (1975, page 388).

A problem with the optimal prediction coefficients λ is that they vary with the marginal probabilities. One 
way to correct for this is to use row conditional probabilities. The optimal prediction λ* coefficients are 
defined as the corresponding λ coefficients in which one first adjusts the row (or column) marginals to the 
same number of observations. This yields

where i indexes the rows and j indexes the columns, and pj|i is the (estimated) probability of column j given 
row i.

λ*
r|c

is similarly defined.

Goodman and Kruskal 

A second kind of prediction measure attempts to explain the proportion of the explained variation of the row 
(column) measure given the column (row) measure. Define the total variation in the rows to be 

This is 1/(2n) times the sums of squares of the auv’s.
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With this definition of variation, the Goodman and Kruskal  coefficient for rows is computed as the reduc-
tion of the total variation for rows accounted for by the columns divided by the total variation for the rows. 
To compute the reduction in the total variation of the rows accounted for by the columns, define the total 
variation for the rows within column j as 

Define the total variation for rows within columns as the sum of the qj’s. Consistent with the usual methods 
in the analysis of variance, the reduction in the total variation is the difference between the total variation for 
rows and the total variation for rows within the columns.

Goodman and Kruskal’s  columns is similarly defined. See Bishop, Feinberg, and Holland (1975, page 391) 
for the standard errors.

The Uncertainty Coefficients

The uncertainty coefficient for rows is the increase in the log-likelihood that is achieved by the most general 
model over the independence model divided by the marginal log-likelihood for the rows. This is given by

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty coefficient contains 
the same numerator as Ur|c and Uc|r but averages the denominators of these two statistics. Standard errors 
for U are given in Brown (1983).

Kruskal-Wallis

The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test that assumes that the column 
variable is monotonically ordered. It tests the null hypothesis that the row populations are identical, using 
average ranks for the column variable. This amounts to a test of Ho : p1∙ = p2∙. The Kruskal-Wallis statistic for 
columns is similarly defined. Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend

The test for a linear trend in the column probabilities assumes that the row variable is monotonically ordered. 
In this test, the probability for column 1 is predicted by the row index using weighted simple linear regres-
sion. The slope is given by
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where

is the average row index. An asymptotic test that the slope is zero may be obtained as the usual large sample 
regression test of zero slope.

Kappa

Kappa is a measure of agreement. In the Kappa statistic, the rows and columns correspond to the responses 
of two judges. The judges agree along the diagonal and disagree off the diagonal. Let po = p11 + p22 denote the 
probability that the two judges agree, and let pc = p1∙p∙1 + p2∙p∙2 denote the expected probability of agree-
ment under the independence model. Kappa is then given by (po - pc)/(1 - pc).

McNemar Test

The McNemar test is also a test of symmetry in square contingency tables. It tests the null hypothesis 
Ho : θ ij = θ ji. The test statistic with 1 degree of freedom is computed as

Its exact probability may be computed via the binomial distribution.

Comments

Informational errors
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Example

The following example from Kendall and Stuart (1979, pages 582-583) compares the teeth in breast-fed versus 
bottle-fed babies.

      USE CTTWO_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDCHIC, LDEXPE, LDSTAT, LDTABL
      PARAMETER  (IPRINT=1, LDCHIC=3, LDEXPE=3, LDSTAT=24, LDTABL=2)
!
      REAL       CHICTR(LDCHIC,3), CHISQ(15), EXPECT(LDEXPE,3), &
                 STAT(LDSTAT,5), TABLE(LDTABL,2)
!
      DATA TABLE/4, 1, 16, 21/

!
      CALL CTTWO (TABLE, EXPECT, CHICTR, CHISQ, STAT, IPRINT=IPRINT)
      END

Output

       TABLE
         1       2
 1    4.00   16.00
 2    1.00   21.00

                Expected values
                Col 1       Col 2    Marginal
 Row 1         2.3810     17.6190     20.0000
 Row 2         2.6190     19.3810     22.0000
 Marginal      5.0000     37.0000     42.0000

       Contributions to chi-squared
             Col 1       Col 2       Total
 Row 1      1.1010      0.1488      1.2497
 Row 2      1.0009      0.1353      1.1361
 Total      2.1018      0.2840      2.3858

Type Code Description

4 8 At least one marginal total is zero. The remainder of the analysis cannot 
proceed.

3 9 Some expected table values are less than 1.0. Some asymptotic p-values may 
not be good.

3 10 Some expected table values are less than 2.0. Some asymptotic p-values may 
not be good.

3 11 20% of the table expected values are less than 5.
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              CHISQ
                               1
 Pearson chi-squared      2.3858
 p-value                  0.1224
 Degrees of freedom       1.0000
 Likelihood ratio         2.5099
 p-value                  0.1131
 Yates chi-squared        1.1398
 p-value                  0.2857
 Fisher (one tail)        0.1435
 Fisher (two tail)        0.1745
 Exact mean               1.0244
 Exact std dev            1.3267
 Phi                      0.2383
 Max possible phi         0.3855
 Contingency coef.        0.2318
 Max possible coef.       0.3597

                                    STAT
                  Statistic    Std err.  Std err. 0     t-value     p-value
Gamma                0.6800      0.3135      0.4395      1.5472      0.1218
Kendall’s tau B      0.2383      0.1347      0.1540      1.5472      0.1218
Stuart’s tau C       0.1542      0.0997         NaN      1.5472      0.1218
Somers’ D row        0.1545      0.0999      0.0999      1.5472      0.1218
Somers’ D col        0.3676      0.1966      0.2376      1.5472      0.1218
Correlation          0.2383      0.1347      0.1540      1.5472      0.1218
Spearman rank        0.2383      0.1347      0.1540      1.5472      0.1218
GK tau row           0.0568      0.0641         NaN         NaN         NaN
GK tau col           0.0568      0.0609         NaN         NaN         NaN
U normed             0.0565      0.0661         NaN         NaN         NaN
U row                0.0819      0.0935         NaN         NaN         NaN
U col                0.0432      0.0516         NaN         NaN         NaN
Lamda sym            0.1200      0.0779         NaN         NaN         NaN
Lamda row            0.0000      0.0000         NaN         NaN         NaN
Lamda col            0.1500      0.1031         NaN         NaN         NaN
Lamda star row       0.0000      0.0000         NaN         NaN         NaN
Lamda star col       0.1761      0.1978         NaN         NaN         NaN
Yule’s Q             0.6800      0.3135      0.4770      1.4255      0.1540
Yule’s Y             0.3923      0.2467      0.2385      1.6450      0.1000
Ratio                5.2500         NaN         NaN         NaN         NaN
Log ratio            1.6582      1.1662      0.9540      1.7381      0.0822
Linear trend        -0.1545      0.1001         NaN     -1.5446      0.1224
Kappa                0.1600      0.1572      0.1600      1.0000      0.3173
McNemar             13.2353      1.0000         NaN      0.0000      0.0003
*** WARNING  ERROR 11 from CTTWO.  Twenty percent of the table expected
***          values are less than 5.0.
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CTCHI

Performs a chi-squared analysis of a two-way contingency table.

Required Arguments
TABLE — NROW by NCOL matrix containing the observed counts in the contingency table.  (Input)
EXPECT — (NROW + 1) by (NCOL + 1) matrix containing the expected values of each cell in TABLE, under 

the null hypothesis, in the first NROW rows and NCOL columns and the marginal totals in the last row 
and column.  (Output)

CHICTR — (NROW +1) by (NCOL +1) matrix containing the contributions to chi-squared for each cell in 
TABLE in the first NROW rows and NCOL columns.  (Output) 
The last row and column contain the total contribution to chi-squared for that row or column.

CHISQ — Vector of length 10 containing chi-squared statistics associated with this contingency table.  
(Output)

The following statistics are based upon the chi-squared statistic CHISQ(1). If ICMPT = 1, NaN (not a num-
ber) is reported.

 

STAT — 23 by 5 matrix containing statistics associated with this table.  (Output)
If ICMPT = 1, STAT is not referenced and may be a vector of length 1. Each row of the matrix corre-
sponds to a statistic.

 

I CHISQ(I)

1 Pearson chi-squared statistic

2 Probability of a larger Pearson chi-squared

3 Degrees of freedom for chi-squared

4 Likelihood ratio G2 (chi-squared)

5 Probability of a larger G2

6 Exact mean

7 Exact standard deviation

I CHISQ(I)

8 Phi

9 Contingency coefficient

10 Cramer’s V

Row Statistic

1 Gamma

2 Kendall’s b

3 Stuart’s c

4 Somers’ D for rows given columns
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If a statistic cannot be computed, its value is reported as NaN (not a number). The columns are as follows: 

In the McNemar tests, column 1 contains the statistic, column 2 contains the chi-squared degrees of free-
dom, column 4 contains the exact p-value (one degree of freedom only), and column 5 contains the 
chi-squared asymptotic p-value. The Kruskal-Wallis test is the same except no exact p-value is 
computed.

5 Somers’ D for columns given rows

6 Product moment correlation

7 Spearman rank correlation

8 Goodman and Kruskal  for rows given columns

9 Goodman and Kruskal  for columns given rows

10 Uncertainty coefficient U (symmetric)

11 Uncertainty Ur|c (rows)

12 Uncertainty Uc|r (columns)

13 Optimal prediction λ (symmetric)

14 Optimal prediction λr|c (rows)

15 Optimal prediction λc|r (columns)

16 Optimal prediction λ*
r|c (rows)

17 Optimal prediction λ*
c|r (columns)

18 Test for linear trend in row probabilities if NROW= 2. If NROW is not 2, a 
test for linear trend in column probabilities if NCOL= 2.

19 Kruskal-Wallis test for no row effect

20 Kruskal-Wallis test for no column effect

21 Kappa (square tables only)

22 McNemar test of symmetry (square tables only)

23 McNemar one degree of freedom test of symmetry (square tables only)

Column Statistic

1 The estimated statistic

2 Its standard error for any parameter value

3 Its standard error under the null hypothesis

4 The t value for testing the null hypothesis

5 p-value of the test in column 4

Row Statistic
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Optional Arguments
NROW — Number of rows in the table.  (Input)

Default: NROW = size (TABLE,1).
NCOL — Number of columns in the table.  (Input)

Default: NCOL = size (TABLE,2).
LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement of the calling 

program.  (Input)
Default: LDTABL = size (TABLE,1).

ICMPT — Computing option.  (Input) 
If ICMPT = 0, all of the values in CHISQ and STAT are computed. ICMPT = 1 means compute only the 
first 5 values of CHISQ and none of the values in STAT. (All values not computed are set to NaN (not a 
number).
Default: ICMPT = 0.

IPRINT — Printing option.  (Input) 
IPRINT = 0 means no printing is performed. If IPRINT = 1, printing is performed.
Default: IPRINT = 0.

LDEXPE — Leading dimension of EXPECT exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDEXPE = size (EXPECT,1).

LDCHIC — Leading dimension of CHICTR exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCHIC = size (CHICTR,1).

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSTAT = size (STAT,1).

FORTRAN 90 Interface
Generic: CALL CTCHI (TABLE, EXPECT, CHICTR, CHISQ, STAT [, …])
Specific: The specific interface names are S_CTCHI and D_CTCHI.

FORTRAN 77 Interface
Single: CALL CTCHI (NROW, NCOL, TABLE, LDTABL, ICMPT, IPRINT, EXPECT, LDEXPE, CHICTR, 

LDCHIC, CHISQ, STAT, LDSTAT)
Double: The double precision name is DCTCHI.

Description

Routine CTCHI computes statistics associated with an r × c (NROW × NCOL) contingency table. The routine 
CTCHI always computes the chi-squared test of independence, expected values, contributions to chi-squared, 
and row and column marginal totals. Optionally, when ICMPT = 0, CTCHI can compute some measures of 
association, correlation, prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the 
odds and the log odds ratio, and the Kappa statistic.
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Other IMSL routines that may be of interest include TETCC in Chapter 3, for computing the tetrachoric cor-
relation coefficient, CTTWO, for computing statistics in a 2 × 2 contingency table, and CTPRB, for computing 
the exact probability of an r × c contingency table.

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote the total count in the table. Let 
pij = pi∙p∙j denote the predicted cell probabilities under the null hypothesis of independence where pi∙ and 
p∙j are the row and column marginal relative frequencies, respectively. Next, compute the expected cell 
counts as eij = n pij.

Also required in the following are auv and buv, u, v = 1, …, n. Let (rs, cs) denote the row and column response 
of observation s. Then, auv = 1, 0, or -1, depending upon whether ru< rv, ru = rv, or ru > rv, respectively. The 
buv are similarly defined in terms of the cs’s.

The Chi-squared Statistics

For each cell in the table, the contribution to X2 is given as (xij - eij)
2/eij. The Pearson chi-squared statistic 

(denoted X2) is computed as the sum of the cell contributions to chi-squared. It has (r - 1)(c - 1) degrees of 
freedom and tests the null hypothesis of independence, i.e., that H0 : pij = pi∙p∙j. The null hypothesis is 

rejected if the computed value of X2 is too large.

Compute G2, the maximum likelihood equivalent of X2, as

G2 is asymptotically equivalent to X2 and tests the same hypothesis with the same degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, 
and Cramer's V)

Three measures related to chi-squared but that do not depend upon the sample size are

phi,

the contingency coefficient,

and Cramer’s V,
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Since these statistics do not depend upon sample size and are large when the hypothesis of independence is 
rejected, they may be thought of as measures of association and may be compared across tables with different 
sized samples. While both P and V have a range between 0.0 and 1.0, the upper bound of P is actually some-
what less than 1.0 for any given table (see Kendall and Stuart 1979, page 587). The significance of all three 

statistics is the same as that of the X2 statistic, CHISQ(1).

The distribution of the X2 statistic in finite samples approximates a chi-squared distribution. To compute the 

exact mean and standard deviation of the X2 statistic, Haldane (1939) uses the multinomial distribution with 
fixed table marginals. The exact mean and standard deviation generally differ little from the mean and stan-
dard deviation of the associated chi-squared distribution.

Standard Errors and p-values For Some Measures of Association

In rows 1 through 7 of STAT, estimated standard errors and asymptotic p-values are reported. Estimates of 
the standard errors are computed in two ways. The first estimate, in column 2 of matrix STAT, is asymptoti-
cally valid for any value of the statistic. The second estimate, in column 3 of the matrix, is only correct under 
the null hypothesis of no association. The z-scores in column 4 of matrix STAT are computed using this sec-
ond estimate of the standard errors. The p-values in column 5 are computed from this z-score. See Brown and 
Benedetti (1977) for a discussion and formulas for the standard errors in column 3.

Measures of Association for Ranked Rows and Columns

The measures of association, ɸ, P, and V, do not require any ordering of the row and column categories. Rou-
tine CTCHI also computes several measures of association for tables in which the rows and column categories 
correspond to ranked observations. Two of these tests, the product-moment correlation and the Spearman 
correlation, are correlation coefficients computed using assigned scores for the row and column categories. 
The cell indices are used for the product-moment correlation while the average of the tied ranks of the row 
and column marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s b, Stuart’s c, and Somers’ D are measures of association that are computed like a cor-
relation coefficient in the numerator. In all of these measures, the numerator is computed as the “covariance” 
between the auv’s and buv’s defined above, i.e., as 

Recall that auv and buv can take values -1, 0, or 1. Since the product auvbuv = 1 only if auv and buv are both 1 or 
are both -1, it is easy to show that this “covariance” is twice the total number of agreements minus the num-
ber of disagreements where a disagreement occurs when auvbuv = -1.

Kendall’s b is computed as the correlation between the auv’s and the buv’s (see Kendall and Stuart 1979, page 

593). In a rectangular table (r ≠ c), Kendall’s b cannot be 1.0 (if all marginal totals are positive). For this rea-

son, Stuart suggested a modification to the denominator of  in which the denominator becomes the largest 

possible value of the “covariance.” This maximizing value is approximately n2m/(m - 1), where 

m = min(r, c). Stuart’s c uses this approximate value in its denominator. For large n, c ≈ m b/(m - 1).
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Gamma can be motivated in a slightly different manner. Because the “covariance” of the auv’s and the buv’s 
can be thought of as twice the number of agreements minus the disagreements, (2(A - D), where A is the 
number of agreements and D is the number of disagreements), gamma is motivated as the probability of 
agreement minus the probability of disagreement, given that either agreement or disagreement occurred. 
This is just γ = (A - D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’ D for rows can be 
thought of as the regression coefficient for predicting auv from buv. Moreover, Somers’ D for rows is the prob-
ability of agreement minus the probability of disagreement, given that the column variable, buv, is not zero. 
Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall and Stuart (1979, 
starting on page 592).

Measures of Prediction and Uncertainty

The Optimal Prediction Coefficients

The measures in this section do not require any ordering of the row or column variables. They are based 
entirely upon probabilities. Most are discussed in Bishop, Feinberg, and Holland (1975, page 385).

Consider predicting (or classifying) the column for a given row in the table. Under the null hypothesis of 
independence, one would choose the column with the highest column marginal probability for all rows. In 
this case, the probability of misclassification for any row is one minus this marginal probability. If indepen-
dence is not assumed, then within each row one would choose the column with the highest row conditional 
probability, and the probability of misclassification for the row becomes one minus this conditional 
probability.

Define the optimal prediction coefficient λc|r for predicting columns from rows as the proportion of the prob-
ability of misclassification that is eliminated because the random variables are not independent. It is 
estimated by

where m is the index of the maximum estimated probability in the row (pim) or row margin (p∙m). A similar 
coefficient is defined for predicting the rows from the columns. The symmetric version of the optimal predic-
tion λ is obtained by summing the numerators and denominators of λr|c and λc|r and by dividing. Standard 
errors for these coefficients are given in Bishop, Feinberg, and Holland (1975, page 388).

A problem with the optimal prediction coefficients λ is that they vary with the marginal probabilities. One 
way to correct for this is to use row conditional probabilities. The optimal prediction λ* coefficients are 
defined as the corresponding λ coefficients in which one first adjusts the row (or column) marginals to the 
same number of observations. This yields
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where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability of column j given 
row i.

λ*
r|c

is similarly defined.

Goodman and Kruskal 

A second kind of prediction measure attempts to explain the proportion of the explained variation of the row 
(column) measure given the column (row) measure. Define the total variation in the rows to be 

Note that this is 1/(2n) times the sums of squares of the auv’s.

With this definition of variation, the Goodman and Kruskal  coefficient for rows is computed as the reduc-
tion of the total variation for rows accounted for by the columns, divided by the total variation for the rows. 
To compute the reduction in the total variation of the rows accounted for by the columns, note that the total 
variation for the rows within column j is defined as 

The total variation for rows within columns is the sum of the qj’s. Consistent with the usual methods in the 
analysis of variance, the reduction in the total variation is given as the difference between the total variation 
for rows and the total variation for rows within the columns.

Goodman and Kruskal’s  for columns is similarly defined. See Bishop, Feinberg, and Holland (1975, page 
391) for the standard errors.

The Uncertainty Coefficients

The uncertainty coefficient for rows is the increase in the log-likelihood that is achieved by the most general 
model over the independence model, divided by the marginal log-likelihood for the rows. This is given by

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty coefficient contains 
the same numerator as Ur|c and Uc|r but averages the denominators of these two statistics. Standard errors 
for U are given in Brown (1983).
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Kruskal-Wallis

The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test that assumes the column 
variable is monotonically ordered. It tests the null hypothesis that no row populations are identical, using 
average ranks for the column variable. The Kruskal-Wallis statistic for columns is similarly defined. Conover 
(1980) discusses the Kruskal-Wallis test.

Test for Linear Trend

When there are two rows, it is possible to test for a linear trend in the row probabilities if one assumes that 
the column variable is monotonically ordered. In this test, the probabilities for row 1 are predicted by the col-
umn index using weighted simple linear regression. This slope is given by 

where

is the average column index. An asymptotic test that the slope is zero may then be obtained (in large sam-
ples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is computed. This test 
assumes that the rows are monotonically ordered.

Kappa

Kappa is a measure of agreement computed on square tables only. In the Kappa statistic, the rows and col-
umns correspond to the responses of two judges. The judges agree along the diagonal and disagree off the 
diagonal. Let 

denote the probability that the two judges agree, and let

denote the expected probability of agreement under the independence model. Kappa is then given by 
(po - pc)/(1 - pc).
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McNemar Tests

The McNemar test is a test of symmetry in a square contingency table, that is, it is a test of the null hypothesis 
Ho : θ ij = θ ji. The multiple-degrees-of-freedom version of the McNemar test with r(r - 1)/2 degrees of free-
dom is computed as

The single-degree-of-freedom test assumes that the differences xij - xji are all in one direction. The sin-
gle-degree-of-freedom test will be more powerful than the multiple-degrees-of-freedom test when this is the 
case. The test statistic is given as

Its exact probability may be computed via the binomial distribution.

Comments

Informational errors

Example

The following example is taken from Kendall and Stuart (1979). It involves the distance vision in the right 
and left eyes, and especially illustrates the use of Kappa and McNemar tests. Most other test statistics are also 
computed.

      USE CTCHI_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDSTAT, NCOL, NROW
      PARAMETER  (IPRINT=1, LDSTAT=23, NCOL=4, NROW=4)
!
      REAL       CHICTR(NROW+1,NCOL+1), CHISQ(10), EXPECT(NROW+1,NCOL+1), &
                     STAT(LDSTAT,5), TABLE(NROW,NCOL)
!

Type Code Description

3 1 Twenty percent of the expected values are less than 5.

3 2 The degrees of freedom for chi-squared are greater than 30. The exact mean, 
standard deviation, and normal distribution function should be used.

3 3 Some expected table values are less than 2. Some asymptotic p-values may 
not be good.

3 4 Some expected values are less than 1. Some asymptotic p-values may not be 
good.
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      DATA TABLE/821, 116, 72, 43, 112, 494, 151, 34, 85, 145, 583, &
          106, 35, 27, 87, 331/

!
      CALL CTCHI (TABLE, EXPECT, CHICTR, CHISQ, STAT, IPRINT=IPRINT)
      END

Output

           Table Values
         1       2       3       4
 1   821.0   112.0    85.0    35.0
 2   116.0   494.0   145.0    27.0
 3    72.0   151.0   583.0    87.0
 4    43.0    34.0   106.0   331.0

                        Expected Values
        row totals in column 5, column totals in row 5
             1           2           3           4           5
 1      341.69      256.92      298.49      155.90     1053.00
 2      253.75      190.80      221.67      115.78      782.00
 3      289.77      217.88      253.14      132.21      893.00
 4      166.79      125.41      145.70       76.10      514.00
 5     1052.00      791.00      919.00      480.00     3242.00

                  Contibutions to Chi-squared
        row totals in column 5, column totals in row 5
             1           2           3           4           5
 1      672.36       81.74      152.70       93.76     1000.56
 2       74.78      481.84       26.52       68.08      651.21
 3      163.66       20.53      429.85       15.46      629.50
 4       91.87       66.63       10.82      853.78     1023.10
 5     1002.68      650.73      619.88     1031.08     3304.37

   Chi-square Statistics
 Pearson        3304.3682
 p-value           0.0000
 DF                9.0000
 G**2           2781.0188
 p-value           0.0000
 Exact mean        9.0028
 Exact std.        4.2402
 Phi               1.0096
 P                 0.7105
 Cramer’s V        0.5829

                             Table Statistics
                             standard  std. error     t-value
                statistic       error    under Ho  testing Ho     p-value
 Gamma             0.7757      0.0123      0.0149       52.19      0.0000
 Tau B             0.6429      0.0122      0.0123       52.19      0.0000
 Tau C             0.6293      0.0121         NaN       52.19      0.0000
 D-Row             0.6418      0.0122      0.0123       52.19      0.0000
 D-Column          0.6439      0.0122      0.0123       52.19      0.0000
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 Correlation       0.6926      0.0128      0.0172       40.27      0.0000
 Spearman          0.6939      0.0127      0.0127       54.66      0.0000
 GK tau rows       0.3420      0.0123         NaN         NaN         NaN
 GK tau col.       0.3430      0.0122         NaN         NaN         NaN
 U - Sym.          0.3171      0.0110         NaN         NaN         NaN
 U - rows          0.3178      0.0110         NaN         NaN         NaN
 U - cols.         0.3164      0.0110         NaN         NaN         NaN
 Lambda-sym.       0.5373      0.0124         NaN         NaN         NaN
 Lambda-row        0.5374      0.0126         NaN         NaN         NaN
 Lambda-col.       0.5372      0.0126         NaN         NaN         NaN
 l-star-rows       0.5506      0.0136         NaN         NaN         NaN
 l-star-col.       0.5636      0.0127         NaN         NaN         NaN
 Lin. trend           NaN         NaN         NaN         NaN         NaN
 Kruskal row    1561.4861      3.0000         NaN         NaN      0.0000
 Kruskal col    1563.0300      3.0000         NaN         NaN      0.0000
 Kappa             0.5744      0.0111      0.0106       54.36      0.0000
 McNemar           4.7625      6.0000         NaN         NaN      0.5746
 McNemar df=1      0.9487      1.0000         NaN        0.35      0.3301
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CTPRB

Computes exact probabilities in a two-way contingency table.

Required Arguments
TABLE — NROW by NCOL matrix containing the contingency table cell frequencies.  (Input)
PRE — Probability of a more extreme table where “extreme” is taken in the Neyman-Pearson sense.  (Out-

put) 
A table is more extreme if its probability (for fixed marginals) is less than or equal to PRT.

Optional Arguments
NROW — Number of rows in the contingency table.  (Input)

Default: NROW = size (TABLE,1).
NCOL — Number of columns in the contingency table.  (Input)

Default: NCOL = size (TABLE,2).
LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 

program.  (Input)
Default: LDTABL = size (TABLE,1).

PRT — Probability of the observed table assuming fixed row and column marginal totals.  (Output)
PCHEK — Sum of the probabilities of all tables with the same marginal totals.  (Output) 

PCHEK should be 1.0. Deviation from 1.0 indicates a numerical error.

FORTRAN 90 Interface
Generic: CALL CTPRB (TABLE, PRE [, …])
Specific: The specific interface names are S_CTPRB and D_CTPRB.

FORTRAN 77 Interface
Single: CALL CTPRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE, PCHEK)
Double: The double precision name is DCTPRB.

Description

Routine CTPRB computes exact probabilities for an r × c contingency table for fixed row and column margin-
als where r = NROW and c = NCOL. Let fij denote the element in row i and column j of a table, and let fi∙ and f∙j 
denote the row and column marginals. Under the independence hypothesis, the (conditional) probability for 
fixed marginals of a table is given by 
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where f∙∙ is the total number of counts in the table and x! denotes x factorial. When the fij are obtained from 
the input table (fij = TABLE(i, j)), Pf = PRT. PRE is the sum over all more extreme tables of the probability of 
each table. 

In CTPRB, a more extreme table is defined in the probabilistic sense. Table X is more extreme than the input 
table if the conditional probability computed for table X (for the same marginal sums) is less than the condi-
tional probability computed for the input table. The user should note that this definition of “more extreme” 
can be considered as “two-sided” in the cell counts. 

Because CTPRB uses total enumeration in computing the probability of a more extreme table, the amount of 
computer time required increases very rapidly with the size of the table. Tables, with either a large total count 
f∙∙ or in which the product rc is not small, should not be analyzed with CTPRB. Rather, either the approxi-
mate methods of Agresti, Wackerly, and Boyett (1979) should be used or algorithms that do not require total 
enumeration should be used (see Pagano and Halvorsen [1981], or Mehta and Patel [1983]).

Comments
1. Workspace may be explicitly provided, if desired, by use of C2PRB/DC2PRB. The reference is:

CALL C2PRB (NROW, NCOL, TABLE, LDTABL, PRT, PRE, PCHCK, IWK)
The additional argument is:

IWK — Work vector of length (NROW + 2)(NCOL + 2).
2. Informational error

3. Routine CTPRB computes a two-tailed Fisher exact probability in 2 by 2 tables. For one-tailed Fisher 
exact probabilities, use routine CTTWO.

Example

In this example, CTPRB is used to compute the exact conditional probability for a 2 × 2 contingency table. 
The input table is given as:

      USE UMACH_INT
      USE CTPRB_INT

      IMPLICIT   NONE
      INTEGER    NCOL, LDTABL

Type Code Description

3 1 There are no observed counts in TABLE. PRE, PRT, and PCHEK are set to NaN 
(not a number).
CTPRB         Chapter 5: Categorical and Discrete Data Analysis      532



      PARAMETER  (NCOL=2, LDTABL=2)
!
      INTEGER    NOUT
      REAL       PCHEK, PRE, PRT, TABLE(LDTABL,NCOL)
!
      DATA TABLE/8, 8, 12, 2/
!
      CALL UMACH (2, NOUT)
!
      CALL CTPRB (TABLE, PRE, PRT=PRT, PCHEK=PCHEK)
!
      WRITE(NOUT,'('' PRT = '', F12.4, /, '' PRE = '', F12.4, /, &
           & '' PCHEK = '', F10.4)')  PRT, PRE, PCHEK
      END

Output

PRT =       0.0390
PRE =       0.0577
PCHEK =     1.0000
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CTEPR

Computes Fisher’s exact test probability and a hybrid approximation to the Fisher exact test probability for a 
contingency table using the network algorithm.

Required Arguments
TABLE — NROW by NCOL matrix containing the contingency table.  (Input)
PRE — Table p-value.  (Output) 

PRE is the probability of a more extreme table, where “extreme” is in a probabilistic sense. If 
EXPECT < 0, then the Fisher exact probability is returned. Otherwise, a hybrid approximation to 
Fisher’s exact probability is computed.

Optional Arguments
NROW — The number of rows in the table.  (Input)

Default: NROW = size (TABLE,1).
NCOL — The number of columns in the table.  (Input)

Default: NCOL = size (TABLE,2).
LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 

program.  (Input)
Default: LDTABL = size (TABLE,1).

EXPECT — Expected value used in the hybrid approximation to Fisher’s exact test algorithm for deciding 
when to use asymptotic probabilities when computing path lengths.  (Input) 
Default: EXPECT = 5.0.
If EXPECT ≤ 0.0, then asymptotic theory probabilities are not used and Fisher exact test probabilities 
are computed. Otherwise, asymptotic probabilities are used in computing path lengths whenever 
PERCNT or more of the cells in the table for which path lengths are to be computed have estimated 
expected values of EXPECT or more, with no cell having expected value less than EMIN. See the 
“Description” section for details. Use EXPECT = 5.0 to obtain the “Cochran” condition.

PERCNT — Percentage of remaining cells that must have estimated expected values greater than EXPECT 
before asymptotic probabilities can be used in computing path lengths.  (Input) 
Default: PERCNT = 80.0.
See argument EXPECT for details. Use PERCNT = 80.0 to obtain the “Cochran” condition.

EMIN — Minimum cell estimated expected value allowed for asymptotic chi-squared probabilities to be 
used.  (Input) 
Default: EMIN = 1.0.
See argument EXPECT for details. Use EMIN = 1.0 to obtain the “Cochran” condition.

PRT — Probability of the observed table for fixed marginal totals.  (Output)

FORTRAN 90 Interface
Generic: CALL CTEPR (TABLE, PRE [, …])
Specific: The specific interface names are S_CTEPR and D_CTEPR.
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FORTRAN 77 Interface
Single: CALL CTEPR (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT, EMIN, PRT, PRE)
Double: The double precision name is DCTEPR.

Description

Routine CTEPR computes Fisher exact probabilities or a hybrid algorithm approximation to Fisher exact 
probabilities for a r × c contingency tables with fixed row and column marginals where r = NROW is the num-
ber of rows in the table and c = NCOL is the number of columns in the table. Let fij denote the frequency count 
in row i and column j of a table, and let fi∙ and f∙j denote the total row and column frequency count for row i 
and column j, respectively. Under the independence hypothesis, the (conditional) probability of the observed 
table for fixed row and column marginal totals is given by 

where f∙∙ is the total number of counts in the table and x! denotes x factorial. When the fij are equal to the 
input table so that fij = TABLE (i, j), then let Po = PRT be the resulting value for Pf.

In CTEPR, a more extreme table is defined in the probabilistic sense. Table X is more extreme than the input 
table if the conditional probability computed for table X (for the same marginal sums) is less than the condi-
tional probability computed for the input table. Let p = PRE be the probability of a more extreme table. Then

The user should note that this definition of “more extreme” can be considered as “two-sided” in the cell 
counts.

Routine CTEPR uses the hybrid network algorithm of Mehta and Patel (1983, 1986a, 1986b) with the Clarkson 
and Fan (1989) modifications to compute the probability of a more extreme table. The hybrid algorithm uses 
asymptotic probabilities for tables encountered in which PERCNT percent of the table expected values are 
greater than or equal to EXPECT, and all expected values are greater than EMIN. When PERCNT = 80, 
EXPECT = 5, and EMIN = 1, this is the “Cochran” rule. Although the hybrid network algorithm can be orders 
of magnitude faster than the total enumeration algorithm used in routine CTPRB, the amount of computer 
time required by CTEPR still increases very rapidly with the size of the table. Caution should be used when-
ever computer time is a consideration.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2EPR/DC2EPR. The reference is:

CALL C2EPR (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT, EMIN, PRT, PRE, FACT, ICO, IRO, 
KYY, IDIF, IRN, KEY, LDKEY, IPOIN, STP, LDSTP, IFRQ, DLP, DSP, TM, KEY2, IWK, RWK)

The additional arguments are as follows:

FACT — Work vector of length NTOT + 1 where NTOT is the total count in the table.
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ICO — Work vector of length MX where MX = max(NROW, NCOL).

IRO — Work vector of length MX.

KYY — Work vector of length MX.

IDIF — Work vector of length MN where MN = max(NROW, NCOL).

IRN — Work vector of length MN.

KEY — Work vector of length 2 * LDKEY.

LDKEY — Leading dimension of KEY exactly as specified in the dimension statement in the calling 
program.  (Input)

IPOIN — Work vector of length 2 * LDKEY.

STP — Work vector of length 2 * LDSTP.

LDSTP — Leading dimension of STP exactly as specified in the dimension statement in the calling 
program.  (Input)

IFRQ — Work vector of length 6 * LDSTP.

DLP — Work vector of length 2 * LDKEY.

DSP — Work vector of length 2 * LDKEY.

TM — Work vector of length 2 * LDKEY.

KEY2 — Work vector of length 2 * LDKEY.

IWK — Work vector of length max((NROW + NCOL + 1)(5 + 2 * MX), 800 + 7 * MX).

RWK — Work vector of length max(400 + MX + 1, NROW + NCOL + 1).
The exact value of LDKEY and LDSTP required is not known in advance. Common values to try are 

LDKEY = 1000 and LDSTP = 30000.
2. Informational errors

3. Routine CTEPR/DCTEPR will use all available workspace. It is not unusual for CTEPR/DCTEPR to 
require 200,000 floating-point units of workspace.

4. When C2EPR/DC2EPR is called by CTEPR/DCTEPR, LDSTP = 30 * LDKEY.

Type Code Description

3 1 All of the elements of TABLE are zero.

4 2 The product of the marginal totals is greater than can be exactly represented 
in an integer variable so the hash table key cannot be computed. The compu-
tations cannot proceed.

4 3 LDKEY is too small. To increase LDKEY when invoking CTEPR/DCTEPR, 
increase the total workspace used. A doubling of the total workspace is a 
good place to begin.

4 4 LDSTP is too small. To increase LDSTP when invoking CTEPR/DCTEPR, 
increase the total workspace used. A doubling of the total workspace is a 
good place to begin.

4 5 The current value for IWKIN is too small. It is not possible to give the value 
for IWKIN required, but you might try doubling the amount. Refer to IWKIN 
in the Reference Material section.
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5. Although not a restriction, it is not generally practical to call this routine with large tables that are not 
sparse and in which the hybrid approximation to Fisher’s exact test (see the Description section) has lit-
tle effect. For example, although it is feasible to compute exact probabilities for the table

computing exact probabilities for a similar table that has been enlarged by the addition of an extra row 
(or column) may not be feasible.

Example

In this example, CTEPR is used to compute the hybrid approximation to the Fisher exact probability for a 
3 × 6 contingency table using the Cochran condition. Because of the large initial counts and the input argu-
ments EXPECT = 5, PERCNT = 80, and EMIN = 1, the hybrid algorithm significantly reduces the computation 
effort in this example. The input table is given as

      USE UMACH_INT
      USE CTEPR_INT

      IMPLICIT   NONE
      INTEGER    LDTABL, NCOL
      PARAMETER  (NCOL=5, LDTABL=3)
!
      INTEGER    NOUT
      REAL       PRE, PRT, TABLE(LDTABL,NCOL)
!
      DATA TABLE/20.0, 10.0, 20.0, 20.0, 10.0, 20.0, 0.0, 2.0, 0.0, &
          0.0, 2.0, 0.0, 0.0, 1.0, 0.0/
!
      CALL UMACH (2, NOUT)
!
      CALL CTEPR (TABLE, PRE, PRT=PRT)
!
      WRITE (NOUT,99999) PRT, PRE
!
99999 FORMAT (' PRT = ', E12.4, '  PRE = ', F8.4)
!
      END

Output

PRT =   0.1915E-04  PRE =   0.0601
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For comparison, the usual asymptotic chi-squared p-value (which may be computed through the use of rou-
tine CTCHI, do not use CTEPR) is computed as 0.0323, and the Fisher exact probability (which may be 
computed through CTEPR by setting EXPECT = 0.0) is computed as 0.0598 and requires approximately ten 
times more computer time than the hybrid method. The Fisher exact probability and the usual asymptotic 
chi-squared probability will often be quite different. When it may be used, the hybrid algorithm can lead to 
significantly greater savings in computer time.
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PRPFT

Performs iterative proportional fitting of a contingency table using a loglinear model.

Required Arguments
NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels or categories of 

the i-th classification variable.  (Input)
TABLE — Vector of length NCLVAL(1) * NCLVAL (2) * … * NCLVAL(NCLVAR) containing the entries in the 

cells of the table to be fit.  (Input) 
See Comment 3 for comments on the ordering of the elements of TABLE.

NVEF — Vector of length NEF that contains the number of classification variables associated with each 
effect.  (Input)

INDEF — Vector of length NVEF(1) + …+ NVEF(NEF) that contains, in consecutive positions, the indices of 
the variables that are included in each effect.  (Input) 
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the indices of the vari-
ables in effect 1, the next NVEF(2) elements of INDEF contain the indices of the variables in effect 2, etc. 
See Comment 4 for an example.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR).  (Input/Output) 
On input, FIT contains the initial estimates of the cell counts. Structural zeros in the model are speci-
fied by setting the corresponding element of FIT to 0.0. All other elements of FIT must be positive. 1.0 
may be used if no other estimate of the cell counts is available. See Comment 3 for the ordering of the 
elements of FIT. On output, FIT contains the fitted table.

Optional Arguments
NCLVAR — Number of classification variables.  (Input)

Default: NCLVAR = size (NCLVAL,1).
NEF — Number of effects in the model.  (Input) 

A marginal table is implied by each effect in the model. Lower order effects should not be included 
since their inclusion is automatic (e.g., do not include effects A or B if effect AB is in the model).
Default: NEF = size (NVEF,1).

EPS — Convergence criterion.  (Input) 
Convergence is assumed when the maximum deviation between an observed and a fitted marginal 
total is less than EPS. EPS = 0.10 is a typical value.
Default: EPS = .10.

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 15 is a typical value.
Default: MAXIT = 30.

FORTRAN 90 Interface
Generic: CALL PRPFT (NCLVAL, TABLE, NVEF, INDEF, FIT [, …])
Specific: The specific interface names are S_PRPFT and D_PRPFT.
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FORTRAN 77 Interface
Single: CALL PRPFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT, FIT)
Double: The double precision name is DPRPFT.

Description

Routine PRPFT uses the iterative proportional-fitting algorithm to fit a log-linear hierarchical model to a con-
tingency table. Structural zeros are allowed. A hierarchical model is a factorial model in which lower-order 
terms are always present. Thus, in a three-way table with classification variable names A, B, and C, the fol-
lowing models are all hierarchical models.

Many other hierarchical models exist for the three-way table. Since all hierarchical models can be completely 
specified by the higher-order interactions (the lower-order interactions will always be present), no 
lower-order effects are included in model specification. 

Corresponding to each hierarchical interaction is a marginal table. Iterations in PRPFT proceed by fitting 
marginal tables successively until the desired precision is achieved. 

A structural zero is a cell in the table that, by design or otherwise, can have no observations, i.e., the count for 
the cell must be zero. Structural zeros are specified by setting the corresponding element in FIT to zero on 
input. Routine PRPFT is best suited for tables with no structural zeros and in which the initial estimates input 
in FIT are all 1. The user should be aware that the algorithm may take (much) longer to converge when this 
is not the case. 

Sampling zeros are cells that are not structural zeros, but for which no count is observed. Routine PRPFT 
requires the absence of sampling zeros in all marginal tables that are fit. One common way method of achiev-
ing this is to add a constant, often 0.5, to each cell prior to fitting the table.

Comments
1. Workspace may be explicitly provided, if desired, by use of P2PFT/DP2PFT. The reference is:

CALL P2PFT (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT, FIT, AMAR, INDEX, WK, 
IWK)

The additional arguments are as follows.

AMAR — Work vector with length equal to the sum from J = 1 to NEF of the product of the non-
zero elements of NCLVAL(INDEF(I)) for I = 1 to NVEF(J).

INDEX — Work vector of length NEF.

WK — Work vector with length equal to the maximum over J = 1 to NEF of the product of the non-
zero elements of NCLVAL(INDEF(I)), for I = 1 to NVEF(J).

IWK — Work vector of length 2 * NCLVAR.
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2. Informational errors 

3. The cells of the vectors TABLE and FIT are sequenced so that the first variable cycles from 1 to 
NCLVAL(1), which is the slowest, the second variable cycles from 1 to NCLVAL(2), which is the next 
slowest, etc., up to the NCLVAR-th variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest. 

Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and NCLVAL(3) = 2, the cells of table 
X(I, J, K) are entered into TABLE(1) through TABLE(12) in the following order. X(1, 1, 1), X(1, 1, 2), 
X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The 
elements of FIT are similarly sequenced.

4. INDEF is used to describe the marginal tables to be fit. For example, if NCLVAR = 3 and the first effect is 
to fit the marginal table for variables 1 and 3 and the second effect is to fit the marginal table for vari-
able 2, then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1.
Since the sum of the NVEF(I) is 3, then INDEF is a vector of length 3 with values. INDEF (1) = 1, 
INDEF(2) = 3, and INDEF(3) = 2.

5. Typically, MAXIT = 5 is sufficient. If PRPFT does not converge, try using double precision, increasing 
MAXIT, or using the values output in FIT as input for another call to PRPFT.

Example

The following example is taken from Bishop, Feinberg, and Holland (1975, page 87). The data are originally 
from Bartlett (1935). This example examines the survival of plants (factor A = factor 2) at different values for 
time of planting (factor C = factor 3) and length of cutting (factor B = factor 1). The sample size for each level 
of B and C is fixed at 240.

The model to be fit is given by:

where mijk is the cell expected value for levels i, j, and k of factors A, B, and C, respectively.

      USE PRPFT_INT

Type Code Description

3 11 The algorithm did not converge to the desired accuracy within MAXIT 
iterations.

4 12 A marginal total for an effect is zero. Since FIT indicates this is not a struc-
tural zero, the algorithm will not converge properly. One way to proceed is 
to add a constant to all cells in the table.

B

1 2

A A

1 2 1 2

C 1 156 84 C 1 84 156

2 107 133 2 31 209
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      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NCLVAR, NEF
      PARAMETER  (NCLVAR=3, NEF=3)
!
      INTEGER    INDEF(6), MAXIT, NCLVAL(NCLVAR), NOUT, NVEF(NEF)
      REAL       EPS, FIT(8), TABLE(8)
!
      DATA NCLVAL/2, 2, 2/, NVEF/2, 2, 2/
      DATA INDEF/1, 2, 1, 3, 2, 3/, EPS/0.0001/, MAXIT/15/
      DATA TABLE/156, 107, 84, 31, 84, 133, 156, 209/
      DATA FIT/8*1.0/
!
      CALL PRPFT (NCLVAL, TABLE, NVEF, INDEF, FIT, EPS=EPS, MAXIT=MAXIT)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) FIT
99999 FORMAT (' FIT =', 8F7.1)
      END

Output

FIT =  161.1  101.9   78.9   36.1   78.9  138.1  161.1  203.9
PRPFT         Chapter 5: Categorical and Discrete Data Analysis      542



CTLLN

Computes model estimates and associated statistics for a hierarchical log-linear model.

Required Arguments
NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels or categories of the 

i-th classification variable.  (Input)
TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the entries in the 

cells of the table to be fit.  (Input) 
See Comment 3 for comments on the ordering of the elements of TABLE.

NVEF — Vector of length NEF containing the number of classification variables associated with each effect.  
(Input)

INDEF — Vector of length NVEF(1) + … + NVEF(NEF) containing, in consecutive positions, the indices of 
the variables that are included in each effect.  (Input) 
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the indices of the vari-
ables in effect 1, the next NVEF(2) elements of INDEF contain the indices of the variables in effect 2, etc. 
See Comment 4 for an example.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the model estimates of 
the cell frequencies.  (Input/Output) 
On input, FIT contains the initial estimates of the cell counts. Structural zeros in the model are speci-
fied by setting the corresponding element of FIT to 0.0. All other elements of FIT may be set to 1.0 if 
no other estimate of the expected cell counts is available. On output, FIT contains the fitted table. See 
Comment 3 for the ordering of the elements of FIT. If an element of FIT is positive but the correspond-
ing element in TABLE is zero, then the element is called a sampling zero. Sampling zeros may effect the 
number of parameters that can be estimated, but they will not effect the degrees of freedom in 
chi-squared tests. See the Description section.

NCOEF — Number of regression coefficients in the model.  (Output)
COEF — NCOEF by 4 matrix containing the estimated coefficients and associated statistics.  (Output) 

Dummy variables used in fitting the log-linear model are generated using the IDUMMY = 3 option of 
routine GRGLM (see Chapter 2, “Regression”). For this option, the k-th  dummy variable for classification 
variable I is the (0, 1) indicator variable for the k-th level of the classification variable minus the (0, 1) 
indicator variable for the NCLVAL(I)-th level of the classification variable. 

COV — NCOEF by NCOEF covariance matrix for the estimated parameters.  (Output)

Column Statistic

1 Coefficient estimate

2 Estimated standard error of the estimated coefficient

3 Asymptotic normal score for testing that the coefficient is zero

4 p-value associated with the normal score in column 3 (two-sided 
alternative).
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RESID — NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) by 4 matrix containing residual statistics for 
each cell in the table.  (Output)

STAT — Vector of length 4 containing output statistics for the model.  (Output) 

Optional Arguments
NCLVAR — Number of classification variables.  (Input) 

A variable specifying a margin in the table is a classification variable. The first classification variable is 
named A, the second classification variable is named B, etc.
Default: NCLVAR = size (NCLVAL,1).

NEF — Number of effects in the model.  (Input) 
A marginal table is implied by each effect in the model. Lower-order effects should not be included 
since their inclusion is automatic in the hierarchical models fit here (e.g., do not include effects A or B 
if effect AB is in the model).
Default: NEF = size (NVEF,1).

EPS — Convergence criterion.  (Input) 
Convergence is assumed when the maximum deviation between an observed and a fitted marginal 
total is less than EPS. EPS = 0.10 is a typical value.
Default: EPS = 0.10.

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 15 is a typical value.
Default: MAXIT = 30

TOL — Tolerance used in determining linear dependence in COV.  (Input) 
TOL = 100.0 AMACH(4) is a common choice. See the documentation for routine AMACH in Reference Mate-
rial.
Default: TOL = 1.19e-5 for single precision and 2.d–14 for double precision.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

Column Statistics

1 Signed square root of the contribution to chi-squared

2 Contribution to the likelihood ratio

3 Freeman-Tukey deviate

4 Residual difference

I STAT(I)

1 Log-likelihood.

2 Likelihood ratio statistic for testing the fit of the model.

3 Degrees of freedom in the likelihood ratio statistic. This statistic corrects for parame-
ters that cannot be estimated because of sampling zeros.

4 p-value corresponding to the likelihood ratio statistic.

IPRINT Action

0 No printing is performed.

1 TABLE, FIT, RESID, COEF, COV, and STAT are printed.
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LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

LDRESI — Leading dimension of RESID exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDRESI = size (RESID,1).

FORTRAN 90 Interface
Generic: CALL CTLLN (NCLVAL, TABLE, NVEF, INDEF, FIT, NCOEF, COEF, COV, RESID, STAT 

[, …])
Specific: The specific interface names are S_CTLLN and D_CTLLN.

FORTRAN 77 Interface
Single: CALL CTLLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT, TOL, IPRINT, 

FIT, NCOEF, COEF, LDCOEF, COV, LDCOV, RESID, LDRESI, STAT)
Double: The double precision name is DCTLLN.

Description

Routine CTLLN computes statistics of interest for a hierarchical model in a log-linear analysis of a multidi-
mensional contingency table. Among the statistics computed are the expected cell values, cell residuals, the 
log-linear parameters and their estimated variances and covariances, the log-likelihood for the model (plus a 
constant), and a likelihood-ratio test of the model (versus the alternative that the cell probabilities are free to 
vary, subject only to the marginal constraints). In addition, CTLLN can print and label all statistics that it 
computes. 

Routine PRPFT is used to find the maximum likelihood estimates of the expected cell counts (FIT). These 
expected values are then used as input to routine CTPAR in order to compute estimates of the parameters in 
the model and their estimated covariances. 

The matrix RESID contains various residuals that may be used in analyzing the model. These residuals are 
discussed in detail by Bishop, Feinberg, and Holland (1975, pages 136-137), among others. Each is computed 
from the cell observed (oi) and expected (fitted, fi) values according to the following methods:

1. The signed square root of the contributions to X2 are computed as 

2. The contributions to the likelihood ratio (G2) are computed as 2oi log(oi/fi)

3. Freeman-Tukey deviates are computed as
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4. The residual differences are computed as oi - fi
The log-likelihood STAT(1) is computed as

where n is the number of cells in the table. The likelihood ratio statistic for testing the fit of the model 
is computed as

which for large samples follows a chi-squared distribution. 

The number of degrees of freedom in G2 is computed as the number of cells in the table, excluding structural 
zeros, minus the number of parameters that could be estimated if there were no sampling zeros. When there 
are either structural or sampling zeros in the model, some parameters may not be estimable because they are 
infinite. Parameters that cannot be estimated due to structural zeros are not counted in the number of param-

eters estimated when computing the degrees of freedom for X2. Parameters that cannot be estimated because 

of sampling zeros are counted as estimated parameters when computing the degrees of freedom for X2. 

To explain the calculation of degrees of freedom, note that extended maximum likelihood estimates may be 
written as

where 

are coefficient vectors, and ρ →∞. Routine CTLLN estimates the finite portion of the estimates,

The infinite portion, 

ensures that the fitted values for zero marginal cells corresponding to a term in the hierarchical model have 
estimated expectation of zero. Thus, CTLLN fits the finite portion of extended maximum likelihood estimates 
where the extension is to ±∞. Because the Hessian elements corresponding to infinite parameters are zero, 
the Hessian is computed from a reduced likelihood in which cells leading to infinite estimates have been 
eliminated. The user is referred to Clarkson and Jennrich (1991) for details.
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Comments
1. Workspace may be explicitly provided, if desired, by use of C2LLN/DC2LLN. The reference is:

CALL C2LLN (NCLVAR, NCLVAL, TABLE, NEF, NVEF, INDEF, EPS, MAXIT, TOL, IPRINT, FIT, 
NCOEF, COEF, LDCOEF, COV, LDCOV, RESID, LDRESI, STAT, AMAR, INDEX, NCVEF, IXEF, 
IINDEF, IA, INDCL, CLVAL, REG, X, D, XMIN, XMAX, COVWK, WK, IWK)

The additional arguments are as follows.

AMAR — Vector of length equal to the sum over all effects in the model (J = 1 to NEF) of the 
length of the marginal table required for the effect. The length of each marginal table is com-
puted as the product of the number of class values for each classification variable in the effect 
(the product of the nonzero elements of NCLVAL(INDEF(I)) where I ranges from K(J) through 
K(J)+ NVEF(J) - 1. Here, K(1) = 1 and K(J + 1) = K(J) + NVEF(J).)

INDX — Vector of length NEF.

NCVEF — Vector of length 2NCLVAR - 1.

IXEF — Vector of length NCLVAR * 2NCLVAR−1.

IINDEF — Vector of length NVEF(1) + … + NVEF(NEF).

IA — Vector of length NCLVAR.

INDCL — Vector of length NCLVAR.

CLVAL — Vector of length NCLVAL(1) + … + NCLVAL(NCLVAR).

REG — Vector of length NCOEF + 1.

X — Vector of length NCOEF if there exists both structural and sampling zeros in TABLE; other-
wise, it is of length NCLVAR.

D — Vector of length NCOEF + 1.

XMIN — Vector of length NCOEF.

XMAX — Vector of length NCOEF.

COVWK — Vector of length NCOEF2 if there exists both structural and sampling zeros in TABLE. 
Otherwise, COVWK is not referenced and can be dimensioned of length one.

WK — Vector of length max(g, NCOEF + 1) if IPRINT = 0; otherwise, WK is of length max(g, 6m, n) 
where m is the maximal element in NCLVAL, n is the length of TABLE, and g equals the maxi-
mum over all effects in the model (J = 1, NEF) of the length of the marginal table required for 
the effect. The length of the marginal table is computed as the product of the number of class 
values for each classification variable in the effect (the product of the nonzero elements of 
NCLVAL(INDEF(I)) where I ranges from K(J) through K(J) + NVEF(J) - 1, where K(1) = 1 and 
K(J + 1) = K(J) + NVEF(J)).

IWK — Vector of length 2 * NCLVAR + z + 1 where z is the number of structural zeros in TABLE.
2. Informational errors

Type Code Description

3 1 The optimization algorithm did not converge to the desired accuracy within 
MAXIT iterations. Some of the estimated statistics may not be accurate.

3 5 The label for one or more of the tables exceeds the buffer limit.

3 11 The label for one or more effects exceeds the buffer limit.

4 2 LDCOEF or LDCOV is less than NCOEF.
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3. The cells of the vectors TABLE and ZERO are sequenced so that the first variable cycles from 1 to 
NCLVAL(1) the slowest, the second variable cycles from 1 to NCLVAL(2) the next slowest, etc., up to the 
NCLVAR-th variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest. 

Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and NCLVAL(3) = 2, the cells of table 
X(I, J, K) are entered into TABLE(1) through TABLE(12) in the following order: X(1, 1, 1), X(1, 1, 2), 
X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The 
elements of FIT are similarly sequenced.

4. INDEF is used to describe the marginal tables to be fit. For example, if NCLVAR = 3 and the first effect is 
to fit the marginal table for variables 1 and 3 and the second effect is to fit the marginal table for vari-
able 2, then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the NVEF(I) is 3, then INDEF is a 
vector of length 3 with values: INDEF(1) = 1, INDEF(2) = 3, and INDEF(3) = 2.

Example

The example illustrates the use of CTLLN in a simple four-way table in which the first three factors have two 
levels, and the fourth factor has three levels. The data, taken from Lee (1977), involve brand preference in dif-
ferent situations.

      USE CTLLN_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDCOEF, LDCOV, LDRESI, LTAB, MAXIT, NCLVAR
      REAL       EPS
      PARAMETER  (EPS=0.01, IPRINT=1, LDCOEF=10, LDCOV=10, LDRESI=24, &
                LTAB=24, MAXIT=10, NCLVAR=4)
!
      INTEGER    INDEF(6), NCLVAL(NCLVAR), NCOEF, NEF, NVEF(3)
      REAL       COEF(LDCOEF,4), COV(LDCOV,LDCOV), FIT(LTAB), &
                RESID(LDRESI,4), STAT(4), TABLE(LTAB)
!
      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47, &
           55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NEF/3/, NVEF/2, 2, 2/, INDEF/2, 4, 1, 4, 2, 3/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
!

      CALL CTLLN (NCLVAL, TABLE, NVEF, INDEF, FIT, NCOEF, COEF, &
                  COV, RESID, STAT, EPS=EPS, MAXIT=MAXIT, IPRINT=IPRINT)
!
      END

Output

Fitted Model: (B*D, A*D, B*C)

Variable   Number of Levels
1 A              3
2 B              2
3 C              2
4 D              2
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Model Statistics
Log-likelihood            3.7906
Likelihood ratio           11.89
Degrees of freedom          14.0
P-value                   0.6154

                          Coefficient Statistics
                                     Standard   Asymptotic
                    Coefficient          Error  Z-statistic        P-value
  1 intercept            3.6827         0.0333       110.66         0.0000
  2  A(1)               -0.0591         0.0475        -1.24         0.2341
  3  A(2)                0.0278         0.0461         0.60         0.5562
  4  B                  -0.0166         0.0331        -0.50         0.6242
  5  C                  -0.0434         0.0319        -1.36         0.1943
  6  D                  -0.2783         0.0329        -8.45         0.0000
  7  A*D(1)             -0.1016         0.0475        -2.14         0.0506
  8  A*D(2)              0.0034         0.0461         0.07         0.9414
  9  B*C                -0.1438         0.0319        -4.51         0.0005
 10  B*D                -0.0684         0.0328        -2.09         0.0558

           ------------------------------
                Table 1: C = 1 D = 1
                 B = 1 by A (column)
                           1           2           3
 Observed              19.00       23.00       24.00
 Fit                   19.52       23.65       26.09
 Root chi-square       -0.12       -0.13       -0.41
 Likelihood            -1.03       -1.29       -4.02
 Freeman-Tukey         -0.06       -0.08       -0.37
 Residual              -0.52       -0.65       -2.09

                 B = 2 by A (column)
                           1           2           3
 Observed              29.00       47.00       43.00
 Fit                   30.85       37.37       41.23
 Root chi-square       -0.33        1.57        0.28
 Likelihood            -3.58       21.54        3.62
 Freeman-Tukey         -0.29        1.52        0.31
 Residual              -1.85        9.63        1.77

           ------------------------------
                Table 2: C = 1 D = 2
                 B = 1 by A (column)
                           1           2           3
 Observed              57.00       47.00       37.00
 Fit                   47.85       46.99       42.89
 Root chi-square        1.32        0.00       -0.90
 Likelihood            19.95        0.03      -10.93
 Freeman-Tukey          1.29        0.04       -0.89
 Residual               9.15        0.01       -5.89

                 B = 2 by A (column)
                           1           2           3
 Observed              49.00       55.00       52.00
 Fit                   57.52       56.48       51.56
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 Root chi-square       -1.12       -0.20        0.06
 Likelihood           -15.70       -2.92        0.89
 Freeman-Tukey         -1.13       -0.16        0.10
 Residual              -8.52       -1.48        0.44

           ------------------------------
                Table 3: C = 2 D = 1
                 B = 1 by A (column)
                           1           2           3
 Observed              29.00       33.00       42.00
 Fit                   28.39       34.40       37.94
 Root chi-square        0.11       -0.24        0.66
 Likelihood             1.23       -2.73        8.53
 Freeman-Tukey          0.16       -0.20        0.68
 Residual               0.61       -1.40        4.06

                 B = 2 by A (column)
                           1           2           3
 Observed              27.00       23.00       30.00
 Fit                   25.24       30.58       33.73
 Root chi-square        0.35       -1.37       -0.64
 Likelihood             3.64      -13.10       -7.04
 Freeman-Tukey          0.39       -1.41       -0.61
 Residual               1.76       -7.58       -3.73

           ------------------------------
                Table 4: C = 2 D = 2
                 B = 1 by A (column)
                           1           2           3
 Observed              63.00       66.00       68.00
 Fit                   69.58       68.32       62.37
 Root chi-square       -0.79       -0.28        0.71
 Likelihood           -12.51       -4.57       11.75
 Freeman-Tukey         -0.78       -0.25        0.73
 Residual              -6.58       -2.32        5.63

                 B = 2 by A (column)
                           1           2           3
 Observed              53.00       50.00       42.00
 Fit                   47.06       46.21       42.18
 Root chi-square        0.87        0.56       -0.03
 Likelihood            12.61        7.88       -0.36
 Freeman-Tukey          0.87        0.58        0.01
 Residual               5.94        3.79       -0.18

                     Asymptotic Coefficient Covariance
                1             2             3             4             5
  1    1.1076E-03    9.7132E-05   -3.5887E-05    4.3244E-05    4.3786E-05
  2                  2.2562E-03   -1.1408E-03   -3.4043E-11    2.6829E-11
  3                                2.1232E-03    2.5675E-11   -5.1643E-11
  4                                              1.0968E-03    1.4480E-04
  5                                                            1.0146E-03

                6             7             8             9            10
  1    2.9815E-04    1.3065E-04   -1.6147E-05    1.4480E-04    7.6307E-05
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  2    1.3065E-04    7.2117E-04   -4.0976E-04    6.2343E-11   -1.0681E-11
  3   -1.6147E-05   -4.0976E-04    5.7437E-04   -4.9217E-11   -2.3482E-11
  4    7.6307E-05    1.2601E-11   -4.1730E-11    4.3786E-05    2.8917E-04
  5   -1.4272E-11   -5.5301E-11    4.2801E-11    4.5231E-06   -4.6962E-11
  6    1.0851E-03    9.7132E-05   -3.5887E-05   -4.9749E-11    3.0847E-05
  7                  2.2562E-03   -1.1408E-03    5.9300E-11   -1.0361E-10
  8                                2.1232E-03   -2.4481E-11    2.9160E-11
  9                                              1.0146E-03    1.1201E-11
 10                                                            1.0743E-03
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CTPAR

Computes model estimates and covariances in a fitted log-linear model.

Required Arguments
NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels or categories of 

the i-th classification variable.  (Input)
NVEF — Vector of length NEF containing the number of classification variables associated with each effect.  

(Input)
INDEF — Vector of length NVEF(1) + … + NVEF(NEF) containing, in consecutive positions, the indices of 

the variables that are included in each effect.  (Input) 
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the indices of the vari-
ables in effect 1, the next NVEF(2) elements of INDEF contain the indices of the variables in effect 2, etc. 
See Comment 4 for an example.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the model estimates of 
the cell counts.  (Input) 
See Comment 3 for the ordering of the elements of FIT. To obtain a first iteration approximation to the 
optimal parameter values, the observed counts may be input in FIT, in which case a least-squares 
model is fit. In all cases, values of zero in FIT are assumed to correspond to structural zeros in the 
table. See the Description section for details.

NCOEF — Number of regression coefficients in the model.  (Output)
COEF — NCOEF by 4 matrix containing the estimated coefficients and associated statistics.  (Output)

 

COV — NCOEF by NCOEF covariance matrix of the estimated coefficients.  (Output)

Optional Arguments
NCLVAR — Number of classification variables.  (Input) 

A variable specifying a margin in the table is a classification variable. The first classification variable is 
named A, the second classification variable is named B, etc.
Default: NCLVAR = size (NCLVAL,1).

NEF — Number of effects in the model.  (Input) 
A marginal table is implied by each effect in the model. Lower-order effects should not be included 
since their inclusion is automatic in the hierarchical models fit here (e.g., do not include effects A or B 
if effect AB is in the model).
Default: NEF = size (NVEF,1).

Col. Statistic

1 Coefficient estimate

2 Estimated standard error of the estimated coefficient

3 Asymptotic normal score for testing that the coefficient is zero

4 p-value associated with the normal score in column 3 (two-sided alternative)
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TOL — Tolerance used in determining linear dependence in COV.  (Input) 
TOL = 100.0 * AMACH(4) is a common choice. See the documentation for routine AMACH in Reference 
Material.
Default: TOL = 1.19e-5 for single precision and 2.d –14 for double precision.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

In the printing, A * B(2) denotes the second variable in the AB interaction effect.
LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

FORTRAN 90 Interface
Generic: CALL CTPAR (NCLVAL, NVEF, INDEF, FIT, NCOEF, COEF, COV [, …])
Specific: The specific interface names are S_CTPAR and D_CTPAR.

FORTRAN 77 Interface
Single: CALL CTPAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT, TOL, IPRINT, NCOEF, COEF, 

LDCOEF, COV, LDCOV)
Double: The double precision name is DCTPAR.

Description

Routine CTPAR computes estimates of parameters and associated variances and covariances in hierarchical 
loglinear models. A weighted least-squares algorithm is used. 

A hierarchical analysis of variance model is a factorial analysis of variance model in which a lower-order 
effect is included in a model whenever a higher-order effect containing it is in the model. Thus, if the effect 
ADF is in the model, then effects A, D, F, AD, AF, and DF are automatically in the model. 

Input to CTPAR may be either the expected table values for the given hierarchical model as output, for exam-
ple, by routine PRPFT, or the observed table values. When the fitted values are input, the estimates 
computed are the maximum likelihood estimates. When observed values are input, weighted least-squares 
estimates of the parameters in the log-linear model are computed. (Least-squares estimates and maximum 
likelihood estimates can also be computed via routines CTWLS and CTGLM, respectively.) 

IPRINT Action

0 No printing is performed.

1 Printing of COEF and COV is performed.

2 COEF, COV, and FIT are printed.
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When an expected count (as input in FIT) is zero, the cell is taken to be a structural zero. Such cells are not 
included in the weighted least-squares analysis. Estimates corresponding to structural zeros are set to the 
missing value indicator (NaN). To avoid this (and to determine the total degrees of freedom for each effect), 
add a positive constant such as 0.5 to each of the observed cell counts of zero, the “sampling” zeros. When 
structural zeros are present in the data the estimates may be written as

where 

are vectors, and ρ →∞. Routine CTPAR estimates the finite portion of the estimate,  The infinite portion, 

 ensures that the fitted values for cells corresponding to structural zeros are zero (sampling zeros are con-
sidered to be structural zeros in CTPAR). If there are no structural zeros

Let fi denote the i-th element of the vector FIT. The asymptotic variance-covariance matrix of the cell counts 
is estimated by a diagonal matrix S = diag(f) where diag(f) denotes the diagonal matrix in which sij = 0 for 
i ≠ j and sii = fi along the diagonal. If X denotes the design matrix for the hierarchical model (with rows in X 
corresponding to structural zeros omitted), and yi = logfi, then the weighted least-squares estimates are

and the estimated variance-covariance matrix is

(XT S−1X)−1

(see Grizzle, Starmer, and Koch [1969]). 

If main effect A has, for example, four levels, then the design matrix X contains three dummy variables corre-
sponding to this effect. Main effect dummy variables are generated as follows: For an observation fi 
corresponding to level j of the effect, if j < 3, then the j-th dummy variable is set to 1 with the remaining 
dummy variables set to 0. If j = 4, then all three dummy variables are set to -1. Dummy variables for interac-
tions are generated as the product of the corresponding dummy variables in the usual manner with the 
smallest index in the specification of the interaction varying fastest. The indices of the classification variables 
for each effect are always sorted from smallest to largest when computing the columns of X.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2PAR/DC2PAR. The reference is:

CALL C2PAR (NCLVAR, NCLVAL, NEF, NVEF, INDEF, FIT, TOL, IPRINT, NCOEF, COEF, LDCOEF, 
COV, LDCOV, IRANK, NCVEF, IXEF, IINDEF, IA, INDCL, CLVAL, REG, X, D, XMIN, XMAX, WK)

The additional arguments are as follows:
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IRANK — Rank of COV.

NCVEF — Vector of length 2NCLVAR - 1.

IXEF — Vector of length NCLVAR * 2NCLVAR−1.

IINDEF — Vector of length NVEF(1) + … + NVEF(NEF).

IA — Vector of length NCLVAR.

INDCL — Vector of length NCLVAR.

CLVAL — Vector of length NCLVAL(1) + … + NCLVAL(NCLVAR).

REG — Vector of length NCOEF + 1.

X — Vector of length NCLVAR.

D — Vector of length NCOEF.

XMIN — Vector of length NCOEF.

XMAX — Vector of length NCOEF.

WK — Vector of length NCOEF + 1 if IPRINT ≠ 2. Otherwise, its length is the maximum of 
NCOEF + 1 and the product of the two largest elements of NCLVAL.

2. Informational errors

3. The cells of the vector FIT are sequenced so that the first variable cycles from 1 to NCLVAL(1) the slow-
est, the second variable cycles from 1 to NCLVAL(2) the next slowest, etc., up to the NCLVAR-th variable, 
which cycles from 1 to NCLVAL(NCLVAR) the fastest. 

Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and NCLVAL(3) = 2, the cells of table 
X(I, J, K) are entered into FIT(1) through FIT(12) in the following order: X(1, 1, 1), X(1, 1, 2), X(1, 2, 1), 
X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2).

4. INDEF is used to describe the marginal tables to be fit. For example, if NCLVAR = 3 and the first effect is 
to fit the marginal table for variables 1 and 3 and the second effect is to fit the marginal table for vari-
able 2, then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the NVEF(I) is 3, then INDEF is a 
vector of length 3 with values: INDEF(1) = 1, INDEF(2) = 3, and INDEF(3) = 2.

Example

The example illustrates the use of CTPAR in a simple four-way table in which the first three factors have two 
levels, and the fourth factor has three levels. The data, which is taken from Lee (1977), involve the brand pref-
erence in different situations.

      USE PRPFT_INT
      USE CTPAR_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDCOEF, LDCOV, LTAB, NCLVAR
      PARAMETER  (IPRINT=2, LDCOEF=13, LDCOV=13, LTAB=24, NCLVAR=4)

Type Code Description

3 5 The label for one or more of the tables exceeds the buffer limit.

3 11 The label for one or more effects exceeds the buffer limit.

4 1 LDCOEF or LDCOV is less than NCOEF.
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!
      INTEGER    INDEF(6), NCLVAL(NCLVAR), NCOEF, NVEF(3)
      REAL       COEF(LDCOEF,4), COV(LDCOV,LDCOV), FIT(LTAB), &
                 TABLE(LTAB)
!
      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47, &
          55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NVEF/2, 2, 2/, INDEF/2, 4, 1, 4, 2, 3/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
!
      CALL PRPFT (NCLVAL, TABLE, NVEF, INDEF, FIT)
!
      CALL CTPAR (NCLVAL, NVEF, INDEF, FIT, NCOEF, COEF, COV, IPRINT=IPRINT)
!
      END

Output

Variable   Number of Levels
1 A              3
2 B              2
3 C              2
4 D              2

        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.52   23.65   26.09
 2   47.85   46.99   42.89

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   28.39   34.40   37.94
 2   69.58   68.32   62.37

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   30.85   37.37   41.23
 2   57.52   56.48   51.56

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   25.24   30.58   33.73
 2   47.06   46.21   42.18

                          Coefficient Statistics
                                     Standard   Asymptotic
                    Coefficient          Error  Z-statistic        P-value
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  1 intercept            3.6827         0.0333       110.66         0.0000
  2  A(1)               -0.0591         0.0475        -1.24         0.2341
  3  A(2)                0.0278         0.0461         0.60         0.5562
  4  B                  -0.0166         0.0331        -0.50         0.6242
  5  C                  -0.0434         0.0319        -1.36         0.1943
  6  D                  -0.2783         0.0329        -8.45         0.0000
  7  A*D(1)             -0.1016         0.0475        -2.14         0.0506
  8  A*D(2)              0.0034         0.0461         0.07         0.9414
  9  B*C                -0.1438         0.0319        -4.51         0.0005
 10  B*D                -0.0684         0.0328        -2.09         0.0558

                     Asymptotic Coefficient Covariance
              1              2              3              4              5
1    1.1076E-03     9.7132E-05    -3.5887E-05     4.3244E-05     4.3786E-05
2                   2.2562E-03    -1.1408E-03    -3.4043E-11     2.6829E-11
3                                  2.1232E-03     2.5675E-11    -5.1643E-11
4                                                 1.0968E-03     1.4480E-04
5                                                                1.0146E-03
              6              7              8              9             10
1    2.9815E-04     1.3065E-04    -1.6147E-05     1.4480E-04     7.6307E-05
2    1.3065E-04     7.2117E-04    -4.0976E-04     6.2343E-11    -1.0681E-11
3   -1.6147E-05    -4.0976E-04     5.7437E-04    -4.9217E-11    -2.3482E-11
4    7.6307E-05     1.2601E-11    -4.1730E-11     4.3786E-05     2.8917E-04
5   -1.4272E-11    -5.5301E-11     4.2801E-11     4.5231E-06    -4.6962E-11
6    1.0851E-03     9.7132E-05    -3.5887E-05    -4.9749E-11     3.0847E-05
7                   2.2562E-03    -1.1408E-03     5.9300E-11    -1.0361E-10
8                                  2.1232E-03    -2.4481E-11     2.9160E-11
9                                                 1.0146E-03     1.1201E-11
10                                                               1.0743E-03
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CTASC

Computes partial association statistics for log-linear models in a multidimensional contingency table.

Required Arguments
NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels or categories of 

the i-th classification variable.  (Input)
TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the entries in the 

cells of the table to be fit.  (Input) 
See Comment 3 for comments on the ordering of the elements of TABLE.

ZERO — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) indicating structural zeros in 
TABLE.  (Input) 
ZERO has the same structure as TABLE. Structural zeros in the TABLE are specified by setting the corre-
sponding element of ZERO to 0.0. All other elements of zero must be positive. If structural zeros do not 
exist in TABLE, TABLE and ZERO can share the same storage locations. See Comment 3 for the ordering 
of the elements of ZERO.

ASSOC — 2NCLVAR - 1 by 4 matrix containing the partial association statistics for each effect in the model.  
(Output)

The rows of ASSOC are ordered with main effects first, followed by two-way interactions, followed by 
the three-way interactions, etc., until the last row, which contains the single NCLVAR-way interaction. 
Thus, if there are 3 classification variables, there would be 8 rows in ASSOC and the rows would con-
tain the A, B, C, AB, AC, BC, and the ABC effects where A represents the first (in INDCL) classification 
variable, B represents the second classification variable, etc.

CHIHI — NCLVAR by 5 matrix containing chi-squared statistics testing that all k and higher interactions 
are zero where k = 1, 2, …, NCLVAR.  (Output) 
In the following, k is the row number of the statistic where the row numbers are 1, 2, …, NCLVAR. 

Col. Statistic

1 Likelihood ratio partial association chi-squared for testing that all parameters in 
the effect are zero against a model containing all interactions of the same order

2 Degrees of freedom in chi-squared in columns 1 and 4

3 p-value for the chi-squared statistic in column 1

4 Number of zeros (structural and sampling) in the marginal table of the effect

Col. Statistic

1 Likelihood ratio chi-squared statistic for testing that all interactions higher than k are 
zero against a model including all interactions of order k

2 p-value for the chi-squared value in column 1

3 Degrees of freedom for chi-squared in columns 1 and 4

4 Pearson chi-squared corresponding to column 1

5 p-value for the chi-squared value in column 4
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CHISIM — NCLVAR by 5 matrix containing chi-squared statistics for testing that all k-factor interactions 
are simultaneously zero where k = 1, …, NCLVAR.  (Output) 
In the following, k is the row number of the statistic where the row numbers are 
1, 2, …, NCLVAR.

 

Optional Arguments
NCLVAR — Number of classification variables.  (Input) 

A variable specifying a margin in the table is a classification variable. The first classification variable is 
named A, the second classification variable is named B, etc.
Default: NCLVAR = size (NCLVAL,1).

EPS — Convergence criterion.  (Input) 
Convergence is assumed when the maximum deviation between an observed and a fitted marginal 
total is less than EPS. EPS = 0.10 is a typical value.
Default: EPS = 0.10.

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 15 is a typical value. When there are structural zeros a larger value, say MAXIT = 100, should 
be used.
Default: MAXIT = 100.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

LDASSO — Leading dimension of ASSOC exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDASSO = size (ASSOC,1).

LDCHIH — Leading dimension of CHIHI exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCHIH = size (CHIHI,1).

LDCHIS — Leading dimension of CHISIM exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCHIS = size (CHISIM,1).

Col. Statistic

1 Likelihood ratio chi-squared statistic for testing that all k-factor interactions are all 
simultaneously zero given the model in which all k-way interactions are present

2 p-value for the chi-squared value in column 1

3 Degrees of freedom for chi-squared in columns 1 and 4

4 Pearson chi-squared corresponding to column 1

5 p-value for the chi-squared value in column 4

IPRINT Action

0 No printing is performed.

1 Printing of ASSOC, CHIHI, and CHISIM is performed.

2 ASSOC, CHIHI, CHISIM, and TABLE are printed.
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FORTRAN 90 Interface
Generic: CALL CTASC (NCLVAL, TABLE, ZERO, ASSOC, CHIHI, CHISIM [, …])
Specific: The specific interface names are S_CTASC and D_CTASC.

FORTRAN 77 Interface
Single: CALL CTASC (NCLVAR, NCLVAL, TABLE, ZERO, EPS, MAXIT, IPRINT, ASSOC, LDASSO, 

CHIHI, LDCHIH, CHISIM, LDCHIS)
Double: The double precision name is DCTASC.

Description

Routine CTASC computes likelihood-ratio and Pearson X2 tests of partial-association for each effect in a hier-
archical log-linear model. Also computed are likelihood ratio and Pearson chi-squared tests that all 
interactions above a given level are simultaneously zero. All of these tests are asymptotic in nature. All mod-
els are hierarchical so that all lower order interactions that may be composed from a higher order effect in the 
model are automatically included in the model. All models are fit via the iterative proportional fitting algo-
rithm, which is implemented in routine PRPFT. The algorithm proceeds as follows:

1. The hierarchical model including all k-factor interactions is fit with k = 0, …, m and m = NCLVAR. The 
k = 0 model corresponds to a constant probability in each cell in the table while the k = m model is the 
full model. For each value of k, the likelihood ratio chi-squared statistic for testing that all interactions 
not included in the fitted model are all simultaneously zero (against the alternative that this is not the 
case) is computed as

where oi is the observed count in the i-th cell, fi is the fitted count for the given model, and the summa-
tion is over all cells in the table. Also computed (for comparison, the two statistics are asymptotically 
equivalent) is the usual Pearson chi-squared statistic,

2. Let gi = NCLVAL(i), and let

and assume that there are no structural zeros in the table. Then, the number of degrees of freedom in 
the chi-squared statistic for testing that all k-order interactions are simultaneously zero is the sum over 
all k-th order interaction effects of the degrees of freedom for the effect. In the no structural zero case, 
the degrees of freedom for an effect may be computed as
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where j indexes the factors in the effect. Denote the sum of these degrees of freedom at level k by sk, 
and let s0 = 1. Then, the degrees of freedom in the k-th test is given by sk.

When more than one structural zero is present, the degrees of freedom in the chi-squared statistics are 
computed by fitting a least-squares model for the full hierarchical model in which all interactions are 
included. Routine RGIVN (see Chapter 2, “Regression”) is used in fitting the model. Cells with sampling 
(as opposed to structural) zeros are included (but only when degrees of freedom are computed) by 
using a cell count of 0.5. Observations corresponding to structural zeros are not included. (Note that a 
structural zero is a model restriction that requires that the estimated count for a cell be zero. A sam-
pling zero occurs by chance.) The degrees of freedom for each effect are found by summing over the 
estimated parameters for the effect. Parameters that are linearly related to previous parameters in the 
model (as determined through RGIVN via input argument TOL where TOL is 100 * AMACH(4) are 
not estimated. When there is only one structural zero, degrees of freedom are computed as if there 
were no structural zeros except for the highest level interaction term, which is given one fewer degree 
of freedom.
Chi-squared statistics for testing that all effects at a given level k are simultaneously zero (given a hier-
archical model in which all effects above level k are absent) are computed as the difference between the 
chi-squared statistics testing that all k and higher interactions are zero and that of k + 1. That is, for J = 
1 and 4, and I = 1, 2, …, NCLVAR - 1, then CHISIM(I, J) = CHIHI(I, J) - CHIHI(I + 1, J), and 
CHISIM(NCLVAR, J) = CHIHI(NCLVAR, J).

3. For each effect, a “partial association” likelihood ratio chi-squared statistic may be used to test the 
hypothesis that all parameters in the effect are simultaneously zero, given a model in which all interac-
tions at the same level (or lower) are present, and all higher level interactions are absent. The degrees 
of freedom for the effect are computed as in Step 2.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2ASC/DC2ASC. The reference is:

CALL C2ASC (NCLVAR, NCLVAL, TABLE, ZERO, EPS, MAXIT, IPRINT, ASSOC, LDASSO, CHIHI, 
LDCHIH, CHISIM, LDCHIS, FITWK, NCVEF, IXEF, AMAR, INDX, WK, IWK, COVWK)

The additional arguments are as follows:

FITWK — Work vector of length 3 * NCLVAL(1) * … * NCLVAL(NCLVAR).

NCVEF — Work vector of length 2NCLVAR - 1.

IXEF — Work vector of length NCLVAR * 2(NCLVAR-1)

AMAR — Work vector of length n. In defining n, let q(k) be the sum of the sizes of all possible mar-
ginal tables with k effects. For example, q(2) is the sum over all possible two-way interactions 
I and J of NCLVAL(I) * NCLVAL(J) and q(NCLVAR) is the product 
NCLVAL(1) * … * NCLVAL(NCLVAR). Then, n = max(q(k)), k = 1, …, NCLVAR.

INDX — Work vector of length m where m is the maximum number of interactions at any level. 
That is, m = max(BINOM(NCLVAR, I)), I = 1, …, NCLVAR, where BINOM(NCLVAR, I) is the bino-
mial coefficient (see routine BINOM (IMSL MATH/LIBRARY Special Functions)).

WK — Work vector of length 3 * NCLVAL(1) * … * NCLVAL(NCLVAR) if there exists more than one 
structural zero in TABLE, and of length 
NCLVAL(1) * … * NCLVAL(NCLVAR) otherwise.
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IWK — Work vector of length 2 * NCLVAR.

COVWK — Work vector of length (NCLVAL(1) * … * NCLVAL(NCLVAR))2 if there exists more than 
one structural zero in TABLE. Otherwise, COVWK is not referenced and can be dimensioned of 
length one in the calling program. On output, COVWK contains the upper triangular matrix 
containing the R matrix from a QR decomposition of the matrix of regressors for the full 
log-linear model.

2. Informational errors 

3. The cells of the vectors TABLE and ZERO are sequenced so that the first variable cycles from 1 to 
NCLVAL(1) the slowest, the second variable cycles from 1 to NCLVAL(2) the next slowest, etc., up to the 
NCLVAR-th variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest. 

Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and NCLVAL(3) = 2, the cells of table 
X(I, J, K) are entered into TABLE(1) through TABLE(12) in the following order: X(1, 1, 1), X(1, 1, 2), 
X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The 
elements of FIT are similarly sequenced.

Programming Notes
1. When sampling zeros are present, the likelihood ratio test statistics may not follow the appropriate 

chi-squared distribution closely. A common (but not necessarily the best) practice in this case is to add 
a small positive constant, often 0.5, to each cell in the table. This addition is easily accomplished via 
routine SADD (IMSL MATH/LIBRARY). The addition of such a constant should not affect the com-
puted degrees of freedom.

2. When marginal totals of zero are obtained, the optimization algorithm may be slow to converge. In 
this case, increase the value of argument MAXIT.

Example

The following example illustrates the use of CTASC for model building in a four-way table involving brand 
preference. The first three factors each have 2 levels, while the fourth factor has 3 levels. The data are origi-
nally from Lee (1977) and are printed in the output. A model with two-way interaction effects AD, BC, and 
BD looks promising.

      USE CTASC_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDASSO, LDCHIH, LDCHIS, LTAB
      REAL       EPS
      PARAMETER  (EPS=0.01, IPRINT=2, LDASSO=15, LDCHIH=4, LDCHIS=4, &
                 LTAB=24)
!
      INTEGER    NCLVAL(4)

Type Code Description

3 1 The optimization algorithm did not converge to the desired accuracy, EPS, 
within MAXIT iterations.

3 5 The label for one or more of the tables exceeds the buffer limit.

3 11 The label for one or more effects exceeds the buffer limit.
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      REAL       ASSOC(LDASSO,4), CHIHI(LDCHIH,5), CHISIM(LDCHIS,5), &
                TABLE(LTAB)
!
      DATA TABLE/19, 57, 29, 63, 29, 49, 27, 53, 23, 47, 33, 66, 47, &
          55, 23, 50, 24, 37, 42, 68, 43, 52, 30, 42/
      DATA NCLVAL/3, 2, 2, 2/
!
      CALL CTASC (NCLVAL, TABLE, TABLE, ASSOC, CHIHI, CHISIM, &
                  EPS=EPS, IPRINT=IPRINT)
!
      END

Output

 Variable   Number of Levels
 1 A              3
 2 B              2
 3 C              2
 4 D              2

        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.00   23.00   24.00
 2   57.00   47.00   37.00

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   29.00   33.00   42.00
 2   63.00   66.00   68.00

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   29.00   47.00   43.00
 2   49.00   55.00   52.00

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   27.00   23.00   30.00
 2   53.00   50.00   42.00

                 Partial Association Statistics
 Omitted                      Degrees of                Marginal
 Effect           Chi-Square     Freedom       P-value     Zeros
 A                      0.50         2.0        0.7782       0.0
 B                      0.06         1.0        0.8010       0.0
 C                      1.92         1.0        0.1657       0.0
 D                     73.21         1.0        0.0000       0.0
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 A*B                    0.22         2.0        0.8978       0.0
 A*C                    1.01         2.0        0.6050       0.0
 A*D                    6.10         2.0        0.0475       0.0
 B*C                   19.89         1.0        0.0000       0.0
 B*D                    3.74         1.0        0.0532       0.0
 C*D                    0.74         1.0        0.3898       0.0
 A*B*C                  4.57         2.0        0.1017       0.0
 A*B*D                  0.16         2.0        0.9223       0.0
 A*C*D                  1.38         2.0        0.5022       0.0
 B*C*D                  2.22         1.0        0.1361       0.0
 A*B*C*D                0.74         2.0        0.6917       0.0

Chi-square statistics for testing that all k and higher interactions are
                                    zero.
           Likelihood                Degrees of
        k       Ratio       P-Value     Freedom     Pearson       P-Value
        1      118.63        0.0000        23.0      115.71        0.0000
        2       42.93        0.0008        18.0       43.90        0.0006
        3        9.85        0.3631         9.0        9.87        0.3611
        4        0.74        0.6917         2.0        0.74        0.6915

Chi-square statistics for testing that all k-factor interactions are
                         simultaneously zero.
      Likelihood                Degrees of
   k       Ratio       P-Value     Freedom     Pearson       P-Value
   1       75.70        0.0000         5.0       71.81        0.0000
   2       33.08        0.0001         9.0       34.03        0.0001
   3        9.11        0.2449         7.0        9.13        0.2433
   4        0.74        0.6917         2.0        0.74        0.6915
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CTSTP

Builds hierarchical log-linear models using forward selection, backward selection, or stepwise selection.

Required Arguments
NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels or categories of 

the i-th classification variable.  (Input)
TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the entries in the 

cells of the table to be fit.  (Input) 
See Comment 3 for comments on the ordering of the elements of TABLE.

ISTEP — Stepping option.  (Input)

NSTEP — Step length option.  (Input) 
For nonnegative NSTEP, NSTEP steps are taken. Less than NSTEPS are taken if no effect that can enter 
or leave the model meets the PIN or POUT criterion. Use NSTEP = -1 to indicate that stepping is to con-
tinue until no effect meets the PIN or POUT criterion to enter or leave the model.

NFORCE — The number of initial effects in the model that must be included in any model considered.  
(Input) 
For NFORCE = k, the first k effects specified by NEF, NVEF, and INDEF will be included in all models 
considered.

NEF — Number of effects in the model.  (Input/Output) 
A marginal table is implied by each effect in the model. Lower order effects should not be included in 
the model specification since their inclusion is automatic (e.g., do not include effects A or B if effect AB 
is in the model). On input, NEF gives the number of effects in the initial model. On output, NEF gives 
the number of effects in the final model.

NVEF — Vector of length MAXNVF containing the number of classification variables associated with each 
effect.  (Input/Output) 
On input, NVEF contains the number of classification variables for each effect in the initial model. The 
final values are returned on output.

INDEF — Vector of length MAXIND containing, in consecutive positions, the indices of the variables that 
are included in each effect.  (Input/Output) 
The entries in INDEF are sequenced so that the first NVEF(1) elements contain the indices of the vari-
ables in effect 1, the next NVEF(2) elements of INDEF contain the indices of the variables in effect 2, etc. 
Each element of INDEF must be greater than zero. See Comment 4 for an example.

FIT — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the model estimates of 
the cell counts.  (Input/Output) 
On input, FIT contains the initial estimates of the cell counts. Structural zeros in the model are speci-

ISTEP Action

-1 An attempt is made to remove an effect from the model (a backward step). An 
effect is removed if it has the largest p-value among all effects considered for 
removal with p-value exceeding POUT.

0 A backward step is attempted. If a variable is not removed, a forward step is 
attempted. This is a stepwise step.

1 An attempt is made to add an effect to the model (a forward step). An effect is 
added if it has the smallest p-value among all effects with p-value less than PIN.
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fied by setting the corresponding element of FIT to 0.0. All other elements of FIT may be set to 1.0 if 
no other estimate of the expected cell counts is available. On output, FIT contains the fitted table. See 
Comment 3 for the ordering of the elements of FIT. If an element of FIT is positive but the correspond-
ing element in TABLE is zero, the element is called a sampling zero. Sampling zeros may effect the 
number of parameters that can be estimated, but they will not affect the degrees of freedom in 
chi-squared tests. See the Description section of the manual document.

STAT — Vector of length 3 containing some output statistics for the final model fit during this invocation.  
(Output)

 

IEND — Completion indicator.  (Output)
 

Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

NCLVAR — Number of classification variables.  (Input) 
A variable specifying a margin in the table is a classification variable. The first classification variable is 
named A, the second classification variable is named B, etc.
Default: NCLVAR = size (NCLVAL,1).

PIN — Largest p-value for entering variables.  (Input) 
Variables with p-values less than PIN may enter the model. The choice 0.05 is common.
Default: PIN = .05.

I STAT(I)

1 Asymptotic chi-squared statistic based upon likelihood ratios for testing that the current 
model fits the observed data.

2 Degrees of freedom in chi-squared. This is the number of cells in the table minus the num-
ber of structural zeros minus the degrees of freedom for the model.

3 Probability of a greater chi-squared.

IEND Meaning

0 Additional steps may be possible.

1 No additional steps are possible for the values of PIN and POUT.

IDO Action

0 This is the only invocation of CTSTP for this table. If there are sampling zeros, set up for 
computing the degrees of freedom for each effect. Perform NSTEP steps (if ISTEP, POUT, 
and PIN allow it) and then release all workspace.

1 This is the first invocation, and additional calls to CTSTP will be made. Set up for comput-
ing the degrees of freedom for each effect and then perform NSTEP steps (if ISTEP, POUT, 
and PIN allow it).

2 This is an intermediate invocation of CTSTP. Perform NSTEP steps (if ISTEP, POUT, and 
PIN allow it).

3 This is the final invocation of this routine. Perform NSTEP steps (if ISTEP, POUT, and PIN 
allow it). Release all workspace.
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POUT — Smallest p-value for removing variables.  (Input) 
Variables with p-values greater than POUT may leave the model. POUT must be greater than or equal to 
PIN. The choice 0.10 is common.
Default: POUT = .10.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

MAXNVF — The maximum length of NVEF as specified in the dimension statement in the calling program.  
(Input) 
If the required length of NVEF becomes greater than MAXNVF, a type 4 error message is issued and the 
final model chosen is returned in NEF, NVEF, and INDEF. See Comment 2.
Default: MAXNVF = size (NVEF,1).

MAXIND — The maximum possible length of INDEF as specified in the dimension statement in the call-
ing program.  (Input) 
If the required length of INDEF becomes greater than MAXIND, a type 4 error message is issued and the 
final model chosen is returned in NEF, NVEF, and INDEF. See Comment 2.
Default: MAXIND = size (INDEF,1).

FORTRAN 90 Interface
Generic: CALL CTSTP (NCLVAL, TABLE, ISTEP, NSTEP, NFORCE, NEF, NVEF, INDEF, FIT, STAT, 

IEND [, …])
Specific: The specific interface names are S_CTSTP and D_CTSTP.

FORTRAN 77 Interface
Single: CALL CTSTP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP, NSTEP, NFORCE, 

IPRINT, NEF, NVEF, MAXNVF, INDEF, MAXIND, FIT, STAT, IEND)
Double: The double precision name is DCTSTP.

Description

Routine CTSTP performs stepwise model building in hierarchical log-linear models. CTSTP handles struc-
tural and sampling zeros, and allows “downward,” “upward,” or “stepwise” stepping. For NFORCE > 0, the 
leading NFORCE effects in the initial model specified in NEF, NVEF, and INDEF are forced to remain in the 
model. A variable number (NSTEP) of steps from the input model are performed during a single invocation 
of CTSTP. Printing of the input table and intermediate results is performed if requested.

In hierarchical models, lower order effects are automatically included whenever a higher order effect con-
taining the lower order effect is in the model. That is, the model (AB) automatically includes the mean and 
the main effects A and B, and the model (AB, ACD) automatically includes the lower order effects A, B, C, D, 
AC, AD, and CD.

IPRINT Action

0 No printing is performed.

1 Printing of the initial and final model summary statistics and step summaries.

2 Printing of the input table is performed followed by printing of the initial and 
final model summary statistics and of the step summaries.
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The algorithm proceeds through the following steps during a single invocation when IDO = 0. For IDO > 0, 
these steps are still followed, but they may require more than one invocation of the routine.

1. The input model is fit. The current model is set to the input model.
2. If downward stepping is to be performed (ISTEP = -1 or ISTEP = 0), then each effect in the model is 

examined to determine if it can be deleted from the current model. An effect may be deleted from the 
current model if it is not a “forced effect” and if it must be included in the hierarchical specification of 
the model (in which lower order terms are not specified). Thus, for example, the effect ABC can be 
deleted from the model (ABC, BCD), yielding a model (AB, AC, BCD), but not from the model (ABCD) 
since ABC is not included in the hierarchical specification.
For each effect that can be deleted in a downward step, the usual chi-squared likelihood-ratio test sta-
tistic is computed as twice the difference of the log-likelihoods between the current model and the 
model in which the effect has been deleted. The degrees of freedom for the effect are determined (see 
below), and an asymptotic p-value is computed via the chi-squared distribution. After the p-values for 
all deleted models have been determined, the maximum p-value is selected. If it is greater than the 
p-value for deletion, POUT, the effect is deleted from the model, and the resulting model is fit.

3. If a downward step is not possible, either because all computed p-values are too small or because 
downward stepping is not to be performed, an upward step is attempted if requested (ISTEP = 0 or 
ISTEP = 1). For upward stepping, each effect in the full factorial analysis of variance specification of 
the table is examined to determine if the effect differs from the current model by exactly one term. For 
example, (ABC) differs by one term from the model (AB, AC, BC) and from the model (ABD, ACD, 
BCD), but it differs by more than one term from the model (AB, BC).
For each effect that may be added to the model, a chi-squared likelihood-ratio test statistic is computed 
comparing the current model to the model with the added effect, its degrees of freedom are deter-
mined (see below), and an asymptotic p-value based upon the chi-squared distribution is computed. 
After all p-values for models with additive effects have been computed, the model with the minimum 
p-value is determined. If the minimum p-value is less than the p-value for addition, PIN, then the effect 
is added to the model, and the resulting model is fit.

4. If neither a step down, nor a step up can be performed, then CTSTP sets IEND = 1 and returns the orig-
inal model to the user. Otherwise, if additional steps are to be made, execution continues at Step 2 
above.

Degrees of Freedom

In CTSTP, structural zeros are considered to be a restriction of the parameter space. As such, they subtract 
from the degrees of freedom for an effect. Alternatively, sampling zeros are a result of sampling, and thus, 
they do not subtract for the degrees of freedom or restrict the parameter space. When computing degrees of 
freedom, sampling zeros are treated as if they were positive counts. If there are no structural zeros, then the 
degrees of freedom are computed as the product of the degrees of freedom for each variable in the effect 
where the degrees of freedom for the variable is the number of levels for the variable minus one. When struc-
tural zeros are present, there are restrictions on the parameter space, and the degrees of freedom for an effect 
are computed as the number of non-zero diagonal elements corresponding to the effect along the Cholesky 

factorization of the XT X matrix where X is the “design matrix” for the model. That is, each row of X contains 
the indicator variables for a cell in the table, with the indicator variables for the current model preceding the 
indicator variables for the effect for which degrees of freedom are desired. Because the degrees of freedom 
for an effect must be relative to the model, when there are structural zeros, it is possible for the degrees of 
freedom for an effect to change from one step to the next.
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Comments
1. Workspace may be explicitly provided, if desired, by use of C2STP/DC2STP. The reference is:

CALL C2STP (IDO, NCLVAR, NCLVAL, TABLE, PIN, POUT, ISTEP, NSTEP, NFORCE, NEF, IPRINT, 
NVEF, MAXNVF, INDEF, MAXIND, FIT, STAT, IEND, MAXMAR, AMAR, INVEF, IINDEF, IDF, ZWK, 
RWK, IWK)

The additional arguments are as follows:

MAXMAR — The length of AMAR.  (Input) 
When workspace is allocated by CTSTP, MAXMAR is equal to the number of workspace ele-
ments remaining after all other workspace is allocated. MAXMAR should be chosen as the 
maximum over all models considered of the sum over all marginal tables tables in the model 
of the number of elements in each marginal table.

AMAR — Work vector of length MAXMAR used to store marginal means in the proportional fitting 
algorithm.  (Output)

INVEF — Work vector whose length is dependent on ISTEP, IPRINT, and 
z = the number of structural zeros in TABLE.

Here, v = 2NCLVAR - 1.

IINDEF — Work vector whose length is dependent on ISTEP, IPRINT, and z = the number of 
structural zeros in TABLE. 

Here, d = NCLVAR * 2NCLVAR−1.

IDF — Vector of length n + z.  (Output, for IDO = 0 or 1; input/output otherwise). Here, 
n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR). If there are no structural zeros in 
TABLE, IDF is not referenced and may be dimensioned of length 1 in the calling program. 
When using the IDO = 1, 2, or 3 option, the values stored in IDF should not be altered between 
calls to C2STP.

ZWK — Vector of length n(n + 2).  (Output, for IDO = 0 or 1; input/output otherwise). Here, 
n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR). If there are no structural zeros in 
TABLE, ZWK is not referenced and may be dimensioned of length 1 in the calling program. 
When using the IDO = 1, 2, or 3 option, the values stored in ZWK should not be altered between 
calls to C2STP.

ISTEP IPRINT z Length of 
INVEF

-1, 0, 1 0, 1, 2 z > 1 3v

0, 1 0, 1, 2 z ≤ 1 3v

-1 0 z ≤ 1 2v

ISTEP IPRINT z Length of 
IINDEF

-1, 0, 1 0, 1, 2 z > 1 3d

0, 1 0, 1, 2 z ≤ 1 3d

-1 0 z ≤ 1 2d
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RWK — Work vector whose length is dependent on IDO and z, the number of structural zeros in 
TABLE. 

Here, n = NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) and 
m = NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR).

IWK — Work vector whose length is dependent on ISTEP and NSTEP. 

Here, v = 2NCLVAR−1.
2. Informational errors  

3. The cells of the vectors TABLE, and FIT are sequenced so that the first variable cycles from 1 to 
NCLVAL(1) the slowest, the second variable cycles from 1 to NCLVAL(2) the next slowest, etc., up to the 
NCLVAR-th variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest. 
Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and NCLVAL(3) = 2, the cells of table 
X(I, J, K) are entered into TABLE(1) through TABLE(12) in the following order. X(1, 1, 1), X(1, 1, 2), 
X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2). The 
elements of FIT are similarly sequenced.

4. INDEF is used to describe the marginal tables to be fit. For example, if NCLVAR = 3 and the first effect is 
to fit the marginal table for variables 1 and 3 and the second effect is to fit the marginal table for vari-
able 2, then: NEF = 2, NVEF(1) = 2, and NVEF(2) = 1. Since the sum of the NVEF(I) is 3, then INDEF is a 
vector of length 3 with values: INDEF(1) = 1, INDEF(2) = 3, and INDEF(3) = 2.

IDO Z Length of RWK

0, 1 z > 1 2n + m

0, 1 z ≤ 1 n

2, 3 z > 1 n

2, 3 z ≤ 1 n

ISTEP NSTEP Length of IWK

-1, 0 NSTEP = 0 3 * NCLVAR + NEF

-1, 0 NSTEP ≠ 0 3 * NCLVAR + v

1 NSTEP = 0 2 * NCLVAR + NEF

1 NSTEP ≠ 0 2 * NCLVAR + v

Type Code Description

3 1 The proportional fitting algorithm did not converge.

4 2 There is not enough workspace allocated for storing the marginal means.

4 3 The required length of NVEF to store the effects of the new model exceeds 
MAXNVF.

4 4 The required length of INDEF to store the effects of the new model exceeds 
MAXIND.
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Examples

Example 1

The following example is taken from Lee (1977). It involves a simple four-way table in which the first three 
factors have 2 levels, and the fourth factor has 3 levels. The data involves brand preference in different situa-
tions. In the example, the three-way interaction is removed, leaving 3 two-way interactions. In the new 
model, the three-way interaction is omitted.

      USE UMACH_INT
      USE CTSTP_INT
      USE WRIRN_INT
      USE WRRRN_INT
      USE ISUM_INT

      IMPLICIT  NONE
      INTEGER   IPRINT, LTAB, MAXIND, MAXNVF, NCLVAR
      PARAMETER  (IPRINT=2, LTAB=24, MAXIND=20, MAXNVF=10, NCLVAR=4)
!
      INTEGER    IEND, INDEF(MAXIND), ISTEP, LIND, NCLVAL(NCLVAR), &
                 NEF, NFORCE, NOUT, NSTEP, NVEF(MAXNVF)
      REAL       FIT(LTAB), STAT(3), TABLE(LTAB)
!
      DATA TABLE/19.0, 57.0, 29.0, 63.0, 29.0, 49.0, 27.0, 53.0, 23.0, &
          47.0, 33.0, 66.0, 47.0, 55.0, 23.0, 50.0, 24.0, 37.0, 42.0, &
          68.0, 43.0, 52.0, 30.0, 42.0/
      DATA NCLVAL/3, 2, 2, 2/, FIT/24*1.0/
      DATA NEF/1/
!
      CALL UMACH (2, NOUT)
!
      ISTEP    = 0
      NSTEP    = 1
      NFORCE   = 0
      NVEF(1)  = 3
      INDEF(1) = 1
      INDEF(2) = 2
      INDEF(3) = 4
!
      CALL CTSTP (NCLVAL, TABLE, ISTEP, NSTEP, NFORCE, NEF, &
                  NVEF, INDEF, FIT, STAT, IEND, IPRINT=IPRINT)
!
      WRITE (NOUT,99999) IEND, NEF
      CALL WRIRN ('NVEF', NVEF, 1, NEF, 1, 0)
      LIND = ISUM(NEF,NVEF,1)
      CALL WRIRN ('INDEF', INDEF, 1, LIND, 1, 0)
      CALL WRRRN ('FIT', FIT, 1, LTAB, 1, 0)
!
99999 FORMAT (/, ' IEND = ', I3, '   NEF = ', I3)
      END
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Output

 Variable   Number of Levels
 1 A              3
 2 B              2
 3 C              2
 4 D              2

        ----------
    Table 1: B = 1 C = 1
   D (row) by A (column)
         1       2       3
 1   19.00   23.00   24.00
 2   57.00   47.00   37.00

        ----------
    Table 2: B = 1 C = 2
   D (row) by A (column)
         1       2       3
 1   29.00   33.00   42.00
 2   63.00   66.00   68.00

        ----------
    Table 3: B = 2 C = 1
   D (row) by A (column)
         1       2       3
 1   29.00   47.00   43.00
 2   49.00   55.00   52.00

        ----------
    Table 4: B = 2 C = 2
   D (row) by A (column)
         1       2       3
 1   27.00   23.00   30.00
 2   53.00   50.00   42.00

 ----------------------  Step: 0  ----------------------
 Input Model:  (A*B*D)
 Smallest p-value for removing effects      0.100
 Largest  p-value for entering effects      0.050
 Chi-squared                  33.92
 Degrees of Freedom             12.
 p-value                     0.0007
                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*B*D                     0.12           2      0.9408
 Effect Removed: A*B*D

 ----------------------  Step: 1  ----------------------
 Model:  (A*B, A*D, B*D)
 Chi-squared                  34.05
 Degrees of Freedom             14.
 p-value                     0.0020

 IEND =   0   NEF =   3
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    NVEF
  1   2   3
  2   2   2

          INDEF
  1   2   3   4   5   6
  1   2   1   4   2   4

                                      FIT
    1       2       3       4       5       6       7       8       9      10
24.39   59.61   24.39   59.61   27.61   51.39   27.61   51.39   28.24   56.26

   11      12      13      14      15      16      17      18      19      20
28.24   56.26   34.76   52.74   34.76   52.74   32.38   53.12   32.38   53.12

   21      22      23      24
37.12   46.38   37.12   46.38

Example 2

Example two illustrates the use of CTSTP when sampling zeros are present. In this example, which is taken 
from Brown and Fuchs (1983), there are thirteen sampling zeros so that thirteen parameter estimates are 
infinite when the full model is fit. Here, we begin with the model fit by Brown and Fuchs, which, in CTSTP 
notation, is given as

(AC, AD, ABE, BCDE)

When this model is fit, there are five parameter estimates that are infinite. Note that these estimates have no 
effect on the degrees of freedom used in the tests computed here.

      USE UMACH_INT
      USE CTSTP_INT
      USE WRIRN_INT
      USE WRRRN_INT
      USE ISUM_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LTAB, MAXIND, MAXNVF, NCLVAR, I
      PARAMETER  (IPRINT=2, LTAB=32, MAXIND=30, MAXNVF=10, NCLVAR=5)
!
      INTEGER    IDO, IEND, INDEF(MAXIND), ISTEP, LIND, NCLVAL(NCLVAR), &
                 NEF, NFORCE, NOUT, NSTEP, NVEF(MAXNVF)
      REAL       FIT(LTAB), STAT(3), TABLE(LTAB)
!
      DATA TABLE/33.0, 32.0, 8.0, 8.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, &
          0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 2.0, 10.0, 3.0, 6.0, 1.0, &
          2.0, 0.0, 2.0, 0.0, 1.0, 0.0, 4.0, 0.0, 1.0, 0.0, 2.0/
      DATA NCLVAL/2, 2, 2, 2, 2/, FIT/32*1.0/, NEF/4/
      DATA (NVEF(I),I=1,4)/2, 2, 3, 4/
      DATA (INDEF(I),I=1,11)/1, 3, 1, 4, 1, 2, 5, 2, 3, 4, 5/
!
      CALL UMACH (2, NOUT)
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!
      ISTEP  = -1
      NSTEP  = 2
      NFORCE = 0
!
      CALL CTSTP (NCLVAL, TABLE, ISTEP, NSTEP, NFORCE, NEF, &
                 NVEF, INDEF, FIT, STAT, IEND, IPRINT=IPRINT)
!
      WRITE (NOUT,99999) IEND, NEF
      CALL WRIRN ('NVEF', NVEF, 1, NEF, 1, 0)
      LIND = ISUM(NEF,NVEF,1)
      CALL WRIRN ('INDEF', INDEF, 1, LIND, 1, 0)
      CALL WRRRN ('FIT', FIT, 1, LTAB, 1, 0)
!
99999 FORMAT (/, ' IEND = ', I3, '   NEF = ', I3)
      END

Output

 Variable   Number of Levels
 1 A              2
 2 B              2
 3 C              2
 4 D              2
 5 E              2

          ----------
   Table 1: A = 1 B = 1 C = 1
     D (row) by E (column)
               1       2
       1   33.00   32.00
       2    8.00    8.00

          ----------
   Table 2: A = 1 B = 1 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   1.000   0.000

          ----------
   Table 3: A = 1 B = 2 C = 1
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   0.000

          ----------
   Table 4: A = 1 B = 2 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   0.000
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          ----------
   Table 5: A = 2 B = 1 C = 1
     D (row) by E (column)
               1       2
       1    2.00   10.00
       2    3.00    6.00

          ----------
   Table 6: A = 2 B = 1 C = 2
     D (row) by E (column)
               1       2
       1   1.000   2.000
       2   0.000   2.000

          ----------
   Table 7: A = 2 B = 2 C = 1
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   4.000

          ----------
   Table 8: A = 2 B = 2 C = 2
     D (row) by E (column)
               1       2
       1   0.000   1.000
       2   0.000   2.000

 ----------------------  Step: 0  ----------------------
 Input Model:  (A*C, A*D, A*B*E, B*C*D*E)
 Smallest p-value for removing effects      0.100
 Chi-squared                   9.07
 Degrees of Freedom             10.
 p-value                     0.5251

                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*C                       4.41           1      0.0358
 A*D                       6.56           1      0.0104
 A*B*E                     0.00           1      0.9912
 B*C*D*E                   0.00           1      0.9912
 Effect Removed: B*C*D*E

 ----------------------  Step: 1  ----------------------
 Model:  (A*C, A*D, A*B*E, B*C*D, B*C*E, B*D*E, C*D*E)
 Chi-squared                   9.07
 Degrees of Freedom             11.
 p-value                     0.6151

                                 Degrees of
 Effect Tested      Chi-squared     Freedom     P-value
 A*C                       4.41           1      0.0358
 A*D                       6.56           1      0.0104
 A*B*E                     0.00           1      1.0000
 B*C*D                     0.53           1      0.4673
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 B*C*E                     0.00           1      1.0000
 B*D*E                     0.00           1      1.0000
 C*D*E                     0.10           1      0.7522
 Effect Removed: B*C*E

 ----------------------  Step: 2  ----------------------
 Model:  (A*C, A*D, A*B*E, B*C*D, B*D*E, C*D*E)
 Chi-squared                   9.07
 Degrees of Freedom             12.
 p-value                     0.6966
 IEND =   0   NEF =   6

          NVEF
1   2   3   4   5   6
2   2   3   3   3   3

                            INDEF
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
1   3   1   4   1   2   5   2   3   4   2   4   5   3   4   5

                                      FIT
    1      2       3       4       5      6       7        8       9      10
32.36  32.56    8.53    6.91    0.71    1.21    0.40    0.32    0.00    0.90

  11      12      13      14      15      16      17      18      19      20
0.00    0.75    0.00    0.27    0.00    0.09    2.64    9.44    2.47    7.09

  21      22      23      24      25      26      27      28      29      30
0.29    1.79    0.60    1.68    0.00    1.10    0.00    3.25    0.00    1.73

  31      32
0.00    1.91
CTSTP         Chapter 5: Categorical and Discrete Data Analysis      576



CTRAN

Performs generalized Mantel-Haenszel tests in a stratified contingency table.

Required Arguments
NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels (categories) of the 

i-th classification variable.  (Input) 
TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * … * NCLVAL(NCLVAR) containing the entries in the 

cells of the table to be fit.  (Input) 
See Comment 3 for comments on the ordering of the elements in TABLE. For the classification variables 
specified in INDROW and INDCOL, a series of two-dimensional contingency tables are obtained from 
the elements in TABLE. All other classification variables are stratification variables.

INDROW — Index of the classification variable to be used for the row variable in the stratified two-dimen-
sional table.  (Input)

INDCOL — Index of the classification variable to be used for the column variable in the stratified 
two-dimensional table.  (Input)

ROWSCR — Vector of length NCLVAL(INDCOL) containing the scores associated with the column and 
used in each row.  (Input, if IROWSC = 0; output, otherwise) ROWSCR is not used and can be dimen-
sioned of length 1 in the calling program if ITYPE = 1. If IROWSC is 3, 4, or 5, then ROWSCR contains the 
scores used in the last contingency table analyzed.

COLSCR — Vector of length NCLVAL(INDROW) containing the scores associated with each row and used in 
each column.  (Input, if ICOLSC = 0; output, otherwise) COLSCR is not used and can be dimensioned 
of length 1 in the calling program if ITYPE is not 3. If ICOLSC is 3, 4, or 5, then COLSCR contains the 
scores used in the last contingency table analyzed.

STAT — Table of size m by 3 containing the Mantel-Haenszel statistics.  (Output)
Where m is one plus the number of stratified tables, i.e., m = 1 + NCLVAL(1) * NCLVAL(2) * … * 
NCLVAL(NCLVAR)/(NCLVAL(INDROW) * NCLVAL(INDCOL)). The first column of STAT contains the 
chi-squared statistic for a test of partial association, the second column contains its degrees of freedom, 
and the third column contains the probability of a greater chi-squared. The first m - 1 rows of STAT 
contain the statistics computed for each of the stratified tables. The first row corresponds to the classi-
fication stratification variable levels (1, 1, …, 1). The second row corresponds to levels (1, 1, …, 2), etc., 
so that in row m - 1 all stratification variables are at their highest levels. The last row of STAT contains 
the same statistics pooled over all of the stratified tables.

Optional Arguments
NCLVAR — Number of classification variables.  (Input)

Default: NCLVAR = size (NCLVAL,1).
ITYPE — The type of statistic to compute.  (Input) 

Default: ITYPE = 1.

ITYPE Statistic

1 Generalized Mantel-Haenszel based upon the two-dimensional contingency 
tables.
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IROWSC — Option parameter giving the scores associated with the column index to be used when com-
puting statistics in each row.  (Input)
Default: IROWSC = 0.

IROWSC is not used if ITYPE = 1.
ICOLSC — Option parameter giving the scores associated with the row index to be used when computing 

statistics in each column.  (Input) 
Default: ICOLSC = 0.

ICOLSC is not used if ITYPE is not 3.
IPRINT — Print option.  (Input) 

Default: IPRINT = 0.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDSTAT = size (STAT,1).

2 Generalized Mantel-Haenszel based upon the row mean score in the two-dimen-
sional table.

3 Generalized Mantel-Haenszel based upon the correlation score for the 
two-dimensional tables.

IROWSC Weights

0 User specified (or no) weights.

1 The digits 1, 2, …, NCLVAL(INDCOL).

2 Combined (over all tables) ridit-type scores.

3 Rank scores computed separately for each table.

4 Ridit-type scores computed separately for each table.

5 Logrank scores computed separately for each table.

ICOLSC Weights

0 User specified (or no) weights.

1 The digits 1, 2, …, NCLVAL(INDROW).

2 Combined (over all tables) ridit-type scores.

3 Rank scores computed separately for each table.

4 Ridit-type scores computed separately for each table.

5 Logrank scores computed separately for each table.

IPRINT Action

0 No printing.

1 Print the contents of the STAT array.

2 Print each stratified table followed by the contents of the STAT array.

ITYPE Statistic
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FORTRAN 90 Interface
Generic:CALL CTRAN (NCLVAL, TABLE, INDROW, INDCOL, ROWSCR, COLSCR, STAT [, …])
Specific: The specific interface names are S_CTRAN and D_CTRAN.

FORTRAN 77 Interface
Single: CALL CTRAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL, ITYPE, IROWSC, ICOLSC, 

IPRINT, ROWSCR, COLSCR, STAT, LDSTAT)
Double: The double precision name is DCTRAN.

Description

Routine CTRAN computes tests of partial association (a test of homogeneity, a test on means, and a test on cor-
relations) in stratified two-dimensional contingency tables. The type of test computed depends upon 
parameter ITYPE. All tests are generalizations of the Mantel-Haenszel stratified 2 × 2 contingency table test 
statistic in the sense that information is “pooled” over all tables without increasing the total degrees of free-
dom in the test. Like the Mantel-Haenszel test, if all tables violate the null hypothesis in the same direction, 
the tests computed here are more powerful than most other tests of the same null hypothesis.

While CTRAN allows for an arbitrary number of classification variables, only three are required to describe 
the test statistics since all stratification variables could be (if desired) lumped into a single classification vari-
able. Because of this, only three classification variables are discussed here. Let fijk denote the frequency in cell 
ij of stratum k where k = 1, …, m, i = 1, …, r, and j = 1, …, c. Then, the input data can be described as a series 
of contingency tables. For example, if r = c = 2, so that 2 × 2 tables are used, then we would have:

All tests are computed as follows: For each table, a test statistic vector xk with estimated covariance matrix

is computed. The test statistic vector xk represents the mean difference (from the null hypothesis) for the test 
being computed. Thus, if ITYPE = 1, xk is a vector of cell frequencies minus their expected value under the 
hypothesis of homogeneity while if ITYPE = 2, xk is a vector containing the row means (based upon the row 
scores) for the elements in a row of a table minus the estimated mean for the table (estimated under the 
assumption that all means are equal). Finally, if ITYPE = 3, xk is a vector of length 1 containing an estimated 
correlation coefficient computed between the row and column scores.

Note that for nominal data in both the rows and columns, one would generally use ITYPE = 1 while if an 
ordering (and scores) make sense for each row of a table, ITYPE = 2 would be used. If an ordering (and 
scores) make sense for both the rows and the columns of a table, then a correlation measure (ITYPE = 3) is 
appropriate.

f111 f121 f112 f122 … f11m f12m

f211 f221 f212 f222 … f21m f22m
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Test statistics for each table are computed as

which has degrees of freedom (r - 1)(c - 1) when ITYPE = 1, r - 1 when ITYPE = 2, and 1 for ITYPE = 3. 

While these test statistics could be combined by summing them over all tables (yielding a X2 test with m 
times the of degrees of freedom in a single table), the Mantel-Haenszel test combines the scores in a different 
way. Let 

Then, an overall X2 may be computed as

This test statistic has the same degrees of freedom as the test statistic computed for a single stratum of the 
three-way table and is reported in the last row of STAT. Routine CTRAN uses simplified computational meth-
ods. See Landis, Cooper, Kennedy, and Koch (1979) for details.

Landis, Cooper, Kennedy, and Koch (1979, page 225) give the null hypothesis for a test of partial association 
as follows (paraphrased):

H0 : For each of the separate tables, the data in the respective rows of the table can be regarded as a succes-
sive set of simple random samples from a fixed population corresponding to the column marginal 
totals for the table.

All three tests above are tests of partial association.

For ITYPE= 2 and 3, different row and column (ITYPE = 3) scores are used in computing measures of loca-
tion and association. The scores used by CTRAN for the rows are

1. For IROWSC = 0, the user supplies the scores to be used in each row of the table.
2. For IROWSC = 1, uniform scores are used. These scores consist of the digits 1, 2, …, c where c is the 

number of columns in each table.
3 For IROWSC = 2, combined ridit scores are used. A combined ridit score is computed by summing the 

column marginals over all tables. The combined row score for the j-th column is then computed as the 
sum of the initial j - 1 column marginals plus half of the j-th column marginal. The result is divided by 
the number of observations in all tables to yield the ridit score.

4. For IROWSC = 3, marginal rank scores are used. The j-th marginal rank score is computed for each 
table from the column marginals for that table as the sum of the initial j - 1 column marginals plus half 
the j-th column marginal.

5. For IROWSC = 4, marginal ridit scores are used. These are computed as the marginal rank scores 
divided by the total frequency in the table.

6. For IROWSC = 5, logrank scores are used. These are computed as
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where f+lk is the column marginal for column l in table k.

Column scores are computed in a similar manner.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2RAN/DC2RAN. The reference is:

CALL C2RAN (NCLVAR, NCLVAL, TABLE, INDROW, INDCOL, ITYPE, IROWSC, ICOLSC, IPRINT, 
ROWSCR, COLSCR, STAT, LDSTAT, IX, F, COLSUM, ROWSUM, DIFVEC, DIFSUM, COV, COVSUM, 
AWK, BWK)

The additional arguments are as follows:

IX — Work array of length NCLVAR.

F — Work array of length NCLVAL(INDROW) * NCLVAL(INDCOL).

COLSUM — Work array of length NCLVAL(INDCOL).

ROWSUM — Work array of length NCLVAL(INDROW).

DIFVEC — Work array. If ITYPE = 1, the length is 
(NCLVAL(INDROW) - 1) * (NCLVAL(INDCOL) - 1). For ITYPE = 2, the length is 
NCLVAL(INDROW). For ITYPE = 3, DIFVEC is not used and may be of length 1.

DIFSUM — Work array. If ITYPE = 1, the length is 
(NCLVAL(INDROW) - 1) * (NCLVAL(INDCOL) - 1). DIFSUM contains the sum of the tables con-
taining the observed minus expected frequencies (excluding the last row and column of each 
table). For ITYPE = 2, the length is NCLVAL(INDROW). DIFSUM contains the sum of the table 
row mean scores minus their expected value. For ITYPE = 3, the length is 1. DIFSUM contains 
the sum of the table correlations between the row and column mean scores.  (Output)

COV — Work array. If ITYPE = 1, the length is (NCLVAL(INDROW) - 1)2 * (INCLVA(INDCOL) - 1)2. 
For ITYPE = 2, the length is NCLVAL(INDROW)2. For ITYPE = 3, COV is not used and may be of 
length 1.

COVSUM — Work array. If ITYPE = 1, the length is 
(NCLVAL(INDROW) - 1)2 * (INCLVA(INDCOL) - 1)2. For ITYPE = 2, the length is 
NCLVAL(INDROW)2. For ITYPE = 3, the length is 1.

AWK — Work array. If ITYPE = 1, the length is (NCLVAL(INDROW) - 1)2. For ITYPE = 2, the length 
is NCLVAL(INDROW). For ITYPE = 3, AWK is not used and may be of length 1.

BWK — Work array. If ITYPE = 1, the length is (NCLVAL(INDCOL) - 1)2. For ITYPE= 2 or 3, BWK is 
not used and may be of length 1.

2. Informational errors
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Here, K is an integer that is greater than or equal to one and less than or equal to the number of strati-
fied contingency tables.

3. The cells of the vectors TABLE are sequenced so that the first variable cycles from 1 to NCLVAL(1) the 
slowest, the second variable cycles from 1 to NCLVAL(2) the next most slowly, and so on, up to the 
NCLVAR-th variable, which cycles from 1 to NCLVAL(NCLVAR) the fastest. 

Example: For NCLVAR = 3, NCLVAL(1) = 2, NCLVAL(2) = 3, and NCLVAL(3) = 2 the cells of table 
X(I, J, K) are entered into TABLE(1) through TABLE(12) in the following order: X(1, 1, 1), X(1, 1, 2), 
X(1, 2, 1), X(1, 2, 2), X(1, 3, 1), X(1, 3, 2), X(2, 1, 1), X(2, 1, 2), X(2, 2, 1), X(2, 2, 2), X(2, 3, 1), X(2, 3, 2).

Example

In the following example, all three values of ITYPE are used in computing the partial association statistics. 
This is accomplished via three calls to CTRAN. The value of ITYPE changes on each call. The example is taken 
from Landis, Cooper, Kennedy, and Koch (1979, page 241). Uniform scores are used in both the rows and col-
umn as required by the tests type. The results indicate the presence of association between the row and 
column variables.

      USE CTRAN_INT

      IMPLICIT   NONE
      INTEGER    ICOLSC, INDCOL, INDROW, IROWSC, LDSTAT, NCLVAR
      PARAMETER  (ICOLSC=1, INDCOL=1, INDROW=3, IROWSC=1, LDSTAT=5, &
                NCLVAR=3)
!
      INTEGER    IPRINT, ITYPE, NCLVAL(NCLVAR)
      REAL       COLSCR(4), ROWSCR(3), STAT(LDSTAT,3), TABLE(48)
!
      DATA TABLE/23, 23, 20, 24, 18, 18, 13, 9, 8, 12, 11, 7, 12, 15, &
          14, 13, 7, 10, 13, 10, 6, 6, 13, 15, 6, 4, 6, 7, 9, 3, 8, &
          6, 2, 5, 5, 6, 1, 2, 2, 2, 3, 4, 2, 4, 1, 2, 3, 4/
      DATA NCLVAL/3, 4, 4/
!
      IPRINT = 2
      DO 10  ITYPE=1, 3
         CALL CTRAN (NCLVAL, TABLE, INDROW, INDCOL,  &
                    ROWSCR, COLSCR, STAT, ITYPE=ITYPE, &
                    IROWSC=IROWSC, ICOLSC=ICOLSC, IPRINT=IPRINT)
         IPRINT = 1

Type Code Description

3 1 All frequencies of stratified table K are zero. This table will be excluded from 
the Mantel-Haenszel test statistic.

3 2 The elements of stratified table K sum to one. This table will be excluded 
from the Mantel-Haenszel test statistic.

3 3 The variance of the response variable for stratified table K is zero.

3 4 The variance of either the sub-population or the response variable is zero for 
stratified table K.

3 5 The label for table K exceeds the buffer limit of 72.
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!
   10 CONTINUE
      END

Output

 Values for the class variables are defined to be:
 Variable   Number of Levels
 1 A              3
 2 B              4
 3 C              4

        ----------
     Strata 1: B = 1
   C (row) by A (column)
         1       2       3
 1   23.00    7.00    2.00
 2   23.00   10.00    5.00
 3   20.00   13.00    5.00
 4   24.00   10.00    6.00

        ----------
     Strata 2: B = 2
   C (row) by A (column)
         1       2       3
 1   18.00    6.00    1.00
 2   18.00    6.00    2.00
 3   13.00   13.00    2.00
 4    9.00   15.00    2.00

        ----------
     Strata 3: B = 3
   C (row) by A (column)
         1       2       3
 1    8.00    6.00    3.00
 2   12.00    4.00    4.00
 3   11.00    6.00    2.00
 4    7.00    7.00    4.00

        ----------
     Strata 4: B = 4
   C (row) by A (column)
         1       2       3
 1   12.00    9.00    1.00
 2   15.00    3.00    2.00
 3   14.00    8.00    3.00
 4   13.00    6.00    4.00
 Test of independence between row and column variables

                          Degrees of
     Strata  Chi-Squared     Freedom  Probability
          1          3.4           6       0.7575
          2         10.8           6       0.0942
          3          3.1           6       0.7987
          4          5.2           6       0.5177
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                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         10.6           6       0.1016
 Test of equality of location for rows given column scores

                            Degrees of
       Strata  Chi-Squared     Freedom  Probability
            1         2.62           3       0.4536
            2         7.34           3       0.0617
            3         1.69           3       0.6381
            4         1.68           3       0.6420

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         6.59           3      0.08618
       Row Scores
      1       2       3
  1.000   2.000   3.000
 Test of correlation given row and column scores

                       Degrees of
  Strata  Chi-Squared     Freedom  Probability
       1         1.57           1       0.2105
       2         7.06           1       0.0079
       3         0.16           1       0.6927
       4         0.66           1       0.4161

                               Degrees of
                  Chi-Squared     Freedom  Probability
 Mantel-Haenszel         6.34           1       0.0118
       Row Scores
      1       2       3
  1.000   2.000   3.000

          Column Scores
      1       2       3       4
  1.000   2.000   3.000   4.000
CTRAN         Chapter 5: Categorical and Discrete Data Analysis      584



CTGLM

Analyzes categorical data using logistic, Probit, Poisson, and other generalized linear models.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
MODEL — Model option parameter.  (Input) 

MODEL specifies the distribution of the response variable and the function used to model the distribu-
tion parameter. The lower-bound given in the following table is the minimum possible value of the 
response variable:

Let γ be the dot product of a row in the design matrix with the parameters (plus the fixed parameter, if 
used). Then, the functions used to model the distribution parameter are given by:

NCOEF — Number of estimated coefficients in the model.  (Output)
COEF — NCOEF by 4 matrix containing the parameter estimates and associated statistics.  (Output, if 

INIT = 0; input, if INIT = 1 and MAXIT = 0; input/output, if INIT = 1 and MAXIT > 0) 

When INIT = 1, only the first column needs to be specified on input.

MODEL Distribution Function Lower-
Bound

0 Poisson Exponential 0

1 Neg. Binomial Logistic 0

2 Logarithmic Logistic 1

3 Binomial Logistic 0

4 Binomial Probit 0

5 Binomial Log-log 0

Name Function

Exponential exp(γ)

Logistic exp(γ)/(1 + exp(γ))

Probit Normal(γ) (normal cdf)

Log-log 1 - exp(−γ)

Col. Statistic

1 Coefficient estimate. 

2 Estimated standard deviation of the estimated coefficient.

3 Asymptotic normal score for testing that the coefficient is zero.

4 p-value associated with the normal score in column 3.
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COV — NCOEF by NCOEF matrix containing the estimated asymptotic covariance matrix of the coeffi-
cients.  (Output) 
For MAXIT = 0, this is the Hessian computed at the initial parameter estimates.

XMEAN — Vector of length NCOEF containing the means of the design variables.  (Output)
GR — Vector of length NCOEF containing the last parameter updates (excluding step halvings).  (Output) 

For MAXIT = 0, GR contains the inverse of the Hessian times the gradient vector, all computed at the 
initial parameter estimates.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

ILT — For full-interval and left-interval observations, the column number in X that contains the upper 
endpoint of the observation interval.  (Input) 
See argument ICEN. If ILT = 0, left-interval and full-interval observations cannot be input.
Default: ILT = 0.

IRT — For full-interval and right-interval observations, the column number in X that contains the lower 
endpoint of the interval.  (Input) 
For point observations, X(i, IRT) contains the observation point. IRT must not be zero. See argument 
ICEN. In the usual case, all observations are “point” observations.
Default: IRT = size (X,2).

IFRQ — Column number in X containing the frequency of response for each observation.  (Input) 
If IFRQ = 0, a response frequency of 1 for each observation is assumed.
Default: IFRQ = 0.

IFIX — Column number in X containing a fixed parameter for each observation that is added to the linear 
response prior to computing the model parameter.  (Input) 
The “fixed” parameter allows one to test hypothesis about the parameters via the log-likelihoods. If 
IFIX = 0, the fixed parameter is assumed to be 0.
Default: IFIX = 0.

IPAR — Column number in X containing an optional distribution parameter for each observation.  (Input)
Default:  IPAR = 0. 
If IPAR = 0, the distribution parameter is assumed to be 1. The meaning of the distributional parame-
ter depends upon MODEL as follows:

MODEL Meaning of X(I, IPAR)

0 The Poisson parameter is given by X(i, IPAR) * exp(γ).

1 The number of successes required in the negative binomial is 
given by X(i, IPAR).

2 X(i, IPAR) is not used.

3 - 5 The number of trials in the binomial distribution is given by X(i, 
IPAR).
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ICEN — Column number in X containing the interval-type for each observation.  (Input) 
Default: ICEN = 0.
If ICEN = 0, a code of 0 is assumed. Valid codes are

INFIN — Method to be used for handling infinite estimates.  (Input) 
Default: INFIN = 1.

See the Description section for more discussion.
MAXIT — Maximum number of iterations.  (Input) 

MAXIT = 30 is usually sufficient. Use MAXIT = 0 to compute the Hessian, stored in COV, and the New-
ton step, stored in GR, at the initial estimates.
Default: MAXIT = 30.

EPS — Convergence criterion.  (Input) 
Convergence is assumed when the maximum relative change in any coefficient estimate is less than 
EPS from one iteration to the next or when the relative change in the log-likelihood, ALGL, from one 
iteration to the next is less than EPS/100. If EPS is negative, EPS = 0.001 is assumed.
Default: EPS = .001.

INTCEP — Intercept option.  (Input) 
Default: INTCEP = 1

.

X(i,ICEN) Censoring

0 Point observation. The response is unique and is given by X(i, IRT).

1 Right-interval. The response is greater than or equal to X(i, IRT) and less 
than or equal to the upper bound, if any, of the distribution.

2 Left-interval. The response is less than or equal to X(i, ILT) and greater than 
or equal to the lower bound of the distribution.

3 Full-interval. The response is greater than or equal to X(i, IRT), but less than 
or equal to X(i, ILT).

INFIN Method

0 Remove a right or left-censored observation from the log-likelihood whenever  
the probability of the observation exceeds 0.995. At convergence, use linear 
programming to check that all removed observations actually have an esti-
mated linear response that is infinite. Set IADD(i) for observation i to 2 if the 
linear response is infinite. If not all removed observations have infinite linear 
response, recompute the estimates based upon the observations with esti-
mated linear response that is finite.This option is valid only for censoring 
codes (see ICEN) 1 and 2.

1 Iterate without checking for infinite estimates.

INTCEP Action

0 No intercept is in the model (unless otherwise provided for by the user).

1 Intercept is automatically included in the model.
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NCLVAR — Number of classification variables.  (Input) 
Dummy or indicator variables are generated for classification variables using the IDUMMY = 2 option 
of IMSL routine GRGLM (Chapter 2, “Regression”). See Comment 3.
Default: NCLVAR = 0.

INDCL — Index vector of length NCLVAR containing the column numbers of X that are classification vari-
ables.  (Input, if NCLVAR is positive; not used otherwise). If NCLVAR is 0, INDCL is not referenced and 
can be dimensioned of length 1 in the calling program.

NEF — Number of effects in the model.  (Input) 
In addition to effects involving classification variables, simple covariates and the product of simple 
covariates are also considered effects.
Default: NEF = 0.

NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.  
(Input, if NEF is positive; not used otherwise).
If NEF is zero, NVEF is not used and can be dimensioned of length 1 in the calling program.

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF) containing the column numbers in 
X associated with each effect.(Input, if NEF is positive, not used otherwise)
The first NVEF(1) elements of INDEF give the column numbers of the variables in the first effect. The 
next NVEF(2) elements give the column numbers for the second effect, etc. If NEF is zero, INDEF is not 
used and can be dimensioned of length 1 in the calling program.

INIT — Initialization option.  (Input)
Default: INIT = 0.

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

MAXCL — An upper bound on the sum of the number distinct values taken on by each classification vari-
able.  (Input)
Default: If  NCLVAR = 0, then MAXCL = 1, else MAXCL = 3 * NCLVAR.

NCLVAL — Vector of length NCLVAR containing the number of values taken by each classification variable. 
(Output, if NCLVAR is positive; not used otherwise)
 NCLVAL(i) is the number of distinct values for the i-th classification variable. If NCLVAR is zero, 
NCLVAL is not used and can be dimensioned of length 1 in the calling program.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the distinct values 
of the classification variables in ascending order.  (Output, if NCLVAR is positive; not used otherwise) 
Since in general the length of CLVAL will not be known in advance, MAXCL (an upper bound for this 
length) should be used for purposes of dimensioning CLVAL. The first NCLVAL(1) elements of CLVAL 

INIT Action

0 Unweighted linear regression is used to obtain initial estimates.

1 The NCOEF elements in the first column of COEF contain initial estimates of the parame-
ters on input to CTGLM (requiring that the user know NCOEF prior to calling CTGLM).

IPRINT Action

0 No printing is performed.

1 Printing is performed, but observational statistics are not printed.

2 All output statistics are printed.
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contain the values for the first classification variables, the next NCLVAL(2) elements contain the values 
for the second classification variable, etc. If NCLVAR is zero, then CLVAL is not referenced and can be 
dimensioned of length 1 in the calling program.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

ALGL — Value of the log-likelihood evaluated at the final estimates.  (Output)
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOV = size (COV,1).

CASE — NOBS by 5 vector containing the case analysis.  (Output) 

Case statistics are computed for all observations except where missing values prevent their 
computation. 
The predicted parameter in column 1 depends upon MODEL as follows. 

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)

IADDS — Vector of length NOBS indicating which observations are included in the extended likelihood.  
(Output, if MAXIT > 0; input/output, if MAXIT = 0)

In this case, some elements of IADDS may be set to 1, by CTGLM, but no check for infinite estimates 
performed.

NRMISS — Number of rows of data in X that contain missing values in one or more columns ILT, IRT, 
IFRQ, IFIX, IPAR, ICEN, INDCL, or INDEF of X.  (Output)

Col. Statistic

1 Predicted parameter.

2 The residual. 

3 The estimated standard error of the residual.

4 The estimated influence of the observation.

5 The standardized residual.

MODEL Parameter

0 The predicted mean for the observation.

1-5 The probability of a success on a single trial.

Value Status of Observation

0 Observation i is in the likelihood.

1 Observation i cannot be in the likelihood because it contains at least one missing 
value in X.

2 Observation i is not in the likelihood. Its estimated parameter is infinite. For 
MAXIT = 0, the IADDS array must be initialized prior to calling CTGLM.
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FORTRAN 90 Interface
Generic: CALL CTGLM (X, MODEL, NCOEF, COEF, COV, XMEAN, GR [, …])
Specific: The specific interface names are S_CTGLM and D_CTGLM.

FORTRAN 77 Interface
Single: CALL CTGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX, IPAR, ICEN, INFIN, 

MAXIT, EPS, INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL, 
NCLVAL, CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE, GR, 
IADDS, NRMISS)

Double: The double precision name is DCTGLM.

Description

Routine CTGLM uses iteratively reweighted least squares to compute (extended) maximum likelihood esti-
mates in some generalized linear models involving categorized data. One of several models, including the 
probit, logistic, Poisson, logarithmic, and negative binomial models, may be fit for input point or interval 
observations. (In the usual case, only point observations are observed.) 

Let

be the linear response where xi is a design column vector obtained from a row of X, β is the column vector of 
coefficients to be estimated, and wi is a fixed parameter that may be input in X. When some of the γi are 
infinite at the supremum of the likelihood, then extended maximum likelihood estimates are computed. Extended 

maximum likelihood are computed as the finite (but nonunique) estimates  that optimize the likelihood 

containing only the observations with finite . These estimates, when combined with the set of indices of 

the observations such that  is infinite at the supremum of the likelihood, are called extended maximum 

estimates. When none of the optimal  are infinite, extended maximum likelihood estimates are identical 
to maximum likelihood estimates. Extended maximum likelihood estimation is discussed in more detail by 
Clarkson and Jennrich (1991). In CTGLM, observations with potentially infinite 

are detected and removed from the likelihood if INFIN = 0. See below.

The models available in CTGLM are:
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Here, Φ denotes the cumulative normal distribution, N and S are known parameters specified for each obser-
vation via column IPAR of X, and w is an optional fixed parameter specified for each observation via column 
IFIX of X. (If IPAR = 0, then N is taken to be 1 for MODEL = 0, 3, 4 and 5 and S is taken to be 1 for MODEL = 1. 
If IFIX = 0, then w is taken to be 0.) Since the log-log model (MODEL = 5) probabilities are not symmetric with 
respect to 0.5, quantitatively, as well as qualitatively, different models result when the definitions of “suc-
cess” and “failure” are interchanged in this distribution. In this model and all other models involving θ, θ is 
taken to be the probability of a “success.”

Note that each row vector in the data matrix can represent a single observation; or, through the use of column 
IFRQ of the matrix X, each vector can represent several observations. Also note that classification variables 
and their products are easily incorporated into the models via the usual regression-type specifications.

Computational Details

For interval observations, the probability of the observation is computed by summing the probability distri-
bution function over the range of values in the observation interval. For right-interval observations, 
Pr(Y ≥ y) is computed as a sum based upon the equality Pr(Y ≥ y) = 1 - Pr(Y < y). Derivatives are computed 
similarly. CTGLM allows three types of interval observations. In full interval observations, both the lower and 
the upper endpoints of the interval must be specified. For right-interval observations, only the lower end-
point need be given while for left-interval observations, only the upper endpoint is given.

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.
2. Estimates of the means of the “independent” or design variables are computed. The frequency of the 

observation in all but binomial distribution models is taken from column IFRQ of the data matrix X. In 
binomial distribution models, the frequency is taken as the product of n = X(I, IPAR) and X(I, IFRQ). 
In all cases, if IFRQ = 0, or IPAR = 0, these values default to 1. Means are computed as

MODEL Name Parameterization PDF

0 Poisson

1 Neg. Binomial

2 Logarithmic

3 Logistic

4 Probit

5 Log-log
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3. If INIT= 0, initial estimates of the coefficients are obtained (based upon the observation intervals) as 
multiple regression estimates relating transformed observation probabilities to the observation design 
vector. For example, in the binomial distribution models, θ for point observations may be estimated as

and, when MODEL = 3, the linear relationship is given by 

while if MODEL = 4,

For bounded interval observations, the midpoint of the interval is used for X(I,IRT). Right-interval 
observations are not used in obtaining initial estimates when the distribution has unbounded support 
(since the midpoint of the interval is not defined). When computing initial estimates, standard modifi-
cations are made to prevent illegal operations such as division by zero.
Regression estimates are obtained at this point, as well as later, by use of routine RGIVN (see Chapter 2, 
“Regression”.)

4. Newton-Raphson iteration for the maximum likelihood estimates is implemented via iteratively 
reweighted least squares. Let 

denote the log of the probability of the i-th observation for coefficients β. In the least-squares model, 
the weight of the i-th observation is taken as the absolute value of the second derivative of

with respect to 

(times the frequency of the observation), and the dependent variable is taken as the first derivative Ψ 
with respect to γi, divided by the square root of the weight times the frequency. The Newton step is 
given by
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where all derivatives are evaluated at the current estimate of γ, and βn+1 = βn - Δβ. This step is com-
puted as the estimated regression coefficients in the least-squares model. Step halving is used when 
necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient update from one itera-
tion to the next is less than EPS or when the relative change in the log--likelihood from one iteration to 
the next is less than EPS/100. Convergence is also assumed after MAXIT iterations or when step halv-
ing leads to a step size of less than .0001 with no increase in the log-likelihood.

6. For interval observations, the contribution to the log-likelihood is the log of the sum of the probabili-
ties of each possible outcome in the interval. Because the distributions are discrete, the sum may 
involve many terms. The user should be aware that data with wide intervals can lead to expensive (in 
terms of computer time) computations.

7. If requested (INFIN = 0), then the methods of Clarkson and Jennrich (1991) are used to check for the 
existence of infinite estimates in

As an example of a situation in which infinite estimates can occur, suppose that observation j is right 
censored with tj > 15 in a logistic model. If design matrix X is such that xjm = 1 and xim = 0 for all i ≠ j, 
then the optimal estimate of βm occurs at

leading to an infinite estimate of both βmand ηj. In CTGLM, such estimates may be “computed.”

In all models fit by CTGLM, infinite estimates can only occur when the optimal estimated probability 
associated with the left- or right-censored observation is 1. If INFIN = 0, left- or right- censored obser-
vations that have estimated probability greater than 0.995 at some point during the iterations are 
excluded from the log-likelihood, and the iterations proceed with a log-likelihood based upon the 
remaining observations. This allows convergence of the algorithm when the maximum relative change 
in the estimated coefficients is small and also allows for the determination of observations with infinite

At convergence, linear programming is used to ensure that the eliminated observations have infinite 
ηi. If some (or all) of the removed observations should not have been removed (because their esti-
mated ηi’s must be finite), then the iterations are restarted with a log-likelihood based upon the finite 
ηi observations. See Clarkson and Jennrich (1991) for more details.

When INFIN = 1, no observations are eliminated during the iterations. In this case, when infinite esti-

mates occur, some (or all) of the coefficient estimates  will become large, and it is likely that the 
Hessian will become (numerically) singular prior to convergence.
CTGLM         Chapter 5: Categorical and Discrete Data Analysis      593



When infinite estimates for the  are detected, routine RGIVN (see Chapter 2, “Regression”) is used at 

the convergence of the algorithm to obtain unique estimates . This is accomplished by regressing 

the optimal  or the observations with finite η against X β, yielding a unique  (by setting coeffi-

cients  that are linearly related to previous coefficients in the model to zero). All of the final statistics 

relating to  are based upon these estimates.

8. Residuals are computed according to methods discussed by Pregibon (1981). Let li(γi) denote the 
log-likelihood of the i-th observation evaluated at γi. Then, the standardized residual is computed as

where  is the value of γi when evaluated at the optimal  and the derivatives here (and only here) 
are with respect to γ rather than with respect to β. The denominator of this expression is used as the 
“standard error of the residual” while the numerator is the “raw” residual.
Following Cook and Weisberg (1982), we take the influence of the i-th observation to be

 

This quantity is a one-step approximation to the change in the estimates when the i-th observation is 
deleted. Here, the partial derivatives are with respect to β.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2GLM/DC2GLM. The reference is:

CALL C2GLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX, IPAR, ICEN, INFIN, MAXIT, 
EPS, INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL, NCLVAL, CLVAL, 
NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE, GR, IADD, NRMISS, NMAX, 
OBS, ADDX, XD, WK, KBASIS)

The additional arguments are as follows:

NMAX — Maximum number of observations that can be handled in the linear programming.  
(Input) 
If workspace is not explicitly provided, NMAX is set to NMAX = (n - 8)/(7 + NCOEF) in S_CTGLM 
and NMAX = (n - 16)/(11 + 2 * NCOEF) in D_CTGLM where n is the maximum number of units 
of workspace available after allocating space for OBS. In the typical problem, no linear pro-
gramming is performed so that NMAX = 1 is sufficient. NMAX = NOBS is always sufficient. Even 
when extended maximum likelihood estimates are computed, NMAX = 30 will usually suffice. 
If INFIN = 1, set NMAX = 0.

OBS — Work vector of length NCOEF + 1.

ADDX — Logical work vector of length NMAX. ADDX is not needed and can be a array of length 1 in 
the calling program if NMAX = 0.
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XD — Work vector of length NMAX * NCOEF. XD is not needed and can be a array of length 1 in the 
calling program if NMAX = 0.

WK — Work vector of length 4 * NMAX. WK is not needed and can be a array of length 1 in the call-
ing program if NMAX = 0.

KBASIS — Work vector of length 2 * NMAX. KBASIS is not needed and can be a array of length 1 in 
the calling program if NMAX = 0.

2 Informational errors

3. Dummy variables are generated for the classification variables as follows: An ascending list of all dis-
tinct values of each classification variable is obtained and stored in CLVAL. Dummy variables are then 
generated for each but the last of these distinct values. Each dummy variable is zero unless the classifi-
cation variable equals the list value corresponding to the dummy variable, in which case the dummy 
variable is one. See argument IDUMMY for IDUMMY = 2 in routine GRGLM in Chapter 2.

4. The “product” of a classification variable with a covariate yields dummy variables equal to the prod-
uct of the covariate with each of the dummy variables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in the usual manner. Each 
dummy variable associated with the first classification variable multiplies each dummy variable asso-
ciated with the second classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest.

Programming Notes
1. Classification variables are specified via arguments NCLVAR and INDCL. Indicator or dummy vari-

ables are created for the classification variables using routine GRGLM (see Chapter 2, “Regression”) with 
IDUMMY = 2.

2. To enhance precision “centering” of covariates is performed if INTCEP = 1 and   NOBS - NRMISS > 1. 
In doing so, the sample means of the design variables are subtracted from each observation prior to its 
inclusion in the model. On convergence the intercept, its variance and its covariance with the remain-
ing estimates are transformed to the uncentered estimate values.

3 Two methods for specifying a binomial distribution model are possible. In the first method, X(I, IFRQ) 
contains the frequency of the observation while X(I, IRT) is 0 or 1 depending upon whether the obser-
vation is a success or failure. In this case, N = X(I, IPAR) is always 1. The model is treated as repeated 
Bernoulli trials, and interval observations are not possible.
A second method for specifying binomial models is to use X(I, IRT) to represent the number of suc-
cesses in the X(I, IPAR) trials. In this case, X(I, IFRQ) will usually be 1, but it may be greater than 1, in 
which case interval observations are possible.

Type Code Description

3 1 There were too many iterations required. Convergence is assumed.

3 2 There were too many step halvings. Convergence is assumed.

4 3 The number of distinct values of the classification variables exceeds MAXCL.

4 4 The number of distinct values of a classification must be greater than one.

4 5 LDCOEF or LDCOV must be greater than or equal to NCOEF.

4 6 The number of observations to be deleted has exceeded NMAX. Rerun with a 
different model or increase the workspace.
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The estimated coefficients will be identical between the two methods, but the log-likelihood will differ 
by a constant term determined by the binomial coefficient. Specifically, if the model is treated as bino-
mial trials, each observation with

yi = x(I,IRT), Ni = x(I,IPAR), fi = x(I,IFRQ)

contributes

to the log-likelihood. For Bernoulli data, this term evaluates to 0 for every observation.

Examples

Example

The first example is from Prentice (1976) and involves the mortality of beetles after exposure to various con-
centrations of carbon disulphide. Both a logit and a probit fit are produced for linear model

μ + βx

The data is given as:

      USE UMACH_INT
      USE CTGLM_INT

      IMPLICIT   NONE
      INTEGER    IPAR, IRT, LDCASE, LDCOEF, LDCOV, LDX, NCOL, &
                 NEF, NOBS, NOUT, MAXCL
      REAL       EPS
      PARAMETER  (EPS=0.0001, IPAR=2, IRT=3, LDCASE=8, LDCOEF=2, LDCOV=2, &
                 LDX=8, MAXCL=1, NCOL=3, NEF=1, NOBS=8)
!
      INTEGER    INDCL(MAXCL), INDEF(1), IPRINT, MODEL, NCLVAL(1), &

Covariate(x) N y

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60
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                 NCOEF, NRMISS, NVEF(1)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(1), COEF(LDCOEF,4), &
                 COV(LDCOV,4), GR(2), X(LDX,NCOL), XMEAN(2)
!
      DATA NVEF/1/, INDEF/1/
      DATA X/1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, 1.883, &
          59, 60, 62, 56, 63, 59, 62, 60, 6, 13, 18, 28, 52, 53, 61, &
          60/
!
      IPRINT = 2
      CALL UMACH(2, NOUT)
      DO 10  MODEL=3, 4
         WRITE(NOUT, *) 'MODEL=', MODEL 
         CALL CTGLM (X, MODEL, NCOEF, COEF, COV, XMEAN, GR, IRT=IRT, &
         IPAR=IPAR, EPS=EPS, NEF=NEF, NVEF=NVEF, INDEF=INDEF, IPRINT=IPRINT)
      IPRINT = 1
   10 CONTINUE
!
      END

Output

Model =  3

Initial Estimates
     1       2
-63.27   35.84

Method  Iteration  Step size  Maximum scaled         Log
                                coef. update      likelihood
   Q-N        0                                   -20.31
   Q-N        1      1.0000      0.1387           -19.25
   N-R        2      1.0000      0.6112E-01       -18.89
   N-R        3      1.0000      0.7221E-01       -18.78
   N-R        4      1.0000      0.6362E-03       -18.78
   N-R        5      1.0000      0.3044E-06       -18.78

Log-likelihood       -18.77818

                  Coefficient Statistics
                      Standard    Asymptotic    Asymptotic
     Coefficient         Error   Z-statistic       P-value
 1        -60.76          5.19        -11.66          0.00
 2         34.30          2.92         11.76          0.00

 Asymptotic Coefficient Covariance
                 1             2
   1    0.2691E+02   -0.1512E+02
   2                  0.8505E+01

                             Case Analysis
                                   Residual                Standardized
      Predicted      Residual    Std. Error      Leverage      Residual
1         0.058         2.593         1.792         0.267         1.448
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2         0.164         3.139         2.871         0.347         1.093
3         0.363        -4.498         3.786         0.311        -1.188
4         0.606        -5.952         3.656         0.232        -1.628
5         0.795         1.890         3.202         0.269         0.590
6         0.902        -0.195         2.288         0.238        -0.085
7         0.956         1.743         1.619         0.198         1.077
8         0.979         1.278         1.119         0.138         1.143

Last Coefficient Update
        1           2
1.104E-07  -2.295E-07

Covariate Means
    1.793

      Observation Codes
1   2   3   4   5   6   7   8
0   0   0   0   0   0   0   0

Number of Missing Values           0

Model =  4

Log-likelihood       -18.23232

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         Error   Z-statistic       P-value
1        -34.94          2.64        -13.23          0.00
2         19.74          1.49         13.29          0.00

Note that the probit model yields a slightly smaller absolute log-likelihood and, thus, is preferred. For this 
data, a model based upon the log-log transformation function is even better. See Prentice (1976) for details.

Example 2

As a second example, the following data illustrate the Poisson model when all types of interval data are pres-
ent. The example also illustrates the use of classification variables and the detection of potentially infinite 
estimates (which turn out here to be finite). These potential estimates lead to the two iteration summaries. 
The input data is
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A linear model

μ + β1x1 +  β2x2

is fit where x1 = 1 if the Class 1 variable is 0, x1 = 0, otherwise, and the x2 variable is similarly defined.

      USE CTGLM_INT

      IMPLICIT   NONE
      INTEGER    ICEN, IFIX, ILT, INFIN, IPAR, IPRINT, IRT,  &
                 LDCASE, LDCOEF, LDCOV, LDX, MAXCL, MAXIT, MODEL, &
                 NCLVAR, NCOL, NEF, NOBS
      REAL       EPS
      PARAMETER  (ICEN=3, ILT=1, INFIN=0, IPAR=2, IPRINT=2, &
                  IRT=2, LDCASE=5, LDCOEF=4, LDCOV=4, LDX=5, MAXCL=4, &
                  MODEL=0, NCLVAR=2, NCOL=5, NEF=2, NOBS=5)
!
      INTEGER    IADD(NOBS), INDCL(NCLVAR), INDEF(2), NCLVAL(MAXCL), &
                NCOEF, NRMISS, NVEF(NEF)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(4), COEF(LDCOEF,4), &
                COV(LDCOV,4), GR(5), X(LDX,NCOL), XMEAN(3)
!
      DATA INDCL/4, 5/, NVEF/1, 1/, INDEF/4, 5/
      DATA X/0, 9, 0, 9, 0, 5, 4, 4, 0, 1, 0, 3, 1, 2, 0, 1, 0, 0, 1, &
           0, 0, 0, 0, 1, 1/
!
      CALL CTGLM (X, MODEL, NCOEF, COEF, COV, XMEAN, GR, ILT=ILT, &
      IRT=IRT, IPAR=IPAR, ICEN=ICEN, INFIN=INFIN, &
      NCLVAR=NCLVAR, NCLVAL=NCLVAL, CLVAL=CLVAL, INDCL=INDCL, &
      NEF=NEF, NVEF=NVEF, INDEF=INDEF, IPRINT=IPRINT, MAXCL=MAXCL)
!
      END

Output

Initial Estimates
     1        2        3
0.2469   0.4463  -0.0645

Method  Iteration  Step size  Maximum scaled        Log
                               coef. update      likelihood

Column

ILT IRT ICEN Class 1 Class 2

0 5 0 1 0

9 4 3 0 0

0 4 1 0 0

9 0 2 1 1

0 1 0 0 1
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  Q-N        0                                   -3.529
  Q-N        1      0.2500       5.168           -3.262
  N-R        2      0.0625       183.4           -3.134
  N-R        3      1.0000      0.7438           -3.006
  N-R        4      1.0000      0.2108           -3.005
  N-R        5      1.0000      0.5559E-02       -3.005

Method  Iteration  Step size  Maximum scaled        Log
                               coef. update      likelihood
  Q-N        0                                   -3.529
  Q-N        1      0.2500       5.168           -3.262
  N-R        2      0.0625       183.4           -3.217
  N-R        3      1.0000       1.128           -3.116
  N-R        4      1.0000      0.1673           -3.115
  N-R        5      1.0000      0.4418E-02       -3.115

Log-likelihood       -3.114638

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         Error   Z-statistic       P-value
1        -0.549         1.171        -0.517         0.605
2         0.549         0.610         0.900         0.368
3         0.549         1.083         0.507         0.612

     Asymptotic Coefficient Covariance
              1             2             3
1    0.1372E+01   -0.3719E+00   -0.1172E+01
2                  0.3719E+00    0.1719E+00
3                                0.1172E+01

                             Case Analysis
                                   Residual                Standardized
      Predicted      Residual    Std. Error      Leverage      Residual
1         5.000         0.000         2.236         1.000         0.000
2         6.925        -0.412         2.108         0.764        -0.196
3         6.925         0.412         1.173         0.236         0.351
4         0.000         0.000         0.000         0.000           NaN
5         1.000         0.000         1.000         1.000         0.000

      Last Coefficient Update
         1           2           3
-2.924E-07  -1.131E-08   7.075E-07

Covariate Means
     1        2
0.6000   0.6000

Distinct Values For Each Class Variable
Variable  1:      0.         1.0
Variable  2:      0.         1.0

Observation Codes
1   2   3   4   5
0   0   0   0   0
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Number of Missing Values           0
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CTWLS

Performs a generalized linear least-squares analysis of transformed probabilities in a two-dimensional con-
tingency table.

Required Arguments
TABLE — NRESP by NPOP matrix containing the frequency count in each cell of each population.  (Input) 

The i-th column of TABLE contains the counts for the i-th population.
ITRAN — Vector of length NTRAN containing the transformation code for each of the NTRAN transforma-

tions to be applied.  (Input) 
ITRAN is not referenced and can be a vector of length 1 in the calling program if NTRAN = 0. Let a 
“response” denote a transformed cell probability. Then, ITRAN(1) contains the first transformation to 
be applied to the cell probabilities, ITRAN(2) contains the second transformation, which is to be 
applied to the responses obtained after ITRAN(1) is performed, etc. Note that the k-th transformation 
takes the ISIZE(k - 1) responses at step k into ISIZE(k) responses, where ISIZE(0) is taken to be 
NPOP * NRESP. Let y denote the vector result of a transformation, x denote the responses before the 
transformation is applied, A denote a matrix of constants, and v denote a vector of constants. Then, the 
possible transformations are

where y(i) and x(i) are the subvectors for the i-th population, y(i, j) and x(i, j) denote the j-th response in 
the i-th population, and v(i, j) denotes the corresponding element of the vector “v”. Transformation 
type 5 is the same as transformation type 1 when the same linear transformation is applied in each 
population (i.e., the type 1 matrix is block diagonal with identical blocks). Because the size of the type 
5 transformation matrix A is NPOP2 times smaller than the type 1 transformation matrix, the type 5 
transformation is usually preferred where it can be used.

ISIZE — Vector of length NTRAN containing the number of response functions defined by the k-th transfor-
mation.  (Input) 
Transformation types 2, 3, and 4 have the same number of output responses as are input, and elements 
of ISIZE corresponding to transformations of these types should reflect this fact. Transformation 

more...

ITRAN Transformation

1 Linear, defined over all populations (y = Ax)

2 Logarithmic (y(i, j) = ln(x(i, j))

3 Exponential (y(i, j) = exp(x(i, j)))

4 Additive (y(i, j) = y(i, j) + v(i, j))

5 Linear, defined for one population and, identically, applied over 
all populations (y(i) = Ax(i))
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types 1 and 5 can either increase or, more commonly, decrease the number of responses. For transfor-
mation type 5, if m linear transformations are defined for each population, the corresponding element 
of ISIZE should be m * NPOP.

AMATS — Vector containing the transformation constants.  (Input) 
AMATS contains the transformation matrices and vectors needed in the type 1, 4 and 5 transformations. 
While AMATS is a vector, its elements may be treated as a number of matrices or vectors where the 
number of structures depends upon the transformation types as follows:

Here, m = ISIZE(i) and n = ISIZE(i - 1), and ISIZE(0) is not input (in ISIZE) but is taken to be 
NPOP * NRESP. Matrices and vectors are stored consecutively in AMATS with column elements for 
matrices stored consecutively as is standard in FORTRAN. Thus, if ITRAN(1) = 5 and ITRAN(2) = 4, 
with NREP = 3, NPOP= 2, and ISIZE(1) = ISIZE(2) = 2, then the vector AMATS would contain in con-
secutive positions A(1, 1), A(2, 1), A(1, 2), A(2, 2), A(1, 3), A(2, 3), v(1), v(2), v(3), v(4) where A is the 
matrix for transformation type 5 and v is the vector for transformation type 4.

X — Design matrix of size ISIZE(NTRAN) by NCOEF.  (Input, if NCOEF > 0) 
X contains the design matrix for predicting the transformed cell probabilities F from the covariates 
stored in X. If NCOEF = 0, X is not referenced and can be a 1 by 1 matrix in the calling program.

NH — Vector of length NUMH.  (Input, if NCOEF > 0) 
NH(i) contains the number of consecutive rows in H used to specify hypothesis i. If NCOEF = 0, NH is not 
referenced and can be a vector of length 1 in the calling program.

H — Matrix of size m by NCOEF containing the constants to be used in the multivariate hypothesis tests.  
(Input, if NCOEF > 0) 
Here, m is the sum of the elements in NH. Each hypothesis is of the form 
H0 : C * COEF = 0, where C for the i-th hypothesis is NH(i) rows of H, and COEF is estimated in the linear 
model. The first NH(1) rows of H make up the first hypothesis, the next NH(2) rows make up the second 
hypothesis, etc. If NCOEF = 0, H is not referenced and can be a 1 by 1 matrix in the calling program.

CHSQ — NUMH + 1 by 3 matrix containing the results of the hypothesis tests.  (Output, if NCOEF > 0) 
The first row of CHSQ contains the results for test 1, the next row contains the results for test 2, etc. The 
last row of CHSQ contains a test of the adequacy of the model. Within each row, the first column con-
tains the chi-squared statistic, the second column contains its degrees of freedom, and the last column 
contains the probability of a larger chi-squared. If NCOEF = 0, CHSQ is not referenced and can be a 
1 by 1 matrix in the calling program.

COEF — NCOEF by 4 matrix containing the coefficient estimates and related statistics.  (Output, if 
NCOEF > 0) 
The columns of coefficient are as follows:

 

ITRAN Type Dimension Length

1 Matrix m by n M * n

2, 3 Not 
referenced

0

4 Vector M M

5 Matrix m/NPOP by n/NPOP M * n/(NPOP * NPOP)

Col. Statistic

1 Coefficient estimate

2 Estimated standard error of the coefficient
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If NCOEF = 0, COEF is not referenced and can be a 1 by 1 matrix in the calling program.
COVCF — NCOEF by NCOEF matrix containing the estimated variances and covariances of COEF.  (Output, 

if NCOEF > 0) 
If NCOEF = 0, COVCF is not referenced and can be a 1 by 1 matrix in the calling program.

F — Vector of length ISIZE(NTRAN) containing the transformed probabilities, the responses.  (Output)
COVF — Matrix of size ISIZE(NTRAN) by ISIZE(NTRAN) containing the estimated variances and covari-

ances of F.  (Output)
RESID — ISIZE(NTRAN) by 4 matrix containing a case analysis for the transformed probabilities as esti-

mated by the linear model.  (Output, if NCOEF > 0) 
The linear model gives F = X * BETA. The columns of RESID are as follows:

 

If NCOEF = 0, RESID is not referenced and can be a 1 by 1 matrix in the calling program.

Optional Arguments
NRESP — Number of cells in each population.  (Input)

Default: NRESP = size (TABLE,1).
NPOP — Number of populations.  (Input)

Default: NPOP = size (TABLE,2).
LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 

program.  (Input)
Default: LDTABL = size (TABLE,1).

NTRAN — Number of transformations to be applied to the cell probabilities.  (Input) 
Cell probabilities are computed as the frequency count for the cell divided by the population sample 
size. Set NTRAN = 0 if a linear model predicting the cell probabilities is to be used.
Default: NTRAN = size (ITRAN,1).

NCOEF — Number of coefficients in the linear model relating the transformed probabilities F to the 
design matrix X.  (Input) 
 Let F denote the vector result of applying the NTRAN transformations, and assume that the model 
gives F = X * COEF. Then, NCOEF is the length of COEF.
 Default: NCOEF = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

3 z-statistic for a test that the coefficient equals 0 versus the Two-sided alternative

4 p-value corresponding to the z-statistic

Col. Description

1 Residual

2 Standard error

3 Leverage

4 Standardized residual

Col. Statistic
CTWLS         Chapter 5: Categorical and Discrete Data Analysis      604



NUMH — Number of multivariate hypotheses to be tested on the coefficients in COEF.  (Input, if 
NCOEF > 0)
If NCOEF = 0, NUMH is not referenced.
Default: NUMH = size (NH,1).

LDH — Leading dimension of H exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDH = size(H,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

LDCHSQ — Leading dimension of CHSQ exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCHSQ = size (CHSQ,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOVC — Leading dimension of COVCF exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCOVC = size (COVCF,1)

LDCOVF — Leading dimension of COVF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOVF = size (COVF,1).

LDRESI — Leading dimension of RESID exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDRESI = size (RESID,1).

FORTRAN 90 Interface
Generic: CALL CTWLS (TABLE, ITRAN, ISIZE, AMATS, X, NH, H, CHSQ, COEF, COVCF, F, COVF, 

RESID [, …])
Specific: The specific interface names are S_CTWLS and D_CTWLS.

FORTRAN 77 Interface
Single: CALL CTWLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN, ISIZE, AMATS, NCOEF, X, 

LDX, NUMH, NH, H, LDH, IPRINT, CHSQ, LDCHSQ, COEF, LDCOEF, COVCF, LDCOVC, F, COVF, 
LDCOVF, RESID, LDRESI)

Double: The double precision name is DCTWLS.

IPRINT Action

0 No printing is performed.

1 Print all output arrays and vectors.

2 Print all output arrays and vectors as well as the matrices and vectors in AMATS.
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Description

Routine CTWLS performs weighted least-squares analysis of a general p = NPOP population by r = NRESP 
response categories per population contingency table. After division by the sample size, there are n = pr cell 
probabilities.

Define s = ISIZE(NTRAN) responses fi such that each response is obtained from the cell probabilities as 
fi = gi(p1, p2, …, pn), for i = 1, …, s. Call the functions gi the response functions. Then, if 

is the asymptotic covariance matrix of the responses, and X is a design matrix for a linear model predicting 
f = X β with q = NCOEF coefficients β = COEF, then CTWLS performs a weighted least-squares analysis of the 
model f = X β where the generalized weights are given by 

Estimates obtained in this way are best asymptotic normal estimates of β.

Let 

denote the estimated variance-covariance matrix of the estimated cell probabilities, and let (∂gi/∂pj) denote 
the matrix of partial derivatives of gi with respect to pj. Then,

is given by 

where the (i, j)-th element in

is computed as

pi(δij − pj)

Here, δij = 1 if i = j and is zero otherwise.

In CTWLS, the transformations gi are defined by successive application of one of five types of simpler trans-
formations. Let pi = h0,j for j = 1, …, n denote the n cell probabilities, and let hi,j denote the ISIZE(i) responses 
obtained after i simple transformations have been performed with hi denoting the corresponding vector of 
estimates. Then, the simple transformations are defined by:
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1. Linear: hi+1 = Aihi where Ai is a matrix of coefficients specified via the vector AMATS in CTWLS.

2. Logarithmic: hi+1,j = ln(hi,j) where j = 1, …, ISIZE(i). That is, take the logarithm of each of the 
responses.

3. Exponential: hi+1,j = exp(hi,j) where j = 1, …, ISIZE(i). That is, take the exponential of each of the 
responses.

4. Additive: hi+1,j = hi,j + vj , where j = 1, …, ISIZE(i), and vj is specified via the vector AMATS in CTWLS. 
Additive transformations are generally used to adjust for zero cells or to apply a continuity correction 
to the cell probabilities.

5. Linear (by population): 

is the vector of responses at stage i in the j-th population, and Ai is a matrix of coefficients specified via 
AMATS.

Given the responses fi and their covariances

estimates for β are computed via generalized least squares as

Let Σ β denote the asymptotic covariance matrix of β. Then, Σ β is estimated by

Hypothesis tests of the form Ho : Ci β = 0 are performed when requested. Here, Ci is a matrix of coefficients 
specified via a submatrix of the matrix H. Results are returned in the vector CHSQ. The asymptotic 
chi-squared test for testing the null hypothesis is given by

This test has qi = rank(Ci) degrees of freedom. If zero degrees of freedom are returned, the hypothesis cannot 
be tested in the original parameterization. 

A test of the model checks that the residuals obtained from the model f = X β are not too large. This test, 
which has s - q degrees of freedom, is an asymptotic chi-squared test and is computed as

Residuals from the generalized linear model are easily computed as 
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where xi is the row of the design matrix X corresponding to the i-th observation. This residual has the asymp-
totic variance

where (A)ii denotes the i-th diagonal element of matrix A. A standardized residual is then computed as

which has an asymptotic standard normal distribution if the model is correct. 

The leverage of observation i, vi, is computed as

It is a measure of the importance of the observation in the predicted values. Values greater than 2q/s are 
large. 

Because the tests performed by CTWLS are asymptotic ones, the user should treat the results with caution. 
The reported asymptotic p-values are most likely to be exact when the number of counts in each cell is large 
(say 5 or more), and less exact for smaller cell counts. Care should also be taken to avoid illegal operations. 
For example, the routine returns an error message when the log of a negative or zero value is attempted. 
When this occurs, the user should either use a continuity correction (i.e. modify the transformations used by 
adding a constant to all cells or to the cell resulting in the illegal operation) or abandon the model.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2WLS/DC2WLS. The reference is:

CALL C2WLS (NRESP, NPOP, TABLE, LDTABL, NTRAN, ITRAN, ISIZE, AMATS, NCOEF, X, LDX, 
NUMH, NH, H, LDH, IPRINT, CHSQ, LDCHSQ, COEF, LDCOEF, COVCF, LDCOVC, F, COVF, LDCOVF, 
RESID, LDRESI, PDER, FRQ, EST, XX, WK, IWK, WWK)

The additional arguments are as follows:

PDER — Work vector of length ISIZE(NTRAN) * max(NPOP * NRESP, ISIZE(i)) if NTRAN is 
greater than zero. PDER is not used and can be dimensioned of length 1 if NTRAN = 0.

FRQ — Work vector of length NPOP.

EST — Work vector of length NPOP * NRESP + ISIZE(1) + … + ISIZE(NTRAN).

XX — Work vector of length (NCOEF + 1) * ISIZE(NTRAN) if NCOEF is greater than zero. If 
NCOEF = 0, XX is not referenced and can be a vector of length 1 in the calling program.

WK — Work vector of length 3(max(NPOP * NRESP, ISIZE(i))) + NCOEF + 1.

IWK — Work vector of length max(NH(i)) if NUMH is greater than 0. If NCOEF = 0, IWK is not refer-
enced and can be a vector of length 1 in the calling program.
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WWK — Work vector of length max(NH(i)) * (4 + NCOEF + max(NCOEF, max(NH(i))) if NUMH is 
greater than 0. If NUMH = 0, WWK is not referenced and can be a vector of length 1 in the calling 
program.

2. Informational error

Examples

Example 1

This example is taken from Landis, Stanish, Freeman, and Koch (1976), pages 213-217. Generalized kappa 
statistics are computed via vector functions of the form:

F(p) = exp(A4 ln(A3 exp(A2 ln(A1p))))

where p is the cell probabilities. The raw frequencies are given as two 4 × 4 contingency tables. These tables 
are reorganized as a single 16 × 2 table for input into CTWLS. The input tables are 

Two generalized kappa statistics using two different sets of weights are computed for each population. 
Hypothesis tests are then performed on the four resulting generalized kappa statistics. In this example, the 
matrix of covariates is an identity matrix so that tests on the responses are performed.

      USE CTWLS_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDCHSQ, LDCOEF, LDCOVC, LDCOVF, LDH, LDRESI, &
                 LDTABL, LDX, NCOEF, NPOP, NTRAN
      PARAMETER  (IPRINT=2, LDCHSQ=10, LDCOEF=4, LDCOVC=4, LDCOVF=4, &
                 LDH=10, LDRESI=4, LDTABL=16, LDX=4, NCOEF=4, NPOP=2, &
                 NTRAN=8)
!
      INTEGER    ISIZE(NTRAN), ITRAN(NTRAN), NH(9)
      REAL       A1(10,16), A2(18,10), A3(4,18), A4(2,4), AMATS(420), &
                 CHSQ(LDCHSQ,3), COEF(LDCOEF,4), COVCF(LDCOVC,NCOEF), &
                 COVF(LDCOVF,LDCOVF), F(LDX), H(LDH,4), &
                 RESID(LDRESI,4), TABLE(LDTABL,NPOP), X(LDX,NCOEF)
!
      EQUIVALENCE (A1, AMATS(1)), (A2, AMATS(161)), (A3, AMATS(341)), &
                (A4, AMATS(413))
!
      DATA TABLE/38, 5, 0, 1, 33, 11, 3, 0, 10, 14, 5, 6, 3, 7, 3, 10, &
          5, 3, 0, 0, 3, 11, 4, 0, 2, 13, 3, 4, 1, 2, 4, 14/
      DATA X/1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1/

Type Code Description

4 1 A negative response occurred while performing a logarithmic transforma-
tion. The logarithm of a negative number is not allowed.
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      DATA NH/1, 1, 1, 1, 1, 1, 2, 1, 1/
      DATA H/1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 1, 0, &
          1, 0, 0, 0, 1, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, &
          -1, 0, -1/
      DATA ITRAN/5, 2, 5, 3, 5, 2, 5, 3/
      DATA ISIZE/20, 20, 36, 36, 8, 8, 4, 4/
      DATA A1/1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, &
          .5, 1, 0, 0, 0, 0, 0, 1, 0, 0, .25, 1, 0, 0, 0, 0, 0, 0, 1,&
          0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, .5, 0, 1, 0, 0, 0, 1, 0, &
          0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, .5, 0, 1, 0, 0, 0, 0, &
          0, 1, 0, .25, 0, 0, 1, 0, 1, 0, 0, 0, 0, .25, 0, 0, 1, 0, &
          0, 1, 0, 0, 0, .5, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, &
          0, 0, 0, 0, 1, 0, .5, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, &
          0, 1, 0, 1, 0, 0, 0, .25, 0, 0, 0, 1, 0, 0, 1, 0, 0, .5, 0, &
          0, 0, 1, 0, 0, 0, 1, 1, 1/
      DATA A2/1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,&
          0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
          0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
          0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, &
          0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, &
          1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, &
          0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, &
          0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
          0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
          1/
      DATA A3/-1, -1, 0, 0, 0, -.5, 1, .5, 0, -.25, 1, .75, 0, 0, 1, &
          1, 0, -.5, 1, .5, -1, -1, 0, 0, 0, -.5, 1, .5, 0, -.25, 1, &
          .75, 0, -.25, 1, .75, 0, -.5, 1, .5, -1, -1, 0, 0, 0, -.5, &
          1, .5, 0, 0, 1, 1, 0, -.25, 1, .75, 0, -.5, 1, .5, -1, -1, &
          0, 0, 1, 0, 0, 0, 0, 1, 0, 0/
      DATA A4/1, 0, 0, 1, -1, 0, 0, -1/
!
      CALL CTWLS (TABLE, ITRAN, ISIZE, AMATS, X, NH, H, &
                 CHSQ, COEF, COVCF, F, COVF, RESID, IPRINT=IPRINT)
!
      END

Output

Hypothesis Tests on Coefficients
H-1
         1           0           0           0
H-2
         0           1           0           0
H-3
         1          -1           0           0
H-4
         0           0           1           0
H-5
         0           0           0           1
H-6
         0           0           1          -1
H-7
         1           0          -1           0
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         0           1           0          -1
H-8
         1           0          -1           0
H-9
         0           1           0          -1

         Hypothesis Chi-Squared Statistics
                          Degrees of
Hypothesis  Chi-Squared     freedom       p-value
         1        16.99           1        0.0000
         2        39.70           1        0.0000
         3        39.54           1        0.0000
         4        14.27           1        0.0002
         5        30.07           1        0.0000
         6        28.76           1        0.0000
         7         1.07           2        0.5850
         8         0.90           1        0.3425
         9         1.06           1        0.3040

                         Degrees of
            Chi-Squared     freedom       p-value
Model Test         0.00           0           NaN

                 Coefficient Statistics
    Coefficient  Standard Error   Statistic       p-value
1        0.2079            0.05        4.12        0.0000
2        0.3150            0.05        6.30        0.0000
3        0.2965            0.08        3.78        0.0002
4        0.4069            0.07        5.48        0.0000

            Asymptotic Coefficient Covariance
              1             2            3             4
1    2.5457E-03    2.3774E-03        0.            0.
2                  2.4988E-03        0.            0.
3                               6.1629E-03    5.6229E-03
4                                             5.5069E-03

                    Residual Analysis
                     Standard                Standardized
       Residual         Error      Leverage      Residual
1        0.0000        0.0000        1.0000           NaN
2        0.0000        0.0000        1.0000           NaN
3        0.0000        0.0000        1.0000           NaN
4        0.0000        0.0000        1.0000           NaN

Transformed Probabilities
       1   0.2079
       2   0.3150
       3   0.2965
       4   0.4069

Asymptotic Covariance of the Transformed Probabilities
              1             2             3             4
1    2.5457E-03    2.3774E-03        0.            0.
2                  2.4988E-03        0.            0.
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3                               6.1629E-03    5.6229E-03
4                                             5.5069E-03

     Linear transformation matrix, by population, for transformation 5
         1       2       3       4       5       6       7       8       9
 1   1.000   1.000   1.000   1.000   0.000   0.000   0.000   0.000   0.000
 2   0.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   0.000
 3   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000
 4   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 5   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000
 6   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 7   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000
 8   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000
 9   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
10   1.000   0.500   0.250   0.000   0.500   1.000   0.500   0.250   0.250

        10      11      12      13      14      15      16
 1   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 2   0.000   0.000   0.000   0.000   0.000   0.000   0.000
 3   1.000   1.000   1.000   0.000   0.000   0.000   0.000
 4   0.000   0.000   0.000   1.000   1.000   1.000   1.000
 5   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 6   1.000   0.000   0.000   0.000   1.000   0.000   0.000
 7   0.000   1.000   0.000   0.000   0.000   1.000   0.000
 8   0.000   0.000   1.000   0.000   0.000   0.000   1.000
 9   0.000   1.000   0.000   0.000   0.000   0.000   1.000
10   0.500   1.000   0.500   0.000   0.250   0.500   1.000

     Linear transformation matrix, by population, for transformation 5
         1       2       3       4       5       6       7       8       9
 1   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000   0.000 
 2   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 3   1.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000
 4   1.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000
 5   0.000   1.000   0.000   0.000   1.000   0.000   0.000   0.000   0.000
 6   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000   0.000
 7   0.000   1.000   0.000   0.000   0.000   0.000   1.000   0.000   0.000
 8   0.000   1.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000
 9   0.000   0.000   1.000   0.000   1.000   0.000   0.000   0.000   0.000
10   0.000   0.000   1.000   0.000   0.000   1.000   0.000   0.000   0.000
11   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000   0.000
12   0.000   0.000   1.000   0.000   0.000   0.000   0.000   1.000   0.000
13   0.000   0.000   0.000   1.000   1.000   0.000   0.000   0.000   0.000
14   0.000   0.000   0.000   1.000   0.000   1.000   0.000   0.000   0.000
15   0.000   0.000   0.000   1.000   0.000   0.000   1.000   0.000   0.000
16   0.000   0.000   0.000   1.000   0.000   0.000   0.000   1.000   0.000
17   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000
18   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

        10
 1   0.000
 2   0.000
 3   0.000
 4   0.000
 5   0.000
CTWLS         Chapter 5: Categorical and Discrete Data Analysis      612



 6   0.000
 7   0.000
 8   0.000
 9   0.000
10   0.000
11   0.000
12   0.000
13   0.000
14   0.000
15   0.000
16   0.000
17   0.000
18   1.000

    Linear transformation matrix, by population, for transformation 5
        1       2       3       4       5       6       7       8       9
1  -1.000   0.000   0.000   0.000   0.000  -1.000   0.000   0.000   0.000
2  -1.000  -0.500  -0.250   0.000  -0.500  -1.000  -0.500  -0.250  -0.250
3   0.000   1.000   1.000   1.000   1.000   0.000   1.000   1.000   1.000
4   0.000   0.500   0.750   1.000   0.500   0.000   0.500   0.750   0.750

       10      11      12      13      14      15      16      17      18
1   0.000  -1.000   0.000   0.000   0.000   0.000  -1.000   1.000   0.000
2  -0.500  -1.000  -0.500   0.000  -0.250  -0.500  -1.000   0.000   1.000
3   1.000   0.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000
4   0.500   0.000   0.500   1.000   0.750   0.500   0.000   0.000   0.000

Linear transformation matrix, by population, for transformation 5
                        1       2       3       4
                1   1.000   0.000  -1.000   0.000
                2   0.000   1.000   0.000  -1.000

Example 2

The second example is taken from Prentice (1976) and involves a logistic fit to the mortality of beetles after 
exposure to various concentrations of carbon disulphide. Because one of the cells on input has a count of zero 
and it is not possible to take the logarithm of zero, a constant 0.5 is added to each cell prior to calling CTWLS. 
The model can be expressed as

where i indexes the 8 populations. The data is given as:

X fi1 fi2

1.690 6 53

1.724 13 47

1.755 18 44

1.784 28 28

1.811 52 11
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For comparison, a maximum fit yields

(see routine CTGLM).

      USE CTWLS_INT

      IMPLICIT     NONE
      INTEGER    IPRINT, LDCHSQ, LDCOEF, LDCOVC, LDCOVF, LDH, LDRESI, &
            LDTABL, LDX, NCOEF, NPOP, NRESP, NTRAN, NUMH
      PARAMETER  (IPRINT=2, LDCOVF=8, LDH=1, LDX=8, NCOEF=2, NPOP=8,  &
           NRESP=2, NTRAN=2, NUMH=0, LDCHSQ=NUMH+1, &
           LDCOEF=NCOEF, LDCOVC=NCOEF, LDRESI=LDX, LDTABL=NRESP)
!
      INTEGER    ISIZE(NTRAN), ITRAN(NTRAN), NH(1)
      REAL       AMATS(2), CHSQ(LDCHSQ,3), COEF(LDCOEF,4), &
           COVCF(LDCOVC,NCOEF), COVF(LDCOVF,LDCOVF), F(LDX),  &
           H(LDH,4), RESID(LDRESI,4), TABLE(LDTABL,NPOP),  &
           X(LDX,NCOEF)
!
      DATA TABLE/6, 53, 13, 47, 18, 44, 28, 28, 52, 11, 53, 6, 61, 1, &
          60, 0/, ITRAN/2, 5/, ISIZE/16, 8/, AMATS/1, -1/
      DATA X/8*1, 1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, &
          1.883/
!
      TABLE = TABLE + 0.5
!
      CALL CTWLS (TABLE, ITRAN, ISIZE, AMATS, X, NH, H,  &
                  CHSQ, COEF, COVCF, F, COVF, RESID, NUMH=NUMH, &
                  IPRINT=IPRINT)
!
      END

Output

        Test of the Model
              Degrees of
Chi-Squared     freedom       p-value
       8.43           6        0.2081

                  Coefficient Statistics
    Coefficient  Standard Error   Statistic       p-value
1      -55.6590            5.02      -11.10        0.0000
2       31.4177            2.83       11.09        0.0000

1.836 53 6

1.861 61 1

1.883 60 0

X fi1 fi2
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 Asymptotic Coefficient Covariance
          1             2
1     25.16        -14.20
2                   8.024

                     Residual Analysis
                      Standard                Standardized
        Residual         Error      Leverage      Residual
 1        0.4552        0.3232        0.6052        1.4086
 2        0.2368        0.2480        0.6468        0.9548
 3       -0.3568        0.2413        0.7608       -1.4787
 4       -0.3902        0.2285        0.7440       -1.7076
 5        0.2800        0.2761        0.7192        1.0141
 6        0.0840        0.3484        0.7036        0.2410
 7        0.9042        0.7749        0.8791        1.1670
 8        1.2953        1.3777        0.9413        0.9402

 Transformed Probabilities
         1  -2.108
         2  -1.258
         3  -0.878
         4   0.000
         5   1.518
         6   2.108
         7   3.714
         8   4.796

         Asymptotic Covariance of the Transformed Probabilities
          1                 2            3             4             5
1    0.1725            0.            0.            0.            0.
2                  9.5127E-02        0.            0.            0.
3                               7.6526E-02        0.             0.
4                                             7.0175E-02         0.
5                                                           0.1060

             6             7             8
1        0.            0.            0.
2        0.            0.            0.
3        0.            0.            0.
4        0.            0.            0.
5        0.            0.            0.
6    0.1725            0.            0.
7                  0.6829            0.
8                                2.017

Linear transformation matrix, by population, for transformation 5
                               1       2
                           1.000  -1.000
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Chapter 6: Nonparametric Statistics
Routines

6.1 One Sample or Matched Samples

6.1.1 Tests of Location

Sign test for percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SIGNT     619

Wilcoxon signed rank test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SNRNK     622

6.1.2 Tests for Trend

Noether test for cyclical trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .NCTRD     626

Cox and Stuart trends test in dispersion and location . . . . . . . . . . . . . . . . . . SDPLC     629

6.1.3 Ties

Tie statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .NTIES     634

6.2 Two Independent Samples

Wilcoxon rank sum test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RNKSM     636

Includance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INCLD     640

6.3 More than Two Samples

6.3.1 One-way Tests of Location

Kruskal-Wallis test for identical medians . . . . . . . . . . . . . . . . . . . . . . . . . . . . KRSKL     643

Bhapkar V test for identical medians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BHAKV     646

6.3.2 Two-way Tests of Location

Friedmans test for randomized complete block designs  . . . . . . . . . . . . . . . FRDMN     648

Cochran Q test for related observations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . QTEST     653

6.3.3 Tests for Trends

Trends test against ordered alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . .KTRND     656
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Usage Notes

Other Chapters

Much of what is considered nonparametric statistics is included in other chapters. Topics of possible interest 
in other chapters are: nonparametric measures of location and scale (Chapter 1, “Basic Statistics”), quantile 
estimation (Chapter 1, “Basic Statistics”), nonparametric measures in a contingency table (Chapter 5, “Categor-
ical and Discrete Data Analysis”), measures of correlation in a contingency table (Chapter 3, “Correlation”), tests 
of goodness of fit and randomness (Chapter 7, “Tests of Goodness of Fit and Randomness”), and nonparametric 
routines for density and hazard estimation (Chapter 15, “Density and Hazard Estimation”).

Other Methods

Many of the tests described in this chapter may be computed using the routines described in other chapters 
after first substituting ranks (or some other score) for the observed values. (Routine RANKS(see Chapter 1, 
“Basic Statistics”) may be used to compute ranks.) This method for computing nonparametric test statistics is 
recommended for cases such as unbalanced one-way ANOVA designs for which no nonparametric subrou-
tine is provided.

Missing Values

Most routines described in this chapter automatically handle missing values (NaN, “not a number”; see the 
Reference Material section of this manual). In these routines, observations that are missing are ignored; the 
variable NMISS is incremented by one for each missing observation. The user should be aware, however, that 
some routines described in this chapter do not handle missing values. Missing values input to such routines 
may result in erroneous results.

Tied Observations

Many of the routines described in this chapter contain an argument FUZZ in the input. Observations that are 
within FUZZ of each other in absolute value are said to be tied. Moreover, in some routines, an observation 
within FUZZ of some value is said to be equal to that value. In routine SNRNK, for example, such observations 
are eliminated from the analysis. If FUZZ = 0.0, observations must be identically equal before they are consid-
ered to be tied. Other positive values of FUZZ allow for numerical imprecision or roundoff error.
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SIGNT

Performs a sign test of the hypothesis that a given value is a specified quantile of a distribution.

Required Arguments
X — Vector of length NOBS containing the input data.  (Input)
Q — Hypothesized percentile of the population from which X was drawn.  (Input)
P — Value in the range (0, 1).  (Input) 

Q is the 100 * P percentile of the population.
NPOS — Number of positive differences X(j) - Q, for j = 1, 2, …, NOBS.  (Output)
NTIE — Number of zero differences (ties) X(j) - Q, for j = 1, 2, …, NOBS.  (Output)
PROB — Binomial probability of NPOS or more positive differences in NOBS - NTIE - NMISS trials.  

(Output)
NMISS — Number of missing values in X.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).

FORTRAN 90 Interface
Generic: CALL SIGNT (X, Q, P, NPOS, NTIE, PROB, NMISS [, …])
Specific: The specific interface names are S_SIGNT and D_SIGNT.

FORTRAN 77 Interface
Single: CALL SIGNT (NOBS, X, Q, P, NPOS, NTIE, PROB, NMISS)
Double: The double precision name is DSIGNT.

Description

Routine SIGNT tests hypotheses about the proportion P of a population that lies below a value Q. In continu-
ous distributions, this can be a test that Q is the 100P-th percentile of the population from which X was 
obtained. To carry out testing, SIGNT tallies the number of values above Q in NPOS. The binomial probability 
of NPOS or more values above Q is then computed using the proportion P and the sample size NOBS (adjusted 
for the missing observations [NMISS] and ties [NTIE]).

Hypothesis testing is performed as follows for the usual null and alternative hypotheses.

 H0 : Pr(X ≤ Q) ≤ P (the P-th quantile is at least Q) 
H1: Pr(X ≤ Q) > P 
Reject H0 if PROB is less than or equal to the significance level.
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 H0 : Pr(X ≤ Q) ≥ P (the P-th quantile is no greater than Q) 
H1 : Pr(X ≤ Q) < P 
Reject H0 if PROB is greater than or equal to one minus the significance level.

 H0 : Pr(X = Q) = P(the P-th quantile is Q) 
H1 : Pr(X ≤ Q) < P or Pr(X ≤ Q) > P 
Reject H0 if PROB is less than or equal to half the significance level or greater than or equal to 
one minus half the significance level.

The assumptions are as follows:

1. The Xi are a random sample; i.e., they are independent and identically distributed.

2. The measurement scale is at least ordinal; i.e, an ordering less than, greater than, and equal to exists in 
the observations.

Many uses for the sign test are possible with various values of P and Q. For example, to perform a matched 
sample test that the difference of the medians of Y and Z is 0.0, let P = 0.5, q = 0.0, and Xi = Yi - Zi in matched 
observations Y and Z. To test that the median difference is C, let Q = C.

Comments
Other probabilities that may be of interest can be computed via routine BINDF (see Chapter 17, “Probability 

Distribution Functions and Inverses”).

Example

We wish to test the hypothesis that at least 75% of a population is negative. Because 0.923 < 0.95, we fail to 
reject the null hypothesis at the 5 percent level of significance.

      USE SIGNT_INT
      USE UMACH_INT
      INTEGER    NOBS
      REAL       P, Q
      PARAMETER  (NOBS=19, P=0.75, Q=0.0)
!
      INTEGER    NMISS, NOUT, NPOS, NTIE
      REAL       PROB, X(NOBS)
!
      DATA X/92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0, &
           22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0/
!                                 Perform sign test
      CALL SIGNT (X, Q, P, NPOS, NTIE, PROB, NMISS)
!                                 Print output
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99996) NPOS
      WRITE (NOUT,99997) NTIE
      WRITE (NOUT,99998) PROB
      WRITE (NOUT,99999) NMISS
!
99996 FORMAT (' Number of positive  differences = ', I2)
99997 FORMAT (' Number of ties                  = ', I2)
99998 FORMAT (' PROB                            = ', F6.3)
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99999 FORMAT (' Number of missing values        = ', I2)
      END

Output

Number of positive  differences = 12
Number of ties                  =  0
PROB                            =  0.923
Number of missing values        =  0
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SNRNK

Performs a Wilcoxon signed rank test.

Required Arguments
Y — Vector of length NOBS containing the data.  (Input)
FUZZ — Constant used to determine when a value is 0.0 or when two values are tied.  (Input) 

When ∣Y(i)∣ or ∣Y(i) - Y(j)∣ is less than or equal to FUZZ, then the i-th observation is taken to be zero, or 
the i-th and j-th observations are said to be tied, respectively.

STAT — Vector of length 10 containing the computed statistics.  (Output) 
Statistics are computed in two ways. In method 1, the average rank of tied observations is used, and 
observations equal to zero are not counted. In method 2, ties are randomly broken, and observations 
equal to zero are randomly assigned to the positive or negative half line.

 

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (Y,1).
NMISS — Number of missing values in Y.  (Output)

FORTRAN 90 Interface
Generic: CALL SNRNK (Y, FUZZ, STAT [, …])
Specific: The specific interface names are S_SNRNK and D_SNRNK.

I STAT(I)

1 The positive rank sum, W+, using method 1.

2 The absolute value of the negative rank sum, W-, using method 1.

3 The standardized (to an asymptotic variance of 1.0) minimum of (W+, W-) using 
method 1.

4 The asymptotic probability of not exceeding STAT(3) under the null hypothesis that the 
distribution is symmetric about 0.0.

5 The positive rank sum, W+, using method 2.

6 The absolute value of the negative rank sum, W-, using method 2.

7 The standardized (to an asymptotic variance of 1.0) minimum of (W+, W-) using 
method 2.

8 The asymptotic probability of not exceeding STAT(7) under the null hypothesis that the 
distribution is symmetric about 0.0.

9 The number of zero observations. 

10 The total number of observations that are tied, and that are not within FUZZ of zero.
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FORTRAN 77 Interface
Single: CALL SNRNK (NOBS, Y, FUZZ, STAT, NMISS)
Double: The double precision name is DSNRNK.

Description

Routine SNRNK performs a Wilcoxon signed rank test of symmetry about zero. In one sample, this test can be 
viewed as a test that the population median is zero. In matched samples, a test that the medians of the two 
populations are equal can be computed by first computing difference scores. These difference scores would 
then be used as input to SNRNK. A general reference for the methods used is Conover (1980).

Routine SNRNK computes statistics for two methods for handling zero and tied observations. In the first 
method, observations within FUZZ of zero are not counted, and the average rank of tied observations is used. 
(Observations within FUZZ of each other are said to be tied.) In the second method, observations within 
FUZZ of zero are randomly assigned a positive or negative sign, and the ranks of tied observations are ran-
domly permuted.

The W+ and W- statistics are computed as the sums of the ranks of the positive observations and the sum of 
the ranks of the negative observations, respectively. Asymptotic probabilities are computed using standard 
methods (see, e.g., Conover 1980, page 282).

The W+ and W- statistics may be used to test the following hypotheses about the median, M. In deciding 
whether to reject the null hypothesis, use the bracketed statistic if method 2 for handling ties is preferred. 
Possible null hypotheses and alternatives are given as follows:

 H0 : M ≤ 0        H1 : M > 0
Reject if STAT(1) [or STAT(5)] is too large.

 H0 : M ≥ 0        H1 : M < 0 
Reject if STAT(2) [or STAT(6)] is too large.

 H0 : M = 0        H1 : M ≠ 0 
Reject if STAT(3) [or STAT(7)] is too small. Alternatively, if an asymptotic test is desired, reject if 
2 * STAT(4) [or 2 * STAT(8)] is less than the significance level.

 Tabled values of the test statistic can be found in the references. If possible, tabled values should 
be used. If the number of nonzero observations is too large, then the asymptotic probabilities 
computed by SNRNK can be used.

The assumptions required for the hypothesis tests are as follows:

a. The distribution of each Xi is symmetric.

b. The Xi are mutually independent.

c. All Xi’s have the same median.

d. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that X1 > X3).

 If other assumptions are made, related hypotheses that are more (or less) restrictive can be 
tested.
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Comments
1. Workspace may be explicitly provided, if desired, by use of S2RNK/DS2RNK. The reference is:

CALL S2RNK (NOBS, Y, FUZZ, ISEED, STAT, NMISS, IR, YRANK)
The additional arguments are as follows:

IR — Work vector of length NOBS.

YRANK — Work vector of length NOBS.
If Y is not needed, Y and YRANK can share the same storage locations.
2. Informational errors

3. The signed rank statistic provides a test of the hypothesis that the population median is equal to zero. 
To test that the median is equal to some other value, say, 10.0, use the routine SADD 
(IMSL MATH/LIBRARY) to subtract 10.0 from each observation prior to calling SNRNK.

4. The signed rank test can be used to test that the medians of two matched random variables are equal. 
This is the nonparametric equivalent of the paired t-test. To use SNRNK to perform this test, use the 
routine SAXPY (IMSL MATH/LIBRARY) prior to calling SNRNK to compute the differences, Y(i) - X(i). 
Then, call SNRNK with these differences.

5. The routine RNUN (see Chapter 18, “Random Number Generation”) is used to randomly break ties. The 
routine RNSET in Chapter 18 can be used to initialize the seed of the random number generator. The 
routine RNOPT (also in Chapter 18) can be used to select the form of the generator.

Example

This example illustrates the application of the Wilcoxon signed rank test to a test on two matched samples 
(matched pairs). A test that the median difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 
from each of the differences prior to calling SNRNK. The routine RNSET (Chapter 18, “Random Number Genera-
tion”) is used to set the seed. As can be seen from the output, the null hypothesis is rejected. The warning 
error will always be printed when the number of observations is 50 or less unless printing is turned off for 
warning errors. See routine ERSET in the Reference Material.

      USE WRRRN_INT
      USE RNSET_INT
      USE SNRNK_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001, NOBS=7)
!
      INTEGER    I, NMISS, NOUT
      REAL       STAT(10), W(NOBS), X(NOBS), Y(NOBS)
!
      DATA W/223, 216, 211, 212, 209, 205, 201/

Type Code Description

3 4 NOBS is less than 50 and exact tables should be referenced for probabilities.

3 5 Each element of Y is within FUZZ of 0. STAT(1) through STAT(8) are set to 
NaN (not a number).
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      DATA X/208, 205, 202, 207, 206, 204, 203/
!
      DO 10  I=1, NOBS
         Y(I) = X(I) - W(I) - 10.0
   10 CONTINUE
!                                 Print Y prior to calling SNRNK
      CALL WRRRN ('Y', Y, 1, NOBS, 1, 0)
!                                 Initialize the seed
      CALL RNSET (123457)
!
      CALL SNRNK (Y, FUZZ, STAT, NMISS=NMISS)
!                                 Print output
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT(1), STAT(5), STAT(2), STAT(6), STAT(3), &
                       STAT(7), STAT(4), STAT(8), STAT(9), STAT(10), &
                       NMISS
!
99999 FORMAT (' Statistic                    Method 1     Method 2', &
            /, ' W+.......................', F9.0, 4X, F9.0, /, &
            ' W-.......................', F9.0, 4X, F9.0, /, &
            ' Standardized Minimum.....', F9.4, 4X, F9.4, /, &
            ' p-value..................', F9.4, 4X, F9.4, //, &
            ' Number of zeros..........', F9.0, /, ' Number of ', &
            'ties...........', F9.0, /, ' Number of missing........', &
            I5)
!
      END

Output

                         Y
   1       2       3       4       5       6       7
-25.00  -21.00  -19.00  -15.00  -13.00  -11.00   -8.00

*** WARNING  ERROR 4 from SNRNK.  NOBS = 7.  The number of 
***          observations, NOBS, is less than 50, and exact 
***          tables should be referenced for probabilities.

Statistic                    Method 1     Method 2
W+.......................       0.           0.
W-.......................      28.          28.
Standardized Minimum.....  -2.3664      -2.3664
p-value..................   0.0090       0.0090

Number of zeros..........       0.
Number of ties...........       0.
Number of missing........    0
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NCTRD

Performs the Noether test for cyclical trend.

Required Arguments
X — Vector of length NOBS containing the observations in chronological order.  (Input)
FUZZ — Value to be used in determining when consecutive observations in X are tied.  (Input) 

If ∣X(i + 1) - X(i)∣ is less than or equal to FUZZ, then X(i + 1) and X(i) are said to be tied.
NSTAT — Vector of length 6 containing output statistics.  (Output)

P — Vector of length 3 containing the probabilities of NSTAT(2) or more, NSTAT(3) or more, or NSTAT(4) or 
more monotonic sequences.  (Output) 
If NSTAT(1) is less than 1, P(1) is set to NaN (not a number).

Optional Arguments
NOBS — Number of observations.  (Input) 

NOBS must be greater than or equal to 3.
Default: NOBS = size (X,1).

NMISS — Number of missing (NaN, not a number) values in X.  (Output)

FORTRAN 90 Interface
Generic: CALL NCTRD (X, FUZZ, NSTAT, P [, …])
Specific: The specific interface names are S_NCTRD and D_NCTRD.

FORTRAN 77 Interface
Single: CALL NCTRD (NOBS, X, FUZZ, NSTAT, P, NMISS)

I NSTAT(I)

1 The number of consecutive sequences of length three used to detect 
cyclical trend when tying middle elements are eliminated from the 
sequence, and the next consecutive observation is used.

2 The number of monotonic sequences of length three in the set 
defined by NSTAT(1).

3 The number of monotonic sequences where tied threesomes are 
counted as nonmonotonic.

4 The number of monotonic sequences where tied threesomes are 
counted as monotonic.

5 The number of middle observations eliminated because they were 
tied in forming the NSTAT(1) sequences.

6 The number of tied sequences found in forming the NSTAT(3) and 
NSTAT(4) sequences. A sequence is called a tied sequence if the mid-
dle element is tied with either of the two other elements.
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Double: The double precision name is DNCTRD.

Description

Routine NCTRD performs the Noether test for cyclical trend (Noether 1956) for a sequence of measurements. 
In this test, the observations are first divided into sets of three consecutive observations. Each set is then 
inspected, and if the set is monotonically increasing or decreasing, the count variable is incremented. 

The count variables, NSTAT(2), NSTAT(3), and NSTAT(4), differ in the manner in which ties are handled. A tie 
can occur in a set (of size three) only if the middle element is tied with either of the two ending elements. Tied 
ending elements are not considered. In NSTAT(2), tied middle observations are eliminated, and a new set of 
size 3 is obtained by using the next observation in the sample. In NSTAT(3), the original set of size three is 
used, and tied middle observations are counted as nonmonotonic. In NSTAT(4), tied middle observations are 
counted as monotonic. 

The probabilities of occurrence of the counts are obtained from the binomial distribution with 
p = 1/3, where p is the probability that a random sample of size three from a continuous distribution is 
monotonic. The binomial sample size is, of course, the number of sequences of size three found (adjusted for 
ties).

Hypothesis test:

H0 : q = Pr(Xi > Xi −1 > Xi −2) + Pr(Xi < Xi −1 < Xi −2) ≤ 1/3      H1 : q > 1/3 
Reject if P(1) (or P(2) or P(3) depending on the method used for handling ties) is less than the significance 
level of the test.

Assumption: The observations are independent and are from a continuous distribution.

Comments
1. Informational errors

2. If NOBS is greater than or equal to 3 but NSTAT(1) is less than one, P(1) will be set to NaN. The remain-
ing statistics and associated probabilities will be determined and returned as described.

Example

A test for cyclical trend in a sequence of 1000 randomly generated observations is performed. Because of the 
sample used, there are no ties and all three test statistics yield the same result.

!                                 SPECIFICATIONS FOR PARAMETERS
      USE IMSL_LIBRARIES

      IMPLICIT   NONE

Type Code Description

3 3 NSTAT(1), which is used to determine NSTAT(3) and NSTAT(4), is less than 8. 
The asymptotic probabilities will not be exact.

3 4 At least one tie was detected in X.
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      INTEGER    NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0, NOBS=1000)
!
      INTEGER    ISEED, NSTAT(6)
      REAL       P(3), X(NOBS)
!
      DATA ISEED/123457/
!
      CALL RNSET (ISEED)
      CALL RNUN (X)
!                                 Noether test
      CALL NCTRD (X, FUZZ, NSTAT, P)
!                                 Print results
      CALL WRIRN (’NSTAT’, NSTAT, 1, 6, 1, 0)
      CALL WRRRN (’P’, P, 1, 3, 1, 0)
!
      END

Output

             NSTAT
 1     2     3     4     5     6
333   107   107   107     0     0

           P
 1        2        3
0.6979   0.6979   0.6979
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SDPLC

Performs the Cox and Stuart sign test for trends in dispersion and location.

Required Arguments
X — Vector of length NOBS containing the observations in chronological order.  (Input)
K — Number of consecutive X elements to be used to measure dispersion.  (Input) 

Not required if IOPT is different from zero.
IDS — Dispersion measure option.  (Input) 

If IDS is zero, the range is used as a measure of dispersion. Otherwise, the centered sum of squares is 
used. Not required if IOPT is different from zero.

FUZZ — Value used to determine when elements in X are tied.  (Input) 
If ∣X(i) - X(j)∣ is less than or equal to FUZZ, X(i) and X(j) are said to be tied. FUZZ must be nonnegative.

NSTAT — Vector of length 8.  (Output) 
The first 4 elements of NSTAT are the output statistics when the observations are divided into two 
groups. The last 4 elements are the output statistics when the observations are divided into three 
groups.

PSTAT — Vector of length 8 containing probabilities.  (Output) 
The first four elements of PSTAT are computed from two groups of observations.

I NSTAT(I)

1 Number of negative differences (two groups)

2 Number of positive differences (two groups)

3 Number of zero differences (two groups)

4 Number of differences used to calculate PSTAT(1) 
through PSTAT(4) (two groups).

5 Number of negative differences (three groups)

6 Number of positive differences (three groups)

7 Number of zero differences (three groups)

8 Number of differences used to calculate PSTAT(5) 
through PSTAT(8) (three groups).

I PSTAT(I)

1 Probability of NSTAT(1) + NSTAT(3) or more negative 
signs (ties are considered negative).

2 Probability of obtaining NSTAT(2) or more positive 
signs (ties are considered negative).

3 Probability of NSTAT(1) + NSTAT(3) or more negative 
signs (ties are considered positive).

4 Probability of obtaining NSTAT(2) or more positive 
signs (ties are considered positive).
SDPLC         Chapter 6: Nonparametric Statistics      629



The last four elements of PSTAT are computed from three groups of observations.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
IOPT — Statistic option parameter.  (Input) 

If IOPT = 0, the Cox and Stuart tests for trends in dispersion are computed. Otherwise, the Cox and 
Stuart tests for trends in location are computed.
Default: IOPT = 0.

NMISS — Number of missing values in X.  (Output)

FORTRAN 90 Interface
Generic: CALL SDPLC (X, K, IDS, FUZZ, NSTAT, PSTAT [, …])
Specific: The specific interface names are S_SDPLC and D_SDPLC.

FORTRAN 77 Interface
Single: CALL SDPLC (NOBS, X, IOPT, K, IDS, FUZZ, NSTAT, PSTAT, NMISS)
Double: The double precision name is DSDPLC.

Description

Routine SDPLC tests for trends in dispersion or location in a sequence of random variables depending upon 
the value of the input variable IOPT. A derivative of the sign test is used (see Cox and Stuart 1955).

Location Test

For the location test (IOPT = 1) with two groups, the observations are first divided into two groups with the 
middle observation thrown out if there are an odd number of observations. Each observation in group one is 
then compared with the observation in group two that has the same lexicographical order. A count is made 
of the number of times a group-one observation is less than (NSTAT(1)), greater than (NSTAT(2)), or equal to 
(NSTAT(3)), its counterpart in group two. Two observations are counted as equal if they are within FUZZ of 
one another.

I PSTAT(I)

5 Probability of NSTAT(1) + NSTAT(3) or more negative 
signs (ties are considered negative).

6 Probability of obtaining NSTAT(2) or more positive 
signs (ties are considered negative).

7 Probability of NSTAT(1) + NSTAT(3) or more negative 
signs (ties are  considered positive).

8 Probability of obtaining NSTAT(2) or more positive 
signs (ties are considered positive).
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In the three-group test, the observations are divided into three groups, with the center group losing observa-
tions if the division is not exact. The first and third groups are then compared as in the two-group case, and 
the counts are stored in NSTAT(5) through NSTAT(7).

Probabilities in PSTAT are computed using the binomial distribution with sample size equal to the number of 
observations in the first group (NSTAT(4) or NSTAT(8)), and binomial probability p = 0.5.

Dispersion Test

The dispersion tests proceed exactly as with the tests for location, but using one of two derived dispersion 
measures. The input value K is used to define NOBS/K groups of consecutive observations starting with 
observation 1. The first K observations define the first group, the next K observations define the second 
group, etc., with the last observations omitted if NOBS is not evenly divisible by K. A dispersion score is then 
computed for each group as either the range (IDS = 0), or a multiple of the variance (IDS ≠ 0) of the observa-
tions in the group. The dispersion scores form a derived sample. The tests proceed on the derived sample as 
above.

Ties

Ties are defined as occurring when a group one observation is within FUZZ of its last group counterpart. Ties 
imply that the probability distribution of X is not strictly continuous, which means that Pr(X1 > X2) ≠ 0.5 
under the null hypothesis of no trend (and the assumption of independent identically distributed observa-
tions). When ties are present, the computed binomial probabilities are not exact, and the hypothesis tests will 
be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the corresponding observation in 
group 2 (two groups) or group 3 (three groups).

 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) < Pr(Xi < Xj) 
Hypothesis of upward trend. Reject if PSTAT(3) (or PSTAT(7)) is less than the significance level.

 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if PSTAT(2) (or PSTAT(6)) is less than the significance 
level.

 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) ≠ Pr(Xi < Xj) 
Two tailed test. Reject if 2 max(PSTAT (2), PSTAT(3)) (or 2 max(PSTAT (6), PSTAT(7)) is less than 
the significance level.

Assumptions
1. The observations are a random sample; i.e., the observations are independently and identically 

distributed.
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2. The distribution is continuous.

Comments
1. Workspace may be explicitly provided, if desired, by use of S2PLC/DS2PLC. The reference is:

CALL S2PLC (NOBS, X, IOPT, K, IDS, FUZZ, NSTAT, PSTAT, NMISS, XWK)
The additional argument is:

XWK — Work vector of length NOBS.
If X is not needed, X and XWK can share the same storage location.

2. Informational errors

Example

This example illustrates both the location and dispersion tests. The data, which are taken from Bradley 
(1968), page 176, give the closing price of AT&T on the New York stock exchange for 36 days in 1965. Tests for 
trends in location (IOPT = 1), and for trends in dispersion (IOPT = 0) are performed. Trends in location are 
found.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IDS, K, NOBS, IS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, IDS=0, K=2, NOBS=36)
!
      INTEGER    IOPT, NSTAT(8)
      REAL       PSTAT(8), X(NOBS)
!
      DATA X/9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, &
          8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75, &
          7.75, 7.75, 8.0, 7.5, 7.5, 7.125, 7.25, 7.25, 7.125, 6.75, &
          6.5, 7.0, 7.0, 6.75, 6.625, 6.625, 7.125, 7.75/
!                                 Tests for trends in location
      IOPT = 1
      IS = 1
      CALL SDPLC (X, K, IDS, FUZZ, NSTAT, PSTAT, IOPT=IOPT)
!                                 Print results
      CALL WROPT (-6, IS, 1)
      CALL WRIRN ('NSTAT', NSTAT, 1, 8, 1, 0)
      CALL WRRRN ('PSTAT', PSTAT, 1, 8, 1, 0)
!                                 Tests for trends in dispersion
      IOPT = 0
      CALL SDPLC (X, K, IDS, FUZZ, NSTAT, PSTAT)
!                                 Print results
      CALL WRIRN ('NSTAT', NSTAT, 1, 8, 1, 0)
      CALL WRRRN ('PSTAT', PSTAT, 1, 8, 1, 0)

Type Code Description

4 4 NSTAT(4) is too small to continue with a dispersion test.

3 5 At least one tie is detected in X.
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!
      END

Output

*** WARNING  ERROR 5 from SDPLC.  At least one tie is detected in X.

            NSTAT
1    2    3    4    5    6    7    8
0   17    1   18    0   12    0   12

            PSTAT
      1             2             3             4             5
1.00000       0.00007       1.00000       0.00000       1.00000

      6             7             8
0.00024       1.00000       0.00024

*** WARNING  ERROR 5 from SDPLC.  At least one tie is detected in X.

            NSTAT
1   2   3   4   5   6   7   8
4   3   2   9   4   2   0   6

                      PSTAT
       1             2             3             4             5
0.253906      0.910156      0.746094      0.500000      0.343750
       6             7             8
0.890625      0.343750      0.890625
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NTIES

Computes tie statistics for a sample of observations.

Required Arguments
X — Vector of length NOBS containing the observations.  (Input) 

X must be ordered monotonically increasing with all missing values removed.
FUZZ — Value used to determine ties.  (Input) 

Observations i and j are tied if the successive differences X(k + 1) - X(k) between observations i and j, 
inclusive, are all less than FUZZ. FUZZ must be nonnegative.

TIES — Vector of length 4 containing the tie statistics.  (Output) 
The tie statistics are returned in TIES and are computed as follows:

where tj is the number of ties in the j-th group (rank) of ties, and  is the number of tie groups in the 
sample.

Optional Arguments
NOBS — The number of observations.  (Input)

Default: NOBS = size (X,1).

FORTRAN 90 Interface
Generic: CALL NTIES (X, FUZZ, TIES [, …])
Specific: The specific interface names are S_NTIES and D_NTIES.

FORTRAN 77 Interface
Single: CALL NTIES (NOBS, X, FUZZ, TIES)
Double: The double precision name is DNTIES.
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Description

Routine NTIES computes tie statistics for a monotonically increasing sample of observations. “Tie statistics” 
are statistics that may be used to correct a continuous distribution theory nonparametric test for tied observa-
tions in the data. Observations i and j are tied if the successive differences X(k + 1) - X(k), inclusive, are all less 
than FUZZ. Note that if each of the monotonically increasing observations is equal to its predecessor plus a 
constant, if that constant is less than FUZZ, then all observations are contained in one tie group. For example, 
if FUZZ = 0.11, then the following observations are all in one tie group.

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example

We want to compute tie statistics for a sample of length 7.

      USE NTIES_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, NOBS=7)
!
      REAL       TIES(4), X(NOBS)
!
      DATA X/1.0, 1.0001, 1.0002, 2.0, 3.0, 3.0, 4.0/
!                                 Compute tie statistics
      CALL NTIES (X, FUZZ, TIES)
!                                 Print results
      CALL WRRRN ('TIES', TIES, 1, 4, 1, 0)
!
      END

Output

           TIES
   1       2       3       4
4.00    2.50   84.00    6.00
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RNKSM

Performs the Wilcoxon rank sum test.

Required Arguments
X — Vector of length NOBSX containing the first sample.  (Input)
Y — Vector of length NOBSY containing the second sample.  (Input)
FUZZ — Constant used to determine ties in X and Y.  (Input) 

If ∣zi - zj∣ ≤ FUZZ, then zi and zj are said to be tied, where zi is the i-th element of X or Y. FUZZ must be 
nonnegative.

STAT — Vector of length 10 containing the output statistics.  (Output) 

Optional Arguments
NOBSX — Number of observations in X.  (Input)

Default: NOBSX = size (X,1).
NOBSY — Number of observations in Y.  (Input)

Default: NOBSY = size (Y,1).
NMISSX — Number of missing (NaN, not a number) observations in X.  (Output)
NMISSY — Number of missing (NaN, not a number) observations in Y.  (Output)

FORTRAN 90 Interface
Generic: CALL RNKSM (X, Y, FUZZ, STAT [, …])
Specific: The specific interface names are S_RNKSM and D_RNKSM.

I STAT(I)

1 Wilcoxon W statistic (the sum of the ranks of the X observations) adjusted for 
ties in such a manner that W is as small as possible.

2 2 * E(W) - W, where E(W) is the expected value of W.

3 Probability of obtaining a statistic less than or equal to the minimum of (W, 
2E(W) - W ).

4 W statistic adjusted for ties in such a manner that W is as large as is possible.

5 STAT(2); but adjusted for ties as in 4.

6 STAT(3); but adjusted for ties as in 4.

7 W statistic with average ranks used in place of tied ranks.

8 Estimated standard error of STAT(7) under the null hypothesis of no 
difference.

9 Standard normal score associated with STAT(7).

10 Two-sided p-value associated with STAT(9).
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FORTRAN 77 Interface
Single: CALL RNKSM (NOBSX, X, NOBSY, Y, FUZZ, STAT, NMISSX, NMISSY)
Double: The double precision name is DRNKSM.

Description

Routine RNKSM performs the Wilcoxon rank sum test for identical population distribution functions. The Wil-
coxon test is a linear transformation of the Mann-Whitney U test. If the difference between the two 
populations can be attributed solely to a difference in location, then the Wilcoxon test becomes a test of equal-
ity of the population means (or medians) and is the nonparametric equivalent of the two-sample t-test.

Routine RNKSM obtains ranks in the combined sample after first eliminating missing values from the data. 
The rank sum statistic is then computed as the sum of the ranks in the X sample. Three methods for handling 
ties are used. (A tie is counted when two observations are within FUZZ of each other.) The first method uses 
the largest possible rank for tied observations in the smallest sample, while the second method uses the 
smallest possible rank for these observations. Thus, the range of possible rank sums is obtained. The third, 
method for handling tied observations between samples uses the average rank of the tied observations.

Asymptotic standard normal scores are computed for the W score (based upon a variance that has been 
adjusted for ties) when average ranks are used (see Conover 1980, page 217), and the probability associated 
with the two-sided alternative is computed.

Hypothesis Tests

In each test following, the first line gives the hypothesis (and its alternative) under the assumptions 1 to 3 
below, while the second line gives the hypothesis when assumption 4 is also true. The rejection region is the 
same for both hypotheses and is given in terms of method 3 for handling ties. Another output statistic should 
be used (STAT(1) or STAT(4)) if another method for handling ties is desired.

 H0 : Pr(X < Y) = 0.5 H1 : Pr(X < Y) ≠ 0.5 
H0 : E(X) = E(Y)  H1 : E(X) ≠ E(Y)
Reject if STAT(10) is less than the significance level of the test. Alternatively, reject H0 if STAT(7) 
is too large or too small.

 H0 : Pr(X < Y) ≤ 0.5 H1 : Pr(X < Y) > 0.5 
H0 : E(X) ≥ E(Y) H1 : E(X) < E(Y)
Reject if STAT(7) is too small.

 H0 : Pr(X < Y) ≥ 0.5 H1 : Pr(X < Y) < 0.5 
H0 : E(X) ≤ E(Y) H1 : E(X) > E(Y)
Reject if STAT(7) is too large.

Assumptions
1. X and Y are a random sample from their respective populations.
2. All observations are mutually independent.
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3. The measurement scale is at least ordinal (i.e., an ordering less than, greater than, or equal to exists 
among the observations).

4. If F(X) and G(Y) are the distribution functions of X and Y, respectively, then G(Y) = F(X + c) for some 
constant c (i.e., the distribution of Y is at worst a translation of the distribution of X).

Tables of critical values of the W statistic are given in the references for small samples.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2KSM/DR2KSM. The reference is:

CALL R2KSM (NOBSX, X, NOBSY, Y, FUZZ, STAT, NMISSX, NMISSY, IWK, YWK)
The additional arguments are as follows:

IWK — Integer work vector of length NOBSX + NOBSY

YWK — Work vector of length NOBSX + NOBSY.
2. Informational errors

3. The Mann-Whitney U statistic is given in terms of W as U = W - K * (K + 1)/2, where K = NOBSX, and 
W = STAT(1) (or STAT(4)). Tables of critical values for W are available in the references given in the 
manual document.

4. For greatest efficiency in computing W, the X sample should be the smallest sample.

Example

The following example is taken from Conover (1980, page 224). It involves the mixing time of 2 mixing 
machines using a total of 10 batches of a certain kind of batter, 5 batches for each machine. The null hypothe-
sis is not rejected at the 5 percent level of significance. The warning error is always printed when one or more 
ties are detected unless printing for warning errors is turned off. See routine ERSET in the Reference Material.

      USE RNKSM_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBSX, NOBSY
      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, NOBSX=5, NOBSY=5)
!
      INTEGER    I, NMISSX, NMISSY, NOUT
      REAL       STAT(10), X(NOBSX), Y(NOBSY)
!
      DATA X/7.3, 6.9, 7.2, 7.8, 7.2/
      DATA Y/7.4, 6.8, 6.9, 6.7, 7.1/
!

Type Code Description

3 4 Both NOBSX and NOBSY are less than 25. Tabled critical values for W should 
be used.

3 5 Tied observations occurred between the samples.

4 6 Each element of X and/or Y is a missing (NaN, not a number) value.
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      CALL RNKSM (X, Y, FUZZ, STAT, NMISSX=NMISSX, NMISSY=NMISSY)
!                                 Print the results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,10), REAL(NMISSX), REAL(NMISSY)
!
99999 FORMAT (' Wilcoxon W statistic ........................', F5.1, &
            /, ' 2*WBAR - W ..................................', &
            F5.1, /, ' p-value .....................................' &
            , F7.3, /, ' Adjusted Wilcoxon statistic ', '............' &
            , '.....', F5.1, /, ' Adjusted 2*WBAR - W ', '...........', &
            '..', '............', F5.1, /, ' Adjusted p-value ', &
            '............................', F7.3, /, ' W statistic ', &
            'for averaged ranks ..............', F5.1, /, ' Standard ' &
            , 'error of W (averaged ranks) ........', F7.3, /, &
            ' Standard normal score of W (averaged ranks) .', F7.3, &
            /, ' Two-sided p-value of W (averaged ranks) .....', &
            F7.3, //, ' Number of missing for X .....................' &
            , F5.1, /, ' Number of missing for Y ', '................' &
            , '.....', F5.1)
!
      END

Output

*** WARNING  ERROR 5 from RNKSM.  At least one tie is detected between the
***          samples.
Wilcoxon W statistic ........................ 34.0
2*WBAR - W .................................. 21.0
p-value .....................................  0.110
Adjusted Wilcoxon statistic ................. 35.0
Adjusted 2*WBAR - W ......................... 20.0
Adjusted p-value ............................  0.075
W statistic for averaged ranks .............. 34.5
Standard error of W (averaged ranks) ........  4.758
Standard normal score of W (averaged ranks) .  1.471
Two-sided p-value of W (averaged ranks) .....  0.141

Number of missing for X .....................  0.0
Number of missing for Y .....................  0.0
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INCLD

Performs an includance test.

Required Arguments
X — Vector of length NOBSX containing the data for the first sample.  (Input)
Y — Vector of length NOBSY containing the data for the second sample.  (Input)
ILX — Index of the element in the ordered first sample to be used as the low endpoint of the range consid-

ered.  (Input) 
ILX must be greater than zero and less than IHX.

IHX — Index of the element in the ordered first sample to be used as the high endpoint of the range con-
sidered.  (Input) 
IHX must be greater than ILX and less than or equal to NOBSX.

FUZZ — Value used to determine ties.  (Input) 
If a second sample element is within FUZZ of the ILX or IHX order statistics in the first sample, a tie 
will be counted.

STAT — Vector of length 4 containing the statistics.  (Output) 
In the description below, (X(ILX), X(IHX)) is the interval from the ILX ordered first sample value to the 
IHX ordered first sample value (i.e., from the ILX to the IHX order statistics in the first sample).

Optional Arguments
NOBSX — Number of observations in the first sample.  (Input)

Default: NOBSX = size (X,1).
NOBSY — Number of observations in the second sample.  (Input)

Default: NOBSY = size (Y,1).
NMISSX — Number of missing (NaN, not a number) values in X.  (Output)
NMISSY — Number of missing (NaN, not a number) values in Y.  (Output)

FORTRAN 90 Interface
Generic: CALL INCLD (X, Y, ILX, IHX, FUZZ, STAT [, …])
Specific: The specific interface names are S_INCLD and D_INCLD.

I STAT(I)

1 Number of ties detected.

2 Number of untied elements in the second sample that are outside the interval 
(X(ILX), X(IHX)).

3 Probability of STAT(2) or more second sample elements lying outside 
(X(ILX), X(IHX)).

4 Probability of STAT(1) + STAT(2) or more elements in the second sample lying 
outside (X(ILX), X(IHX)).
INCLD         Chapter 6: Nonparametric Statistics      640



FORTRAN 77 Interface
Single: CALL INCLD (NOBSX, X, NOBSY, Y, ILX, IHX, FUZZ, STAT, NMISSX, NMISSY)
Double: The double precision name is DINCLD.

Description

Routine INCLD tests that an equal proportion of two populations lies between the ILX and IHX order statis-
tics of the first sample, and that the densities are equal at the two points. Let Xil and Xih denote the two order 
statistics in the first sample, where l = ILX, and h = IHX. Then, the probability of exactly i observations in the 
second sample being outside of the interval (Xil , Xih) is hypergeometric and is given by

where M is the sample size in the first sample (NOBSX - NMISSX), N is the sample size in the second sample 
(NOBSY - NMISSY), and

denotes a binomial coefficient. The probability of b or fewer observations in the second sample being outside 
the interval is given by 

Use of this test requires that the population samples sizes, ILX and IHX, be set prior to sampling or viewing 
the data. Ties do not present any special problems except when they occur at the interval endpoints Xil and 
Xih. When this occurs for the first sample, no action is taken, but an informative warning message is issued. 
When a second sample observation is within FUZZ of an endpoint, then a tie is counted in STAT(1), and once 
more, a warning message is issued. In this case, STAT(3) and STAT(4) can be considered as bounds for the 
actual probability.

Comments
1. Workspace may be explicitly provided, if desired, by use of I2CLD/DI2CLD. The reference is:

CALL I2CLD (NOBSX, X, NOBSY, Y, ILX, IHX, FUZZ, STAT, NMISSX, NMISSY, WK)
The additional argument is:

WK — Work vector of length NOBSX. If X is not needed, X and WK can share the same storage 
locations.

2. If ILX = 1 and IHX = NOBSX, INCLD tests the hypothesis that the second population lies in equal pro-
portion to the first population, between the endpoints of the first sample.
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3. If ILX = (NOBSX + 1)/4 and IHX = 3 * (NOBSX + 1)/4, the first and the third quartile estimates of the 
first population are being considered. The null hypothesis may be that the first and second samples are 
drawn from the same population.

Example

The following example, which is an adaptation of a problem in Bradley (1968, page 234) illustrates the use of 
INCLD to test that equal proportions of two populations lie between the endpoints of the first sample.

      USE INCLD_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    IHX, ILX, NOBSX, NOBSY
      REAL       FUZZ
      PARAMETER  (FUZZ=0.0001, IHX=12, ILX=1, NOBSX=12, NOBSY=15)
!
      REAL       STAT(4), X(NOBSX), Y(NOBSY)
      CHARACTER  CLABEL(5)*30, RLABEL(1)*4
!
      DATA X/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12/
      DATA Y/0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2/
      DATA RLABEL/'NONE'/
      DATA CLABEL/' ', '%/Number of ties', '%/Number outside', &
          'p-value%/untied', 'p-value%/both'/
!                                 Perform includance test
      CALL INCLD (X, Y, ILX, IHX, FUZZ, STAT)
!                                 Print results
      CALL WRRRL ('STAT', STAT, RLABEL, CLABEL, 1, 4, 1)
!
      END

Output

                          STAT
                                   p-value     p-value
Number of ties  Number outside      untied        both
         0.000           7.000       0.038       0.038
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KRSKL

Performs a Kruskal-Wallis test for identical population medians.

Required Arguments
NI — Vector of length NGROUP containing the number of responses for each of the NGROUP groups.  (Input)
Y — Vector of length NI(1) + … + NI(NGROUP) that contains the responses for each of the NGROUP groups.  

(Input) 
Y must be sorted by group, with the NI(1) observations in group 1 coming first, the NI(2) observations 
in group two coming second, and so on.

FUZZ — Constant used to determine ties in Y.  (Input) 
If (after sorting) ∣Y(i) - Y(i + 1)∣ is less than or equal to FUZZ, then a tie is counted. FUZZ must be 
nonnegative.

STAT — Vector of length 4 containing the Kruskal-Wallis statistics.  (Output) 

Optional Arguments
NGROUP — Number of groups.  (Input)

Default: NGROUP = size (NI,1).

FORTRAN 90 Interface
Generic: CALL KRSKL (NI, Y, FUZZ, STAT [, …])
Specific: The specific interface names are S_KRSKL and D_KRSKL.

FORTRAN 77 Interface
Single: CALL KRSKL (NGROUP, NI, Y, FUZZ, STAT)
Double: The double precision name is DKRSKL.

Description

The routine KRSKL generalizes the Wilcoxon two-sample test computed by routine RNKSM to more than two 
populations. It computes a test statistic for testing that the population distribution functions in each of K pop-
ulations are identical. Under appropriate assumptions, this is a nonparametric analogue of the one-way 
analysis of variance. Since more than two samples are involved, the alternative is taken as the analogue of the 
usual analysis of variance alternative, namely that the populations are not identical.

I STAT(I)

1 Kruskal-Wallis H statistic.

2 Asymptotic probability of a larger H under the null hypothesis of identical 
population medians.

3 H corrected for ties.

4 Asymptotic probability of a larger H (corrected for ties) under the null 
hypothesis of identical populations.
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The calculations proceed as follows: All observations are ranked regardless of the population to which they 
belong. Average ranks are used for tied observations (observations within FUZZ of each other). Missing 
observations (observations equal to NaN, not a number) are not included in the ranking. Let Ri denote the 
sum of the ranks in the i-th population. The test statistic H is defined as:

where N is the total of the sample sizes, ni is the number of observations in the i-th sample, and S2 is com-
puted as the (bias corrected) sample variance of the Ri. 

The null hypothesis is rejected when STAT(4) (or STAT(2)) is less than the significance level of the test. If the 
null hypothesis is rejected, then the procedures given in Conover (1980, page 231) may be used for multiple 
comparisons. The routine KRSKL computes asymptotic probabilities using the chi-squared distribution when 
the number of groups is 6 or greater, and a Beta approximation (see Wallace 1959) when the number of 
groups is 5 or less. Tables yielding exact probabilities in small samples may be obtained from Owen (1962).

Comments
1. Workspace may be explicitly provided, if desired, by use of K2SKL/DK2SKL. The reference is:

CALL K2SKL (NGROUP, NI, Y, FUZZ, STAT, IWK, WK, YRNK)
The additional arguments are as follows:

IWK — Integer work vector of length m.

WK — Work vector of length m.

YRNK — Work vector of length m.
2. Informational errors 

Example

The following example is taken from Conover (1980, page 231). The data represents the yields per acre of four 
different methods for raising corn. Since H = 25.5, the four methods are clearly different. The warning error is 
always printed when the Beta approximation is used, unless printing for warning errors is turned off. See 
IMSL routine ERSET in the Reference Material.

      USE KRSKL_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NGROUP

Type Code Description

3 4 At least one tie was detected in Y.

3 5 All elements of Y are tied. STAT is set to -1.0.

3 6 The chi-squared degrees of freedom are less than 5, so the Beta approxima-
tion is used.
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      REAL       FUZZ
      PARAMETER  (FUZZ=0.001, NGROUP=4)
!
      INTEGER    NI(NGROUP), NOUT
      REAL       STAT(4), Y(34)
!
      DATA NI/9, 10, 7, 8/
      DATA Y/83, 91, 94, 89, 89, 96, 91, 92, 90, 91, 90, 81, 83, 84, &
          83, 88, 91, 89, 84, 101, 100, 91, 93, 96, 95, 94, 78, 82, &
          81, 77, 79, 81, 80, 81/
!                                 Perform Kruskal-Wallis test
      CALL KRSKL (NI, Y, FUZZ, STAT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
!
99999 FORMAT (' H (no ties)    = ', F8.1, /, ' Prob (no ties) = ', &
            F11.4, /, ' H (ties)       = ', F8.1, /, ' Prob (ties)   ' &
            , ' = ', F11.4)
!
      END

Output

*** WARNING  ERROR 6 from KRSKL.  The chi-squared degrees of freedom are
***          less than 5, so the Beta approximation is used.
H (no ties)    =     25.5
Prob (no ties) =      0.0000
H (ties)       =     25.6
Prob (ties)    =      0.0000
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BHAKV

Performs a Bhapkar V test.

Required Arguments
NI — Vector of length NGROUP containing the number of responses for each of the NGROUP groups.  (Input)
Y — Vector of length NI(1) + NI(2) + … + NI(NGROUP) containing the responses for each of the NGROUP 

groups.  (Input) 
Y must be sorted by group with the NI(1) observations for group 1 coming first.

V — Bhapkar V statistic.  (Output)
PROB — Asymptotic probability of exceeding V under the null hypothesis that the populations are equal.  

(Output) 
Asymptotically, V follows a chi-squared distribution with NGROUP - 1 degrees of freedom.

Optional Arguments
NGROUP — Number of groups.  (Input)

Default: NGROUP = size (NI,1).

FORTRAN 90 Interface
Generic: CALL BHAKV (NI, Y, V, PROB [, …])
Specific: The specific interface names are S_BHAKV and D_BHAKV.

FORTRAN 77 Interface
Single: CALL BHAKV (NGROUP, NI, Y, V, PROB)
Double: The double precision name is DBHAKV.

Description

Routine BHAKV tests the hypothesis that several samples are from the same population using the Bhapkar V 
statistic. Let the number of samples be denoted by K = NGROUP. To compute the Bhapkar V statistic, one first 
computes, for each group i, the statistic ti = the number of K-tuples that can be formed with one observation 
from each sample such that the element from population i is the smallest. The sample variance of the ratio of 
ti to the total number of such k-tuples is then computed. The Bhapkar V statistic is then a constant c multi-
plied by this variance, where c = n(2m - 1), m = NGROUP, and n is the sum of the sample sizes (after missing 
values are eliminated).

Comments
Workspace may be explicitly provided, if desired, by use of B2AKV/DB2AKV. The reference is

CALL B2AKV (NGROUP, NI, Y, V, PROB, IWK, WK, YWK)
The additional arguments are as follows:
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IWK — Integer work vector of length NI(1) + … + NI(NGROUP) + NGROUP

WK — Work vector of length NGROUP

YWK — Work vector of length NI(1) + … + NI(NGROUP). If Y is not needed, Y and YWK can share 
the same storage locations.

Example

We want to test the null hypothesis that three samples of size 3, 2, and 4, respectively, are from the same pop-
ulation using the Bhapkar V statistic.

      USE BHAKV_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NGROUP
      PARAMETER  (NGROUP=3)
!
      INTEGER    NI(NGROUP), NOUT
      REAL       PROB, V, Y(9)
!
      DATA NI/3, 2, 4/
      DATA Y/1, 3, 2, -1, 5, 4, 7, 2, 9/
!                                 Perform Bhapkar V test
      CALL BHAKV (NI, Y, V, PROB)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99998) V
      WRITE (NOUT,99999) PROB
!
99998 FORMAT (' V    = ', F12.5)
99999 FORMAT (' Prob = ', F12.5)
!
      END

Output

V    =      1.89429
Prob =      0.38785
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FRDMN

Performs Friedman’s test for a randomized complete block design.

Required Arguments
NB — Number of blocks.  (Input)
NT — Number of treatments.  (Input)
Y — Vector of length NB * NT containing the observations.  (Input) 

The first NT positions of Y contain the observations on treatments 1, 2, …, NT in the first block. The sec-
ond NT positions contain the observations in the second block, etc., and so on.

FUZZ — Constant used to determine ties.  (Input) 
In the ordered observations, if ∣Y(i) -Y(i + 1)∣ is less than or equal to FUZZ, then Y(i) and Y(i + 1) are 
said to be tied.

ALPHA — Critical level for multiple comparisons.  (Input) 
ALPHA should be between 0 and 1 exclusive.

STAT — Vector of length 6 containing the Friedman statistics.  (Output) 
Probabilities reported are computed under the appropriate null hypothesis.

SMRNK — Vector of length NT containing the sum of the ranks of each treatment.  (Output)
D — Minimum absolute difference in two elements of SMRNK to infer at the alpha level of significance that 

the medians of the corresponding treatments are different.  (Output)

FORTRAN 90 Interface
Generic: CALL FRDMN (NB, NT, Y, FUZZ, ALPHA, STAT, SMRNK, D)
Specific: The specific interface names are S_FRDMN and D_FRDMN.

FORTRAN 77 Interface
Single: CALL FRDMN (NB, NT, Y, FUZZ, ALPHA, STAT, SMRNK, D)
Double: The double precision name is DFRDMN.

I STAT(I)

1 Friedman two-sided test statistic.

2 Approximate F value for STAT(1).

3 Page test statistic for testing the ordered alternative that the median of treat-
ment i is less than or equal to the median of treatment i + 1, with strict 
inequality holding for some i.

4 Asymptotic p-value for STAT(1). Chi-squared approximation.

5 Asymptotic p-value for STAT(2). F approximation.

6 Asymptotic p-value for STAT(3). Normal approximation.
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Description

Routine FRDMN may be used to test the hypothesis of equality of treatment effects within each block in a ran-
domized block design. No missing values are allowed. Ties are handled by using the average ranks. The test 
statistic is the nonparametric analogue of an analysis of variance F test statistic. 

The test proceeds by first ranking the observations within each block. Let A denote the sum of the squared 
ranks, i.e., let

where Rank(Yij) is the rank of the i-th observation within the j-th block, b = NB is the number of blocks, and 
k = NT is the number of treatments. Let

where 

The Friedman test statistic (STAT(1)) is given by:

that, under the null hypothesis, has an approximate chi-squared distribution with k - 1 degrees of freedom. 
The asymptotic probability of obtaining a larger chi-squared random variable is returned in STAT(4). 

If the F distribution is used in place of the chi-squared distribution, then the usual oneway analysis of vari-
ance F-statistic computed on the ranks is used. This statistic, reported in STAT(2), is given by 

and asymptotically follows an F distribution with (k - 1) and (b - 1)(k - 1) degrees of freedom under the null 
hypothesis. STAT(5) is the asymptotic probability of obtaining a larger F random variable. (If A = B, STAT(1) 

and STAT(2) are set to machine infinity, and the significance levels are reported as k!/(k!)b, unless this compu-
tation would cause underflow, in which case the significance levels are reported as zero.) Iman and 
Davenport (1980) discuss the relative advantages of the chi-squared and F approximations. In general, the F 
approximation is considered best. 
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The Friedman T statistic is related both to the Kendall coefficient of concordance and to the Spearman rank 
correlation coefficient. See Conover (1980) for a discussion of the relationships. 

If, at the α = ALPHA level of significance, the Friedman test results in rejection of the null hypothesis, then an 
asymptotic test that treatments i and j are different is given by: 
reject H0 if ∣Ri - Rj∣ > D, where

where t has (b - 1)(k - 1) degrees of freedom. Page’s statistic (STAT(3)) is used to test the same null hypothe-
sis as the Friedman test but is sensitive to a monotonic increasing alternative. The Page test statistic is given 
by

It is largest (and thus most likely to reject) when the Ri are monotonically increasing.

Assumptions

The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually independent (i.e., the results within 
one block have no effect on the results within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each block is equally likely. The 
alternative is that at least one of the treatments tends to have larger values than one or more of the other 
treatments. The Friedman test is a test for the equality of treatment means or medians.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2DMN/DF2DMN. The reference is:

CALL F2DMN (NB, NT, Y, FUZZ, ALPHA, STAT, SMRNK, D, IWK, WK)
The additional arguments are as follows:

IWK — Integer work vector of length NT.

WK — Work vector of length 2 * NT.
2. Informational errors 
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Example

The following example is taken from Bradley (1968), page 127, and tests the hypothesis that 4 drugs have the 
same effects upon a person’s visual acuity. Five subjects were used.

      USE FRDMN_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NB, NT
      REAL       ALPHA, FUZZ
      PARAMETER  (ALPHA=0.05, FUZZ=0.001, NB=5, NT=4)
!
      INTEGER    NOUT
      REAL       D, SMRNK(NT), STAT(6), Y(NB*NT)
!
      DATA Y/.39, .55, .33, .41, .21, .28, .19, .16, .73, .69, .64, &
          .62, .41, .57, .28, .35, .65, .57, .53, .60/
!                                 Perform Friedman's test
      CALL FRDMN (NB, NT, Y, FUZZ, ALPHA, STAT, SMRNK, D)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT, SMRNK, D
!
99999 FORMAT (' Friedman T.........', F8.2, /, ' Friedman F.........', &
            F8.2, /, ' Page test..........', F8.2, /, ' Prob ', &
            'Friedman T....', F11.5, /, ' Prob Friedman F....', &
            F11.5, /, ' Prob Page test.....', F11.5, /, ' Sum of ', &
            'Ranks.......', 4F8.2, /, ' D..................', F11.5)
!
      END

Output

Friedman T.........    8.28
Friedman F.........    4.93
Page test..........  111.00
Prob Friedman T....    0.04057
Prob Friedman F....    0.01859
Prob Page test.....    0.98495
Sum of Ranks.......   16.00   17.00    7.00   10.00
D..................    6.65638

Type Code Description

4 5 At least one missing value was detected in Y. No missing values are permit-
ted in this routine since it assumes a complete block design.

3 6 At least one tie was detected within a block.

3 7 The ranks of the treatments were exactly the same in all the blocks.
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The Friedman null hypothesis is rejected at the α = .05 while the Page null hypothesis is not. (A Page test 
with a monotonic decreasing alternative would be rejected, however.) Using SMRNK and D, one can conclude 
that treatment 3 is different from treatments 1 and 2, and that treatment 4 is different from treatment 2, all at 
the α = .05 level of significance.
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QTEST

Performs a Cochran Q test for related observations.

Required Arguments
X — NOBS by NVAR matrix of dichotomized data, containing NOBS readings of zero or one on each of NVAR 

treatments.  (Input)
Q — Cochran’s Q statistic.  (Output)
PQ — Asymptotic probability of exceeding Q under the null hypothesis of equality of the underlying pop-

ulations.  (Output)

Optional Arguments
NOBS — Number of blocks for each treatment.  (Input)

Default: NOBS = size (X,1).
NVAR — Number of treatments.  (Input)

Default: NVAR = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

FORTRAN 90 Interface
Generic: CALL QTEST (X, Q, PQ [, …])
Specific: The specific interface names are S_QTEST and D_QTEST.

FORTRAN 77 Interface
Single: CALL QTEST (NOBS, NVAR, X, LDX, Q, PQ)
Double: The double precision name is DQTEST.

Description

Routine QTEST computes the Cochran Q test statistic that may be used to determine whether or not M 
matched sets of responses differ significantly among themselves. The data may be thought of as arising out 
of a randomized block design in which the outcome variable must be success (= 1.0) or failure (= 0.0). Within 
each block a multivariate vector of 1’s or 0’s is observed. The hypothesis is that the probability of success 
within a block does not depend upon the treatment.

Assumptions
1. The blocks are a random sample from the population of all possible blocks.
2. The outcome of each treatment is dichotomous.
QTEST         Chapter 6: Nonparametric Statistics      653



Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H0: All treatments have the same effect. 
H1: The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.

H0 : pi1 = pi2 = … = pic for each i. 
H1 : pij ≠ pik for some i, and some j ≠ k

where c(= NVAR) is the number of treatments.

The null hypothesis is rejected if Cochran’s Q statistic is too large.

Comments
1. Informational errors

2. The input data must consist of zeros and ones only. For example, the data may be passfail information 
on NVAR questions asked of NOBS people or the test responses of NOBS individuals to NVAR different 
conditions.

3. The resulting statistic is distributed approximately as chi-squared with NVAR - 1 degrees of freedom if 
NOBS is not too small. NOBS greater than or equal to 5 * NVAR is a conservative recommendation.

Example

The following example is taken from Siegel (1956, page 164). It measures the responses of 18 housewives to 3 
types of interviews.

      USE QTEST_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LDX, NVAR
      PARAMETER  (NVAR=3, LDX=18)
!
      INTEGER    NOUT
      REAL       PQ, Q, X(LDX,NVAR)
!
      DATA X/0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, &
          1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, &
          0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0/
!                                 Perform Cochran Q test
      CALL QTEST (X, Q, PQ)
!                                 Print results
      CALL UMACH (2, NOUT)

Type Code Description

4 5 X must consist of zeros and ones only.

3 6 X consists of either all ones or all zeros. Q is set to NaN (not a number). PQ is 
set to 1.0.
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      WRITE (NOUT,99999) Q, PQ
!
99999 FORMAT ('  Q =  ', F6.3, /, ' PQ = ', F9.5)
!
      END

Output

 Q =  16.667
PQ =   0.00024
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KTRND

Performs k-sample trends test against ordered alternatives.

Required Arguments
NI — Vector of length NGROUP that contains the number of responses for each of the NGROUP groups.  

(Input)
X — Vector of length NI(1) + NI(2) + … + NI(NGROUP) containing the responses for each of the NGROUP 

groups.  (Input) 
All of the responses for group 1 come first, followed by group 2, and so on.

STAT — Vector of length 17 containing the test results.  (Output)

Optional Arguments
NGROUP — Number of groups.  (Input) 

NGROUP must be greater than or equal to 3.
Default: NGROUP = size (NI,1).

FORTRAN 90 Interface
Generic: CALL KTRND (NI, X, STAT [, …])
Specific: The specific interface names are S_KTRND and D_KTRND.

I STAT(I)

1 Test statistic (ties are randomized).

2 Conservative test statistic with ties counted in favor of the null hypothesis.

3 p-value associated with STAT(1).

4  p-value associated with STAT(2).

5 Continuity corrected STAT(3).

6 Continuity corrected STAT(4).

7 Expected mean of the statistic.

8 Expected kurtosis of the statistic. (The expected skewness is zero.

9 Total sample size.

10 Coefficient of rank correlation based upon STAT(1).

11 Coefficient of rank correlation based upon STAT(2).

12 Total number of ties between samples.

13 The t-statistic associated with STAT(3).

14 The t-statistic associated with STAT(4).

15 The t-statistic associated with STAT(5).

16 The t-statistic associated with STAT(6).

17 Degrees of freedom for each t-statistic.
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FORTRAN 77 Interface
Single: CALL KTRND (NGROUP, NI, X, STAT)
Double: The double precision name is DKTRND.

Description

Routine KTRND performs a k-sample trends test against ordered alternatives. The alternative to the null 
hypothesis of equality is that F1(X) < F2(X) < … Fk(X), where F1, F2, etc., are cumulative distribution functions, 
and the operator < implies that the less than relationship holds for all values of X. While the trends test used 
in KTRND requires that the background populations be continuous, ties occurring within a sample have no 
effect on the test statistic or associated probabilities. Ties between samples are important, however. Two 
methods for handling ties between samples are used. These are:

1. Ties are randomly split (STAT(1)).
2. Ties are counted in a manner that is unfavorable to the alternative hypothesis (STAT (2)).

Computational Procedure

Consider the matrices 

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation in the m-th population, and 

each matrix Mkm is nk by nm where ni = NI(i). Let Skm denote the sum of all elements in Mkm. Then, STAT(2) is 
computed as the sum over all elements in Skm, minus the expected value of this sum (computed as

when there are no ties and the distributions in all populations are equal). In STAT(1), ties are broken ran-
domly, and the element in the summation is taken as 2.0 or 0.0 depending upon the result of breaking the tie. 

STAT(3) and STAT(4) are computed using the t distribution. The probabilities reported are asymptotic 
approximations based upon the t statistics in STAT(13) and STAT(14), which are computed as in Jonckheere 
(1954, page 141). Similarly, STAT(5) and STAT(6) give the probabilities for STAT(15) and STAT(16), the conti-
nuity corrected versions of STAT(3) and STAT(4). The degrees of freedom for each t statistic (STAT(17)) are 
computed so as to make the t distribution selected as close as possible to the actual distribution of the statistic 
(see Jonckheere 1954, page 141). 

STAT(7), the variance of the test statistic STAT(1), and STAT(8), the kurtosis of the test statistic, are computed 
as in Jonckheere (1954, page 138). The coefficients of rank correlation in STAT(9) and STAT(10) reduce to the 

Kendall  statistic when there are just two groups. 

Exact probabilities in small samples can be obtained from tables in Jonckheere (1954). Note, however, that the 
t approximation appears to be a good one.
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Assumptions
1. The Xmi for each sample are independently and identically distributed according to a single continu-

ous distribution.
2. The samples are independent.

Hypothesis tests

H0 : F1(X) ≥ F2(X) ≥ … ≥ Fk(X) 
H1 : F1(X) < F2(X) < … < Fk(X) 
Reject if STAT(3) (or STAT(4), or STAT(5) or STAT(6), depending upon the method used) is too large.

Comments
1. Informational errors

2. The closer STAT(10) and STAT(11) are to unity, the more one would be inclined to reject the hypothesis 
of randomness.

3. Routine RNUN (see Chapter 18, “Random Number Generation”) is used to randomly break ties. Routine 
RNSET (see Chapter 18) can be used to initialize the seed of the random number generator. The routine 
RNOPT (see Chapter 18) can be used to select the form of the generator.

Example

The following example is taken from Jonckheere (1954, page 135). It involves four observations in four inde-
pendent samples.

      USE RNSET_INT
      USE KTRND_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NGROUP
      PARAMETER  (NGROUP=4)
!
      INTEGER    NI(NGROUP), NOUT
      REAL       STAT(17), X(16)
!
      DATA NI/4, 4, 4, 4/
      DATA X/19, 20, 60, 130, 21, 61, 80, 129, 40, 99, 100, 149, 49, &
          110, 151, 160/
!
      CALL RNSET (123457)
!                                 Get the statistics
      CALL KTRND (NI, X, STAT)

Type Code Description

3 4 At least one tie is detected in X. Randomization is used to break all ties.

3 5 There are no degrees of freedom for the t-statistics. STAT(3) to STAT(6) are set 
to 0.
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!                                 Print the results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
!
99999 FORMAT (' STAT(1) - Test statistic (random) ...........', F8.1, &
            /, ' STAT(2) - Test statistic (null hypothesis) ..', &
            F8.1, /, ' STAT(3) - p-value for STAT(1) ...............' &
            , F12.5, /, ' STAT(4) - p-value for STAT(2) ', &
            '...............', F12.5, /, ' STAT(5) - Continuity ', &
            'corrected STAT(3) ......', F12.5, /, ' STAT(6) - ', &
            'Continuity corrected STAT(4) ......', F12.5, /, &
            ' STAT(7) - Expected mean .....................', F8.1, &
            /, ' STAT(8) - Expected kurtosis .................', &
            F12.5, /, ' STAT(9) - Total sample size .................' &
            , F8.1, /, ' STAT(10)- Rank corr. coef. based on STAT(1) ' &
            , '.', F12.5, /, ' STAT(11)- Rank corr. coef. based on ', &
            'STAT(2) .', F12.5, /, ' STAT(12)- Total number of ties ' &
            , '..............', F8.1, /, ' STAT(13)- t-statistic ', &
            'associated w/STAT(3) ..', F10.3, /, ' STAT(14)- ', &
            't-statistic associated w/STAT(4) ..', F10.3, /, &
            ' STAT(15)- t-statistic associated w/STAT(5) ..', F10.3, &
            /, ' STAT(16)- t-statistic associated w/STAT(6) ..', &
            F10.3, /, ' STAT(17)- Degrees of freedom ................' &
            , F10.3)
!
      END

Output

STAT(1) - Test statistic (random) ...........    46.0
STAT(2) - Test statistic (null hypothesis) ..    46.0
STAT(3) - p-value for STAT(1) ...............     0.01483
STAT(4) - p-value for STAT(2) ...............     0.01483
STAT(5) - Continuity corrected STAT(3) ......     0.01683
STAT(6) - Continuity corrected STAT(4) ......     0.01683
STAT(7) - Expected mean .....................   458.7
STAT(8) - Expected kurtosis .................    -0.15365
STAT(9) - Total sample size .................    16.0
STAT(10)- Rank corr. coef. based on STAT(1) .     0.47917
STAT(11)- Rank corr. coef. based on STAT(2) .     0.47917
STAT(12)- Total number of ties ..............     0.0
STAT(13)- t-statistic associated w/STAT(3) ..     2.264
STAT(14)- t-statistic associated w/STAT(4) ..     2.264
STAT(15)- t-statistic associated w/STAT(5) ..     2.208
STAT(16)- t-statistic associated w/STAT(6) ..     2.208
STAT(17)- Degrees of freedom ................    36.050
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Chapter 7: Tests of Goodness of Fit 
and Randomness
Routines

7.1 General Goodness-of-Fit Tests for a Specified Distribution

One-sample continuous data Kolmogorov-Smirnov. . . . . . . . . . . . . . . . . . . .KSONE     663

Chi-squared test goodness-of-fit test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CHIGF     667

Shapiro-Wilk W-test for normality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SPWLK     673

Lilliefors test for an exponential or a normal distribution  . . . . . . . . . . . . . . . . . LILLF     675

Mardia’s test for multivariate normality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MVMMT     678

Anderson-Darling test for normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADNRM     683

Cramer-Von Mises test for normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CVMNRM     685

7.2 Two Sample Tests

Kolmogorov-Smirnov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KSTWO     687

7.3 Tests for Randomness

Runs test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RUNS     690

Pairs-serial test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PAIRS     694

d2 test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSQAR     698

Triplets test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DCUBE     701
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Usage Notes

The routines in this chapter are used to test for goodness of fit and randomness. The goodness-of-fit tests are 
described in Conover (1980). There are two goodness-of-fit tests for general distributions, a 
Kolmogorov-Smirnov test and a chi-squared test. The user supplies the hypothesized cumulative distribu-
tion function for these two tests. There is one routine (Lilliefors) that can be used to test specifically for 
exponential distributions and five routines (Shapiro-Wilk, Lilliefors, Mardia, Anderson-Darling, and 
Cramer-von Mises) that can be used to test specifically for normal distributions.

The tests for randomness are often used to evaluate the adequacy of pseudorandom number generators. 
These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities in small to moderate sample 
sizes. The chi-squared goodness-of-fit test may be used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for missing values (NaN, not a 
number) in the input data. The routines that test for randomness do not allow for missing values.
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KSONE

Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Required Arguments
CDF — User-supplied FUNCTION to compute the cumulative distribution function (CDF) at a given value. 

The form is CDF(Y), where
Y – Value at which CDF is to be evaluated.  (Input)

CDF – Value of CDF at Y.  (Output)
CDF must be declared EXTERNAL in the calling program.

X — Vector of length NOBS containing the observations.  (Input)
PDIF — Vector of length 6 containing the output statistics.  (Output) 

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NMISS — Number of missing (NaN, not a number) values.  (Output)

FORTRAN 90 Interface
Generic: CALL KSONE (CDF, X, PDIF [, …])
Specific: The specific interface names are S_KSONE and D_KSONE.

FORTRAN 77 Interface
Single: CALL KSONE (CDF, NOBS, X, PDIF, NMISS)
Double: The double precision name is DKSONE.

I PDIF(I)

1
Dn = Maximum of 

2
 Maximum difference between the theoretical and empirical CDF’s

3  Maximum difference between the empirical and theoretical CDF’s

4

5 Probability of the statistic exceeding Dn under the null hypothesis of equality and 
against the one-sided alternative. An exact probability is computed for NOBS ≤ 80, and 
an approximate probability is computed for NOBS > 80. See function AKS1DF ( Chapter 17, 
“Probability Distribution Functions and Inverses”).

6 Probability of the statistic exceeding Dn under the null hypothesis of equality and 
against the two-sided alternative. This probability is twice the probability reported in 
PDIF(5), (or 1.0 if 2 * PDIF(5) is greater than 1.0). This approximation is nearly exact 
when PDIF(5) is less than 0.10.
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Description

The routine KSONE performs a Kolmogorov-Smirnov goodness-of-fit test in one sample. The hypotheses 
tested follow:

where F is the cumulative distribution function (CDF) of the random variable, and the theoretical CDF, F* , is 
specified via the user-supplied FUNCTION CDF. Let n = NOBS - NMISS. The test statistics for both one-sided 
alternatives 

and

and the two-sided (Dn = PDIF(1)) alternative are computed as well as an asymptotic z-score (PDIF(4)) and 
p-values associated with the one-sided (PDIF(5)) and two-sided (PDIF(6)) hypotheses. For n > 80, asymptotic 
p-values are used (see Gibbons 1971). For n ≤ 80, exact one-sided p-values are computed according to a 
method given by Conover (1980, page 350). An approximate two-sided test p-value is obtained as twice the 
one-sided p-value. The approximation is very close for one-sided p-values less than 0.10 and becomes very 
bad as the one-sided p-values get larger.

Comments
1. Workspace may be explicitly provided, if desired, by use of K2ONE/DK2ONE. The reference is:

CALL K2ONE (CDF, NOBS, X, PDIF, NMISS, XWK)
The additional argument is:

XWK — Work vector of length 3 * (NOBS + 1) if NOBS ≤ 80, or of length NOBS if NOBS > 80.
2. Informational errors 

3. No check is made for the validity of the input data. Thus, although one or more of the X(I) may be 
inconsistent with the distribution in that an observation may be outside of the range of the distribu-
tion, KSONE will not detect the anomaly (unless the user causes it to be detected via the function CDF).

Type Code Description

4 2 PDIF, the output cumulative distribution value from CDF, must be greater 
than or equal to 0.0 and less than or equal to 1.0 (by definition of a probabil-
ity distribution function).

4 3 At least one tie is detected in X. Ties are not allowed in KSONE. 

4 4 PDIF, the output cumulative distribution value from CDF, cannot decrease 
with increasing X (by the definition of a cumulative distribution function).

4 6 All the elements of X are missing (NaN, not a number) values.
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Programming Notes
1. The theoretical CDF is assumed to be continuous. If the CDF is not continuous, the statistics

will not be computed correctly.
2. Estimation of parameters in the theoretical CDF from the sample data will tend to make the p-values 

associated with the test statistics too liberal. The empirical CDF will tend to be closer to the theoretical 
CDF than it should be.

3. No attempt is made to check that all points in the sample are in the support of the theoretical CDF. If 
all sample points are not in the support of the CDF, the null hypothesis must be rejected.

4. The user must supply an external FUNCTION that calculates the theoretical CDF for a given abscissa. 
The calling program must contain an EXTERNAL statement with the name of this routine. Often, IMSL 
functions in Chapter 17, “Probability Distribution Functions and Inverses” may be used. Examples of pos-
sible user-supplied routines follow. Each FORTRAN function would be preceded by the statement

REAL FUNCTION CDF(X)
and ended by a RETURN and an END statement.

a. Normal (μ, σ2) Z = (X - μ)/σ
               CDF = ANORDF(Z)

b. Uniform[a, b] If(X .LT. a) THEN
                 CDF = 0.0
               ELSE IF(X .GT. b) THEN
                 CDF = 1.0
               ELSE
                 CDF = (X - a)/(b - a)
               END IF

c. Minimum of n CDF = 1.0 - (1.0 - X)**n 
Uniform(0, 1) random numbers

Example

In this example, a random sample of size 100 is generated via routine RNUN (see Chapter 18, “Random Number 
Generation” for the uniform (0, 1) distribution. We want to test the null hypothesis that the CDF is the stan-
dard normal distribution with a mean of 0.5 and a variance equal to the uniform (0, 1) variance (1/12).

      USE RNSET_INT
      USE RNUN_INT
      USE KSONE_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOBS
      PARAMETER  (ISEED=123457, NOBS=100)
!
      INTEGER    NMISS, NOUT
      REAL       CDF, PDIF(6), X(100)
      EXTERNAL   CDF
!                                    Generate the sample
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      CALL RNSET (ISEED)
      CALL RNUN (X)
!
      CALL KSONE (CDF, X, PDIF, NMISS=NMISS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) NMISS, PDIF
99999 FORMAT ('NMISS = ', I4/' D     = ', F8.4/' D+    = ', F8.4/ &
            ' D-    = ', F8.4/' Z     = ', F8.4/' Prob greater D', &
            ' one-sided = ', F8.4/' Prob greater D two-sided = ', &
            F8.4)
      END
!
!                                     The CDF
!
      REAL FUNCTION CDF (X)
      REAL       X
!
      REAL       AMEAN, STD
      PARAMETER  (AMEAN=0.50, STD=0.2886751)
!
      REAL       ANORDF, Z
      EXTERNAL   ANORDF
!                                     Standardize
      Z = (X-AMEAN)/STD
!                                 Get the probability
      CDF = ANORDF(Z)
!
      RETURN
      END

Output

NMISS =    0
D     =   0.1471
D+    =   0.0810
D-    =   0.1471
Z     =   1.4708
Prob greater D one-sided =   0.0132
Prob greater D two-sided =   0.0264
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CHIGF

Performs a chi-squared goodness-of-fit test.

Required Arguments
CDF — User-supplied FUNCTION to compute the cumulative distribution function (CDF) at a given value. 

The form is CDF(Y), where
Y – Value at which the CDF is to be evaluated.  (Input)
CDF – Value of the CDF at Y.  (Output)

CDF must be declared EXTERNAL in the calling program.
NELM — The absolute value of NELM is the number of data elements currently input in X.  (Input) 

NELM may be positive, zero, or negative. Negative NELM means delete the -NELM data elements from 
the analysis.

X — Vector of length ∣NELM∣ containing the data elements for this call.  (Input) 
If the data element is missing (NaN, not a number), then the observation is ignored.

NCAT — The absolute value of NCAT is the number of cells into which the observations are to be tallied.  
(Input) 
If NCAT is negative, then CHIGF chooses the cutpoints in CUTP so that the cells are equiprobable in 
continuous distributions. NCAT should not be negative in discrete distributions. The user must be care-
ful to define cutpoints in discrete distributions since no error message can be generated in this 
situation if NCAT is negative.

RNGE — Vector of length 2 containing the lower and upper endpoints of the range of the distribution, 
respectively.  (Input) 
If the lower and upper endpoints are equal, a range on the whole real line is used. If the lower and 
upper endpoints are different, points outside of the range are ignored so that distributions conditional 
on the range can be used. In this case, the point RNGE(1) is excluded from the first interval, but the 
point RNGE(2) is included in the last interval.

NDFEST — Number of parameters estimated in computing the CDF.  (Input)
CUTP — Vector of length ∣NCAT∣ - 1 containing the cutpoints defining the cells.  (Input, if NCAT is posi-

tive, output, otherwise)
∣NCAT∣ - 1 cutpoints define the cells to be used. If NCAT is positive, then the cutpoints are input by the 
user. The intervals defined by the cutpoints are such that the lower endpoint is not included while the 
upper endpoint is included in the interval.

P — p-value for the chi-squared statistic in CHISQ(∣NCAT∣ + 1).  (Output) 
This chi-squared statistic has DF degrees of freedom.

Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

IDO Action

0 This is the only call to CHIGF, and all of the data are input on this call.

1 This is the first call to CHIGF, and additional calls to CHIGF will be made. Initialization 
and updating for the data in X are performed.
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Calls to CHIGF with IDO = 2 or 3 may be intermixed. It is permissible for a call with IDO = 2 to follow 
a call with IDO = 3.

FRQ — Vector containing the frequencies.  (Input) 
If the first element of FRQ is -1.0, then all frequencies are taken to be 1 and FRQ is of length 1. Other-
wise, FRQ is of length ∣NELM∣, and the elements in FRQ contain the frequency of the corresponding 
observation in X. If the frequency is missing (NaN, not a number) (and FRQ(1) is not -1.0), the observa-
tion is ignored.
Default: FRQ(1) = -1.0.

COUNTS — Vector of length ∣NCAT∣ containing the counts in each of the cells.  (Output, if IDO = 0 or 1; 
input/output, if IDO > 1)

EXPECT — Vector of length ∣NCAT∣ containing the expected count in each cell.  (Output, if IDO = 0 or 3; 
not referenced otherwise)

CHISQ — Vector of length ∣NCAT∣ + 1 containing the contributions to chi-squared.  (Output, if IDO = 0 or 
3, not referenced otherwise)
Elements 1 through ∣NCAT∣ contain the contributions to chi-squared for the corresponding cell. Ele-
ment ∣NCAT∣ + 1 contains the total chi-squared statistic.

DF — Degrees of freedom in chi-squared.  (Output)

FORTRAN 90 Interface
Generic: CALL CHIGF (CDF, NELM, X, NCAT, RNGE, NDFEST, CUTP, P [, …])
Specific: The specific interface names are S_CHIGF and D_CHIGF.

FORTRAN 77 Interface
Single: CALL CHIGF (IDO, CDF, NELM, X, FRQ, NCAT, RNGE, NDFEST, CUTP, COUNTS, EXPECT, 

CHISQ, P, DF)
Double: The double precision name is DCHIGF.

Description

Routine CHIGF performs a chi-squared goodness-of-fit test that a random sample of observations is distrib-
uted according to a specified theoretical cumulative distribution. The theoretical distribution, which may be 
continuous, discrete, or a mixture of discrete and continuous distributions, is specified via a user-defined 
FUNCTION. Because the user is allowed to specify a range for the observations, a test that is conditional upon 
the specified range is performed.

∣NCAT∣ gives the number of intervals into which the observations are to be divided. These intervals can be 
specified via the vector CUTP, which contains the cutpoints (or endpoints) for the intervals. Or if NCAT is neg-
ative, equiprobable intervals computed by CHIGF can be used. Regardless of the method used to obtain 
them, the intervals are such that the lower endpoint is not included in the interval while the upper endpoint 
is always included. The user should determine the cutpoints when the cumulative distribution function has 

2 This is an intermediate call to CHIGF. Updating for the data in X is performed.

3 This is the final call to CHIGF. Updating for the data in X and wrap-up computations are 
performed.

IDO Action
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discrete elements since CHIGF cannot determine them in this case. Regardless of how the cutpoints are deter-
mined, the lower endpoint of the first interval is specified by RNGE(1) when RNGE(1) ≠ RNGE(2) and is given 
as minus machine infinity otherwise. The upper endpoint of the last interval is defined similarly.

Routine CHIGF tallies the observations in X as follows. If the cutpoints are determined by CHIGF, then the 
cumulative probability at xi, F(xi), is computed via function CDF. The tally for xi is made in interval number 
⌊mF (x) + 1⌋, where m = ∣NCAT∣ and ⌊ ⌋ is the function that takes the greatest integer that is no larger than the 
argument of the function. If the cutpoints are specified by the user, the tally is made in the interval to which 
xi belongs using the endpoints specified by the user. Thus, if the computer time required to calculate the 
cumulative distribution function is large, user-specified cutpoints may be preferred in order to reduce the 
total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-squared approximation may 
be suspect. A warning message to this effect is issued in this case, as well as when an expected value is less 
than 5.

Programming Notes

The user must supply a function CDF with calling sequence CDF(Y), which returns the value of the cumula-
tive distribution function at any point Y in the range of the distribution. The supplied function must be 
declared in an EXTERNAL statement in the calling program. Many of the IMSL cumulative distribution func-
tions in Chapter 17, “Probability Distribution Functions and Inverses” can be used for CDF, either directly, if the 
calling sequence is correct, or indirectly, if, for example, the sample means and standard deviations are to be 
used in computing the theoretical CDF.

Comments

Informational errors

Type Code Description

4 4 There are more observations deleted from a cell than added.

4 5 All observations are missing.

3 6 An expected value is less than 1.

3 7 An expected value is less than 5.

4 8 The function CDF is not a cumulative distribution function.

4 9 The probability of the range of the distribution is not positive.

4 10 An error has occurred when inverting the cumulative distribution function. 
This function must be continuous and defined over the whole real line. If all 
else fails, you must specify the cutpoints (i.e., NCAT must be positive).
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Examples

Example 1

In this example, a discrete binomial random sample of size 1000 with binomial parameter p = 0.3 and bino-
mial sample size 5 is generated via routine RNBIN (see Chapter 18, “Random Number Generation”). Routine 
RNSET is first used to set the seed. One call to CHIGF is made. Routine BINDF (see Chapter 17, “Probability 
Distribution Functions and Inverses”) is used to compute the CDF.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    ISEED, NCAT, NDFEST, NELM
      PARAMETER  (ISEED=123457, NCAT=6, NDFEST=0, NELM=1000)
!
      INTEGER    I, IX(NELM), NOUT
      REAL       CDF, CHISQ(NCAT+1), COUNTS(NCAT), CUTP(NCAT-1), DF, &
                 EXPECT(NCAT), P, RNGE(2), X(NELM)
      EXTERNAL   CDF
!
      DATA RNGE/0.0, 0.0/
      DATA CUTP/.5, 1.5, 2.5, 3.5, 4.5/
!
      CALL RNSET (ISEED)
!                                 Generate the data
      CALL RNBIN (5, 0.3, IX)
      DO 10  I=1, NELM
         X(I) = IX(I)
   10 CONTINUE
!
      CALL CHIGF (CDF, NELM, X, NCAT, RNGE, NDFEST, CUTP, P, &
                  COUNTS=COUNTS, EXPECT=EXPECT, CHISQ=CHISQ, DF=DF)
!                                 Print results
      CALL WRRRN ('Counts', COUNTS, 1, NCAT, 1)
      CALL WRRRN ('Expect', EXPECT, 1, NCAT, 1)
      CALL WRRRN ('Contributions to Chi-squared', CHISQ, 1, NCAT, 1)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) CHISQ(NCAT+1), P, DF
99999 FORMAT (///'0Chi-squared       ', F8.4, /, ' P-value           ' &
            , F8.4, /, ' Degrees of freedom', F8.4)
      END
!
      REAL FUNCTION CDF (Y)
      REAL       Y
!
      INTEGER    I
      REAL       BINDF
      EXTERNAL   BINDF
!
      I   = Y
      CDF = BINDF(I,5,0.3)
      RETURN
      END
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Output

*** WARNING  ERROR 7 from CHIGF.  An expected value is less than 5.

                   Counts
    1       2       3       4       5       6
170.0   331.0   320.0   148.0    28.0     3.0

                   Expect
    1       2       3       4       5       6
168.1   360.2   308.7   132.3    28.3     2.4

        Contributions to Chi-squared
    1       2       3       4       5       6
0.022   2.359   0.414   1.863   0.004   0.134

Chi-squared         4.7963
P-value             0.4412
Degrees of freedom  5.0000

Example 2

This example illustrates the use of CHIGF on a randomly generated sample from the normal distribution. 
One thousand randomly generated observations are tallied into 10 equiprobable intervals. Twelve calls to 
CHIGF are made. The first call is solely for initialization since IDO = 1 and NROW = 0. The next 10 calls tally 
the data, 100 observations at a time, with IDO = 2 and NROW = 100. The last call is for wrap up only since 
IDO = 3 and NROW = 0. All twelve calls could have been replaced with one call to CHIGF with IDO = 0 and 
NROW = 1000. X would need to be of length 1000 if one call were used. In this example, the null hypothesis is 
not rejected.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    ISEED, NCAT, NDFEST
      PARAMETER  (ISEED=123457, NCAT=-10, NDFEST=0)
!
      INTEGER    I, IDO, NOUT, NELM
      REAL       CHISQ(-NCAT+1), COUNTS(-NCAT), CUTP(-NCAT-1), &
                 DF, EXPECT(-NCAT), P, RNGE(2), X(100)
!
      DATA RNGE/0.0, 0.0/
!
      CALL RNSET (ISEED)
!                                 Initialization
      IDO  = 1
      NELM = 0
      CALL CHIGF (S_ANORDF, NELM, X, NCAT, RNGE, NDFEST, CUTP, P,&
                  IDO=IDO, COUNTS=COUNTS, EXPECT=EXPECT,&
                  CHISQ=CHISQ, DF=DF)
!                                 Add the data
      IDO  = 2
      NELM = 100
      DO 10  I=1, 10
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         CALL RNNOR (X)
         CALL CHIGF (S_ANORDF, NELM, X, NCAT, RNGE, NDFEST, CUTP, P, &
                     IDO=IDO, COUNTS=COUNTS, EXPECT=EXPECT, &
                     CHISQ=CHISQ, DF=DF)
   10 CONTINUE
!                                 Wrap up
      IDO  = 3
      NELM = 0
      CALL CHIGF (S_ANORDF, NELM, X, NCAT, RNGE, NDFEST, CUTP, &
                  P, IDO=IDO, COUNTS=COUNTS, EXPECT=EXPECT, &
                  CHISQ=CHISQ, DF=DF)
!                                 Print results
      CALL WRRRN ('Cutpoints', CUTP, 1, -NCAT, 1)
      CALL WRRRN ('Counts', COUNTS, 1, -NCAT, 1)
      CALL WRRRN ('Expect', EXPECT, 1, -NCAT, 1)
      CALL WRRRN ('Contributions to Chi-squared', CHISQ, 1, -NCAT, 1)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) CHISQ(-NCAT+1), P, DF
99999 FORMAT (///'0Chi-squared       ', F8.4, /, ' P-value           ' &
            , F8.4, /, ' Degrees of freedom', F8.4)
      END

Output

                              Cutpoints
     1       2       3       4       5       6       7       8       9
-1.282  -0.842  -0.524  -0.253   0.000   0.253   0.524   0.842   1.282

                                   Counts
    1       2       3       4       5       6       7       8       9      10
106.0   109.0    89.0    92.0    83.0    87.0   110.0   104.0   121.0    99.0

                               Expect
1       2       3       4       5       6       7       8       9      10
100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0

                    Contributions to Chi-squared
1       2       3       4       5       6       7       8       9      10
0.360   0.810   1.210   0.640   2.890   1.690   1.000   0.160   4.410   0.010

Chi-squared        13.1806
P-value             0.1546
Degrees of freedom  9.0000
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SPWLK

Performs a Shapiro-Wilk W-test for normality.

Required Arguments
X — Vector of length NOBS containing the observations.  (Input)
W — Shapiro Wilk W statistic.  (Output)
P — P -value for a test of normality.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input) 

NOBS must be in the range from 3 to 2000 inclusive.
Default: NOBS = size (X,1).

NMISS — Number of missing observations.  (Output)

FORTRAN 90 Interface
Generic: CALL SPWLK (X, W, P [, …])
Specific: The specific interface names are S_SPWLK and D_SPWLK.

FORTRAN 77 Interface
Single: CALL SPWLK (NOBS, X, W, P, NMISS)
Double: The double precision name is DSPWLK.

Description

Routine SPWLK computes the Shapiro-Wilk W-statistic for testing for normality. This test is thought to be one 
of the best omnibus tests of normality (see D’Agostino and Stevens 1986, page 406). Routine SPWLK is based 
upon the approximations and code given by Royston (1982a, b, c). It may be used in samples as large as 2000, 
or as small as 3. In the Shapiro and Wilk test, W is given by.

where x(i) is the i-th largest order statistic, 

is the sample mean, and n is the number of observations. Royston (1982) gives approximations and tabled 
values which may be used to compute the coefficients ai, i = 1, K, n, and obtain the significance level of the W 
statistic.
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Comments
1. Workspace may be explicitly provided, if desired, by use of S2WLK/DS2WLK. The reference is:

CALL S2WLK (NOBS, X, W, P, NMISS, WK)
The additional argument is: 

WK — Work vector of length NOBS. If X is not needed, then WK and X can share the same storage 
locations. On output, WK will contain the sorted nonmissing elements of X. If X is sorted, WK is 
not used.

2. Informational errors

Example

The following example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two digit 
numbers taken from a telephone book. The W test fails to reject the null hypothesis of normality at the .05 
level of significance.

      USE SPWLK_INT
      USE UMACH_INT
     
      IMPLICIT   NONE
      INTEGER    NMISS, NOBS, NOUT
      PARAMETER  (NOBS=50)
      REAL       P, W, X(NOBS)
!
      DATA X/23, 36, 54, 61, 73, 23, 37, 54, 61, 73, 24, 40, 56, 62, &
          74, 27, 42, 57, 63, 75, 29, 43, 57, 64, 77, 31, 43, 58, 65, &
          81, 32, 44, 58, 66, 87, 33, 45, 58, 68, 89, 33, 48, 58, 68, &
          93, 35, 48, 59, 70, 97/
!
      CALL SPWLK (X, W, P, NMISS=NMISS)
!                               Write out results
      CALL UMACH(2, NOUT)
      WRITE(NOUT,5) W, P, NMISS
    5 FORMAT(/ ' W     = ', F6.4 / ' P     = ', F6.4 / &
            ' NMISS = ',I3)
      END

Output

W     = 0.9642
P     = 0.2309
NMISS =   0

Type Code Description

4 2 There are too many missing (NaN, “not a number”) values in X for the test to 
be performed.

3 3 All observations in X are tied.
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LILLF

Performs Lilliefors test for an exponential or normal distribution.

Required Arguments
X — Vector of length NOBS containing the observations.  (Input)
XMEAN — Sample mean.  (Output)
STD — Sample standard deviation.  (Output)
DIF — Maximum absolute difference between the empirical and the theoretical distributions.  (Output)
PROB — Approximate probability of a greater DIF.  (Output) 

Probabilities less than 0.01 are reported as 0.01. Probabilities greater than 0.15 for the exponential dis-
tribution or greater than 0.10 for the normal distribution are reported as 0.5. Otherwise an 
approximate probability is computed.

NMISS — Number of missing (NaN, not a number) values.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input) 

NOBS must be greater than 4.
Default: NOBS = size (X,1).

IPDF — Distribution option.  (Input) 
IPDF = 0 means a test for normality is to be performed. IPDF = 1 means a test for the exponential dis-
tribution is to be performed.
Default: IPDF = 0.

FORTRAN 90 Interface
Generic: CALL LILLF (X, XMEAN, STD, DIF, PROB, NMISS [, …])
Specific: The specific interface names are S_LILLF and D_LILLF.

FORTRAN 77 Interface
Single: CALL LILLF (NOBS, X, IPDF, XMEAN, STD, DIF, PROB, NMISS)
Double: The double precision name is DLILLF.

Description

Routine LILLF computes Lilliefors test and its p-values for either a normal distribution in which both the 
mean and variance are estimated, or an exponential distribution in which the mean is estimated. Routine 
LILLF uses a modified version of IMSL routine KSONE to compute the one-sample two-sided 
Kolmogorov-Smirnov statistic D (DIF). p-values are then computed for the exponential distribution via lin-
ear interpolation on the tabled values given by Stephens (1974). For the normal distribution, p-values are 
computed using an analytic approximation given by Dallal and Wilkinson (1986). Because Stephens’ (1974) 
tables are in the inclusive range (0.01, 0.15) and Dallal and Wilkinson (1986) give approximations in the range 
(0.01, 0.10), if the computed probability of a greater D is less than 0.01, a level 1 message is issued (such mes-
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sages are not generally printed, see the Reference Material) and the probability is set to 0.01. Similarly, if the 
probability is greater than 0.15 (0.10 for the normal), a level 1 message is issued and the p-value is set to 0.50. 
Note that because parameters are estimated, p-values in Lilliefors test are not the same as in the Kolmog-
orov-Smirnov test.

Observations from exponential or normal distributions should not be tied. If tied observations are found, an 
informational message is printed. Printing of this message can be turned off via a call to routine ERSET as is 
discussed in the Reference Material.

A general reference for Lilliefors test is Conover (1980). The original reference for the test for normality is 
Lilliefors (1967), while Lilliefors (1969) introduces the test for the exponential distribution.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LLF/DL2LLF. The reference is:

CALL L2LLF (NOBS, X, IPDF, XMEAN, STD, DIF, PROB, NMISS, XWK)
The additional argument is:

XWK — Work vector of length NOBS.
2. Informational errors

Example

The following example is taken from Conover (1980, page 358). It consists of 50 observations drawn at ran-
dom from a telephone book. In this example, the null hypothesis is accepted. Note that the computed 
probability is outside the range (0.01, 0.10), and has thus been set to .50. Because many observations in X are 
tied, a warning message is issued. The printing of this message can be turned off through the use of routine 
ERSET (Reference Material).

      USE LILLF_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=50)
!

Type Code Description

1 1 The computed probability of DIF is greater than 0.15 for an exponential dis-
tribution. PROB is set to 0.50.

1 2 The computed probability of DIF is less than the tabled probability of 0.01. 
PROB is set to 0.01.

1 3 The computed probability of DIF is greater than 0.10 for a normal distribu-
tion. PROB is set to 0.50.

1 4 The computed probability of DIF is less than 0.01. PROB is set to 0.01.

4 5 A negative value is encountered in X when IPDF = 1. Negative values are 
impossible for exponential distributions.

4 6 All elements in X are tied.
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      INTEGER    NMISS, NOUT
      REAL       DIF, PROB, STD, X(NOBS), XMEAN
!
      DATA X/23, 23, 24, 27, 29, 31, 32, 33, 33, 35, 36, 37, 40, 42, &
          43, 43, 44, 45, 48, 48, 54, 54, 56, 57, 58, 57, 58, 58, 58, &
          59, 61, 61, 62, 63, 64, 65, 66, 68, 68, 70, 73, 73, 74, 75, &
          77, 81, 87, 89, 93, 97/
!
      CALL LILLF (X, XMEAN, STD, DIF, PROB, NMISS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,'('' XMEAN = '', F9.2, /, '' STD = '', F12.3, /,  '// &
           '     '' DIF = '', F13.4, /, '' PROB = '', F12.4, /,     '// &
           '  '' NMISS = '', I6)') XMEAN, STD, DIF, PROB, NMISS
      END

Output

*** WARNING  ERROR 3 from L4LLF.  Two or more elements in X are tied.
    Here is a traceback of subprogram calls in reverse order:
    Routine name                    Error type  Error code
    ------------                    ----------  ----------
    L4LLF                               6           3    (Called internally)
    L3LLF                               0           0    (Called internally)
    L2LLF                               0           0    (Called internally)
    LILLF                               0           0
    USER                                0           0
XMEAN =     55.04
STD =       19.005
DIF =        0.0811
PROB =       0.5000
NMISS =      0
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MVMMT

Computes Mardia’s multivariate measures of skewness and kurtosis and test for multivariate normality.

Required Arguments
X — NOBS by NVAR+ m matrix containing the data.  (Input) 

m is 0, 1, or 2 depending upon whether any columns in X contain frequencies or weights.
IND — Vector of length NVAR containing the column numbers in X for which statistics are desired.  (Input)
STAT — Vector of length 13 containing the output statistics.  (Output) 

If a statistic is not computed, the corresponding element of STAT is set to not a number (NaN). 
STAT(1) = estimated skewness. 
STAT(2) = expected skewness assuming a multivariate normal distribution.
STAT(3) = asymptotic chi-squared statistic assuming a multivariate normal distribution.
STAT(4) = probability of a greater chi-squared.
STAT(5) = Mardia and Foster’s standard normal score for skewness. 
STAT(6) = estimated kurtosis.
STAT(7) = expected kurtosis assuming a multivariate normal distribution. 
STAT(8) = asymptotic standard error of the estimated kurtosis. 
STAT(9) = standard normal score obtained from STAT(6) through STAT(8). 
STAT(10) = p-value corresponding to STAT(9).
STAT(11) = Mardia and Foster’s standard normal score for kurtosis. 
STAT(12) = Mardia’s SW statistic based upon STAT(5) and STAT(11). 

STAT(13) = p-value for STAT(12). 
STAT(12) and STAT(13) are only computed when ICMPUT = 0.

Optional Arguments
NOBS — Number of rows of data in X.  (Input)

Default: NOBS = size (X,1).
NVAR — Dimensionality of the multivariate space for which the skewness and kurtosis are to be com-

puted.  (Input)
Default: NVAR = size (IND,1).

NCOL — Number of columns in matrix X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column number IFRQ of X 
contains the frequencies. All frequencies should be integer values. The NINT (nearest integer) function 
is used to obtain integer frequencies if this is not the case.
Default: IFRQ = 0.
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IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X contains the weights. 
Negative weights are not allowed.
Default: IWT = 0.

ICMPUT — Option parameter giving the statistics to compute.  (Input)
Default: ICMPUT = 0.

NI — The sum of the frequencies of all observations used in the computations.  (Output)
SWT — The sum of the weights times the frequencies for all observations used in the computations.  

(Output)
XMEAN — Vector of length NVAR containing the sample means.  (Output)

R — NVAR by NVAR upper triangular matrix containing the Cholesky RTR factorization of the covariance 
matrix.  (Output)

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)

NRMISS — Number of rows of data in X containing any missing values (NaN, not a number).  (Output) 
Rows with missing values in the columns IND, IFRQ, and IWT are excluded from the analysis.

FORTRAN 90 Interface
Generic: CALL MVMMT (X, IND, STAT [, …])
Specific: The specific interface names are S_MVMMT and D_MVMMT.

FORTRAN 77 Interface
Single: CALL MVMMT (NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, ICMPUT, NI, SWT, XMEAN, R, 

LDR, STAT, NRMISS)
Double: The double precision name is DMVMMT.

Description

Routine MVMMT computes Mardia’s (1970) measures b1,p and b2,p of multivariate skewness and kurtosis, 
respectfully, for p = NVAR. These measures are then used in computing tests for multivariate normality. Three 
test statistics, one based upon b1,p alone, one based upon b2,p alone, and an omnibus test statistic formed by 

combining normal scores obtained from b1,p and b2,p are computed. On the order of np3, operations are 

required in computing b1,p when the method of Isogai (1983) is used, where n = NOBS. On the order of np2, 
operations are required in computing b2,p. 

Let 

ICMPUT Output Statistics

0 Both skewness and kurtosis.

1 Kurtosis only.

2 Skewness only.
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where 

fi is the frequency of the i-th observation, and wi is the weight for this observation. (Weights wi are defined 
such that xi is distributed according to a multivariate normal, N(μ, Σ/wi) distribution, where Σ is the covari-
ance matrix.) Mardia’s multivariate skewness statistic is defined as:

while Mardia’s kurtosis is given as:

Both measures are invariant under the affine (matrix) transformation AX + D, and reduce to the univariate 
measures when p = NVAR = 1. Using formulas given in Mardia and Foster (1983), the approximate expected 
value, asymptotic standard error, and asymptotic p-value for b2,p, and the approximate expected value, an 
asymptotic chi-squared statistic, and p-value for the b1,p statistic are computed. These statistics are all com-
puted under the null hypothesis of a multivariate normal distribution. In addition, standard normal scores 
W1(b1,p) and W2(b2,p) (different from but similar to the asymptotic normal and chi-squared statistics above) 
are computed. These scores are combined into an asymptotic chi-squared statistic with two degrees of 
freedom:

This chi-squared statistic may be used to test for multivariate normality. A p-value for the chi-squared statis-
tic is also computed.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2MMT/DM2MMT. The reference is:

CALL M2MMT (NOBS, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, ICMPUT, NI, SWT, XMEAN, R, LDR, 
STAT, NRMISS, D, OB, CC)

The additional arguments are as follows:
D — Work vector of length NVAR.

OB — Work vector of length NVAR.
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CC — Work vector of length m, where m = NVAR * NVAR if ICMPUT = 1 or 
m = NVAR * NVAR * NVAR otherwise.

2. Informational errors

Example

In the following example, 150 observations from a 5 dimensional standard normal distribution are generated 
via routine RNNOR (see Chapter 18, “Random Number Generation”). The skewness and kurtosis statistics are 
then computed for these observations.

      USE IMSL_LIBRARIES
      INTEGER    LDR, LDX, NCOL, NVAR, I
      PARAMETER  (NCOL=5, LDX=150, NVAR=NCOL, LDR=NVAR)
!
      INTEGER    IND(5), NI, NOUT, NRMISS
      REAL       R(LDR,NVAR), STAT(13), SWT, X(LDX,NCOL), XMEAN(NVAR)
!
      DATA IND/1, 2, 3, 4, 5/
!
      CALL RNSET (123457)
      DO 10  I=1, NCOL
      CALL RNNOR(X(:, I))
      10 CONTINUE
!
      CALL MVMMT (X, IND, STAT, NI=NI, SWT=SWT, XMEAN=XMEAN, R=R, &
                  NRMISS=NRMISS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' NI = ', NI, ' SWT = ', SWT, ' NRMISS = ', NRMISS
      CALL WRRRN ('XMEAN', XMEAN, 1, NVAR, 1)
      CALL WRRRN ('R', R)
      CALL WRRRN ('STAT', STAT, 1, 13, 1)
!
      END

Output

NI =   150 SWT =     150.0   NRMISS =   0

                  XMEAN
     1        2        3        4        5
0.0355   0.0467   0.0599   0.0957   0.1007

                    R
        1       2       3       4       5
1   1.033  -0.022  -0.037   0.055  -0.003
2   0.000   0.993  -0.119  -0.076  -0.056

Type Code Description

4 1 At least one of the variables in X is linearly related to the other variables in X.

4 2 The sum of the frequencies must be greater than the maximum of 3 and the 
number of variables plus one.
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3   0.000   0.000   0.997  -0.089   0.017
4   0.000   0.000   0.000   1.008  -0.040
5   0.000   0.000   0.000   0.000   1.027

                                  STAT
   1       2       3       4       5       6       7       8       9      10
1.52    1.36   38.71    0.31    0.42   34.21   34.54    1.27   -0.26    0.80

  11      12      13
0.18    0.21    0.90
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ADNRM

Performs an Anderson-Darling test for normality.

Required Arguments
X — Array of length NOBS containing the observations.  (Input)
A — Anderson-Darling statistic.  (Output)
P — p-value for a test of normality.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)   

NOBS must be greater than or equal to 3.
Default: NOBS = size (X).

NMISS — Number of missing observations.  (Output)

FORTRAN 90 Interface
Generic: CALL ADNRM (X, A, P [, …])
Specific: The specific interface names are S_ADNRM and D_ADNRM.

Description

Given a data sample {Xi,  i=1 .. n}, where n = NOBS and  Xi = X(I), routine ADNRM computes the 
Anderson-Darling (AD) normality statistic A and the corresponding p-value P = {probability that a normally 
distributed n element sample would have an AD statistic > A}. If P is sufficiently small (e.g. P < .05),  then 
the AD test indicates that the null hypothesis that the data sample is normally-distributed should be rejected. 
A is calculated as:

where  and  and s are the sample mean and standard deviation respectively. P is calcu-
lated by first transforming A to an “n-adjusted” statistic A*:

and then calculating P in terms of A* using a parabolic approximation taken from Table 4.9 in Stephens 
(1986).
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Comments

Informational errors

Example

The following example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two digit 
numbers taken from a telephone book. The AD test fails to reject the null hypothesis of normality at the .05 
level of significance.

      USE ADNRM_INT
      USE UMACH_INT
      IMPLICIT NONE
      
      INTEGER, PARAMETER :: NOBS=50
      INTEGER NMISS, NOUT
      REAL P, A, X(NOBS)

      DATA X/ 23, 36, 54, 61, 73, 23, 37, 54, 61, 73, 24, 40, 56, 62,&
          74, 27, 42, 57, 63, 75, 29, 43, 57, 64, 77, 31, 43, 58, 65, &
          81, 32, 44, 58, 66, 87, 33, 45, 58, 68, 89, 33, 48, 58, 68, &
          93, 35, 48, 59, 70, 97/

      CALL ADNRM (X, A, P, NMISS=NMISS)
      
!                               Write out results
      CALL UMACH(2, NOUT)
      WRITE(NOUT,5) A, P, NMISS
    5 FORMAT(/ ' A     = ', F6.4 / ' P     = ', F6.4 / &
           ' NMISS = ',I3)
      END

Output

 A     = 0.3339
 P     = 0.5024
 NMISS =   0

Type Code Description

3 1 The p-value has fallen below the minimum value for which its calculation 
has any accuracy; zero is returned.

4 1 After removing the missing observations only n observations remain. The 
test cannot proceed.
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CVMNRM

Performs a Cramer-von Mises test for normality.

Required Arguments
X — Array of length NOBS containing the observations.  (Input)
W — Cramer-von Mises statistic.  (Output)
P — p-value for a test of normality.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

NOBS must be greater than or equal to 3.
Default: NOBS = size (X).

NMISS — Number of missing observations.  (Output)

FORTRAN 90 Interface
Generic: CALL CVMNRM (X, W, P [, …])
Specific: The specific interface names are S_CVMNRM and D_CVMNRM.

Description

Given a data sample {Xi,  i=1 .. n}, where n = NOBS and  Xi = X(I), routine CVMNRM computes the Cra-
mer-von Mises (CvM) normality statistic W and the corresponding p-value P = {probability that a normally 
distributed n element sample would have a CvM statistic > W}. If P is sufficiently small (e.g. P < .05), then 
the CvM test indicates that the null hypothesis that the data sample is normally-distributed should be 
rejected. W is calculated as:

where  is the cumulative distribution function of standard normal N(0,1) distribution,  

, and  and  s  are the sample mean and standard deviation respectively. P is calculated 

by first transforming W to an “n-adjusted” statistic W*:

and then calculating P in terms of W* using a parabolic approximation taken from Table 4.9 in Stephens 
(1986). 
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Comments

Informational errors

Example

The following example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two digit 
numbers taken from a telephone book. The CvM test fails to reject the null hypothesis of normality at the .05 
level of significance.

      USE CVMNRM_INT
      USE UMACH_INT
      IMPLICIT NONE
      
      INTEGER, PARAMETER :: NOBS=50
      INTEGER NMISS, NOUT
      REAL P, W, X(NOBS)

      DATA X/ 23, 36, 54, 61, 73, 23, 37, 54, 61, 73, 24, 40, 56, 62,&
          74, 27, 42, 57, 63, 75, 29, 43, 57, 64, 77, 31, 43, 58, 65,&
          81, 32, 44, 58, 66, 87, 33, 45, 58, 68, 89, 33, 48, 58, 68,&
          93, 35, 48, 59, 70, 97/
          
      CALL CVMNRM (X, W, P, NMISS=NMISS)
      
!                               Write out results
      CALL UMACH(2, NOUT)
      WRITE(NOUT,5) W, P, NMISS
    5 FORMAT(/ ' W     = ', F6.4 / ' P     = ', F6.4 / &
           ' NMISS = ',I3)
      END

Output

 W     = 0.0520
 P     = 0.4747
 NMISS =   0

Type Code Description

3 1 The p-value has fallen below the minimum value for which its calculation 
has any accuracy; zero is returned.

4 1 After removing the missing observations only n observations remain. The 
test cannot proceed.
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KSTWO

Performs a Kolmogorov-Smirnov two-sample test.

Required Arguments
X — Vector of length NOBSX containing the observations in sample one.  (Input)
Y — Vector of length NOBSY containing the observations in sample two.  (Input)
PDIF — Vector of length 6 containing the output statistics.  (Output) 

Optional Arguments
NOBSX — Number of observations in sample one.  (Input)

Default: NOBSX = size (X,1).
NOBSY — Number of observations in sample two.  (Input)

Default: NOBSY = size (Y,1).
NMISSX — Number of missing observations in the X sample.  (Output)
NMISSY — Number of missing observations in the Y sample.  (Output)

FORTRAN 90 Interface
Generic: CALL KSTWO (X, Y, PDIF [, …])
Specific: The specific interface names are S_KSTWO and D_KSTWO.

FORTRAN 77 Interface
Single: CALL KSTWO (NOBSX, X, NOBSY, Y, PDIF, NMISSX, NMISSY)
Double: The double precision name is DKSTWO.

I PDIF(I)

1 Dmn = Maximum of the absolute values of  and .

2  = Maximum difference between the empirical cumulative dis-

tribution function (CDF) of X minus the empirical CDF of Y.

3  = Maximum difference between the empirical CDF of X minus 

the empirical CDF of Y. (The maximum of the negative differences.)

4 Z = Standardized value of Dmn. A two-sample approximation with 
no correction for continuity is used.

5 One-sided probability of a larger Dmn under the null hypothesis of 
equal distributions.

6 Two-sided probability of exceeding Dmn under the null hypothesis 
of equal distributions.
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Description

Routine KSTWO computes Kolmogorov-Smirnov two-sample test statistics for testing that two continuous 
cumulative distribution functions (CDF’s) are identical based upon two random samples. One- or two-sided 
alternatives are allowed. Exact p-values are computed for the two-sided test when NOBSX * NOBSY is less 
than 104. 

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empirical CDF in the Y sample, 
where n = NOBSX - NMISSX and m = NOBSY - NMISSY, and let the corresponding population distribution 
functions be denoted by F(x) and G(y), respectively. Then, the hypotheses tested by KSTWO are as follows:

The test statistics are given as follows:

Asymptotically, the distribution of the statistic

(returned in PDIF(4)) converges to a distribution given by Smirnov (1939). 

Exact probabilities for the two-sided test are computed when nm is less than or equal to 104, according to an 
algorithm given by Kim and Jennrich (1973), and computed here via function AKS2DF (see Chapter 17, “Prob-

ability Distribution Functions and Inverses”). When nm is greater than 104, the very good approximations given 
by Kim and Jennrich are used to obtain the two-sided p-values. The one-sided probability is taken as one half 
the two-sided probability. This is a very good approximation when the p-value is small (say, less than 0.10) 
and not very good for large p-values

Comments
Workspace may be explicitly provided, if desired, by use of K2TWO/DK2TWO. The reference is:

CALL K2TWO (NOBSX, X, NOBSY, Y, PDIF, NMISSX, NMISSY, XWK, YWK)
The additional arguments are as follows:

XWK — Work vector of length NOBSX + 1.

YWK — Work vector of length NOBSY + 1.
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Example

The following example illustrates the KSTWO routine with two randomly generated samples from a uni-
form(0,1) distribution. Since the two theoretical distributions are identical, we would not expect to reject the 
null hypothesis.

      USE RNSET_INT
      USE RNUN_INT
      USE KSTWO_INT
      USE UMACH_INT

      IMPLICIT       NONE
      INTEGER        ISEED, NOBSX, NOBSY, NMISSX, NMISSY, NOUT
      PARAMETER      (ISEED=123457, NOBSX=100, NOBSY=60)
      REAL           X(NOBSX), Y(NOBSY), PDIF(6)
!                                    Generate the sample
      CALL RNSET(ISEED)
      CALL RNUN (X)
      CALL RNUN (Y)
!
      CALL KSTWO (X, Y, PDIF, NMISSX=NMISSX, NMISSY=NMISSY)
!
      CALL UMACH(2, NOUT)
      WRITE(NOUT, 5) PDIF, NMISSX, NMISSY
    5 FORMAT(' D     = ', F8.4 / ' D+    = ', F8.4 / ' D-    = ', F8.4,/ &
        ' Z     = ', F8.4 / ' Prob greater D one sided = ', F8.4 / &
        ' Prob greater D two sided = ', F8.4 / &
        ' Missing X = ', I3 / ' Missing Y = ', I3)
      END

Output

D     =   0.1800
D+    =   0.1800
D-    =   0.0100
Z     =   1.1023
Prob greater D one sided =   0.0720
Prob greater D two sided =   0.1440
Missing X =   0
Missing Y =   0
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RUNS

Performs a runs up test.

Required Arguments
X — Vector of length NRAN containing the data elements to be added to the test on this invocation.  (Input)
COUNT — Vector of length NRUN containing the counts of the number of runs up of each length.  (Output, 

if IDO = 0 or 1; Input/Output, if IDO = 2 or 3)
EXPECT — Vector of length NRUN containing the expected number of runs of each length.   (Output, if 

IDO = 0 or 3; not referenced otherwise)
COVAR — NRUN by NRUN matrix containing the variances and covariances of the counts   (Output, if 

IDO = 0 or 3; not referenced otherwise)
CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform distribution.  (Output, if 

IDO = 0 or 3; not referenced otherwise)
DF — Degrees of freedom for chi-squared.  (Output, if IDO = 0 or 3; not referenced otherwise)
PROB — Probability of a larger chi-squared.  (Output, if IDO = 0 or 3; not referenced otherwise)

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NRAN — Number of data points currently input in X.  (Input) 
NRAN may be positive or zero on any invocation of RUNS.
Default: NRAN = size (X,1).

NRUN — Length of the longest run for which tabulation is desired.  (Input) 
Runs of length 1, 2, K, NRUN - 1 are counted in COUNT(1) - COUNT(NRUN - 1). COUNT(NRUN) contains 
the number of runs of length NRUN or greater. NRUN must be greater than or equal to one.
Default: NRUN = size (COUNT,1).

LDCOVA — Leading dimension of COVAR exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCOVA = size (COVAR,1).

FORTRAN 90 Interface
Generic: CALL RUNS (X, COUNT, EXPECT, COVAR, CHISQ, DF, PROB [, …])

IDO Action

0 This is the only invocation of RUNS, and all the data are input at once.

1 This is the first invocation of RUNS, and additional calls will be made. Initialization and 
updating for the NRAN data elements are performed.

2 This is an intermediate invocation of RUNS, and updating for the NRAN data elements is 
performed.

3 This is the final invocation of RUNS for this data. Updating for the NRAN data elements is 
performed, followed by the wrap-up computations.
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Specific: The specific interface names are S_RUNS and D_RUNS.

FORTRAN 77 Interface
Single: CALL RUNS (IDO, NRAN, X, NRUN, COUNT, EXPECT, COVAR, LDCOVA, CHISQ, DF, PROB)
Double: The double precision name is DRUNS.

Description

Routine RUNS computes statistics for the runs up test. Runs tests are used to test for cyclical trend in 
sequences of random numbers. Routine RUNS may be called once (IDO = 0) or several times (IDO = 1, 2, and 
3). If all of the data will not fit into memory, the second mode of operation must be used. If the data fit into 
memory, then the first mode of operation is slightly more efficient. If the runs down test is desired, each 
observation should first be multiplied by -1 to change its sign, and RUNS called with the modified vector of 
observations. 

Routine RUNS first tallies the number of runs up (increasing sequences) of each desired length. For 
i = 1, K, r - 1, where r = NRUN, COUNT(i) contains the number of runs of length i. COUNT(NRUN) contains the 
number of runs of length NRUN or greater. As an example of how runs are counted, the sequence (1, 2, 3, 1) 
contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, RUNS computes the expected values and the covariances 
of the counts according to methods given by Knuth (1981, pages 65-67). Let R denote a vector of length NRUN 
containing the number of runs of each length so that the i-th element of R, ri, contains the count of the runs of 
length i. Let ΣR denote the covariance matrix of R under the null hypothesis of randomness, and let μR 
denote the vector of expected values for R under this null hypothesis. Then, an approximate chi-squared sta-
tistic with NRUN degrees of freedom is given as 

In general, the larger the value of each element of μR, the better the chi-squared approximation.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2NS/DR2NS. The reference is:

CALL R2NS (IDO, NRAN, X, NRUN, COUNT, EXPECT, COVAR, LDCOVA, CHISQ, DF, PROB, RWK, CWK, 
LRUN, NOBS, XLAST)

The additional arguments are as follows:

RWK — Work vector of length NRUN.

CWK — Work vector of length NRUN * NRUN.

LRUN — Scalar used to keep track of number of last runs.  (Output, if IDO = 0 or 1; input/output, 
otherwise) 
LRUN should not be changed between calls with the same data set.
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NOBS — Scalar used to keep track of total number of observations.  (Output, if 
IDO = 0 or 1; input/output, otherwise) 
NOBS should not be changed between calls with the same data set.

XLAST — Scalar used to keep track of last run.  (Output, if IDO = 0 or 1; input/output, otherwise) 
XLAST should not be changed between calls with the same data set.

2. Informational errors

Example

The following example illustrates the use of the runs test on 104 pseudo-random uniform deviates. In the 
example, 2000 deviates are generated for each call to RUNS. The IDO parameter is set to 1 on the first call to 
RUNS, 2 on the second, third, and fourth calls, and 3 on the last call. Since the probability of a larger 
chi-squared statistic is 0.1872, there is no strong evidence to support rejection of this null hypothesis of 
randomness.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDCOVA, NRAN, NRUN
      PARAMETER  (LDCOVA=6, NRAN=2000, NRUN=6)
!
      INTEGER    I, IDO, NOUT
      REAL       CHISQ, COUNT(NRUN), COVAR(LDCOVA,NRUN), DF, &
                EXPECT(NRUN), PROB, X(NRAN)
!
      CALL RNSET (123457)
!
      DO 10  I=1, 5
!                                 Set IDO
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE IF (I .EQ. 5) THEN
            IDO = 3
         ELSE
            IDO = 2
         END IF
!                                 Generate the random numbers
         CALL RNUN (X)
!
         CALL RUNS (X, COUNT, EXPECT, COVAR, CHISQ, DF, PROB, IDO=IDO)
   10 CONTINUE
!
      CALL WRRRN ('COUNT', COUNT, 1, NRUN, 1)
      CALL WRRRN ('EXPECT', EXPECT, 1, NRUN, 1)
      CALL WRRRN ('COVAR', COVAR)
      CALL UMACH (2, NOUT)

Type Code Description

3 1 At least one tie is detected in X.

4 2 The covariance matrix of the runs score is not positive definite. Use a smaller 
value of NRUN.
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      WRITE (NOUT,*) ' CHISQ = ', CHISQ
      WRITE (NOUT,*) ' DF    = ', DF
      WRITE (NOUT,*) ' PROB  = ', PROB
      END

Output

                  COUNT
     1        2        3        4        5        6
1709.0   2046.0    953.0    260.0     55.0      4.0

                 EXPECT
     1        2        3        4        5        6
1667.3   2083.4    916.5    263.8     57.5     11.9

                COVAR
1        2        3        4        5        6
1   1278.2   -194.6   -148.9    -71.6    -22.9     -6.7
2   -194.6   1410.1   -490.6   -197.2    -55.2    -14.4
3   -148.9   -490.6    601.4   -117.4    -31.2     -7.8
4    -71.6   -197.2   -117.4    222.1    -10.8     -2.6
5    -22.9    -55.2    -31.2    -10.8     54.8     -0.6
6     -6.7    -14.4     -7.8     -2.6     -0.6     11.7
CHISQ =     8.76514
DF    =     6.00000
PROB  =    0.187225
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PAIRS

Performs a pairs test.

Required Arguments
X — Vector of length NRAN containing the data elements to be added to the test on this invocation.  (Input)
LAG — The lag to be used in computing the pairs statistic.  (Input) 

Pairs (X(i), X(i + LAG)) for i = 1, K, N - LAG are tabulated, where N is the total sample size.
COUNT — NCELL by NCELL matrix containing the count of the number of pairs in each cell.  (Output, if 

IDO = 0 or 1; input/output, if IDO = 2 or 3)
EXPECT — Expected number of counts in each cell.  (Output, if IDO = 0 or 3; not referenced otherwise)
CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform distribution.  (Output, if 

IDO = 0 or 3; not referenced otherwise)
DF — Degrees of freedom for chi-squared.  (Output, if IDO = 0 or 3; not referenced otherwise)
PROB — Probability of a larger chi-squared.  (Output, if IDO = 0 or 3; not referenced otherwise)

Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

NRAN — Number of random deviates currently input in X.  (Input) 
NRAN may be positive or zero on any invocation of PAIRS.
Default: NRAN = size (X,1).

NCELL — Number of equiprobable cells on each axis into which the pairs statistics are to be tabulated.  
(Input)
Default: NCELL = size (COUNT,1).

LDCOUN — Leading dimension of COUNT exactly as specified in the dimension statement of the calling 
program.  (Input)
Default: LDCOUN = size (COUNT,1).

FORTRAN 90 Interface
Generic: CALL PAIRS (X, LAG, COUNT, EXPECT, CHISQ, DF, PROB [, …])
Specific: The specific interface names are S_PAIRS and D_PAIRS.

IDO Action

0 This is the only invocation of PAIRS, and all the data are input at once.

1 This is the first invocation of PAIRS, and additional calls will be made. Initialization and 
updating for the NRAN data elements are performed.

2 This is an intermediate invocation of PAIRS, and updating for the NRAN data elements is 
performed.

3 This is the final invocation of PAIRS. Updating for the NRAN data elements is performed, 
followed by the wrap-up computations.
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FORTRAN 77 Interface
Single: CALL PAIRS (IDO, NRAN, X, NCELL, LAG, COUNT, LDCOUN, EXPECT, CHISQ, DF, PROB)
Double: The double precision name is DPAIRS.

Description

Routine PAIRS computes the pairs test (or the Good’s serial test) on a hypothesized sequence of uniform 
(0,1) pseudorandom numbers. The test proceeds as follows. Subsequent pairs 
(X(i), X(i + LAG)) are tallied into a k × k matrix, where k = NCELL. In this tally, element (j, m) of the matrix is 
incremented, where

where l = LAG, and the notation ⌊ ⌋ represents the greatest integer function, ⌊Y⌋ is the greatest integer less 
than or equal to Y, where Y is a real number. If l = 1, then i = 1, 3, 5, K , n - 1. If l > 1, then i = 1, 2, 3, …, n - l, 
where n is the total number of pseudorandom numbers input on the current invocation of PAIRS (i.e., 
n = NRAN). 

Given the tally matrix in COUNT, chi-squared is computed as

where e = Σoij/k2, and oij is the observed count in cell (i, j) (oij = COUNT(i, j)). 

Because pair statistics for the trailing observations are not tallied on any call, the user should call PAIRS with 
NRAN as large as possible. For LAG < 20 and NRAN = 2000, little power is lost.
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Comments

Informational errors

Example

The following example illustrates the calculations of the PAIRS statistics when a random sample of size 104 is 
used and the LAG is 1. The results are not significant. On each call to PAIRS, 2000 random deviates are pro-
cessed. On the first call, initialization is also performed, while on the fifth call the wrap-up computations are 
performed. Routine RNUN (see Chapter 18, “Random Number Generation”) is used in obtaining the pseudoran-
dom deviates.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LAG, LDCOUN, NCELL, NOBS
      PARAMETER  (LAG=5, LDCOUN=10, NCELL=10, NOBS=2000)
!
      INTEGER    I, IDO, NOUT
      REAL       CHISQ, COUNT(LDCOUN,NCELL), DF, EXPECT, PROB, X(NOBS)
!
      CALL RNSET (123467)
!
      DO 10  I=1, 5
         CALL RNUN (X)
         IF (I .EQ. 1) THEN
            IDO = 1
         ELSE IF (I .EQ. 5) THEN
            IDO = 3
         ELSE
            IDO = 2
         END IF
         CALL PAIRS (X, LAG, COUNT, EXPECT, CHISQ, DF, PROB, IDO=IDO)
   10 CONTINUE
      CALL UMACH (2, NOUT)
      CALL WRRRN ('COUNT', COUNT)
      WRITE(NOUT,'('' Expect = '', F12.2, /, '' Chi-squared = '', F12.2, &
           '' DF = '', F12.0, /, '' PROBABILITY = '', F12.4)') &
           EXPECT, CHISQ, DF, PROB
      END

Output

                                  COUNT
         1       2       3       4       5       6       7       8       9

Type Code Description

3 1 For better efficiency, it is recommended that NRAN be at least twice as large as 
LAG.

4 2 The sum of the counts is zero. All output statistics are set to NaN (not a 
number).
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 1   111.0    82.0    95.0   117.0   102.0   102.0   112.0    84.0    90.0
 2   104.0   106.0   109.0   108.0   101.0    97.0   102.0    92.0   109.0
 3    88.0   111.0    86.0   105.0   112.0    79.0   103.0   105.0   106.0
 4    91.0   110.0   108.0    92.0    88.0   108.0   113.0    93.0   105.0
 5   104.0   105.0   103.0   104.0   101.0    94.0    96.0    86.0    93.0
 6    98.0   104.0   103.0   104.0    79.0    89.0    92.0   104.0    92.0
 7   103.0    91.0    97.0   101.0   116.0    83.0   117.0   118.0   106.0
 8   105.0   105.0   110.0    91.0    92.0    82.0   100.0   104.0   110.0
 9    92.0   102.0    82.0   101.0    93.0   128.0   101.0   109.0   125.0
10    79.0    99.0   103.0    97.0   104.0   101.0    93.0    93.0    98.0

        10
 1    73.0
 2    88.0
 3    99.0
 4   114.0
 5   103.0
 6    99.0
 7    99.0
 8    89.0
 9    98.0
10   105.0
Expect =        99.75
Chi-squared =       104.31 DF =          99.
Probability =       0.3379
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DSQAR

Performs a d 2 test.

Required Arguments
X — Vector of length NRAN containing the data elements to be added to the test on this invocation.  (Input)

COUNT — Vector of length NCELL containing the count of the number of d 2 values in each cell.  (Output, 
if IDO = 0 or 1.   Input/Output, if IDO = 2 or 3.)

EXPECT — The expected number of counts in each cell.  (Output, if IDO = 0 or 3; not referenced 
otherwise)

CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform distribution. (Output, if 
IDO = 0 or 3; not referenced otherwise)

DF — Degrees of freedom for chi-squared.  (Output, if IDO = 0 or 3; not referenced otherwise)
PROB — Probability of a larger chi-squared.  (Output, if IDO= 0 or 3; not referenced otherwise)

Optional Arguments
IDO — Processing Option.  (Input)

Default: IDO = 0.

NRAN — Number of data elements currently input in X.  (Input) 
NRAN may be positive or zero on any invocation of DSQAR.
Default: NRAN = size (X,1).

NCELL — The number of equiprobable cells into which the d2 statistics are to be tabulated.  (Input)
Default: NCELL = size (COUNT,1).

FORTRAN 90 Interface
Generic: CALL DSQAR (X, COUNT, EXPECT, CHISQ, DF, PROB [, …])
Specific: The specific interface names are S_DSQAR and D_DSQAR.

FORTRAN 77 Interface
Single: CALL DSQAR (IDO, NRAN, X, NCELL, COUNT, EXPECT, CHISQ, 

DF, PROB)

IDO Action

0 This is the only invocation of DSQAR, and all the data are input at once.

1 This is the first invocation of DSQAR, and additional calls will be made. Initialization and 
updating for the NRAN data elements are performed.

2 This is an intermediate invocation of DSQAR, and updating for the NRAN data elements is 
performed.

3 This is the final invocation of DSQAR for this data set. Updating for the NRAN data ele-
ments is performed, followed by the wrap-up computations.
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Double: The double precision name is DDSQAR.

Description

Routine DSQAR computes the d2 test for succeeding quadruples of hypothesized pseudorandom uniform 

(0, 1) deviates. The d2 test is performed as follows. Let X1, X2, X3, and X4 denote four pseudorandom uniform 
deviates, and consider

D2 = (X3 - X1)2 + (X4 - X2)2

The probability distribution of D2 is given as

when D2 ≤ 1, where π denotes the value of pi. If D2 > 1, this probability is given as

See Gruenberger and Mark (1951) for a derivation of this distribution. 

For each succeeding set of 4 pseudorandom uniform numbers input in X, d2 and the cumulative probability 

of d 2 (Pr(D2 ≤ d 2)) are computed. The resulting probability is tallied into one of k = NCELL equally spaced 
intervals. 

Let n denote the number of sets of four random numbers input (n = the total number of observations/4). 
Then, under the null hypothesis that the numbers input are random uniform (0, 1) numbers, the expected 
value for each element in COUNT is e = n/k. An approximate chi-squared statistic is computed as

where oi = COUNT(i) is the observed count. Thus, X2 has k - 1 degrees of freedom, and the null hypothesis of 

pseudorandom uniform (0, 1) deviates is rejected if X2 is too large. As n increases, the chi-squared approxi-
mation becomes better. A useful generalization is that e > 5 yields a good chi-squared approximation.
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Comments

Informational errors

Example

In the following example, 2000 observations generated via routine RNUN (see Chapter 18, “Random Number 
Generation”) are input to DSQAR in one call. In the example, the null hypothesis of a uniform distribution is 
not rejected.
  
      USE IMSL_LIBRARIES
    
      IMPLICIT   NONE
      INTEGER    IDO, NCELL, NROW
      PARAMETER  (NCELL=6, NROW=2000)
!
      INTEGER    NOUT
      REAL       CHISQ, COUNT(NCELL), DF, EXPECT, PROB, X(NROW)
!
      CALL RNSET (123457)
!                                 Generate the random numbers
      CALL RNUN (X)
!
      CALL DSQAR (X, COUNT, EXPECT, CHISQ, DF, PROB)
!
      CALL WRRRN ('COUNT', COUNT, 1, NCELL, 1)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' EXPECT = ', EXPECT
      WRITE (NOUT,*) ' CHISQ  = ', CHISQ
      WRITE (NOUT,*) ' DF     = ', DF
      WRITE (NOUT,*) ' PROB   = ', PROB
      END

Output

                    COUNT
    1       2       3       4       5       6
87.00   84.00   78.00   76.00   92.00   83.00
EXPECT =     83.3333
CHISQ  =     2.056
DF     =     5.0
PROB   =    0.841343

Type Code Description

3 1 The expected value of a each cell is less than 5. The chi-squared approxima-
tion may not be good.

4 2 The sum of the counts is equal to zero. There are no data elements so the 
chi-squared statistic cannot be computed.
DSQAR         Chapter 7: Tests of Goodness of Fit and Randomness      700



DCUBE

Performs a triplets test.

Required Arguments
X — Vector of length NRAN containing the data elements to be added to the test on this invocation.  (Input)
COUNT — NCELL by NCELL by NCELL array containing the tabulations for the triplets test.  (Output, if 

IDO = 0 or 1. Input/Output, if IDO = 2 or 3.)
EXPECT — Expected number of counts in each cell.  (Output, if IDO = 0 or 3; not referenced otherwise)
CHISQ — Chi-squared statistic for testing the null hypothesis of a uniform distribution.  (Output, if 

IDO = 0 or 3; not referenced otherwise)
DF — Degrees of freedom for chi-squared.  (Output, if IDO = 0 or 3; not referenced otherwise)
PROB — Probability of a larger chi-squared.  (Output, if IDO = 0 or 3; not referenced otherwise)

Optional Arguments
IDO — Processing Option.  (Input) 

Default: IDO = 0.

NRAN — Number of random deviates currently input in X.  (Input) 
NRAN may be positive or zero on any invocation of DCUBE. NRAN must be evenly divisible by 3.
Default: NRAN = size (X,1).

NCELL — The number of equiprobable cells on each of the three axes into which the triplets are to be tab-
ulated.  (Input) 
Each set of three data elements is tabulated into a three dimensional cube, each axis of which has 
NCELL cells.
Default: NCELL = size (COUNT,1).

LDCOUN — Leading and second dimension of matrix COUNT exactly as specified in the dimension state-
ment in the calling program.  (Input)
Default: LDCOUN = size (COUNT,1).

FORTRAN 90 Interface
Generic: CALL DCUBE (X, COUNT, EXPECT, CHISQ, DF, PROB [, …])
Specific: The specific interface names are S_DCUBE and D_DCUBE.

IDO Action

0 This is the only invocation of DCUBE, and all the data are input at once.

1 This is the first invocation of DCUBE, and additional calls will be made. Initialization and 
updating for the NRAN data elements are performed.

2 This is an intermediate invocation of DCUBE, and updating for the NRAN data elements is 
performed.

3 This is the final invocation of DCUBE for this data set. Updating for the NRAN data ele-
ments is performed, followed by the wrap-up computations.
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FORTRAN 77 Interface
Single: CALL DCUBE (IDO, NRAN, X, NCELL, COUNT, LDCOUN, EXPECT, CHISQ, DF, PROB)
Double: The double precision name is DDCUBE.

Description

Routine DCUBE computes the triplets test on a sequence of hypothesized pseudorandom uniform (0, 1) devi-
ates. The triplets test is computed as follows: Each set of three successive deviates, X1, X2, and X3, is tallied 

into one of m3 equal sized cubes, where m = NCELL. Let i = [mX1] + 1, j = [mX2] + 1, and k = [mX3] + 1. For the 
triplet (X1, X2, X3), COUNT(i, j, k) is incremented. 

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells are equally probable and 

each has expected value e = n/m3, where n is the number of triplets tallied. An approximate chi-squared sta-
tistic is computed as

where oijk = COUNT(i, j, k). 

The computed chi-squared has m3 - 1 degrees of freedom, and the null hypothesis of pseudorandom uni-

form (0, 1) deviates is rejected if X2 is too large.

Comments

Informational error

Example

In the following example, 2001 deviates generated by IMSL routine RNUN (see Chapter 18, “Random Number 
Generation”) are input to DCUBE, and tabulated in 27 equally sized cubes. In the example, the null hypothesis 
is not rejected.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDCOUN, NCELL, NRAN
      PARAMETER  (LDCOUN=3, NCELL=3, NRAN=2001)
!
      INTEGER    I, NOUT
      REAL       CHISQ, COUNT(LDCOUN,LDCOUN,NCELL), DF, EXPECT, PROB, &

Type Code Description

4 1 The sum of the counts is equal to zero. There are no data elements so the 
chi-squared statistic cannot be computed. CHISQ and PROB are set to NaN 
(not a number).
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                 X(NRAN)
!
      CALL RNSET (123457)
!                                 Generate the random numbers
      CALL RNUN (X)
!
      CALL DCUBE (X, COUNT, EXPECT, CHISQ, DF, PROB)
!
      DO 10  I=1, NCELL
         CALL WRRRN ('COUNT', COUNT(1:,1:,I))
   10 CONTINUE
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' EXPECT = ', EXPECT
      WRITE (NOUT,*) ' CHISQ  = ', CHISQ
      WRITE (NOUT,*) ' DF     = ', DF
      WRITE (NOUT,*) ' PROB   = ', PROB
      END

Output

           COUNT
        1       2       3
1   26.00   27.00   24.00
2   20.00   17.00   32.00
3   30.00   18.00   21.00

           COUNT
        1       2       3
1   20.00   16.00   26.00
2   22.00   22.00   27.00
3   30.00   24.00   26.00

           COUNT
        1       2       3
1   28.00   30.00   22.00
2   23.00   24.00   22.00
3   33.00   30.00   27.00
EXPECT =     24.7037
CHISQ  =     21.7631
DF     =     26.0000
PROB   =    0.701586
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Chapter 8: Time Series Analysis and 
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Usage Notes

The name of a time series routine is a combination of three to four sets of one to four letters. The first set spec-
ifies the type of model or method. The second set identifies the particular approach. If the name uses four 
sets of letters, then both the second and third sets are used to identify the particular approach. The final set 
always specifies the general procedure. The table below summarizes the naming convention of the time 
series analysis and forecasting routines. 

The names and meanings of arguments are consistent within a set of routines pertaining to a particular topic. 
For example, XCNTR corresponds to the constant used to center the time series X in all of the spectral analysis 
routines. Note that IPRINT always represents the printing option, the values and possible choices of output 
necessarily depend on the given routine. An option argument always begins with the letter “I,” and a lead-
ing dimension argument always begins with “LD.” 

The routines in this chapter assume the time series does not contain any missing observations. If missing val-
ues are present, they should be set to NaN (see the Reference Material section for the routine AMACH), and the 
routine will return an appropriate error message. To enable fitting of the model, the missing values must be 
replaced by appropriate estimates.

Naming Conventions in Chapter 8

Meaning Abbreviation

Bayesian BAY*

Nonseasonal ARMA NS*

Transfer Function TF*

Maximum Likelihood MAX*

Multichannel M*

Periodogram P*

Cross Periodogram CP*

Spectral Density S*

Automatic Model Selection AUTO*

Cross-Spectral Density CS*

Preliminary *P*

Univariate *UNI*

Multivariate *MUL*

Final Prediction Error *FPE*

Method of Moments *MM*

Least-Squares *LS*

Box-Jenkins *BJ*

Spectral Window *SW*

Weights *WE*
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The “*” represents one or more letters.

General Methodology

A major component of the model identification step concerns determining if a given time series is stationary. 
The sample correlation functions computed by routines ACF, PACF, CCF, and MCCF may be used to diagnose 
the presence of nonstationarity in the data, as well as to indicate the type of transformation require to induce 
stationarity. The family of power transformations provided by routine BCTR coupled with the ability to dif-
ference the transformed data using routine DIFF affords a convenient method of transforming a wide class of 
nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also provide insight into the nature of 
the underlying model. Typically, this information is displayed in graphical form via time series plots, plots of 
the lagged data, and various correlation function plots. The routines in Chapter 16, “Line Printer Graphics” 
provide the necessary tools to produce the visual displays of this quantitative information.

The observed time series may also be compared with time series generated from various theoretical models 
to help identify possible candidates for model fitting. The routine RNARM in Chapter 18, “Random Number Gen-
eration” may be used to generate a time series according to a specified autoregressive moving average model.

Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time domain is often proposed and 
parameter estimation, diagnostic checking and forecasting are performed.

Autoregressive Moving Average Model

A parsimonious, yet comprehensive, class of stationary time series models consists of the nonseasonal 
autoregressive moving average (ARMA) processes defined by

ɸ(B)(Wt − μ) = θ(B)At t ∈ ZZ

where

Autoregressive *AR

Autoregressive, Moving Average *ARMA

Seasonal Modeling *SEA

Estimation *E

Forecast *F

Fast Fourier Transform *FFT

Periodogram *P

Data *D

Naming Conventions in Chapter 8

Meaning Abbreviation
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ZZ = {…, −2, −1, 0, 1, 2, …}

denotes the set of integers, B is the backward shift operator defined by BkWt = Wt−k, μ is the mean of Wt,

ɸ(B) = 1 − ɸ1B − ɸ2B2 − … − ɸpBp p ≥ 0

θ(B) = 1 − θ1B − θ2B2 − … − θqBq q ≥ 0

The model is of order (p, q) and is referred to as an ARMA(p, q) model. 

An equivalent version of the ARMA(p, q) model is given by

ɸ(B)Wt = θ0 + θ(B)At t ∈ ZZ

where θ0 is an overall constant defined by

See Box and Jenkins (1976, pages 92–93) for a discussion of the meaning and usefulness of the overall con-
stant. The coefficients in the ARMA model can be estimated using MAX_ARMA. 

Parameter estimates for ARMA processes can also be obtained using the MAX_ARMA routine. This routine 
uses the maximum likelihood method to obtain estimates for the moving average and autoregressive param-
eters in an ARMA model. This routine also requires initial parameter estimates and further requires that 
these initial values represent a stationary time series. If they are not stationary, MAX_ARMA replaces these esti-
mates with initial estimates that are stationary. However these may be far away from the values selected to 
initially describe this series.

Moreover, the method of maximum likelihood for estimating ARMA parameters may not converge to sta-
tionary estimates. In this case, MAX_ARMA will display a warning message and sets its convergence parameter 
ICONV to zero.

If the “raw” data {Zt} are homogeneous nonstationary, then differencing induces stationarity and the model 
is called autoregressive integrated moving average (ARIMA). Parameter estimation is performed on the sta-
tionary time series 

Wt = ∇dZt

where

∇d = (1 − B)d

is the backward difference operator with period 1 and order d, d > 0. 

Typically, routine NSPE is first applied to the transformed data to provide preliminary parameter estimates. 
These estimates are used as initial values in an estimation procedure. In particular, routine NSLSE may be 
used to compute conditional or unconditional least-squares estimates of the parameters, depending on the 
choice of the backcasting length. Parameter estimates from either NSPE or NSLSE may be input to routine 
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NSBJF to produce forecasts with associated probability limits. The routines for preliminary parameter esti-
mation, least squares parameter estimation, and forecasting follow the approach of Box and Jenkins (1976, 
programs 2–4, pages 498–509).

Regression in Autoregressive Integrated Moving Average

There may be one or more external time series that relate to the time series of interest, which may be useful in 
improving forecasts. Routine REG_ARIMA allows for the inclusion of one or more regression time series in the 
above ARIMA model. That is, if there are r time series {Xi,t, i = 1, …, r} associated with a times series Yt, the 
regression ARIMA model (integrated of order d ) is 

Wt = ∇dZt

where

That is, Zt is the residual (indexed by t) of the regression of Yt on {Xi,t, i = 1, …, r}.

Transfer Function Model

Define {xt} and {yt} by 

and

where {Xt} and {Yt} for t = (-d + 1), …, n represent the undifferenced input and undifferenced output series 
with

estimates of their respective means. The differenced input and differenced output series may be obtained 
using the routine DIFF following any preliminary transformation of the data. 

The transfer function model is defined by

Yt = δ−1(B)ω(B)Xt−b+ nt

or equivalently,

yt = δ−1(B)ω(B)xt−b + nt
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where nt =∇dNt for d ≥ 0, and the left-hand side and right-hand side transfer function polynomial operators 
are, respectively,

δ(B) = 1 − δ1B − δ2B2 − … − δrB
r

ω(B) = ω0 − ω1B − ω2B2 − … − ωsB
s

with r ≥ 0, s ≥ 0, and b ≥ 0. The noise process {Nt} and the input process {Xt} are assumed to be independent, 
with the noise process given by the ARIMA model

ɸ(B)nt = θ(B)At

where

ɸ(B) = 1 − ɸ1B − ɸ2B2 − … − ɸpBp

θ(B) = 1 − θ1B − θ2B2 − … − θqBq

with p ≥ 0 and q ≥ 0. 

The impulse response weights {vk} of the transfer function

ν(B) = δ−1(B)ω(B) = ν0 + ν1B + ν2B2 + …
and the differenced noise series {nt} are estimated using routine IRNSE. Preliminary estimates of the transfer 
function parameters and noise model parameters are computed by routine TFPE.

Multivariate Autoregressive Time Series

A multivariate autoregressive time series can be expressed as:

where

is a column vector containing the values for the m univariate time series at time = t.

are the m x m matrices containing the autoregressive parameters for lags 1, 2, …, p.

is a column vector containing the values for the m white noise values for each time series at time = t.

Akaike’s Information Criterion (AIC) can be used to identify the optimum number of lags. For a multivariate 
autoregressive time series,   
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where 

N = number of observations in each of the m univariate time series,

K = number of non-zero autoregressive coefficients in the parameter matrices, 

p  = maximum number of lags used in calculating AIC, and

 = determinate of the estimated m by m covariance matrix for the white noise, Ut.

Routine AUTO_MUL_AR calculates AIC for selected lags and returns parameter estimates for the optimum lag.

Multichannel Time Series

A multichannel time series X is simply a multivariate time series whose channels correspond to interrelated 
univariate time series. In this setting, the model-building process is a logical extension of the procedures 
used to identify, estimate, and forecast univariate time series. In particular, the multichannel cross-correlation 
function computed by routine MCCF may help identify a tentative model. A particular regression model may 
be fit using routine MLSE, with the Wiener filter estimated using routine MWFE. The Wiener forecast function 
for a single channel may be obtained by routine SPWF. The state space approach to fitting many time domain 
models is available through routine KALMN.

Automatic Model Selection

There are two popular criteria for comparing autoregressive (AR) models with different lags:

 FPE – Final Prediction Error

 AIC – Akaike’s Information Criterion.

These are defined for both univariate and multivariate time series. FPE for an autoregressive univariate 
model with p lags is calculated using the formula:

where

N = number of observations in the time series, and  = the estimate for the variance of the white noise term 

in an AR model of order p. The fit with the smallest FPE is considered best.

Similarly, AIC for an AR univariate series is calculated by:

where
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L =  the value for the maximum likelihood function for the fitted model, and

p = number of lags for the AR model. In some routines this is approximated by

where K= number of nonzero parameters in the model. 

Similar to FPE, the fit with the smallest AIC is considered best.

A formula also exist for the final prediction error of a multivariate time series:

where m = number of univariate time series, and p = maximum number of lags in the AR model. The equiva-
lent multivariate AIC calculation is

The routine AUTO_PARM uses a third criterion, called “Minimum Description Length” or MDL, to automati-
cally fit piecewise AR models to a time series with structural breaks (i.e., a potentially non-stationary time 
series having stationary segments).

The MDL is defined as

where m is the number of structural breaks in the series, { 1, 2, ..., m+1 are the locations of the breaks, nj is 
the number of observations in the j-th segment, pj is the order of the AR model fit to the j-th segment, and L is 
the combined likelihood over all segments.  AUTO_PARM also allows the choice to use the AIC criterion,

The table below summarizes the five routines for automatic AR fitting.

Routine Variables Criterion

AUTO_UNI_AR Univariate AIC

AUTO_MUL_AR Multivariate AIC
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Frequency Domain Methodology

An alternative method of time series analysis with much less emphasis on the form of the model may be per-
formed in the frequency domain.

Spectral Analysis

Let {X(t)} denote a continuous-parameter stationary process with mean

μ = E[X(t)]

and autocovariance function

σ(k) = cov{X(t), X(t + k)} = E{[X(t) − μ][X(t + k) − μ]} k ∈ R

Similarly, let {Xt} denote a discrete-parameter stationary process with mean

μ = E[Xt]

and autocovariance function

σ(k) = cov{Xt, Xt+k} = E{[Xt − μ][Xt+k − μ]} k ∈ ZZ

Note that σ(0) = σ2 is the variance of the process.

The routines for the spectral analysis of time series are concerned with the estimation of the spectral density 
of a stationary process given a finite realization {Xt} for t = 1, …, n where n = NOBS. This realization consists 
of values sampled at equally spaced time intervals in the continuous-parameter case or of values observed 
consecutively in the discrete-parameter case. Hence, we need only develop methodology concerned with the 
spectral analysis of discrete-parameter stationary processes and later account for the time sampling in the 
continuous-parameter model. 

The nonnormalized spectral density h(ω) and the autocovariance function σ(k) of the stationary process form 
a Fourier transform pair. The relationship in the continuous-parameter case is given by 

Similarly, the normalized spectral density f(ω) and the autocorrelation function ρ(k) = σ(k)/σ(0) of the sta-
tionary process form a Fourier transform pair. The relationship in the continuous-parameter case is given by

AUTO_FPE_UNI_AR Univariate FPE

AUTO_FPE_MUL_AR Multivariate FPE

AUTO_PARM Univariate MDL/AIC

Routine Variables Criterion
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The discrete-parameter analogs of the above equations involve summation over k instead of integration over 
dk. Also, the normalized spectral density f(ω) satisfies

Discrete Fourier Transform. The discrete Fourier transform of the sequence {Zt} for t = 1, …, N is defined by 

over the discrete set of frequencies

where the function ⌊r⌋ determines the greatest integer less than or equal to r. An alternative representation of 
ζ(ωp) in terms of cosine and sine transforms is

ζ(ωp) = α(ωp) − iβ(ωp)

where

The fast Fourier transform algorithm implemented in the IMSL MATH/LIBRARY routine FFTCF is used to 
compute the discrete Fourier transform. All of the frequency domain routines that output a periodogram uti-
lize the fast Fourier transform algorithm.

Centering and Padding. Consider the centered and padded realization 

for t = 1, … , N defined by

where N = (n + n0) and
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is

Centering the data simplifies the formulas for estimation of the periodogram and spectral density. The addi-
tion of n0 = NPAD zeros to the end of the data is called padding. This procedure increases the effective length of 
the data from n to N in an effort to:

 increase the computational efficiency of the Fourier transformation of the series by providing a 
more suitable series length N (Priestley 1981, page 577).

 obtain the periodogram ordinates required to give the exact expression of the sample 
autocovariances in terms of the inverse Fourier transformation of the periodogram (Priestley 
1981, page 579).

 produce periodogram ordinates over a more refined range of frequencies ωp.

Any desired filtering, prewhitening, or data tapering should be performed prior to estimating the spectral 
density. The resulting estimate may be adjusted accordingly.

Periodogram. The periodogram of the sample sequence {Xt}, t = 1, …, n computed with the centered and 
padded sequence

is defined by

where K is the scale factor

The scale factor of the usual periodogram relates the ordinates to the sum of squares of

(Fuller 1976, pages 276–277). If the first ordinate (corresponding to p = 0) is replaced by one-half of its value, 
then if N is odd, the sum of the ⌊N/2⌋ + 1 ordinates corresponding to p = 0, 1, …, ⌊N/2⌋ is

The modified periodogram is an asymptotically unbiased estimate of the nonnormalized spectral density 
function at each frequency ωp (Priestley 1981, page 417). The argument IPVER is used to specify the version 
of the periodogram.
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Spectral Density. The relationship between the sample autocovariance function and estimate of the nonnor-
malized spectral density function is similar to the theoretical situation previously discussed.

Define the sample autocovariance function of the Xt process by

where

is given by Equation 2. Note that 

is the sample variance. The nonnormalized spectral density may be estimated directly from the sample auto-
covariances by

The sequence of weights {λn(k)} called the lag window decreases at a rate appropriate for consistent estimation 
of h(ω). 

An algebraically equivalent method of estimating h(ω) consists of locally smoothing the modified periodo-
gram in a neighborhood of ω. Let 

denote the modified periodogram of the centered and padded realization 

defined in Equation 1. Then, an estimate of the nonnormalized spectral density is given by

where
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The spectral window Wn(θ) is the discrete Fourier transform of the lag window λn(k). We note that for 
N = 2n - 1, the modified periodogram and autocovariances,

form the discrete Fourier transform pair

This relationship is exact and recovers the (n - 1) sample autocovariances only when n0 = (n - 1) zeros are 
padded, since then ⌊N/2⌋ = (n - 1). 

Another method of estimating h(ω) is given by

where 

and p(ω) is the integer such that ωp,0 is closest to ω. The sequence of m weights {wj} for 
j = -[m/2], …, (m - [m/2] - 1) is fixed in the sense that they do not depend on the frequency, ω, and satisfy 
Σjwj = 1. Priestley (1981, page 581) notes that if we write

then Equation 4 and Equation 3 are quite similar except that the weights {wj} depend on ω. In fact, if p(ω) = 0 
and m = N, these equations are equivalent.

Given estimates 

the estimate of the normalized spectral density is given by

This follows directly from the definition of f(ω).
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Spectral Window. The following spectral windows Wn(θ) are available in routines containing the argument 
ISWVER.

Modified Bartlett

where FM (θ) corresponds to the Fejér kernel of order M.

Daniell

Tukey

for 0 < a ≤ 0.25, where DM(θ) represents the Dirichlet kernel. The Tukey-Hanning window is obtained when 
a = 0.23, and the Tukey-Hamming window is obtained when a = 0.25.

Parzen

where M is even. If M is odd, then M + 1 is used instead of M in the above formula.

Bartlett-Priestley

The window parameter M is inversely proportional to the bandwidth of the spectral window. Priestley (1981, 
pages 520–522) discusses a number of definitions of bandwidth and concludes that the particular definition 
adopted is of little significance. The choice of spectral window bandwidth, and hence, the choice of M, is a 
more important problem. One practical choice for M is the last lag at which the estimated autocorrelation 
function

is significantly different from zero, i.e.,
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The estimated autocorrelations and their associated estimated standard errors can be computed using rou-
tine ACF. See Priestley (1981, pages 528–556) for alternative strategies of determining the window 
parameter M.

Since the spectral window is the Fourier transform of the lag window, we estimate the spectral density func-
tion by application of a particular spectral window to the periodogram. Note that M is directly related to the 
rate of decay of the lag window.

Time Interval. Consider the continuous-parameter stationary process {X(t)} and let {Xt} denote a realization 
of this process sampled at equal time intervals Δt = TINT. Although the spectral density of X(t) extends over 
the frequency range (-π, π), the spectral density of Xt is unique over the restricted frequency range 
(-π/Δt, π/Δt). This problem of aliasing or spectrum folding is inherent to spectral analysis, see Blackman and 
Tukey (1958) and Priestley (1981) for further discussion.

In practice, the {Xt} realization is treated as a discrete parameter process with spectral density 

defined over the frequency range (-π, π). This corresponds to setting Δt = 1. The transformation of the spec-
tral density to the restricted frequency range (-π/Δt, π/Δt) is given by

Priestley (1981, pages 507–508) considers a method of choosing Δt. A similar transformation is performed for 
the estimated spectral density.

Frequency Scale. The argument IFSCAL is used to specify the scale of the frequencies at which to estimate 
the spectral density. The NF frequencies are contained in the argument F.

Approximate Confidence Intervals for Spectral Ordinates. An approximate (1 - α)100% confidence inter-
val for the value of the nonnormalized spectral density function h(ω) at a particular frequency ω is given by 
the formula (Priestley 1981, page 468)

Routine CHIIN using argument P = 1 -α/2 and P = α/2 can be used to compute the percentage point 

Also, routine CHIIN should be used with degrees of freedom (DF), which depend upon the version of the 
spectral window (ISWVER), as given in the following table (Priestley 1981, page 467).
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If one of the windows above is not specified and the user provides relative weights, such as with routine 
SWED, the weights are normalized to sum to one in the actual computations. Given all m (m odd) normalized 
weights wj, then for 2 π⌊m/2⌋/n <ω < π(1 - 2⌊m/2⌋/n) the degrees of freedom for a confidence interval on 
h(ω) are given by Fuller (1976, page 296)

Frequently, confidence intervals on the ln h(ω) are suggested because this produces fixed width intervals. 
The interval is

Cross-Spectral Analysis

The routines for cross-spectral analysis are concerned with the estimation of the crossspectral density of two 
jointly stationary processes given finite realizations {Xt} and {Yt} for t = 1, …, n. These realizations consist of 
values sampled at equally spaced time intervals in the continuous-parameter case or of values observed con-
secutively in the discrete-parameter case. Again, we develop methodology concerned with the cross-spectral 
analysis of discrete-parameter stationary processes and later account for the time sampling in the continu-
ous-parameter model.

Let μX and σXX(k) denote the mean and autocovariance function of the Xt process; similarly, define μY and 
σYY(k), with respect to the Yt process. Define the cross-covariance function between Xt and Yt by

σXY(k) = cov{[Xt − μX][Yt+k − μY]} k ∈ ZZ

Then, the nonnormalized cross-spectral density hXY(ω) and the cross-covariance function σXY(k) form a Fou-
rier transform pair. The relationship in the continuous-parameter case is given by 

ISWVER Window DF

1 Modified Bartlett 3n/M 

2 Daniell 2n/M 

3 Tukey-Hamming 2.5164n/M

4 Tukey-Hanning 2 2/3n/M

5 Parzen 3.708614n/M 

6 Bartlett-Priestley 1.4n/M
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Similarly, the normalized cross-spectral density fXY(ω) and the cross-correlation function 
ρXY(k) = σXY(k)/[ σXX(0)σYY(0)] form a Fourier transform pair. The relationship in the continuous-parame-
ter case is given by

The discrete-parameter analogs of the above equations involve summation over k instead of integration over 
dk.

The cross-spectral density function is often written in terms of real and imaginary components, since in gen-
eral, the function is complex-valued. In particular,

hXY(ω) = cXY(ω) − iqXY(ω)

where the cospectrum and quadrature spectrum of the Xt and Yt process are respectively defined by

The polar form of hXY(ω) is defined by

where the cross-amplitude spectrum is

and the phase spectrum is

The coherency spectrum is defined by

For a given frequency ω, the coherency ∣wXY(ω)∣ lies between zero and one, inclusive, and reflects the linear 
relationship between the random coefficients. See Priestley (1981, pages 654–661) for additional information 
concerning the interpretation of the components of the cross-spectral density.

Centering and Padding. The centered and padded realizations 

are defined as in Equation 1 with centering constants
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Any desired filtering, prewhitening, or data tapering should be performed prior to estimating the crossspec-
tral density. The resulting estimate may be adjusted accordingly.

Cross Periodogram. The cross periodogram of the sample sequences {Xt} and {Yt}, t = 1, …, n computed with 
the padded sequences 

t = 1, …, N is defined by 

where K is the scale factor 

The scale factor option is maintained for compatibility with the spectral routines. The argument IPVER is 
used to specify the version of the periodogram used to compute the cross periodogram.

Cross-Spectral Density Estimation. The relationship between the sample cross-covariance function and esti-
mate of the nonnormalized cross-spectral density function is similar to the theoretical situation previously 
discussed. 

Define the sample cross-covariance function between the Xt and Yt process by

The nonnormalized cross-spectral density may be estimated directly from the sample cross-covariances by

The sequence of weights {λn(k)} called the lag window decreases at a rate appropriate for consistent estimation 
of hXY(ω). 

An algebraically equivalent method of estimating hXY(ω). consists of locally smoothing the modified cross 
periodogram in a neighborhood of ω. Let
Usage Notes         Chapter 8: Time Series Analysis and Forecasting      724



denote the modified cross periodogram of the centered and padded realizations 

Then, an estimate of the nonnormalized cross-spectral density is given by

where Wn(θ) is the spectral window. 

Another method of estimating hXY(ω) is given by

where ωp,j, p(ω), and the weights {wj} are as defined in the univariate setting. 

Given estimates

the estimate of the normalized cross-spectral density is given by

This follows directly from the definition of fXY (ω).
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BCTR

Performs a forward or an inverse Box-Cox (power) transformation.

Required Arguments
Z — Vector of length NOBS containing the data.  (Input)
POWER — Exponent parameter in the power transformation.  (Input)
SHIFT — Shift parameter in the power transformation.  (Input) 

SHIFT must satisfy the relation min(Z(i)) + SHIFT > 0.
X — Vector of length NOBS containing the transformed data.  (Output) 

If Z is not needed, then X and Z can occupy the same storage locations. In this case, IPRINT = 1 will 
print two identical vectors.

Optional Arguments
NOBS — Number of observations in Z.  (Input) 

NOBS must be greater than or equal to one.
Default: NOBS = size (Z,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

IDIR — Direction of transformation option.  (Input)
Default: IDIR = 0.

FORTRAN 90 Interface
Generic: CALL BCTR (Z, POWER, SHIFT, X [, …])
Specific: The specific interface names are S_BCTR and D_BCTR.

FORTRAN 77 Interface
Single: CALL BCTR (NOBS, Z, IPRINT, IDIR, POWER, SHIFT, X)
Double: The double precision name is DBCTR.

IPRINT Action

0 No printing is performed.

1 Prints Z and the transformed data, X.

IDIR Action

0 Forward transformation.

1 Inverse transformation.
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Description

Routine BCTR performs a forward or inverse Box-Cox transformation of the n = NOBS observations {Zt} for 
t = 1, 2, …, n.

The forward transformation is useful in the analysis of linear models or models with nonnormal errors or 
nonconstant variance (Draper and Smith 1981, page 222). In the time series setting, application of the appro-
priate transformation and subsequent differencing of a series may enable model identification and parameter 
estimation in the class of homogeneous stationary autoregressive-moving average models. The inverse trans-
formation may later be applied to certain results of the analysis, such as forecasts and probability limits of 
forecasts, in order to express the results in the scale of the original data. A brief note concerning the choice of 
transformations in ARIMA models is given in Box and Jenkins (1976, page 328). The class of power transfor-
mations discussed by Box and Cox (1964) is defined by

where Zt+ ξ > 0 for all t. Since

the family of power transformations is continuous. 

Let λ = POWER and ξ = SHIFT; then, the computational formula utilized by routine BCTR is given by 

where Zt+ ξ > 0 for all t. The computational and Box-Cox formulas differ only in the scale and the origin of 
the transformed data. Consequently, the general analysis of the data is unaffected (Draper and Smith 1981, 
page 225). 

The inverse transformation is computed by

where {Zt} now represents the result computed by BCTR for a forward transformation of the original data 
using parameters λ and ξ.
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Comments
1. Informational errors

2. The forward transformation is performed prior to fitting a model. Differencing of the data is done after 
the data are transformed.

3. The inverse transformation is performed on results such as forecasts and their corresponding probabil-
ity limits.

Examples

Example 1

Consider the Airline Data (Box and Jenkins 1976, page 531) consisting of the monthly total number of inter-
national airline passengers from January 1949 through December 1960. Routine BCTR is used to compute a 
forward Box-Cox transformation of the first 12 observations. In the transformation SHIFT and POWER are 
each set to zero, which corresponds to taking natural logarithms of the data.

      USE GDATA_INT
      USE BCTR_INT

      IMPLICIT   NONE
      INTEGER IPRINT, NOBS 
      PARAMETER (IPRINT=1, NOBS=12)
!
      INTEGER    NCOL, NROW
      REAL       POWER, SHIFT, X(NOBS), Z(144, 1)
!                                 Airline Data
      CALL GDATA (4, Z, NROW, NCOL)
!                                 Forward direction
!                                 Transformation parameters
      POWER = 0.0
      SHIFT = 0.0
!                                 Compute natural logarithms of
!                                 first 12 observations in Z
      CALL BCTR (Z(:,1), POWER, SHIFT, X, NOBS=NOBS, IPRINT=IPRINT)
!
      END

Type Code Description

4 1 For the specified forward transformation, the minimum element of X will 
underflow.

4 2 For the specified forward transformation, the maximum element of X will 
overflow.

4 3 For the specified inverse transformation, the maximum element of X will 
overflow.

4 4 For the specified inverse transformation, the minimum element of X will 
underflow.
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Output

Output from BCTR

I        Z           X
 1      112.00      4.7185
 2      118.00      4.7707
 3      132.00      4.8828
 4      129.00      4.8598
 5      121.00      4.7958
 6      135.00      4.9053
 7      148.00      4.9972
 8      148.00      4.9972
 9      136.00      4.9127
10      119.00      4.7791
11      104.00      4.6444
12      118.00      4.7707

Example 2

The estimated standard errors of forecasts (lead times 1 through 12 at origin July 1957) using the transformed 
Airline Data (Box and Jenkins 1976, page 311) may be converted back to their original scale using routine 
BCTR. The backward Box-Cox transformation with SHIFT and POWER each set to zero corresponds to using 
the exponential function.

      USE BCTR_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=12)
!
      INTEGER    IDIR, IPRINT
      REAL       POWER, SD(NOBS), SHIFT, X(NOBS)
!                                Standard errors of forecasts
      DATA SD/3.7, 4.3, 4.8, 5.3, 5.8, 6.2, 6.6, 6.9, 7.2, 7.6, 8.0, &
          8.2/
!
      SD=SD * 1.0E-2
!                                 Backward direction
      IDIR = 1
!                                 Transformation parameters
      POWER = 0.0
      SHIFT = 0.0
!                                 Transform standard errors from
!                                 log scale to original scale
      IPRINT = 1
      CALL BCTR (SD, POWER, SHIFT, X, IPRINT=IPRINT, IDIR=IDIR)
!
      END

Output

 Output from BCTR
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 I        Z           X
 1    0.037000      1.0377
 2    0.043000      1.0439
 3    0.048000      1.0492
 4    0.053000      1.0544
 5    0.058000      1.0597
 6    0.062000      1.0640
 7    0.066000      1.0682
 8    0.069000      1.0714
 9    0.072000      1.0747
10    0.076000      1.0790
11    0.080000      1.0833
12    0.082000      1.0855
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DIFF

Differences a time series.

Required Arguments
Z — Vector of length NOBSZ containing the time series.  (Input)
IPER — Vector of length NDIFF containing the periods at which Z is to be differenced.  (Input) 

The elements of IPER must be greater than or equal to one.
IORD — Vector of length NDIFF containing the order of each difference given in IPER.  (Input) 

The elements of IORD must be greater than or equal to zero.
NOBSX — Number of observations in the differenced series X.  (Output) 

NOBSX = NOBSZ - IMISS * NLOST.
X — Vector of length NOBSX containing the differenced series.  (Output)

Optional Arguments
NOBSZ — Number of observations in the time series Z.  (Input) 

NOBSZ must be greater than or equal to one.
Default: NOBSZ = size (Z,1).

NDIFF — Number of differences to perform.  (Input) 
NDIFF must be greater than or equal to one.
Default: NDIFF = size (IPER,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

IMISS — Missing value option.  (Input)
Default: IMISS = 0.

NLOST — Number of observations lost because of differencing the time series Z.  (Output) 
NLOST = IPER(1) * IORD(1) + … + IPER(NDIFF ) * IORD(NDIFF).

FORTRAN 90 Interface
Generic: CALL DIFF (Z, IPER, IORD, NOBSX, X [, …])
Specific: The specific interface names are S_DIFF and D_DIFF.

IPRINT Action

0 No printing is performed.

1 Prints the number of observations lost because of 
differencing Z, the number of observations in the 
differenced series X, and the differenced series X

IMISS Action

0 Include missing values in X.

1 Exclude missing values from X.
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FORTRAN 77 Interface
Single: CALL DIFF (NOBSZ, Z, NDIFF, IPER, IORD, IPRINT, IMISS, NLOST, NOBSX, X)
Double: The double precision name is DDIFF.

Description

Routine DIFF performs m = NDIFF successive backward differences of period si= IPER(i) and order 
di = IORD(i) for i = 1, …, m on the n = NOBSZ observations {Zt} for t = 1, 2, …, n.

Consider the backward shift operator B given by

BkZt = Zt−k, for all k

Then, the backward difference operator with period s is defined by

∇sZt = (1 − Bs)Zt = Zt − Zt−s, s ≥ 0

Note that BsZt and ∇sZt are defined only for t = (s + 1), …, n. Repeated differencing with period s is simply

where d ≥ 0 is the order of differencing. Note that

is defined only for t = (sd + 1), …, n.

The general difference formula used in routine DIFF is given by

where nL = NLOST represents the number of observations “lost” because of differencing and NaN (not a 
number) represents the missing value code. See the routine AMACH; in the “Machine-Dependent Constants” sec-
tion of the Reference Material. Note that nL = Σjsjdj. 

A homogeneous stationary time series may be arrived at by appropriately differencing a homogeneous non-
stationary time series (Box and Jenkins 1976, page 85). Preliminary application of an appropriate 
transformation followed by differencing of a series may enable model identification and parameter estima-
tion in the class of homogeneous stationary autoregressive-moving average models.

Comments
1. Workspace may be explicitly provided, if desired, by use of D2FF/DD2FF. The reference is:
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CALL D2FF (NOBSZ, Z, NDIFF, IPER, IORD, IPRINT, IMISS, NLOST, NOBSX, X, XWK)
The additional argument is:

XWK — Work vector of length equal to NOBSZ.
2. A value is considered to be missing if it is not itself in the data set or if it is the result of an operation 

involving missing value(s). In differencing, missing values occur at the beginning of the differenced 
series since X(i) = Z(i) - Z(i - k) is not defined for k greater than or equal to i.

Example

Consider the Airline Data (Box and Jenkins 1976, page 531) consisting of the monthly total number of inter-
national airline passengers from January 1949 through December 1960. Routine DIFF is used to compute

Xt = ∇1∇12Xt = (Zt − Zt−12) − (Zt−1 − Zt−13)

For the first invocation of DIFF with IMISS = 0, X1, X2, …, X13 are set to the missing value code (NaN) and 
the equation is applied for t = 14, 15, …, 24. For the second invocation of DIFF with IMISS = 1, the missing 
values are excluded from the output array containing the differenced series.

      USE GDATA_INT
      USE DIFF_INT 

      IMPLICIT   NONE
      INTEGER    IPRINT, NDIFF, NOBSZ
      PARAMETER  (IPRINT=1, NDIFF=2, NOBSZ=24)
!
      INTEGER    IMISS, IORD(NDIFF), IPER(NDIFF), NCOL, NLOST, NOBSX, &
                 NROW
      REAL       X(NOBSZ), Z(144, 1)
!                                Periods of differencing
      DATA IPER/1, 12/
!                                Orders of differencing
      DATA IORD/1, 1/
!                                Airline Data
      CALL GDATA (4, Z, NROW, NCOL)
!                                 Nonseasonal and seasonal difference
!                                 first 24 observations in Z
!
!                                 Include missing values in result X
!     USE Default IMISS = 0
      CALL DIFF (Z(:, 1), IPER, IORD, NOBSX, X, NOBSZ=NOBSZ, IPRINT=IPRINT)
!                                 Exclude missing values in result X
      IMISS = 1
      CALL DIFF (Z(:, 1), IPER, IORD, NOBSX, X, IPRINT=IPRINT, &
                 NOBSZ=NOBSZ, IMISS=IMISS)
!
      END

Output

Output from DIFF/D2FF

NLOST = 13
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NOBSX = 24
 I     Z(I)     X(I)
 1   112.00      NaN
 2   118.00      NaN
 3   132.00      NaN
 4   129.00      NaN
 5   121.00      NaN
 6   135.00      NaN
 7   148.00      NaN
 8   148.00      NaN
 9   136.00      NaN
10   119.00      NaN
11   104.00      NaN
12   118.00      NaN
13   115.00      NaN
14   126.00    5.000
15   141.00    1.000
16   135.00   -3.000
17   125.00   -2.000
18   149.00   10.000
19   170.00    8.000
20   170.00    0.000
21   158.00    0.000
22   133.00   -8.000
23   114.00   -4.000
24   140.00   12.000

Output from DIFF/D2FF

NLOST = 13
NOBSX = 11

 I     Z(I)     X(I)
 1   112.00    5.000
 2   118.00    1.000
 3   132.00   -3.000
 4   129.00   -2.000
 5   121.00   10.000
 6   135.00    8.000
 7   148.00    0.000
 8   148.00    0.000
 9   136.00   -8.00
10   119.00   -4.000
11   104.00   12.000
12   118.00
13   115.00
14   126.00
15   141.00
16   135.00
17   125.00
18   149.00
19   170.00
20   170.00
21   158.00
22   133.00
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23   114.00
24   140.00
DIFF         Chapter 8: Time Series Analysis and Forecasting      735



ESTIMATE_MISSING

Estimates missing values in a time series.

Required Arguments
ITIME_POINTS — Vector of length NOBSW containing the reference time points t1, …, tNOBSW at which the 

time series was observed. (Input)
The reference time points must be of data type integer and in strictly increasing order. Reference time 
points for missing values must lie in the open interval (t1, tNOBSW) It is assumed that the time series, 
after estimation of missing values, contains values at equidistant time points where the distance 
between two consecutive time points is one.

W — Vector of length NOBSW containing the time series values. (Input)
The values must be ordered in accordance with the values in vector ITIME_POINTS. It is assumed 
that the time series, after estimation of missing values, contains values at equidistant time points 
where the distance between two consecutive time points is one. If the non-missing time series values 
are observed at time points t1, …, tNOBSW, then missing values between ti  and ti+1, 
i = 1, …, NOBSW - 1, exist if  ti+1 - ti > 1. The size of the gap between ti and ti+1 is then ti+1 - ti - 1. The 
total length of the time series with non-missing and estimated missing values is tNOBSW - ti + 1, or 
ITIME_POINTS(NOBSW) - ITIME_POINTS(1) + 1.
For example, a time series with six observations with the fourth observation missing would appear as 
follows:

In this example, NOBSW = 6 and the length of the time series, Z, including missing values is 
tNOBSW - ti + 1 = 7.

more...

ITIME_POINTS   W

t1 = 1 .0019

t 2 = 2 .0018

t 3 = 3 .0019

t 4 = 5 .0021

t 5 = 6 .0022

t 6 = 7 .002
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Z — Allocatable array which on return will contain the time series values together with estimates for the 
missing values. (Output)

Optional Arguments
NOBSW — Number of observations in time series W. (Input)

Default: NOBSW = size(W).
IMETH — Method used for missing value estimation. (Input)

Default: IMETH = 3.

If IMETH = 2 and the first gap begins at t2 or t3, the corresponding time series values are estimated 
using method Median. If IMETH = 3 is chosen and the first gap starts at t2, then the values of this gap 
are also estimated by method Median. If the length of the series before a gap, denoted len, is greater 
than 1 and less than 2·MAXLAG, then MAXLAG is reduced to len/2 for the estimate of the missing values 
within this gap.

MAXLAG — Maximum number of autoregressive parameters, p, in the AR(p) model when IMETH = 3 is 
chosen. (Input)
See AUTO_UNI_AR for further information.
Default: MAXLAG = 10.

MAXBC — Maximum length of backcasting in the least-squares algorithm when IMETH = 2 is chosen.  
(Input) 
MAXBC must be greater than or equal to zero. See NSLSE for further information.
Default: MAXBC = 0.

TOLBC — Tolerance level used to determine convergence of the backcast algorithm used when IMETH = 2 
is chosen.  (Input) 
Backcasting terminates when the absolute value of a backcast is less than TOLBC. Typically, TOLBC is 
set to a fraction of wstdev where wstdev is an estimate of the standard deviation of the time series. See 
NSLSE for further information.
Default: TOLBC = 0.01 * wstdev.

TOLSS — Tolerance level used to determine convergence of the nonlinear least-squares algorithm when 
IMETH = 2 is chosen.  (Input) 
TOLSS represents the minimum relative decrease in the sum of squares between two iterations 
required to determine convergence. Hence, TOLSS must be greater than zero and less than one. See 
NSLSE for further information.
The default value is: max{10−10, EPS2∕3} for single precision and

 max{10−20, EPS2∕3} for double precision,
where EPS = AMACH(4) for single precision and EPS = DMACH(4) for double precision. See the docu-
mentation for routine AMACH in the Reference Material.

RELERR— Stopping criterion for use in the nonlinear equation solver when 
IMETH = 2 is chosen.  (Input)
See NSLSE for further information. 

IMETH Method

0 Median.

1 Cubic Spline Interpolation.

2 AR(1) model.

3 AR(p) model.
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Default: RELERR= 100.0 * AMACH(4)  for single precision,
RELERR= 100.0 * DMACH(4)  for double precision.

See the documentation for routine AMACH in the Reference Material.
MAXIT — Maximum number of iterations allowed in the nonlinear equation solver when 

IMETH = 2 is chosen. (Input)
See NSLSE for further information.
Default: MAXIT= 200.

WMEAN — Estimate of the mean of time series W. (Input)
Default: WMEAN = 0.0.

NOBSZ — Number of elements in the time series Z, with estimated missing values, 
NOBSZ = ITIME_POINTS(NOBSW) – ITIME_POINTS(1) + 1. (Output)

ITIME_POINTS_FULL — Vector of length NOBSZ containing the reference time points of the time series Z. 
(Output)

MISS_INDEX —  Vector of length NOBSZ-NOBSW containing the indices for the missing values in vector 
ITIME_POINTS_FULL. (Output)

FORTRAN 90 Interface
Generic: CALL ESTIMATE_MISSING (ITIME_POINTS, W, Z [, …])
Specific: The specific interface names are S_ESTIMATE_MISSING and D_ESTIMATE_MISSING.

Description

Traditional time series analysis, as described by Box, Jenkins and Reinsel (1994), requires the observations be 
made at equidistant time points with no missing values. When observations are missing, the problem of 
determining suitable estimates occurs. Routine ESTIMATE_MISSING offers four methods for estimating 
missing values from an equidistant time series. 

The Median method, IMETH = 0, estimates the missing observations in a gap by the median of the last four 
time series values before and the first four values after the gap. If enough values are not available before or 
after the gap then the number is reduced accordingly. This method is very fast and simple, but its use is lim-
ited to stationary ergodic series without outliers and level shifts. 

The Cubic Spline Interpolation method, IMETH = 1, uses a cubic spline interpolation method to estimate 
missing values. Here the interpolation is again done over the last four time series values before and the first 
four values after the gap. The missing values are estimated by the resulting interpolant. This method gives 
smooth transitions across missing values. 

The AR(1) method, IMETH = 2, assumes that the time series before the gap can be well described by an AR(1) 
process. If the last observation prior to the gap is made at time point tm then it uses the time series values at 
t1, t1 + 1, …, tm to compute the one-step-ahead forecast at origin tm. This value is taken as an estimate for the 
missing value at time point tm + 1. If the value at tm + 2 is also missing then the values at time points 
t1, t1 + 1, …, tm + 1 are used to recompute the AR(1) model, estimate the value at tm + 2 and so on. The coeffi-
cient φ1 in the AR(1) model is computed internally by the method of least squares from routine NSLSE.
ESTIMATE_MISSING         Chapter 8: Time Series Analysis and Forecasting      738



The AR(p) method, IMETH = 3 ,uses an AR(p) model to estimate missing values by a one-step-ahead forecast 
First, routine AUTO_UNI_AR , applied to the time series prior to the missing values, is used to determine the 
optimum p from the set {0, 1, …, MAXLAG} of possible values and to compute the parameters φ1, …, φp  of the 
resulting AR(p) model. The parameters are estimated by the method of moments. Denoting the mean of the 

series  by μ the one-step-ahead forecast at origin , can be computed by the 

formula

This value is used as an estimate for the missing value. The procedure, starting with AUTO_UNI_AR, is then 
repeated for every further missing value in the gap. 

All four estimation methods treat gaps of missing values in increasing time order. 

Example

Consider the AR(1) process

Wt =ɸ1 Wt-1 + at, t =1, 2, 3, …

We assume that  is a Gaussian white noise process, . Then,  and 

 (see Anderson, p. 174).

The time series in this example was artificially generated from an AR(1) process characterized by  

and . This process is stationary with . An initial value,  was used. 

The sequence  was generated by a random number generator.

From the original series, we remove the observations at time points t = 130, t = 140, t = 141, t = 160, t = 175, 
and t = 176. Then, ESTIMATE_MISSING is used to compute estimates for the missing values by all 4 estima-
tion methods available. The estimated values are compared with the actual values.

   use estimate_missing_int
!
   implicit none
   integer                            :: i, j, k, nout
   integer, dimension(200)            :: times_1, times_2 
   integer                            :: n_obs, n_miss
   integer                            :: ntimes, miss_ind
   integer, dimension(:), allocatable :: times, missing_index
   real, dimension(200)               :: x_1, x_2
   real, dimension(:), allocatable    :: result

   real, dimension(200) :: y = (/ 1.30540,-1.37166,1.47905, &
       -0.91059,1.36191,-2.16966,3.11254, -1.99536,2.29740, &
       -1.82474,-0.25445,0.33519,-0.25480,-0.50574,-0.21429,&
       -0.45932,-0.63813,0.25646,-0.46243,-0.44104,0.42733, &
        0.61102,-0.82417,1.48537,-1.57733,-0.09846,0.46311, &
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        0.49156,-1.66090,2.02808,-1.45768,1.36115,-0.65973, &
        1.13332,-0.86285,1.23848,-0.57301,-0.28210,0.20195, &
        0.06981,0.28454,0.19745, -0.16490,-1.05019,0.78652, &
       -0.40447,0.71514,-0.90003,1.83604, -2.51205,1.00526, &
       -1.01683,1.70691,-1.86564,1.84912,-1.33120, 2.35105, &
       -0.45579,-0.57773,-0.55226,0.88371,0.23138,0.59984,  &
        0.31971,0.59849,0.41873,-0.46955,0.53003,-1.17203,  &
        1.52937,-0.48017,-0.93830,1.00651,-1.41493,-0.42188,&
       -0.67010,0.58079, -0.96193,0.22763,-0.92214,1.35697, &
       -1.47008,2.47841,-1.50522, 0.41650,-0.21669,-0.90297,&
        0.00274,-1.04863,0.66192,-0.39143, 0.40779,-0.68174,&
       -0.04700,-0.84469,0.30735,-0.68412,0.25888, -1.08642,&
        0.52928,0.72168,-0.18199,-0.09499,0.67610,0.14636,  &
        0.46846,-0.13989,0.50856,-0.22268,0.92756,0.73069,  &
        0.78998,-1.01650,1.25637,-2.36179,1.99616,-1.54326, &
        1.38220,0.19674,-0.85241,0.40463,0.39523,-0.60721,  &
        0.25041,-1.24967,0.26727,1.40042,-0.66963,1.26049,  &
       -0.92074,0.05909,-0.61926,1.41550, 0.25537,-0.13240, &
       -0.07543,0.10413,1.42445,-1.37379,0.44382, -1.57210, &
        2.04702,-2.22450,1.27698,0.01073,-0.88459,0.88194,  &
       -0.25019,0.70224,-0.41855,0.93850,0.36007,-0.46043,  &
        0.18645,0.06337,0.29414,-0.20054,0.83078,-1.62530,  &
        2.64925,-1.25355,1.59094,-1.00684,1.03196,-1.58045, &
        2.04295,-2.38264,1.65095,-0.33273,-1.29092,0.14020, &
       -0.11434,0.04392,0.05293,-0.42277,0.59143,-0.03347,  &
       -0.58457,0.87030,0.19985,-0.73500,0.73640, 0.29531,  &
        0.22325,-0.60035,1.42253,-1.11278,1.30468,-0.41923, &
       -0.38019,0.50937,0.23051,0.46496,0.02459,-0.68478,   &
        0.25821,1.17655,-2.26629,1.41173,-0.68331 /)
     
   integer, dimension(200) :: tpoints=(/1,2,3,4,5,6,7,8,9,10,&
       11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,&
       29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,&
       47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,&
       65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,&
      83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,&
     101,102,103,104,105,106,107,108,109,110,111,112,113,114,&
     115,116,117,118,119,120,121,122,123,124,125,126,127,128,&
     129,130,131,132,133,134,135,136,137,138,139,140,141,142,&
     143,144,145,146,147,148,149,150,151,152,153,154,155,156,&
     157,158,159,160,161,162,163,164,165,166,167,168,169,170,&
     171,172,173,174,175,176,177,178,179,180,181,182,183,184,&
     185,186,187,188,189,190,191,192,193,194,195,196,197,198,&
     199,200 /)
   
   n_miss = 0
   times_1(1) = tpoints(1)
   times_2(1) = tpoints(1)
   x_1(1) = y(1)
   x_2(1) = y(1)
   k = 0
   
   DO i=1,199
      times_1(i+1) = tpoints(i+1)
      x_1(i+1) = y(i+1)
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      !        Generate series with missing values
      IF ( i/=129 .AND. i/=139 .AND. i/=140 .AND. i/=159 &
              .AND. i/=174 .AND. i/=175 ) THEN
         k = k+1
         times_2(k+1) = times_1(i+1)
         x_2(k+1) = x_1(i+1)
      END IF
   END DO
   !
   n_obs = k + 1
   ntimes = tpoints(200) - tpoints(1) + 1
   n_miss = ntimes - n_obs
!
   ALLOCATE(times(ntimes), missing_index(n_miss))
   
   DO j=0,3
      IF (j <= 2) THEN
         CALL estimate_missing(times_2, x_2, result, NOBSW=n_obs, &
                               IMETH=j, ITIME_POINTS_FULL=times,  &
                               MISS_INDEX=missing_index)
      ELSE
         CALL estimate_missing(times_2, x_2, result, NOBSW=n_obs, &
                               IMETH=j, ITIME_POINTS_FULL=times,  &
                               MAXLAG=20, MISS_INDEX=missing_index)
      END IF

      CALL UMACH (2, nout)
      IF (j == 0) WRITE (nout,*) "Method: Median"
      IF (j == 1) WRITE (nout,*) "Method: Cubic Spline Interpolation"
      IF (j == 2) WRITE (nout,*) "Method: AR(1) Forecast"
      IF (j == 3) WRITE (nout,*) "Method: AR(p) Forecast"

      WRITE(nout,99998)

      DO i=0,n_miss-1
        miss_ind = missing_index(i+1)
        WRITE(nout,99999) times(miss_ind), x_1(miss_ind),      &
                  result(miss_ind),                            &
                  ABS(x_1(miss_ind)-result(miss_ind))

      END DO
      WRITE(nout,*) ""
!
      IF (ALLOCATED(result)) DEALLOCATE(result)
   END DO
!
   IF (ALLOCATED(times)) DEALLOCATE(times)
   IF (ALLOCATED(missing_index)) DEALLOCATE(missing_index)
!
99998  FORMAT("time",6x,"actual",6x,"predicted",6x,"difference")
99999  FORMAT(I4,6x,F6.3,8x,F6.3,7x,F6.3)
END
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Output

Method: Median
time      actual      predicted      difference
 130      -0.921         0.261        1.182
 140       0.444         0.057        0.386
 141      -1.572         0.057        1.630
 160       2.649         0.047        2.602
 175      -0.423         0.048        0.471
 176       0.591         0.048        0.543
 
Method: Cubic Spline Interpolation
time      actual      predicted      difference
 130      -0.921         1.541        2.462
 140       0.444        -0.407        0.851
 141      -1.572         2.497        4.069
 160       2.649        -2.947        5.596
 175      -0.423         0.251        0.673
 176       0.591         0.380        0.211
 
Method: AR(1) Forecast
time      actual      predicted      difference
 130      -0.921        -0.916        0.005
 140       0.444         1.019        0.575
 141      -1.572        -0.714        0.858
 160       2.649         1.228        1.421
 175      -0.423        -0.010        0.413
 176       0.591         0.037        0.555
 
Method: AR(p) Forecast
time      actual      predicted      difference
 130      -0.921        -0.901        0.020
 140       0.444         1.024        0.580
 141      -1.572        -0.706        0.867
 160       2.649         1.233        1.417
 175      -0.423        -0.002        0.421
 176       0.591         0.039        0.553
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SEASONAL_FIT

Estimates the optimum differencing for a non-stationary time series using an autoregressive model, AR(p), to 
adjust the series for seasonality.

Required Arguments
Z — Vector containing the time series. (Input)
MAXLAG — Maximum lag allowed when fitting an AR(p) model, 

1 <= MAXLAG <= NOBSZ/2. (Input)
IPERA — NDIFF by nipera matrix containing the seasonal differences to test. (Input) 

Here, nipera = SIZE(IPERA, 2) must be greater than or equal to one. 
All elements of IPERA must be greater than or equal to one.

W — Allocatable array which, on return,  will contain the differenced series. (Output)

Optional Arguments
NOBSZ— Number of observations in time series Z. (Input)

Default: NOBSZ = SIZE(Z).
NDIFF — Number of differences to use. (Input)

NDIFF must be greater than or equal to one.
Default: NDIFF = SIZE(IPERA, 1).

IORDA — NDIFF by niorda matrix containing the possible orders of each difference given in IPERA. 
(Input)
Here, niorda = SIZE(IORDA, 2) must be greater than or equal to one.
All elements of IORDA must be non-negative. 
Default: IORDA is an NDIFF by 1 matrix, where IORDA (1:NDIFF, 1) =1.

IMISS — Missing value option. (Input)
Default: IMISS = 0

NOBSW — Number of observations in the differenced series W. (Output)
NOBSW = NOBSZ - IMISS * NLOST 

NLOST — Number of observations lost because of differencing the time series Z. (Output)

more...

IMISS Action

0  Include missing values in W.

1  Exclude missing values from W.
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IOPT_PERA — Vector of length NDIFF containing the column from matrix IPERA which produced the 
differenced series represented in W. (Output)

IOPT_ORDA — Vector of length NDIFF containing the column from matrix IORDA which produced the 
differenced series represented in W. (Output)

NPAR — The optimum value for the autoregressive lag. (Output)
AIC — Akaike's Information Criterion (AIC) for the optimum seasonally adjusted model. (Output)

FORTRAN 90 Interface
Generic: CALL SEASONAL_FIT (Z, MAXLAG, IPERA, W [, …])
Specific: The specific interface names are S_SEASONAL_FIT and D_SEASONAL_FIT.

Description

Many time series contain seasonal trends and cycles that can be modeled by first differencing the series. For 
example, if the correlation is strong from one period to the next, the series might be differenced by a lag of 1. 
Instead of fitting a model to the series , the model is fitted to the transformed series: . Higher 

order lags or differences are warranted if the series has, for example, a cycle every 4 or 13 weeks.

Routine SEASONAL_FIT does not center the original series. For every combination of columns in IPERA and 

IORDA, the series is converted to the seasonally adjusted series using the following computation

where s:= (s1,… ,sm) , d:= (d1,… ,dm) represent specific columns of arrays IPERA and IORDA respectively, and 
m = NDIFF.

This transformation of the series  to  is accomplished using routine DIFF. After this transforma-

tion, a call is made to AUTO_UNI_AR to automatically determine the optimum lag for an AR(p) 

representation for . This procedure is repeated for every possible combination of columns of IPERA 

and IORDA. The series with the minimum AIC is identified as the optimum representation and returned in 
vector W.

Example

Consider the Airline Data (Box, Jenkins and Reinsel 1994, p. 547) consisting of the monthly total number of 
international airline passengers from January 1949 through December 1960. Routine SEASONAL_FIT is used 
to compute the optimum seasonality representation of the adjusted series
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where  or  and 

A differenced series with minimum AIC,

is in Figure 8.1, “Differenced Series.”

USE GDATA_INT
USE SEASONAL_FIT_INT

IMPLICIT NONE

integer :: nout
integer, parameter :: nobs = 144, ndiff = 2, maxlag = 10
integer :: nlost, npar, i
integer :: NROW, NCOL
real, dimension(144,1) :: z
real :: aic
integer, dimension(2,2) :: ipera
integer :: nobsw
real, dimension(:), allocatable :: w
integer, dimension(ndiff) :: iopt_pera, iopt_orda

ipera(1,1) = 1; ipera(1,2) = 1
ipera(2,1) = 1; ipera(2,2) = 12

CALL GDATA (4, z, NROW, NCOL)

CALL seasonal_fit(z(:,1), maxlag, ipera, w, NDIFF = ndiff, NLOST = nlost, &
                      IOPT_PERA = iopt_pera, NOBSW = nobsw, &
                      IOPT_ORDA = iopt_orda, NPAR = npar, AIC = aic)

CALL UMACH(2,nout)
! WRITE (nout,*) "nlost =", nlost
! WRITE (nout,*) "iopt_pera = (", iopt_pera(1),",", iopt_pera(2), ")"
! WRITE (nout,*) "iopt_orda = (", iopt_orda(1),",", iopt_orda(2), ")"
! WRITE (nout,*) "Order of optimum AR process: ", npar
! WRITE (nout,*) "aic =", aic

! WRITE (nout,*) " "
! WRITE (nout,*) "Size of w:", nobsw
! WRITE (nout,*) "i  z(i,1)   w(i)"

! DO  i=1,nobs

Note: The numerical output may be viewed by removing the comments from the WRITE statement lines in 
the following example.
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!    WRITE (nout,*) i, z(i,1), w(i)
! END DO

IF (ALLOCATED(w)) DEALLOCATE(w)

END PROGRAM

Output

Figure 8.1 — Differenced Series
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ACF

Computes the sample autocorrelation function of a stationary time series.

Required Arguments
X — Vector of length NOBS containing the time series.  (Input)
MAXLAG — Maximum lag of autocovariances, autocorrelations, and standard errors of autocorrelations 

to be computed.  (Input) 
MAXLAG must be greater than or equal to one and less than NOBS.

AC — Vector of length MAXLAG + 1 containing the autocorrelations of the time series X.  (Output) 
AC(0) = 1. AC(k) contains the autocorrelation of lag k where k = 1, …, MAXLAG.

Optional Arguments
NOBS — Number of observations in the time series X.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

ISEOPT — Option for computing standard errors of autocorrelations.  (Input)
Default: ISEOPT = 0.

IMEAN — Option for computing the mean.  (Input) 
Default: IMEAN = 1.

IPRINT Action

0  No printing is performed.

1 Prints the mean and variance.

2 Prints the mean, variance, and 
autocovariances.

3 Prints the mean, variance, autocovariances, 
autocorrelations, and standard errors of 
autocorrelations.

ISEOPT Action

0 No standard errors of autocorrelations are 
computed.

1 Computes standard errors of autocorrelations 
using Bartlett’s formula.

2 Computes standard errors of autocorrelations 
using Moran’s formula.
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XMEAN — Estimate of the mean of time series X.  (Input, if IMEAN = 0; output, 
if IMEAN = 1)

ACV — Vector of length MAXLAG + 1 containing the variance and autocovariances of the time series X.  
(Output) 
ACV(0) contains the variance of the series X. ACV(k) contains the autocovariance of lag k where k = 1, …, 
MAXLAG.

SEAC — Vector of length MAXLAG containing the standard errors of the autocorrelations of the time series 
X.  (Output)
The standard error of AC(k) is SEAC(k) where k = 1, …, MAXLAG. If ISEOPT = 0, then SEAC may be 
dimensioned of length 1.

FORTRAN 90 Interface
Generic: CALL ACF (X, MAXLAG, AC [, …])
Specific: The specific interface names are S_ACF and D_ACF.

FORTRAN 77 Interface
Single: CALL ACF (NOBS, X, IPRINT, ISEOPT, IMEAN, XMEAN, MAXLAG, ACV, AC, SEAC)
Double: The double precision name is DACF.

Description

Routine ACF estimates the autocorrelation function of a stationary time series given a sample of n = NOBS 
observations {Xt} for t = 1, 2, …, n.

Let 

be the estimate of the mean μ of the time series {Xt} where

The autocovariance function σ(k) is estimated by

IMEAN Action

0 XMEAN is user specified.

1 XMEAN is set to the arithmetic mean of X.
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where K = MAXLAG. Note that 

is an estimate of the sample variance. The autocorrelation function ρ(k) is estimated by

Note that 

by definition.

The standard errors of the sample autocorrelations may be optionally computed according to argument 
ISEOPT. One method (Bartlett 1946) is based on a general asymptotic expression for the variance of the sam-
ple autocorrelation coefficient of a stationary time series with independent, identically distributed normal 
errors. The theoretical formula is

where 

assumes μ is unknown. For computational purposes, the autocorrelations ρ(k) are replaced by their estimates 

for ∣k∣ ≤ K, and the limits of summation are bounded because of the assumption that ρ(k) = 0 for all k such 
that ∣k∣ > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the sample autocorrelation coef-
ficient of a random process with independent, identically distributed normal errors. The theoretical formula 
is

where μ is assumed to be equal to zero. Note that this formula does not depend on the autocorrelation 
function.
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Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Routine ACF computes the estimated autocovariances, estimated autocorrelations, 
and estimated standard errors of the autocorrelations.
 
      USE GDATA_INT
      USE ACF_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, MAXLAG, NOBS
      PARAMETER  (IPRINT=3, MAXLAG=20, NOBS=100)
!
      INTEGER    IMEAN, ISEOPT, NCOL, NROW
      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), RDATA(176,2), &
                SEAC(MAXLAG), X(NOBS), XMEAN
!
      EQUIVALENCE (X(1), RDATA(22,2))
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Compute standard errors
      ISEOPT = 1
!                                 Center on arithmetic mean
!                                 USE DEFAULT IMEAN = 1
!                                 Compute sample ACF
      CALL ACF (X, MAXLAG, AC, IPRINT=IPRINT, ISEOPT=ISEOPT)
!
      END

Output

Output from ACF/A2F

Mean     =     46.976
Variance =     1382.9

Lag         ACV           AC          SEAC

 0         1382.9      1.00000
 1         1115.0      0.80629      0.03478
 2          592.0      0.42809      0.09624
 3           95.3      0.06891      0.15678
 4         -236.0     -0.17062      0.20577
 5         -370.0     -0.26756      0.23096
 6         -294.3     -0.21278      0.22899
 7          -60.4     -0.04371      0.20862
 8          227.6      0.16460      0.17848
 9          458.4      0.33146      0.14573
10          567.8      0.41061      0.13441
11          546.1      0.39491      0.15068
12          398.9      0.28848      0.17435
13          197.8      0.14300      0.19062
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14           26.9      0.01945      0.19549
15          -77.3     -0.05588      0.19589
16         -143.7     -0.10394      0.19629
17         -202.0     -0.14610      0.19602
18         -245.4     -0.17743      0.19872
19         -230.8     -0.16691      0.20536
20         -142.9     -0.10332      0.20939

Figure 8.2 — Sample Autocorrelation Function
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PACF

Computes the sample partial autocorrelation function of a stationary time series.

Required Arguments
MAXLAG — Maximum lag of partial autocorrelations to be computed.  (Input)
AC — Vector of length MAXLAG+ 1 containing the autocorrelations of the time series X.  (Input) 

AC(0) = 1. AC(k) contains the autocorrelation of lag k where k = 1, …, MAXLAG.
PAC — Vector of length MAXLAG containing the partial autocorrelations of the time series X.  (Output) 

The partial autocorrelation of lag k corresponds to PAC(k) where k = 1, …, MAXLAG.

FORTRAN 90 Interface
Generic: CALL PACF (MAXLAG, AC, PAC)
Specific: The specific interface names are S_PACF and D_PACF.

FORTRAN 77 Interface
Single: CALL PACF (MAXLAG, AC, PAC)
Double: The double precision name is DPACF.

Description

Routine PACF estimates the partial autocorrelations of a stationary time series given the 
K = MAXLAG sample autocorrelations 

for k = 0, 1, …, K. Consider the AR(k) process defined by

where ɸkj denotes the j-th coefficient in the process. The set of estimates 

for k = 1, …, K is the sample partial autocorrelation function. The autoregressive parameters

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k) models where k = 1, …, K. 
Based on the sample Yule-Walker equations
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a recursive relationship for k = 1, …, K was developed by Durbin (1960). The equations are given by

and

This procedure is sensitive to rounding error and should not be used if the parameters are near the nonsta-
tionarity boundary. A possible alternative would be to estimate { ɸkk} for successive AR(k) models using least 
squares (IMSL routine NSLSE) or maximum likelihood. Based on the hypothesis that the true process is 
AR(p), Box and Jenkins (1976, page 65) note 

See Box and Jenkins (1976, pages 82–84) for more information concerning the partial autocorrelation 
function.

Comments
Workspace may be explicitly provided, if desired, by use of P2CF/DP2CF. The reference is:

CALL P2CF (MAXLAG, AC, PAC, WK)
The additional argument is:

WK — Work vector of length 2 * MAXLAG.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Routine PACF to used to compute the estimated partial autocorrelations.

      USE GDATA_INT
      USE ACF_INT
      USE PACF_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    IMEAN, IPRINT, ISEOPT, MAXLAG, NOBS
      PARAMETER  (IMEAN=1, IPRINT=0, ISEOPT=0, MAXLAG=20, NOBS=100)
!

PACF         Chapter 8: Time Series Analysis and Forecasting      753



      INTEGER    NCOL, NROW
      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), PAC(MAXLAG), &
                 RDATA(176,2), SEAC(1), X(NOBS), XMEAN
      CHARACTER  CLABEL(2)*4, RLABEL(1)*6
!
      EQUIVALENCE (X(1), RDATA(22,2))
!
      DATA RLABEL/'NUMBER'/, CLABEL/'Lag ', 'PACF'/
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Compute sample ACF
      CALL ACF (X, MAXLAG, AC)
!                                 Compute sample PACF
      CALL PACF (MAXLAG, AC, PAC)
!                                 Print results
      CALL WRRRL (' ', PAC, RLABEL, CLABEL, FMT= '(F8.3)')
!
      END

Output

Lag      PACF
 1     0.806
 2    -0.635
 3     0.078
 4    -0.059
 5    -0.001
 6     0.172
 7     0.109
 8     0.110
 9     0.079
10     0.079
11     0.069
12    -0.038
13     0.081
14     0.033
15    -0.035
16    -0.131
17    -0.155
18    -0.119
19    -0.016
20    -0.004
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Figure 8.3 — Sample Partial Autocorrelation Function
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CCF

Computes the sample cross-correlation function of two stationary time series.

Required Arguments
X — Vector of length NOBS containing the first time series.  (Input)

NOBS must be greater than or equal to two.
Y — Vector of length NOBS containing the second time series.  (Input)
MAXLAG — Maximum lag of cross-covariances and cross-correlations to be computed.  (Input) 

MAXLAG must be greater than or equal to one and less than NOBS.
CC — Vector of length 2 * MAXLAG + 1 containing the cross-correlations between the time series X and Y.  

(Output) 
The cross-correlation between X and Y at lag k corresponds to CC(k) where 
k = -MAXLAG, …, -1, 0, 1, …, MAXLAG.

Optional Arguments
XMEAN — Estimate of the mean of time series X.   (Input, if IMEAN = 0; output, if 

IMEAN = 1)
Default: XMEAN = 0.0.

YMEAN — Estimate of the mean of time series Y.   (Input, if IMEAN = 0; output, if 
IMEAN = 1)
Default: YMEAN = 0.0.

XVAR — Variance of the time series X.  (Output)
YVAR — Variance of the time series Y.  (Output)
CCV — Vector of length 2 * MAXLAG + 1 containing the cross-covariances between the time series X and Y.  

(Output)
The cross-covariance between X and Y at lag k corresponds to CCV(k) where 
k = -MAXLAG, …, -1, 0, 1, …, MAXLAG.

NOBS — Number of observations in each time series.  (Input) 
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

IPRINT Action

0 No printing is performed.

1 Prints the means and variances.

2 Prints the means, variances, and cross-covariances.

3 Prints the means, variances, cross-covariances, 
cross-correlations, and standard errors of 
cross-correlations.
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ISEOPT — Option for computing standard errors of cross correlations.  (Input) 
Default: ISEOPT = 0.

IMEAN — Option for computing the mean.  (Input) 
Default: IMEAN = 1.

SECC — Vector of length 2 * MAXLAG + 1 containing the standard errors of the crosscorrelations between 
the time series X and Y.  (Output) 
The standard error of CC(k) is SECC(k) where k = -MAXLAG, …, -1, 0, 1, …, MAXLAG.

FORTRAN 90 Interface
Generic: CALL CCF (X, Y, MAXLAG, CC[, …])
Specific: The specific interface names are S_CCF and D_CCF.

FORTRAN 77 Interface
Single: CALL CCF (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN, XMEAN, YMEAN, XVAR, YVAR, 

CCV, CC, SECC)
Double: The double precision name is DCCF.

Description

Routine CCF estimates the cross-correlation function of two jointly stationary time series given a sample of 
n = NOBS observations {Xt} and {Yt} for t = 1, 2, …, n. 

Let

be the estimate of the mean μX of the time series {Xt} where

ISOPT Action

0 No standard errors of cross-correlations are 
computed.

1 Compute standard errors of cross-correlations using 
Bartlett’s formula.

2 Compute standard errors of cross-correlations using 
Bartlett’s formula with the assumption of no 
cross-correlation.

IMEAN Action

0 XMEAN and YMEAN are user specified.

1 XMEAN and YMEAN are set to the arithmetic means of 
X and Y.
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The autocovariance function of {Xt}, σX(k), is estimated by

where K = MAXLAG. Note that 

is equivalent to the sample variance XVAR. The autocorrelation function ρX(k) is estimated by

Note that

by definition. Let 

be similarly defined.

The cross-covariance function σXY(k) is estimated by

The cross-correlation function ρXY(k) is estimated by

The standard errors of the sample cross-correlations may be optionally computed according to argument 
ISEOPT. One method is based on a general asymptotic expression for the variance of the sample cross-cor-
relation coefficient of two jointly stationary time series with independent, identically distributed normal 
errors given by Bartlett (1978, page 352). The theoretical formula is
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For computational purposes, the autocorrelations ρX(k) and ρY(k) and the cross-correlations ρXY(k) are 
replaced by their corresponding estimates for ∣k∣ ≤ K, and the limits of summation are equal to zero for all k 
such that ∣k∣ > K.

A second method evaluates Bartlett’s formula under the additional assumption that the two series have no 
cross-correlation. The theoretical formula is

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 377).

An important property of the cross-covariance coefficient is σXY(k) = σYX(-k) for k ≥ 0. This result is used in 
the computation of the standard error of the sample cross-correlation for lag k < 0. In general, the cross-covari-
ance function is not symmetric about zero so both positive and negative lags are of interest.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2F/DC2F. The reference is:

CALL C2F (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN,  XMEAN,  YMEAN, XVAR, YVAR, CCV, CC, 
SECC,  ACX, ACY)

The additional arguments are as follows:

ACX — Work vector of length equal to MAXLAG + 1.

ACY — Work vector of length equal to MAXLAG + 1.
2. If ISEOPT = 0, then no workspace is needed and SECC, ACX, and ACY can be dimensioned with 

length 1.
3. Autocovariances, autocorrelations, and standard errors of autocorrelations may be obtained by setting 

the first and second time series equal.

Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X is the input gas rate in cubic 
feet/minute and Y is the percent CO2 in the outlet gas. Routine CCF is used to computed the cross-covari-
ances and cross-correlations between time series X and Y with lags from -MAXLAG = -10 through lag 
MAXLAG = 10. In addition, the estimated standard errors of the estimated cross-correlations are computed. In 
the first invocation with ISEOPT = 1, the standard errors are based on the assumption that autocorrelations 
and cross-correlations for lags greater than MAXLAG or less than -MAXLAG are zero. In the second invocation 
with ISEOPT = 2, the standard errors are based on the additional assumption that all cross-correlations for X 
and Y are zero.
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      USE GDATA_INT
      USE CCF_INT

      IMPLICIT   NONE

      INTEGER    IPRINT, MAXLAG, NOBS
      PARAMETER  (IPRINT=3, MAXLAG=10, NOBS=296)
!
      INTEGER    IMEAN, ISEOPT, NCOL, NROW
      REAL       CC(-MAXLAG:MAXLAG), CCV(-MAXLAG:MAXLAG), &
                RDATA(296,2), SECC(-MAXLAG:MAXLAG), X(NOBS), XMEAN, &
                XVAR, Y(NOBS), YMEAN, YVAR
!
      EQUIVALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))
!
      CALL GDATA (7, RDATA, NROW, NCOL)
!                                 USE Default Option to estimate means.

!                                 Bartlett's formula (general case)
      ISEOPT = 1
!                                 Compute cross correlation function
      CALL CCF (X, Y, MAXLAG, CC, IPRINT=IPRINT, ISEOPT=ISEOPT)
!                                 Bartlett's formula (independent case)
      ISEOPT = 2
!                                 Compute cross correlation function
      CALL CCF (X, Y, MAXLAG, CC, IPRINT=IPRINT, ISEOPT=ISEOPT)
!
      END

Output
Output from CCF/C2F

Mean of series X     =  -0.056834
Variance of series X =     1.1469

Mean of series Y     =     53.509
Variance of series Y =     10.219

Lag          CCV           CC         SECC

-10      -0.40450     -0.11815     0.158148
 -9      -0.50849     -0.14853     0.155750
 -8      -0.61437     -0.17946     0.152735
 -7      -0.70548     -0.20607     0.149087
 -6      -0.77617     -0.22672     0.145055
 -5      -0.83147     -0.24287     0.141300
 -4      -0.89132     -0.26035     0.138421
 -3      -0.98060     -0.28643     0.136074
 -2      -1.12477     -0.32854     0.132159
 -1      -1.34704     -0.39347     0.123531
  0      -1.65853     -0.48445     0.107879
  1      -2.04865     -0.59841     0.087341
  2      -2.48217     -0.72503     0.064141
  3      -2.88541     -0.84282     0.046946
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  4      -3.16536     -0.92459     0.044097
  5      -3.25344     -0.95032     0.048234
  6      -3.13113     -0.91459     0.049155
  7      -2.83919     -0.82932     0.047562
  8      -2.45302     -0.71652     0.053478
  9      -2.05269     -0.59958     0.071566
 10      -1.69466     -0.49500     0.093933

Output from CCF/C2F

Mean of series X     =  -0.056834
Variance of series X =     1.1469

Mean of series Y     =     53.509
Variance of series Y =     10.219

Lag          CCV           CC         SECC

-10      -0.40450     -0.11815      0.16275
 -9      -0.50849     -0.14853      0.16247
 -8      -0.61437     -0.17946      0.16219
 -7      -0.70548     -0.20607      0.16191
 -6      -0.77617     -0.22672      0.16163
 -5      -0.83147     -0.24287      0.16135
 -4      -0.89132     -0.26035      0.16107
 -3      -0.98060     -0.28643      0.16080
 -2      -1.12477     -0.32854      0.16052
 -1      -1.34704     -0.39347      0.16025
  0      -1.65853     -0.48445      0.15998
  1      -2.04865     -0.59841      0.16025
  2      -2.48217     -0.72503      0.16052
  3      -2.88541     -0.84282      0.16080
  4      -3.16536     -0.92459      0.16107
  5      -3.25344     -0.95032      0.16135
  6      -3.13113     -0.91459      0.16163
  7      -2.83919     -0.82932      0.16191
  8      -2.45302     -0.71652      0.16219
  9      -2.05269     -0.59958      0.16247
 10      -1.69466     -0.49500      0.16275
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MCCF

Computes the multichannel cross-correlation function of two mutually stationary multichannel time series.

Required Arguments
X — NOBSX by NCHANX matrix containing the first time series.  (Input) 

Each row of X corresponds to an observation of a multivariate time series and each column of X corre-
sponds to a univariate time series.

Y — NOBSY by NCHANY matrix containing the second time series.  (Input)
Each row of Y corresponds to an observation of a multivariate time series and each column of Y corre-
sponds to a univariate time series.

MAXLAG — Maximum lag of cross-covariances and cross-correlations to be computed.  (Input) 
MAXLAG must be greater than or equal to one and less than the minimum of NOBSX and NOBSY.

CC — Array of size NCHANX by NCHANY by 2 * MAXLAG + 1 containing the cross-correlations between the 
channels of X and Y.  (Output) 
The cross-correlation between channel i of the X series and channel j of the Y series at lag k corresponds 
to CC(i, j, k) where i = 1, …, NCHANX, j = 1, …, NCHANY, and k = -MAXLAG, …, -1, 0, 1, …, MAXLAG.

Optional Arguments
NOBSX — Number of observations in each channel of the first time series X.  (Input) 

NOBSX must be greater than or equal to two.
Default: NOBSX = size (X,1).

NCHANX — Number of channels in the first time series X.  (Input) 
NCHANX must be greater than or equal to one.
Default: NCHANX = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement of the calling program.  
(Input) 
LDX must be greater than or equal to NOBSX.
Default: LDX = size (X,1).

NOBSY — Number of observations in each channel of the second time series Y.  (Input) 
NOBSY must be greater than or equal to two.
Default: NOBSY = size (Y,1).

NCHANY — Number of channels in the second time series Y.  (Input) 
NCHANY must be greater than or equal to one.
Default: NCHANY = size (Y,2).

LDY — Leading dimension of Y exactly as specified in the dimension statement of the calling program.  
(Input) 
LDY must be greater than or equal to NOBSY.
Default: LDY = size (Y,1).

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.
MCCF         Chapter 8: Time Series Analysis and Forecasting      762



IMEAN — Option for computing the means.  (Input)
Default: IMEAN = 1.

XMEAN — Vector of length NCHANX containing the means of the channels of X.  (Input, if IMEAN = 0; out-
put, if IMEAN = 1)

YMEAN — Vector of length NCHANY containing the means of the channels of Y.  (Input, if IMEAN = 0; out-
put, if IMEAN = 1)

XVAR — Vector of length NCHANX containing the variances of the channels of X.  (Output)
YVAR — Vector of length NCHANY containing the variances of the channels of Y.  (Output)
CCV — Array of size NCHANX by NCHANY by 2 * MAXLAG + 1 containing the cross-covariances between the 

channels of X and Y.  (Output) 
The cross-covariance between channel i of the X series and channel j of the Y series at lag k corresponds 
to CCV(i, j, k) where i = 1, …, NCHANX, j = 1, …, NCHANY, and k = -MAXLAG, …, -1, 0, 1, …, MAXLAG.

LDCCV — Leading dimension of CCV exactly as specified in the dimension statement in the calling pro-
gram.  (Input) 
LDCCV must be greater than or equal to NCHANX.
Default: LDCCV = size (CCV,1).

MDCCV — Middle dimension of CCV exactly as specified in the dimension statement in the calling pro-
gram.  (Input) 
MDCCV must be greater than or equal to NCHANY.
Default: MDCCV = size (CCV,2).

LDCC — Leading dimension of CC exactly as specified in the dimension statement in the calling program.  
(Input) 
LDCC must be greater than or equal to NCHANX. 
Default: LDCCV = size (CC,1).

MDCC — Middle dimension of CC exactly as specified in the dimension statement in the calling pro-
gram.  (Input) 
MDCC must be greater than or equal to NCHANY. 
Default: MDCCV = size (CC,2).

IPRINT Action

0 No printing is performed.

1 Prints the means and variances.

2 Prints the means, variances, and cross-covariances.

3 Prints the means, variances, cross-covariances, and 
cross-correlations.

IMEAN Action

0 XMEAN and YMEAN are user-specified.

1 XMEAN and YMEAN are set to the arithmetic means of their 
respective channels.
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FORTRAN 90 Interface
Generic: CALL MCCF (X, Y, MAXLAG, CC [, …])
Specific: The specific interface names are S_MCCF and D_MCCF.

FORTRAN 77 Interface
Single: CALL MCCF (NOBSX, NCHANX, X, LDX, NOBSY, NCHANY, Y, LDY, MAXLAG, IPRINT, IMEAN, 

XMEAN, YMEAN, XVAR, YVAR, CCV,  LDCCV, MDCCV, CC, LDCC, MDCC)
Double: The double precision name is DMCCF.

Description

Routine MCCF estimates the multichannel cross-correlation function of two mutually stationary multichannel 
time series. Define the multichannel time series X by

X = (X1, X2, …, Xp)

where 

Xj = (X1j, X2j, …, Xnj)
T, j = 1, 2, …, p

with n = NOBSX and p = NCHANX. Similarly, define the multichannel time series Y by

Y = (Y1, Y2, …, Yq)

where 

Yj = (Y1j, Y2j, …, Ymj)
T, j = 1, 2, …, q

with m = NOBSY and q = NCHANY. The columns of X and Y correspond to individual channels of multichan-
nel time series and may be examined from a univariate perspective. The rows of X and Y correspond to 
observations of p-variate and q-variate time series, respectively, and may be examined from a multivariate 
perspective. Note that an alternative characterization of a multivariate time series X considers the columns to 
be observations of the multivariate time series while the rows contain univariate time series. For example, see 
Priestley (1981, page 692) and Fuller (1976, page 14). 

Let

be the row vector containing the means of the channels of X. In particular,

where for j = 1, 2, …, p
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Let

be similarly defined. The cross-covariance of lag k between channel i of X and channel j of Y is estimated by

where i = 1, …, p, j = 1, …, q, and K = MAXLAG. The summation on t extends over all possible cross-products 
with N equal to the number of cross-products in the sum. 

Let 

be the row vector consisting of the estimated variances of the channels of X. In particular,

where 

Let 

be similarly defined. The cross-correlation of lag k between channel i of X and channel j of Y is estimated by

Comments
1. For a given lag k, the multichannel cross-covariance coefficient is defined as the array of dimension 

NCHANX by NCHANY whose components are the single-channel cross-covariance coefficients CCV(i, j, k). 
A similar definition holds for the multichannel cross-correlation coefficient.
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2. Multichannel autocovariances and autocorrelations may be obtained by setting the first and second 
time series equal.

Example

Consider the Wolfer Sunspot Data (Y ) (Box and Jenkins 1976, page 530) along with data on northern light 
activity (X1) and earthquake activity (X2) (Robinson 1967, page 204) to be a three-channel time series. Routine 
MCCF is used to computed the cross-covariances and cross-correlations between X1 and Y and between X2 
and Y with lags from -MAXLAG = -10 through lag MAXLAG = 10:

      USE GDATA_INT
      USE MCCF_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDCC, LDCCV, LDX, LDY, MAXLAG, MDCC, MDCCV, &
                NCHANX, NCHANY, NOBSX, NOBSY
      PARAMETER  (IPRINT=3, MAXLAG=10, NCHANX=2, NCHANY=1, NOBSX=100, &
                NOBSY=100, LDCC=NCHANX, LDCCV=NCHANX, LDX=NOBSX, &
                LDY=NOBSY, MDCC=NCHANY, MDCCV=NCHANY)
!
      INTEGER    IMEAN, NCOL, NROW
      REAL       CC(LDCC,MDCC,-MAXLAG:MAXLAG), CCV(LDCCV,MDCCV,- &
                MAXLAG:MAXLAG), RDATA(100,4), X(LDX,NCHANX), &
                XMEAN(NCHANX), XVAR(NCHANX), Y(LDY,NCHANY), &
                YMEAN(NCHANY), YVAR(NCHANY)
!
      EQUIVALENCE (X(1,1), RDATA(1,3)), (X(1,2), RDATA(1,4))
      EQUIVALENCE (Y(1,1), RDATA(1,2))
!
      CALL GDATA (8, RDATA, NROW, NCOL)
!                                 USE Default Option to estimate 
!                                 channel means
!                                 Compute multichannel CCVF and CCF
      CALL MCCF (X, Y, MAXLAG, CC, IPRINT=IPRINT)
!
      END

Output
Channel means of X from MCCF
             1       2
         63.43   97.97

Channel variances of X
          1        2
     2643.7   1978.4

Channel means of Y from MCCF
             46.94

Channel variances of Y
          1383.8

Multichannel cross-covariance between X and Y from MCCF
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Lag K =     -10
    1  -20.51
    2   70.71

Lag K =      -9
    1   65.02
    2   38.14

Lag K =      -8
    1   216.6
    2   135.6

Lag K =      -7
    1   246.8
    2   100.4

Lag K =      -6
    1   142.1
    2    45.0

Lag K =      -5
    1   50.70
    2  -11.81

Lag K =      -4
    1   72.68
    2   32.69

Lag K =      -3
    1   217.9
    2   -40.1

Lag K =      -2
    1   355.8
    2  -152.6

Lag K =      -1
    1   579.7
    2  -213.0 

Lag K =       0
    1   821.6
    2  -104.8

Lag K =       1
    1   810.1
    2    55.2

Lag K =       2
    1   628.4
    2    84.8

Lag K =       3
    1   438.3
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    2    76.0

Lag K =       4
    1   238.8
    2   200.4

Lag K =       5
    1   143.6
    2   283.0

Lag K =       6
    1   253.0
    2   234.4

Lag K =       7
    1   479.5
    2   223.0

Lag K =       8
    1   724.9
    2   124.5

Lag K =       9
    1   925.0
    2   -79.5

Lag K =      10
    1   922.8
    2  -279.3

Multichannel cross-correlation between X and Y from MCCF

Lag K =     -10
   1  -0.01072
   2   0.04274

Lag K =      -9
   1   0.03400
   2   0.02305

Lag K =      -8
   1   0.1133
   2   0.0819

Lag K =      -7
   1   0.1290
   2   0.0607

Lag K =      -6
   1   0.07431
   2   0.02718

Lag K =      -5
   1   0.02651
   2  -0.00714
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Lag K =      -4
   1   0.03800
   2   0.01976

Lag K =      -3
  1   0.1139
  2  -0.0242

Lag K =      -2
  1   0.1860
  2  -0.0923

Lag K =      -1
  1   0.3031
  2  -0.1287

Lag K =       0
  1   0.4296
  2  -0.0633

Lag K =       1
  1   0.4236
  2   0.0333

Lag K =       2
  1   0.3285
  2   0.0512

Lag K =       3
  1   0.2291
  2   0.0459

Lag K =       4
  1   0.1248
  2   0.1211

Lag K =       5
  1   0.0751
  2   0.1710

Lag K =       6
  1   0.1323
  2   0.1417

Lag K =       7
  1   0.2507
  2   0.1348

Lag K =       8
  1   0.3790
  2   0.0752

Lag K =       9
  1   0.4836
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  2  -0.0481

Lag K =      10
  1   0.4825
  2  -0.1688
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ARMME

Computes method of moments estimates of the autoregressive parameters of an ARMA model.

Required Arguments
MAXLAG — Maximum lag of the sample autocovariances of the time series W.  (Input) 

MAXLAG must be greater than or equal to NPAR + NPMA.
ACV — Vector of length MAXLAG + 1 containing the sample autocovariances of W.  (Input) 

The k-th sample autocovariance of W is denoted by ACV(k), k = 0, 1, …, MAXLAG.
NPMA — Number of moving average parameters.  (Input) 

NPMA must be greater than or equal to zero.
NPAR — Number of autoregressive parameters.  (Input) 

NPAR must be greater than or equal to one.
PAR — Vector of length NPAR containing the estimates of the autoregressive parameters.  (Output)

Optional Arguments
IPRINT — Printing option.  (Input)

Default: IPRINT = 0.

FORTRAN 90 Interface
Generic: CALL ARMME (MAXLAG, ACV, NPMA, NPAR, PAR [, …])
Specific: The specific interface names are S_ARMME and D_ARMME.

FORTRAN 77 Interface
Single: CALL ARMME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR)
Double: The double precision name is DARMME.

more...

IPRINT Action

0 No printing is performed.

1 Prints the estimates of the autoregressive 
parameters.
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Description

Routine ARMME determines the autoregressive parameters of an ARMA process using the extended 
Yule-Walker equations given the K = MAXLAG autocovariances σ(k) for k = 1, …, K.

Suppose the time series {Wt} is generated by an ARMA(p, q) model

Wt= θ0 + ɸ1Wt−1 + … + ɸpWt−p + At − θ1At−1 − … − θqAt−q, t ∈{0, ± 1, ±2, …}

where p = NPAR and q = NPMA. Since Wt depends only on the innovations At that have occurred up through 
time t, the p autoregressive parameters are related to the autocovariances of lags k = q + 1, …, q + p by the set 
of equations

σ(q + 1) = ɸ1σ(q) + ɸ2σ(q - 1) + … + ɸpσ(q - p + 1)

σ(q + 2) = ɸ1σ(q + 1) + ɸ2σ(q) + … + ɸpσ(q - p + 2)

.

.

.

σ(q + p) = ɸ1σ(q + p - 1) + ɸ2σ(q + p - 2) + … + ɸpσ(q)

This general system of linear equations is called the extended Yule-Walker equations. For q = 0, the system is 
referred to as the Yule-Walker equations. The equivalent matrix version is given by

Σɸ = σ
where

The overall constant θ0 is defined by

where μ is the mean of Wt.

In practice, the autocovariance function is estimated by the sample autocovariances 
ARMME         Chapter 8: Time Series Analysis and Forecasting      772



for k = 1, …, K. The solution of the extended Yule-Walker equations using these sample moments yields the 
method of moments estimates of the autoregressive parameters. The overall constant may then be estimated 
given an estimate of μ. Note that the extended Yule-Walker equations may be analogously defined in terms 
of autocorrelations instead of autocovariances. See Box and Jenkins (1976, pages 189–191) for some com-
ments concerning the initial estimation of autoregressive parameters using the Yule-Walker equations.

Comments
1. Workspace may be explicitly provided, if desired, by use of A2MME/DA2MME. The reference is:

CALL A2MME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR, A, FACT, IPVT, WK)
The additional arguments are as follows:

A — Work vector of length equal to NPAR2.

FACT — Work vector of length equal to NPAR2.

IPVT — Work vector of length equal to NPAR.

WK — Work vector of length equal to NPAR.
2. Informational error

3. The sample autocovariance function may be obtained using the routine ACF.
4. The first element of ACV must be the sample variance of the time series.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Routine ARMME is invoked first to compute the method of moments estimates for the 
autoregressive parameters of an ARMA(2, 0) model given the sample autocovariances computed from rou-
tine ACF. Then, ARMME is invoked a second time to compute estimated autoregressive parameters for an 
ARMA(2, 1) model.

      USE UMACH_INT
      USE GDATA_INT
      USE ACF_INT
      USE ARMME_INT

      IMPLICIT   NONE
      INTEGER    IMEAN, IPRINT, ISEOPT, MAXLAG, NOBS
      PARAMETER  (IMEAN=1, IPRINT=1, ISEOPT=0, MAXLAG=4, NOBS=100)
!
      INTEGER    NCOL, NOUT, NPAR, NPMA, NROW
      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), PAR(2), RDATA(176,2), &
                SEAC(1), W(100), WMEAN

Type Code Description

4 1 The problem is ill-conditioned. Transformation of the data or increased pre-
cision in the calculations may be appropriate.
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!
      EQUIVALENCE (W(1), RDATA(22,2))
!
      CALL UMACH (2, NOUT)
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Compute sample ACV
      CALL ACF (W, MAXLAG, AC, ACV=ACV)
!                                 Compute estimates of autoregressive
!                                 parameters for ARMA(2,0) model
!                                 (Box and Jenkins, page 83)
      WRITE (NOUT,*) 'ARMA(2,0) Model'
      NPAR = 2
      NPMA = 0
      CALL ARMME (MAXLAG, ACV, NPMA, NPAR, PAR, IPRINT=IPRINT)
!                                 Compute estimates of autoregressive
!                                 parameters for ARMA(2,1) model
      WRITE (NOUT,*) ' '
      WRITE (NOUT,*) 'ARMA(2,1) Model'
      NPMA = 1
      CALL ARMME (MAXLAG, ACV, NPMA, NPAR, PAR, IPRINT=IPRINT)
!
      END

Output

ARMA(2,0) Model

  Output PAR
    1       2
1.318  -0.635

ARMA(2,1) Model

  Output PAR
    1       2
1.244  -0.575
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MAMME

Computes method of moments estimates of the moving average parameters of an ARMA model.

Required Arguments
MAXLAG — Maximum lag of the sample autocovariances of the time series W.  (Input) 

MAXLAG must be greater than or equal to NPAR + NPMA.
ACV — Vector of length MAXLAG + 1 containing the sample autocovariances of W.  (Input) 

The k-th sample autocovariance of W is denoted by ACV(k), k = 0, 1, …, MAXLAG.
PAR — Vector of length NPAR containing the estimates of the autoregressive parameters.  (Input)
PMA — Vector of length NPMA containing the estimates of the moving average parameters.  (Output)

Optional Arguments
IPRINT — Printing option.  (Input)

Default: IPRINT = 0.

NPAR — Number of autoregressive parameters.  (Input) 
NPAR must be greater than or equal to zero.
Default: NPAR = size (PAR,1).

RELERR — Stopping criterion for use in the nonlinear equation solver.  (Input) 
If RELERR = 0.0, then the default value RELERR = 100.0 * AMACH(4) is used. See the documentation for 
routine AMACH in the Reference Material.
Default: RELERR = 0.0.

MAXIT — The maximum number of iterations allowed in the nonlinear equation solver.  (Input) 
If MAXIT = 0, then the default value MAXIT = 200 is used.
Default: MAXIT = 0.

NPMA — Number of moving average parameters.  (Input) 
NPMA must be greater than or equal to one.
Default: NPMA = size (PMA,1).

FORTRAN 90 Interface
Generic: CALL MAMME (MAXLAG, ACV, PAR, PMA [, …])
Specific: The specific interface names are S_MAMME and D_MAMME.

FORTRAN 77 Interface
Single: CALL MAMME (MAXLAG, ACV, IPRINT, NPAR, PAR, RELERR, MAXIT, NPMA, PMA)
Double: The double precision name is DMAMME.

IPRINT Action

0 No printing is performed.

1 Prints the estimates of the moving average parameters.
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Description

Routine MAMME estimates the moving average parameters of an ARMA process based on a system of nonlin-
ear equations given K = MAXLAG autocovariances σ(k) for k = 1, …, K and p = NPAR autoregressive 
parameters ɸi for i = 1, …, p.

Suppose the time series {Wt} is generated by an ARMA(p,q) model

where p = NPAR and q = NPMA Let 

then the autocovariances of the derived moving average process Wt = θ(B)At are given by

where σ(k) denotes the autocovariance function of the original Wt process. The iterative procedure for deter-
mining the moving average parameters is based on the relation

Let = ( 0, 1, …, q)T and f = (f0, f1, …, fq)T where

and 

Then, the value of  at the (i + 1)-th iteration is determined by

i+1 = i − (T i)−1f i

The estimation procedure begins with the initial value

and terminates at iteration i when either ∥f i∥ is less than RELERR or i equals MAXIT. The moving average 

parameters are determined from the final estimate of  by setting θj = - j/ 0 for j = 1, …, q. 
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The random shock variance is determined according to

In practice, both the autocovariances and the autoregressive parameters are estimated. The solution of the 
system of nonlinear equations using these sample moments yields the method of moments estimates of the 
moving average parameters and the random shock variance. Note that autocorrelations ρ(k) may be used 
instead of autocovariances σ(k) to compute σʹ(k) for k = 1, …, K. See Box and Jenkins (1976, pages 203–204) 
for additional motivation concerning the initial estimation of moving average parameters using a 
Newton-Raphson algorithm.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2MME/DM2MME. The reference is:

CALL M2MME (MAXLAG, ACV, IPRINT, NPAR, PAR, RELERR, MAXIT, NPMA, PMA, PARWK, ACVMOD, 
TAUINI, TAU, FVEC, FJAC, R, QTF, WKNLN)

The additional arguments are as follows:

PARWK — Work vector of length equal to NPAR + 1.

ACVMOD — Work vector of length equal to NPMA + 1.

TAUINI — Work vector of length equal to NPMA + 1.

TAU — Work vector of length equal to NPMA + 1.

FVEC — Work vector of length equal to NPMA + 1.

FJAC — Work vector of length equal to (NPMA + 1)2.

R — Work vector of length equal to (NPMA + 1) * (NPMA + 2)/2.

QTF — Work vector of length equal to NPMA + 1.

WKNLN — Work vector of length equal to 5 * (NPMA + 1).
2. Informational error

3. The sample autocovariance function may be computed using the routine ACF.
4. The autoregressive parameter estimates may be computed using the routine ARMME.

Type Code Description

4 1 The nonlinear equation solver did not converge to RELERR within MAXIT 
iterations.
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Example

Consider the Wölfer Sunspot Data (Box and Jenkins 1976, page 530) consisting of the number of sunspots 
observed each year from 1770 through 1869. Routine MAMME is invoked to compute the method of moments 
estimates for the moving average parameter of an ARMA(2,1) model given the sample autocovariances com-
puted from routine ACF and given the estimated autoregressive parameters computed from routine ARMME.

      USE GDATA_INT
      USE ACF_INT
      USE ARMME_INT
      USE MAMME_INT

      IMPLICIT   NONE
      INTEGER    IMEAN, IPRINT, ISEOPT, LDX, MAXLAG, NDX, NOBS, &
                NOPRIN, NPAR, NPMA
      PARAMETER  (IMEAN=1, IPRINT=1, ISEOPT=0, LDX=176, MAXLAG=4, &
                NDX=2, NOBS=100, NOPRIN=0, NPAR=2, NPMA=1)
!
      INTEGER    MAXIT, NCOL, NROW
      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), PAR(2), PMA(1), &
                 RDATA(LDX,NDX), RELERR, SEAC(1), W(100), WMEAN
!
      EQUIVALENCE (W(1), RDATA(22,2))
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Compute sample ACV
      CALL ACF (W, MAXLAG, AC, ACV=ACV)
!                                 Compute estimates of autoregressive
!                                 parameters for ARMA(2,1) model
      CALL ARMME (MAXLAG, ACV, NPMA, NPAR, PAR)
!                                 Convergence parameters
!                                 Compute estimate of moving average
!                                 parameter for ARMA(2,1) model
      CALL MAMME (MAXLAG, ACV, PAR, PMA, IPRINT=IPRINT)
!
      END

Output

Output PMA from MAMME/M2MME
-0.1241
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NSPE

Computes preliminary estimates of the autoregressive and moving average parameters of an ARMA model.

Required Arguments
W — Vector of length NOBS containing the stationary time series.  (Input)
CNST — Estimate of the overall constant.  (Output)
PAR — Vector of length NPAR containing the autoregressive parameter estimates.  (Output)
PMA — Vector of length NPMA containing the moving average parameter estimates.  (Output)
AVAR — Estimate of the random shock variance.  (Output)

Optional Arguments
NOBS — Number of observations in the stationary time series W.  (Input) 

NOBS must be greater than NPAR + NPMA + 1.
Default: NOBS = size (W,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

IMEAN — Option for centering the time series X.  (Input)
Default: IMEAN = 1

WMEAN — Constant used to center the time series X.  (Input, if IMEAN = 0; output, 
if IMEAN = 1)
Default: WMEAN = 0.0.

more...

IPRINT Action

0 No printing is performed.

1 Prints the mean of the time series, the estimate of the 
overall constant, the estimates of the autoregressive 
parameters, the estimates of the moving average 
parameters, and the estimate of the random shock 
variance.

IMEAN Action

0 WMEAN is user specified.

1 WMEAN is set to the arithmetic mean of X.
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NPAR — Number of autoregressive parameters.  (Input) 
NPAR must be greater than or equal to zero.
Default: NPAR = size (PAR,1).

NPMA — Number of moving average parameters.  (Input) 
NPMA must be greater than or equal to zero.
Default: NPMA = size (PMA,1).

RELERR — Stopping criterion for use in the nonlinear equation solver.  (Input) 
If RELERR = 0.0, then the default value RELERR = 100.0 * AMACH(4) is used. See the documentation for 
routine AMACH in the Reference Material.
Default: RELERR = 0.0.

MAXIT — The maximum number of iterations allowed in the nonlinear equation solver.  (Input) 
If MAXIT = 0, then the default value MAXIT = 200 is used.
Default: MAXIT = 0.

FORTRAN 90 Interface
Generic: CALL NSPE (W, CNST, PAR, PMA, AVAR [, …])
Specific: The specific interface names are S_NSPE and D_NSPE.

FORTRAN 77 Interface
Single: CALL NSPE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA, RELERR, MAXIT, CNST, PAR, 

PMA, AVAR)
Double: The double precision name is DNSPE.

Description

Routine NSPE computes preliminary estimates of the parameters of an ARMA process given a sample of 
n = NOBS observations {Wt} for t = 1, 2, …, n. 

Suppose the time series {Wt} is generated by an ARMA(p,q) model of the form

ɸ(B)Wt= θ0 + θ(B)At t ∈ {0, ±1, ±2, …}

where B is the backward shift operator,

ɸ(B) = 1 − ɸ1(B) − ɸ2(B)2 − … − ɸp(B)p

θ (B) = 1 − θ1(B) − θ2(B)2 − … − θq(B)q

p = NPAR and q = NPMA. Let

be the estimate of the mean of the time series {Wt} where
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The autocovariance function σ(k) is estimated by

where K = p + q. Note that

is an estimate of the sample variance.

Given the sample autocovariances, the routine ARMME is used to compute the method of moments estimates 
of the autoregressive parameters using the extended Yule-Walker equations

where

The overall constant θ0 is estimated by

The moving average parameters are estimated using the routine MAMME. Let

then the autocovariances of the derived moving average process

are estimated by

The iterative procedure for determining the moving average parameters is based on the relation 
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where σ(k) denotes the autocovariance function of the original Wt process.

Let = ( 0, 1, …, q)T and f = (f0, f1, …, fq)T where

and

Then, the value of  at the (i + 1)-th iteration is determined by

The estimation procedure begins with the initial value

and terminates at iteration i when either ∥f i∥ is less than RELERR or i equals MAXIT. The moving average 

parameter estimates are obtained from the final estimate of  by setting

The random shock variance is estimated by

See Box and Jenkins (1976, pages 498–500) for a description of a similar routine.

Comments
1. Workspace may be explicitly provided, if desired, by use of N2PE/DN2PE. The reference is:

CALL N2PE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA, RELERR, MAXIT, CONST, PAR, PMA, 
AVAR, ACV, PARWK, AVCMOD, TAUINI, TAU, FVEC, FJAC, R, QTF, WKNLN, A, FAC, IPVT, WKARMM)

The additional arguments are as follows:

ACV — Work vector of length equal to NPAR + NPMA + 1.

PARWK — Work vector of length equal to NPAR + 1.
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ACVMOD — Work vector of length equal to NPMA + 1.

TAUINI — Work vector of length equal to NPMA + 1.

TAU — Work vector of length equal to NPMA + 1.

FVEC — Work vector of length equal to NPMA + 1.

FJAC — Work vector of length equal to (NPMA + 1)2.

R — Work vector of length equal to (NPMA + 1) * (NPMA + 2)/2.

QTF — Work vector of length equal to NPMA + 1.

WKNLN — Work vector of length equal to 5 * (NPMA + 1).

A — Work vector of length equal to NPAR2.

FAC — Work vector of length equal to NPAR2.

IPVT — Work vector of length equal to NPAR.

WKARMM — Work vector of length equal to NPAR.
2. Informational error

3. The value of WMEAN is used in the computation of the sample autocovariances of W in the process of 
obtaining the preliminary autoregressive parameter estimates. Also, WMEAN is used to obtain the value 
of CNST.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Routine NSPE is used to compute preliminary estimates

for the following ARMA (2, 1) model

where the errors At are independently distributed each normal with mean zero and variance

Type Code Description

4 1 The nonlinear equation solver did not converge to RELERR within MAXIT 
iterations.
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      USE GDATA_INT
      USE NSPE_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDX, NDX, NOBS, NOPRIN, NPAR, NPMA
      PARAMETER  (IPRINT=1, LDX=176, NDX=2, NOBS=100, NOPRIN=0, NPAR=2, &
                NPMA=1)
!
      INTEGER    IMEAN, MAXIT, NCOL, NROW
      REAL       AVAR, CNST, PAR(NPAR), PMA(NPMA), RDATA(LDX,NDX), &
                RELERR, W(NOBS), WMEAN
!
      EQUIVALENCE (W(1), RDATA(22,2))
!                                  Wolfer Sunspot Data for
!                                  years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL )
!                                 USE Default Convergence parameters
!                                 Compute preliminary parameter
!                                 estimates for ARMA(2,1) model
      CALL NSPE (W, CNST, PAR, PMA, AVAR, IPRINT=IPRINT)
!
      END

Output

Results from NSPE/N2PE

WMEAN =     46.9760
CONST =     15.5440
AVAR  =     287.242

      PAR
     1       2
 1.244  -0.575

  PMA
-0.1241
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NSLSE

Computes least-squares estimates of parameters for a nonseasonal ARMA model.

Required Arguments
W — Vector of length NOBS containing the stationary time series.  (Input)
PAR — Vector of length NPAR containing the autoregressive parameters.(Input/ Output)

On input, PAR contains the preliminary estimate. On output, PAR contains the final estimate.
LAGAR — Vector of length NPAR containing the order of the autoregressive parameters.  (Input) 

The elements of LAGAR must be greater than or equal to one.
PMA — Vector of length NPMA containing the moving average parameters.(Input/Output) 

On input, PMA contains the preliminary estimate. On output, PMA contains the final estimate.
LAGMA — Vector of length NPMA containing the order of the moving average parameters.  (Input) 

The elements of LAGMA must be greater than or equal to one.
MAXBC — Maximum length of backcasting.  (Input) 

MAXBC must be greater than or equal to zero.
CNST — Estimate of the overall constant.  (Output) 

For IMEAN = 0, CNST is set to zero. For IMEAN = 1, 
CNST = WMEAN * (1 - PAR(1) - PAR(2) - … - PAR(NPAR)).

COV — NP by NP variance-covariance matrix of the estimates of the parameters where 
NP = IMEAN + NPAR + NPMA.  (Output) 
The ordering of variables in COV is WMEAN (if defined), PAR, and PMA. NP must 1 
or more.

AVAR — Estimate of the random shock variance.  (Output) 
AVAR = (A(1)2 + … + A(NA)2)/(NOBS - IMEAN - NPAR - NPMA).

Optional Arguments
NOBS — Number of observations in the stationary time series W.  (Input) 

NOBS must be greater than IARDEG + IMADEG where IARDEG = max(LAGAR(i)) and 
IMADEG = max(LAGMA(j)).
Default: NOBS = size (W,1).

more...
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IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

IMEAN — Option for centering the time series W.  (Input)
Default: IMEAN = 0.

WMEAN — Estimate of the mean of the time series W.   (Input/Output, if IMEAN = 1; not used if 
IMEAN = 0) 
For IMEAN = 1, on input, WMEAN contains the preliminary estimate, on output, WMEAN contains the 
final estimate.
Default: WMEAN = 0.0.

NPAR — Number of autoregressive parameters.  (Input) 
NPAR must be greater than or equal to zero.
Default: NPAR = size (PAR,1).

NPMA — Number of moving average parameters.  (Input) 
NPMA must be greater than or equal to zero.
Default: NPMA = size (PMA,1).

TOLBC — Tolerance level used to determine convergence of the backcast algorithm.  (Input) 
Backcasting terminates when the absolute value of a backcast is less than TOLBC. Typically, TOLBC is 
set to a fraction of WSTDEV where WSTDEV is an estimate of the standard deviation of the time series. If 
TOLBC = 0.0, then TOLBC = 0.01 * WSTDEV is used.
Default: TOLBC = 0.0.

TOLSS — Tolerance level used to determine convergence of the nonlinear least-squares algorithm.  (Input) 
Default: TOLSS = 0.0.
TOLSS represents the minimum relative decrease in sum of squares between two iterations required to 
determine convergence. Hence, TOLSS must be greater than or equal to zero and less than one where 
TOLSS = 0.0 specifies the default value is to be used. The default value is

max{10−10, EPS2∕3} for single precision and 

max{10−20, EPS2∕3} for double precision
where EPS = AMACH(4). See the documentation for routine AMACH in the Reference Material.

IPRINT Action

0 No printing is performed.

1 Prints the least-squares estimates of the parameters, 
their associated standard errors, and the residual sum of 
squares at the final iteration.

2 Prints the least-squares estimates of the parameters and 
the residual sum of squares at each iteration and at the 
final iteration. Print the standard errors of the parame-
ters at the final iteration.

IMEAN Action

0 W is not centered.

1 W is centered about WMEAN. Centering the time series W 
about WMEAN is equivalent to inclusion of the overall 
constant in the model.
NSLSE         Chapter 8: Time Series Analysis and Forecasting      786



LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

NA — Number of residuals computed (including backcasts).  (Output) 
If NB values of the time series are backcast, then NA = NOBS - IARDEG + NB.

A — Vector of length NOBS - IARDEG + MAXBC containing the residuals (including backcasts) at the final 
parameter estimate point in the first NA locations.  (Output)

FORTRAN 90 Interface
Generic: CALL NSLSE (W, PAR, LAGAR, PMA, LAGMA, MAXBC, CNST, COV, AVAR [, …])
Specific: The specific interface names are S_NSLSE and D_NSLSE.

FORTRAN 77 Interface
Single: CALL NSLSE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA, 

MAXBC, TOLBC, TOLSS, CNST, COV, LDCOV, NA, A, AVAR)
Double: The double precision name is DNSLSE.

Description

Routine NSLSE computes least-squares estimates of parameters for a nonseasonal ARMA model given a 
sample of n = NOBS observations {Wt} for t = 1, 2, …, n. 

Suppose the time series {Wt} is generated by a nonseasonal ARMA model of the form

where B is the backward shift operator, μ is the mean of Wt,

with p = NPAR and q = NPMA. Without loss of generality, we assume

so that the nonseasonal ARMA model is of order (pʹ, qʹ) where pʹ = lɸ(p) and qʹ = lθ(q). Note that the usual 
hierarchal model assumes

Consider the sum of squares function
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where

and T is the backward origin. The random shocks {At} are assumed to be independent and identically 
distributed

random variables. Hence, the log-likelihood function is given by

where f(,μ,ɸ,θ) is a function of μ, ɸ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Wt and At required to initialize 
the model. The method of selecting these initial values usually introduces transient bias into the model (Box 
and Jenkins 1976, pages 210–211). For T =∞, this dependency vanishes, and the estimation problem concerns 
maximization of the unconditional log-likelihood function. Box and Jenkins (1976, page 213) argue that

dominates

The parameter estimates that minimize the sum of squares function are called least-squares estimates. For large 
n, the unconditional least-squares estimates are approximately equal to the maximum likelihood estimates.

In practice, a finite value of T will enable sufficient approximation of the unconditional sum of squares func-
tion. The values of [At] needed to compute the unconditional sum of squares are computed iteratively with 
initial values of Wt obtained by back-forecasting. The residuals (including backcasts), estimate of random 
shock variance, and covariance matrix of the final parameter estimates are also computed. Note that applica-
tion of an appropriate transformation using routine BCTR followed by differencing using routine DIFF 
allows for fitting of nonseasonal ARIMA models. The algorithm for nonseasonal ARIMA models is devel-
oped in Chapter 7 of Box and Jenkins (1976). The extension to multiplicative seasonal ARIMA models is 
given in Box and Jenkins (1976, pages 500–504).

Comments
1. Workspace may be explicitly provided, if desired, by use of N2LSE/DN2LSE. The reference is:
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CALL N2LSE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA, MAXBC, 
TOLBC, TOLSS, CNST, COV, LDCOV, NA, A, AVAR, XGUESS, XSCALE, FSCALE, X, FVEC, FJAC, 
LDFJAC, RWKUNL, IWKUNL, WKNSRE, AI, FCST)

The additional arguments are as follows:

XGUESS — Work vector of length NP.

XSCALE — Work vector of length NP.

FSCALE — Work vector of length M.

X — Work vector of length NP.

FVEC — Work vector of length M.

FJAC — Work vector of length M * NP.

LDFJAC — Integer scalar equal to M.

RWKUNL — Work vector of length 10 * NP + 2 * M - 1.

IWKUNL — Work vector of length NP.

WKNSRE — Work vector of length NOBS + MAXBC.

AI — Work vector of length IMADEG.

FCST — Work vector of length MAXBC.
2 Informational error

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Routine NSPE is first invoked to compute preliminary estimates for an ARMA(2, 1) 
model. Then, NSLSE is invoked with the preliminary estimates as input in order to compute the least-squares 
estimates

for the ARMA(2, 1) model

Type Code Description

3 1 Least-squares estimation of the parameters has failed to converge. Increase 
MAXBC and/or TOLBC and/or TOLSS. The estimates of the parameters at the 
last iteration may be used as new starting values.
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where the errors At are independently distributed each normal with mean zero and variance 

Note at the end of the output a warning error appears. Most of the time this error message can be ignored. 
There are three general reasons this error can occur.

1. Convergence was declared using the criterion based on TOLSS, but the gradient of the residual sum of 
squares function was nonzero. This occurred in this example. Either the message can be ignored or 
TOLSS can be reduced to allow more iterations and a slightly more accurate solution.

2. Convergence is declared based on the fact that a very small step was taken, but the gradient of the 
residual sum of squares function was nonzero. The message can usually be ignored. However, some-
times the algorithm is making very slow progress and is not near a minimum.

3. Convergence is not declared after 100 iterations.

Examination of the history of iterations using IPRINT = 2 and trying a smaller value for TOLSS can help you 
determine what caused the error message.

      USE GDATA_INT
      USE NSPE_INT
      USE NSLSE_INT

      IMPLICIT   NONE
      INTEGER    IARDEG, IMEAN, LDCOV, LDX, MAXBC, MDX, NOBS, NP, &
                 NPAR, NPMA
      PARAMETER  (IARDEG=2, IMEAN=1, LDX=176, MAXBC=10, MDX=2, &
                 NOBS=100, NPAR=2, NPMA=1, NP=NPAR+NPMA+IMEAN, &
                 LDCOV=NP)
!
      INTEGER    IPRINT, LAGAR(NPAR), LAGMA(NPMA), MAXIT, NA, NCOL, &
                 NROW
      REAL       A(NOBS-IARDEG+MAXBC), AVAR, CNST, COV(LDCOV,NP), &
                 PAR(NPAR), PMA(NPMA), RELERR, TOLBC, TOLSS, W(NOBS), &
                 WMEAN, X(LDX,MDX)
!
      EQUIVALENCE (W(1), X(22,2))
!
      DATA LAGAR/1, 2/, LAGMA/1/
!                                  Wolfer Sunspot Data for
!                                  years 1770 through 1869
      CALL GDATA (2, X, NROW, NCOL)
!                                 USE Default Convergence parameters
!                                 Compute preliminary parameter
!                                 estimates for ARMA(2,1) model
      IPRINT = 1
      CALL NSPE (W, CNST, PAR, PMA, AVAR, IPRINT=IPRINT, WMEAN=WMEAN)
!
      TOLBC  = 0.0
      TOLSS  = 0.125
      IPRINT = 2
!
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      CALL NSLSE (W, PAR, LAGAR, PMA, LAGMA, MAXBC, CNST, COV, &
                 AVAR, IMEAN=IMEAN,  WMEAN=WMEAN, TOLSS=TOLSS, & 
                 IPRINT=IPRINT)
!
      END

Output

Results from NSPE/N2PE

WMEAN =     46.9760
CONST =     15.5440
AVAR  =     287.242

     PAR
    1       2
1.244  -0.575

PMA
-0.1241
----------------------------------------------------------------------
Iteration       1

WMEAN =   52.638233185

     PAR
    1       2
1.264  -0.606

  PMA
-0.1731

Residual SS (including backcasts) =  23908.66210937500
Number of residuals               =     108
Number of backcasts               =      10
----------------------------------------------------------------------
Iteration       2

WMEAN =   54.756504059

     PAR
    1       2
1.360  -0.688

  PMA
-0.1411

Residual SS (including backcasts) =  23520.71484375000
Number of residuals               =     108
Number of backcasts               =      10
----------------------------------------------------------------------
Final Results, Iteration       3

Parameter         Estimate            Std. Error            t-ratio
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WMEAN             53.9187279            5.5178852            9.7716293

                                 PAR
1                 1.3925704            0.0960639           14.4962845
2                -0.7329484            0.0866115           -8.4624796

                                 PMA
1                -0.1375125            0.1223797           -1.1236545

CNST =         18.3527489
AVAR  =        243.4830170

Residual SS (including backcasts) =      23374.3691406
Number of residuals               =        108

Residual SS (excluding backcasts) =      20931.7519531
Number of residuals               =         98

*** WARNING  ERROR 1 from NSLSE.  Least squares estimation of the parameters
***          has failed to converge.  Increase MAXBC and/or TOLBC and/or
***          TOLSS.  The estimates of the parameters at the last iteration
***          may be used as new starting values.
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MAX_ARMA

Exact maximum likelihood estimation of the parameters in a univariate ARMA (auto-regressive, moving 
average) time series model. 

Required Arguments
W — Vector of length NOBS containing the stationary time series.  (Input)
PAR — Vector of length NPAR. On input PAR contains initial estimates for the autoregressive parameters. 

On output these are replaced by the exact maximum likelihood estimates for the autoregressive 
parameters.  (Input/Output)

PMA — Vector of length NPMA. On input PMA contains initial estimates for the moving average parame-
ters. On output these are replaced by the exact maximum likelihood estimates for the moving average 
parameters.  (Input/Output)

Optional Arguments
NOBS — Number of values in the time series.  (Input)

Default: NOBS = size(W,1).
NPAR — Number of autoregressive parameters.   (Input)

Default: NPAR =  size(PAR,1).
NPMA — Number of moving average parameters.  (Input)

Default: NPMA =  size(PMA,1).
WMEAN — Estimate of the mean of the time series W.  (Input)

Default: WMEAN = arithmetic mean of w.
IPRINT — Printing option.  (Input)

Default: IPRINT = 0.
MAXIT — Maximum number of estimation iterations. (Input)

Default: MAXIT = 500.
CNST — Estimate of the constant term θ0 in the model.  (Output)

AVAR — Estimate of the noise variance.  (Output)
F — Value of –2*(ln(likelihood)) for fitted model.  (Output)
EWS — Array of length NOBS containing the residuals of the requested ARMA fit.  (Output)

FORTRAN 90 Interface
Generic: CALL MAX_ARMA (W, PAR, PMA [, …])
Specific: The specific interface names are S_MAX_ARMA and D_MAX_ARMA.

IPRINT Action

0 No printing

1 Prints final results only

2 Prints intermediate and final 
results
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Description

Routine MAX_ARMA is derived from the maximum likelihood estimation algorithm described by Akaike, 
Kitagawa, Arahata and Tada (1979), and the XSARMA routine published in the TIMSAC-78 Library.

Using the notation developed in the introduction to this chapter, the stationary time series Wt with mean μ 
can be represented by the nonseasonal autoregressive moving average (ARMA) model by the following 
relationship:

ɸ(B)(Wt − μ) = θ(B)At

where

B is the backward shift operator defined by 

and 

MAX_ARMA estimates the coefficients 

and 

using maximum likelihood estimation. 

MAX_ARMA checks the initial estimates for the autoregressive coefficients to ensure that they represent a sta-
tionary series. If 

are the initial estimates for a stationary series then all (complex) roots of the following polynomial will fall 
outside the unit circle:

MAX_ARMA computes the roots of this polynomial for the initial estimates supplied in the vector PAR. If these 
estimates represent a non-stationary series, MAX_ARMA issues a warning message and replaces PAR with ini-
tial values that are stationary.
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Initial estimates can be obtained using NSPE and NSLSE procedures for calculating the autoregressive and 
moving average parameters of a series.

MAX_ARMA also validates its final estimates to ensure that they too represent a stationary series. This is done 
to guard against the possibility that MAX_ARMA converged to a non-stationary solution. If non-stationary esti-
mates are encountered, MAX_ARMA quits and issues a fatal message. Routines IERCD and N1RTY (see the 
Reference Material section of this manual) can be used to verify that the stationary condition was met.

The ARMA process

ɸ(B)(Wt − μ) = θ(B)At

can equivalently be written in the form

where the constant term θ0 is defined by .

MAX_ARMA estimates μ always by the sample mean of the series.

For model selection, the ARMA model with the minimum value for AIC might be preferred 

AIC = F+2p

where p = NPAR + NPMA.

Comments

Informational errors

Example
Consider the Wolfer Sunspot Data (Box and Jenkins, 1976, page 530) consisting of the number of sunspots 
observed each year from 1770 through 1869. In this example, MAX_ARMA is used to fit the following ARMA 
model:

For these data, MAX_ARMA calculated the following estimates:

Type Code Description

3 1 Input values for autoregressive coefficients are invalid. They do not repre-
sent a stationary time series. New values have been generated. 

4 1 Maximum number of iterations exceeded. Try increasing MAXIT or use dou-
ble precision. 

4 2 Estimation process converged to a non-stationary solution.
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Letting , we can obtain the following equivalent representations:

      USE MAX_ARMA_INT
      USE GDATA_INT
      USE NSPE_INT
      IMPLICIT NONE
!                                  SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    I
      REAL(KIND(1E0)) PAR(2), PMA(1), AVAR, F
      REAL(KIND(1E0)) X(176,2)
      REAL(KIND(1E0)) CONST
      INTEGER         NCOL, NROW
!                                  Get Wolfer Sunspot Data
      CALL GDATA(2,X,NROW,NCOL)
!                                  Get preliminary PAR and PMA estimates
      CALL NSPE(X(22:,2),CONST, PAR, PMA, AVAR, NOBS=100)
!                                  TEST #1: DOCUMENT EXAMPLE
      CALL MAX_ARMA(x(22:,2), PAR, PMA, nobs=100, MAXIT=12000, &
                    AVAR=AVAR, F=F)
      WRITE(*,99994) SIZE(PAR)
      WRITE (*,99996) (PAR(I),I=1,SIZE(PAR))
      WRITE(*,99995) SIZE(PMA)
      WRITE(*,99996) (PMA(I),I=1,SIZE(PMA))

      WRITE(*,*) "-2*LN(MAXIMUM LOG LIKELIHOOD) = ", F
      WRITE(*,*) "WHITE NOISE VARIANCE = ", AVAR
99994 FORMAT(//1H ,5('-'),2X,'FINAL PAR(I)',2X,'NPAR=',I3,2X,5('-'))
99995 FORMAT(//1H ,5('-'),2X,'FINAL PMA(I)',2X,'NPMA =',I3,2X,5('-'))
99996 FORMAT(1H ,5E20.10,/(1H ,5E20.10))

      END

Output
 -----  FINAL PAR(I)  NPAR=  2  -----
     0.1224243164E+01   -0.5600821972E+00

 -----  FINAL PMA(I)  NPMA =  1  -----
    -0.3847315013E+00
 -2*LN(MAXIMUM LOG LIKELIHOOD) =  539.5841
 WHITE NOISE VARIANCE =  214.50406
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REG_ARIMA

Fits a univariate, non-seasonal ARIMA time series model with the inclusion of one or more regression 
variables. 

Required Arguments
Y — Array of length NOBS containing the time series.  (Input)
IMODEL — Array of length 3 containing the model order parameters.  (Input)

If p = 0 and q = 0, only regression is performed.
PARMA —Array of length 1 + p + q containing the estimated autoregressive (AR) and moving average 

(MA) parameters of the ARIMA(p,d,q) model. PARMA(1) is the estimated AR constant parameter, 
PARMA(2: (p+1)) contains the AR parameter estimates and PARMA((p+2):), contains the MA parameter 
estimates.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size(Y).
X — Array of size NOBS by K containing the regression data, where K = size(X,2) is the number of user 

supplied regression variables.  (Input)
Specific columns in X may be selected using the INDX argument. Otherwise, all columns of X are used.
Default: No regression variables are included.

XLEAD — Array of size MXLEAD by K containing the regression data to be used in obtaining forecasts, 
where K = size(X,2) is the number of user supplied regression variables.  (Input)
Specific columns in XLEAD may be selected using the INDX argument. Otherwise all columns of 
XLEAD are used.
Note: If MXLEAD > 0 and  optional argument X is present, XLEAD is required.

INDX — Index array containing the column numbers in X and XLEAD that are to be used for the regression 
variables.  (Input)
Default: All columns of X and XLEAD are used.

more...

IMODEL(I) Description

1 Order of the autoregressive part, p, where p≥0.

2 Order of the non-seasonal difference operator, d, where 
d≥0.

3 Order of the moving average part, q, where q≥0.
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TREND — Logical. If .TRUE., the routine will include a trend variable.  (Input)
Note: Setting TREND = .TRUE. has the effect of fitting an intercept term in the regression. If the differ-
ence operator IMODEL(2) = d > 0, the effect on the model in the original, undifferenced space is 
polynomial of order d. 
Default: TREND = .TRUE..

MXLEAD — Maximum lead time for forecasts.  (Input)
Note: If MXLEAD > 1, forecasts are returned for t = NOBS + 1, .NOBS + 2, …, NOBS + MXLEAD
Default: MXLEAD = 0 (no forecasts).

MAXIT — Maximum number of iterations.  (Input)
Default: MAXIT = 50.

IPRINT — Printing option.  (Input)

Default: IPRINT = 0.
PREG — Array of length K + t containing the estimated regression coefficients, where t=0 if 

TREND=.FALSE. or t=1 if TREND=.TRUE..  (Output)
SE — Array of length p + q containing the standard errors of the ARMA parameter estimates.  (Output)
AVAR — White noise variance estimate.  (Output)

Note: If  IMODEL(0)+IMODEL(2)= 0 and K>0, AVAR is the mean squared regression residual.
REGSE — Array of length K + t containing the standard errors of the regression estimates, where t=0 if 

TREND=.FALSE. or t=1 if TREND=.TRUE..  (Output)
PREGVAR — Array of length (K + t) by (K + t) containing the variances and covariances of the regression 

coefficients, where t=0 if TREND=.FALSE. or t=1 if TREND=.TRUE.. (Output)
AIC — Akaike's Information Criterion for the fitted ARMA model.  (Output)
LLIKE — Value of –2(ln(likelihood)) for fitted model.  (Output)
FCST — Array of length MXLEAD containing the forecasts for time points 

t = NOBS + 1, .NOBS + 2, …, NOBS + MXLEAD.  (Output)
FCSTVAR — Array of length MXLEAD containing the forecast variances for time points 

t = NOBS + 1, .NOBS + 2, …, NOBS + MXLEAD.  (Output)

Fortran 90 Interface
Generic: CALL REG_ARIMA (Y, IMODEL, PARMA [, …])
Specific: The specific interface names are S_REG_ARIMA and D_REG_ARIMA.

Description

Routine REG_ARIMA fits an ARIMA(p, d, q) to a univariate time series with the possible inclusion of one or 
more regression variables.

IPRINT Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results
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Suppose Yt, t = 1, …, N, is a time series such that the d-th difference is stationary. Further, suppose at is a 

series of uncorrelated, mean 0 random variables with variance . 

The Auto-Regressive Integrated Moving Average (ARIMA) model for {Yt, at} can be expressed as

where B is the backshift operator, 

and 

The notation for this model is ARIMA(p, d, q) where p is the order of the autoregressive polynomial , d 

is the order of the differencing needed to make  stationary, and q is the order of the moving-average poly-

nomial .

The ARIMA model can be extended to include  regression variables , by using the residuals 

(of the multiple regression of  on ) in place of  in the above ARIMA model.

Equivalently,

where

is the differenced residual series.

To estimate the (p + q + K) parameters of the specified regression ARIMA model, REG_ARIMA uses the itera-
tive generalized least squares method (IGLS) as described in Otto, Bell, and Burman (1987).

The IGLS method iterates between two steps, one step to estimate the regression parameters via generalized 
least squares (GLS) and the second step to estimate the ARMA parameters. In particular, at iteration m, the 
first step finds 
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by solving the GLS problem with weight matrix

where

That is,  minimizes , where ,  is an N by K matrix with i-th 

column, , and is an N by N weight matrix defined using the theoretical autocovariances 

of the series . The series  is modeled as an ARMA(p,q) with param-

eters  and . At iteration m, the second step is then to obtain 

new estimates of   and  for the updated series, . To find the estimates  and , REG_ARIMA uses the 
exact likelihood method as described in Akaike, Kitagawa, Arahata and Tada (1979) and used in routine, 
MAX_ARMA. 

Comments
When forecasts are requested (MXLEAD > 0), REG_ARIMA requires that future values of the independent 
variables are provided in optional argument XLEAD. In effect, REG_ARIMA assumes the future X’s are 
known without error, which is valid for any deterministic function of time such as a seasonal indicator. 
Also, in economics, certain factors that are considered to be leading indicators are treated as deterministic 
for the purpose of predicting changes in the economy. Users may consider using a more general transfer 
function model if this is an unreasonable assumption. REG_ARIMA calculates forecast variances using the 
asymptotic result found in Fuller (1996) , Theorem 2.9.4. To obtain the standard errors of the ARMA 
parameters, REG_ARIMA calls routine NSLSE for the final w series.

Examples

Example 1

The data set consists of annual mileage per passenger vehicle and annual US population (in 1000’s) spanning 
the years 1980 to 2006 (U.S. Energy Information Administration, 2008). Consider modeling the annual mile-
age using US population as a regression variable.

      use reg_arima_int
      use umach_int
      implicit none

      integer, parameter :: mxlead=5, idep=2
      integer :: i, nout, nobs, n
      integer :: imodel(3)=(/1,0,0/), indind(1)=(/1/)
      real(kind(1e0)) :: y(29), parma(2), xlead(mxlead, 2)
      real(kind(1e0)) :: preg(2), regses(2)
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      real(kind(1e0)) :: ses(1), fcst(mxlead), fcstvar(mxlead)
      real(kind(1e0)) :: avar,llike
!                                 US mileage and population (1980-2008)
!                                 Source: U.S. Energy Information
!                                 Administration (Oct 2008).

      real(kind(1e0)) :: x(29,2)
      data x / &
          22722.4681, 22946.5714, 23166.4458, 23379.1990,           &
          23582.4902, 23792.3795, 24013.2887, 24228.8918,           &
          24449.8982, 24681.923, 24962.2814, 25298.0941, 25651.4224,&
          25991.8588, 26312.5820999999, 26627.8393, 26939.4284,     &
          27264.6925, 27585.4104, 27904.0168, 28217.1936,           &
          28503.9803, 28772.6647, 29021.0914, 29289.2127,           &
          29556.0549, 29836.2973, 30129.0332, 30405.9724,           &
          9062.0, 8813.0, 8873.0, 9050.0, 9118.0, 9248.0, 9419.0,   &
          9464.0, 9720.0, 9972.0, 10157.0, 10504.0, 10571.0,        &
          10857.0, 10804.0, 10992.0, 11203.0, 11330.0, 11581.0,     &
          11754.0, 11848.0, 11976.0, 11831.0, 12202.0, 12325.0,     &
          12460.0, 12510.0, 12485.0, 12293.0/

      call umach(2,nout)
!                                  Example 1
!                                  The first column is the scaled US
!                                  population and the second column is
!                                  the annual mileage per vehicle
      n =  size(x,1)
      nobs = n - mxlead
      call scopy(nobs,x(1:n,idep),1,y,1)
      call reg_arima(y, imodel ,parma, nobs=nobs, iprint=1, x=x,   &
               indx=indind, avar=avar, llike=llike, preg=preg,     &
               regse=regses, mxlead=mxlead, xlead=x(nobs+1:n,1:2), & 
               trend=.true., fcst=fcst, fcstvar=fcstvar, se=ses)
      end

Output

Final results for regarima model (p,d,q) =  1 0 0

Final AR parameter estimates/ std errors

 0.73063  0.13499

-2*ln(maximum log likelihood) =  231.8354

White noise variance 10982.5654

Regression estimates:

 coef  reg. se
 1  -3481.22607  689.02661
 2  0.54237  0.02673

Forecasts with standard deviation
REG_ARIMA         Chapter 8: Time Series Analysis and Forecasting      801



t  Y fcst  Y fcst std dev
25  12360.40137  153.89659
26  12514.61035  171.89198
27  12673.53320  180.76634
28  12837.36719  185.32974
29  12991.26855  187.72037

Example 2

The data set consists of simulated weekly observations containing a strong annual seasonality. The seasonal 
variables are constructed and sent into REG_ARIMA as regression variables.

      use reg_arima_int
      use umach_int
      use const_int
      implicit none

      integer, parameter :: mxlead = 4
      integer :: nobs, i,n,idep,nout
      integer :: imodel(3) =(/2,0,0/)
      real(kind(1e0)) :: PI
      real(kind(1e0)) :: preg(3),regses(3),parma(3)
      real(kind(1e0)) :: ses(2),fcst(mxlead),fcstvar(mxlead)
      real(kind(1e0)) :: avar,llike,aic,tmpr
      real(kind(1e0)) :: x(100,2), xlead(mxlead,2)
      real(kind(1e0)) :: y(104) =(/ &
          32.27778,32.63300,33.13768,34.4517,34.63824, &
          37.31262,37.35704,37.03092,36.39894,35.75541,&
          35.10829,34.70107,34.69592,32.75326,30.85370,&
          31.10936,29.47493,29.14361,28.50466,30.09714,&
          28.49403,27.23268,23.49674,22.71225,21.42798,&
          18.68601,17.40035,16.06832,15.31862,14.75179,&
          13.40089,13.01101,12.44863,11.27890,11.51770,&
          14.31982,14.67036,14.76331,15.35644,17.04353,&
          18.39931,18.21919,18.72777,19.61794,22.31733,&
          23.79600,25.41326,25.60497,27.93579,29.21765,&
          29.60981,28.46994,28.78081,30.96402,35.49537,&
          35.75124,36.18933,37.2627,35.02454,33.57089, &
          35.00683,34.83886,34.19827,33.73966,34.49709,&
          34.07127,32.74709,31.97856,31.3029,30.21916, &
          27.46015,26.78431,25.32815,23.97863,21.83837,&
          21.00647,20.58846,19.94578,17.38271,17.12572,&
          16.71847,17.45425,16.15050,13.07448,12.54188,&
          12.42137,13.51771,14.84232,14.28870,13.39561,&
          15.48938,16.47175,17.62758,16.57677,18.20737,&
          20.8491,20.15616,20.93857,23.73973,25.30449, &
          26.51106,29.43261,32.02672,32.18846/)
        
        
      call umach(2,nout)
      PI = const('PI')

!                                  The data are simulated weekly
!                                  observations with an annual
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!                                  seasonal cycle
      n = size(y)
      nobs = n - mxlead
!                                  Create the seasonal variables
      do i = 1, nobs
        x(i,1)=sin(2*PI*i/float(52))
        x(i,2) = cos(2*PI*i/float(52))
      end do
      do i=1, mxlead
        xlead(i,1)=sin(2*PI*(i+nobs)/float(52))
        xlead(i,2) = cos(2*PI*(i+nobs)/float(52))
      end do
      
      call reg_arima(y, imodel, parma, iprint=1, x=x,  &
              nobs=nobs, avar=avar, llike=llike,       &
              preg=preg, regse=regses, mxlead=mxlead,  &
              xlead=xlead, trend=.true., fcst=fcst,    &
              fcstvar=fcstvar, se=ses)
      end

Output

Final results for regarima model (p,d,q) =  2 0 0

Final AR parameter estimates/ std errors

 0.71860  0.09836

 -0.25991  0.09827

-2*ln(maximum log likelihood) =  -13.6209

White noise variance  0.8783

Regression estimates:

 coef  reg. se
 1  24.81010  0.17175
 2  9.68013  0.23993
 3  5.72305  0.24751

Forecasts with standard deviation

t  Y fcst  Y fcst std dev
101  26.74492  1.31358
102  28.07805  1.47616
103  29.33707  1.49560
104  30.53160  1.49560
REG_ARIMA         Chapter 8: Time Series Analysis and Forecasting      803



GARCH

Computes estimates of the parameters of a GARCH(p,q) model.

Required Arguments
W — Vector of length NOBS containing the observed time series data.  (Input)
NP — Number of GARCH parameters, p.  (Input)
NQ — Number of ARCH parameters, q.  (Input)
XGUESS — Vector of length NP+NQ +1 containing the initial values for the parameter vector X.  (Input)

X — Vector of length NP+NQ+1 containing the estimates for σ2, the ARCH parameters and the GARCH 
parameters. X(1) contains the estimate for σ2, X(2)…X(NQ+1) contain the ARCH estimates, 
X(NQ+2)…X(NP+NQ+1) contain the GARCH estimates.  (Output)

Optional Arguments

SIG2MAX— Upperbound for σ2 , the first element of X. (Input)
Default: SIG2MAX = 10.

NOBS  — Length of the observed time series. (Input)
Default: NOBS = size(W).

A — Value of Log-likelihood function evaluated at X. (Output)
AIC — Akaike’s Information Criterion evaluated at X. (Output)
VAR  — (NP+NQ+1) by (NP+NQ+1) matrix containing the variance-covariance matrix. (Output)
NDIM — Column dimension (NP+NQ+1) of VAR.  (Input) Default: NDIM = NP+NQ+1.

FORTRAN 90 Interface
Generic: CALL GARCH (W, NP, NQ, XGUESS, X [, …])
Specific: The specific interface names are S_GARCH and D_GARCH.

Description

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model for a time series {wt} is 
defined as

where zt’s are independent and identically distributed standard normal random variables, 
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The above model is denoted as GARCH(p,q). The βi and αi  coeffecients will be referred to as GARCH and 
ARCH coefficents, respectively.  When βi = 0, i = 1,2,…,p, the above model reduces to ARCH(q) which was 
proposed by Engle (1982). The nonnegativity conditions on the parameters imply a nonnegative variance 
and the condition on the sum of the βi’s and αi’s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have often found to appro-
priately account for conditional heteroskedasticity (Palm 1996). This finding is similar to linear time series 
analysis based on ARMA models. 

It is important to notice that for the above models positive and negative past values have a symmetric impact 
on the conditional variance. In practice, many series may have strong asymmetric influence on the condi-
tional variance. To take into account this phenomena, Nelson (1991) put forward Exponential GARCH 
(EGARCH). Lai (1998) proposed and studied some properties of a general class of models that extended lin-
ear relationship of the conditional variance in ARCH and GARCH into nonlinear fashion.

The maximum likelihood method is used in estimating the parameters in GARCH(p,q). The log-likelihood of 
the model for the observed series {wt} with length m = nobs is

Thus log(L) is maximized subject to the constraints on the αi, βi, and σ.

In this model, if q = 0, the GARCH model is singular since the estimated Hessian matrix is singular.

The initial values of the parameter vector x entered in vector xguess must satisfy certain constraints. The 

first element of xguess refers to σ2 and must be greater than zero and less than sig2max. The remaining 
p+q initial values must each be greater than or equal to zero and sum to a value less than one.

To guarantee stationarity in model fitting, 

is checked internally. The initial values should selected from values between zero and one. 

AIC is computed by 

- 2 log (L) + 2(p+q+1),

where log(L) is the value of the log-likelihood function.
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In fitting the optimal model, the routine NNLPF as well as its associated subroutines are modified to find the 
maximum likelihood estimates of the parameters in the model. Statistical inferences can be performed out-
side the routine GARCH based on the output of the log-likelihood function (A), the Akaike Information 
Criterion (AIC), and the variance-covariance matrix (VAR).

Example

The data for this example are generated to follow a GARCH(2,1) process by using a standard normal random 
number generation routine WG2RCH . The data set is analyzed and estimates of sigma, the GARCH parame-
ters, and the ARCH parameters are returned. The values of the Log-likelihood function and Akaike’s  
Information Criterion are returned from the optional arguments A and AIC.

      USE GARCH_INT
      USE RNSET_INT
      IMPLICIT NONE

      INTERFACE 
      SUBROUTINE WG2RCH (W, NP, NQ, NOBS, X, Z, Y0, SIGMA)
      INTEGER    NP, NQ, NOBS
      REAL(KIND(1D0))       W(:), X(:), Z(:), Y0(:), SIGMA(:)
      END SUBROUTINE
      END INTERFACE

      INTEGER :: NP, NQ, NOBS, N
      PARAMETER  (NP=2, NQ=1, NOBS=1000)
      PARAMETER  (N=NP+NQ+1)
      REAL(KIND(1D0)) :: A, AIC, Z(NOBS + 1000), Y0(NOBS + 1000), &
      X0=(/1.3,0.2,0.3,0.4/)
      XGUESS = (/1.0,0.1,0.2,0.3/)
      CALL RNSET (182198625)
      CALL WG2RCH (W, NP, NQ, NOBS, X0, Z, Y0, SIGMA)
      CALL GARCH(W, NP, NQ, XGUESS, X, NOBS=NOBS, A=A, AIC=AIC)
      WRITE(*,*)"Variance estimate is ", x(1)
      WRITE(*,*)"ARCH(1) estimate is ", x(2)
      WRITE(*,*)"GARCH(1) estimate is ", x(3)
      WRITE(*,*)"GARCH(2) estimate is ", x(4)
      WRITE(*,*)"Log-likelihood function is ", A
      WRITE(*,*)"Akaike's Information Criterion is ", AIC
      END

      SUBROUTINE WG2RCH (W, NP, NQ, NOBS, X, Z, Y0, SIGMA)
      USE RNNOR_INT
      INTEGER    NP, NQ, NOBS
      REAL(KIND(1D0))       W(:), X(:), Z(:), Y0(:), SIGMA(:)
      INTEGER    I, J, L
      REAL(KIND(1D0))       S1, S2, S3
      
!     RNNOR GENERATES STANDARD NORMAL OBSERVATIONS
      CALL RNNOR(Z, NOBS+1000)
!     INITIAL VALUES 
      L = MAX(NP,NQ)
      L = MAX(L,1)
      DO I=1, L
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         Y0(I) = Z(I)*X(1)
      END DO
!     COMPUTE THE INITIAL VALUE OF SIGMA
      S3 = 0.0;
      IF (MAX(NP,NQ) .GE. 1) THEN
         DO I=1, NP + NQ
            S3 = S3 + X(I+1)
         END DO
      END IF
      DO I=1, L
         SIGMA(I) = X(1)/(1.0-S3)
      END DO
      DO  I=L + 1, NOBS + 1000
         S1 = 0.0
         S2 = 0.0
         IF (NQ .GE. 1) THEN
            DO J=1, NQ
               S1 = S1 + X(J+1)*Y0(I-J)*Y0(I-J)
            END DO
         END IF
         IF (NP .GE. 1) THEN
            DO J=1, NP
               S2 = S2 + X(NQ+1+J)*SIGMA(I-J)
            END DO
         END IF
         SIGMA(I) = X(1) + S1 + S2
         Y0(I) = Z(I)*SQRT(SIGMA(I))
      END DO
! DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
      DO I=1, NOBS
         W(I) = Y0(1000+I)
      END DO
      RETURN
      END

Output

Variance estimate is  1.6915576416511892                     
ARCH(1) estimate is  0.24499571998823416                 
GARCH(1) estimate is  0.3372325349834042                  
GARCH(2) estimate is  0.3095905689822821                   
Log-likelihood function is  -2707.072433499691      
Akaike's Information Criterion is  5422.144866999382
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SPWF

Computes the Wiener forecast operator for a stationary stochastic process.

Required Arguments
W — Vector of length NOBS containing the stationary time series.  (Input)
WNADJ — White noise adjustment factor.  (Input) 

WNADJ must be greater than or equal to zero.
EPS — Bound on the normalized mean square error.  (Input) 

EPS must be in the range (0, 1) inclusive.
MLFOP — Maximum length of the forecast operator.  (Input) 

MLFOP must be greater than or equal to one and less than NOBS.
LFOP — Length of the estimated forecast operator.  (Output)
FOP — Vector of length LFOP containing the estimated forecast operator coefficients.  (Output)

Optional Arguments
NOBS — Number of observations in the stationary time series W.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (W,1).

IWMEAN — Option for estimation of the mean of W.  (Input) 
Default: IWMEAN = 1.

WMEAN — Estimate of the mean of the time series W.  (Input, if IWMEAN = 0; output, if IWMEAN = 1) 
WMEAN is used to center the time series W prior to estimation of the forecast operator.
Default: WMEAN = 0.0.

FORTRAN 90 Interface
Generic: CALL SPWF (W, WNADJ, EPS, MLFOP, LFOP, FOP [, …])
Specific: The specific interface names are S_SPWF and D_SPWF.

FORTRAN 77 Interface
Single: CALL SPWF (NOBS, W, IWMEAN, WMEAN, WNADJ, EPS, MLFOP, LFOP, FOP)
Double: The double precision name is DSPWF.

Description

Routine SPWF performs least-squares estimation of parameters for successive autoregressive models of a sta-
tionary stochastic process given a sample of n = NOBS observations {Wt} for t = 1, …, n.

IWMEAN Action

0 WMEAN is user specified.

1 WMEAN is set equal to the arithmetic mean of W.
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Let 

be the estimate of the mean μ of the stochastic process {Wt} where 

Consider the autoregressive model of order k defined by

where 

and

Successive AR(k) models are fit to the centered data using Durbin’s algorithm (1960) based on the sample 
autocovariances

Note that the variance 

used in the fitting algorithm is adjusted by the amount δ = WNADJ according to 

See Robinson (1967, page 96). 

Iteration to the next higher order model terminates when either the expected mean square error of the model 

is less than EPS or when k = MLFOP. The forecast operator ɸ = (ɸ1, ɸ2, …, ɸk*)T for k* = LFOP is contained in 
FOP. See also Craddock (1969).

Comments
1. Workspace may be explicitly provided, if desired, by use of S2WF/DS2WF. The reference is:

CALL S2WF (NOBS, W, IWMEAN, WMEAN, WNADJ, EPS, MLFOP, LFOP, FOP, CW, WK)
The additional arguments are as follows:
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CW — Vector of length NOBS containing the centered time series W.  (Output)

WK — Vector of length 2 * MLFOP + 1.  (Output)
2. Informational error 

3 The length of the forecast operator is determined by the arguments EPS and MLFOP. Iteration to a lon-
ger forecast operator stops when either the normalized mean square error is less than EPS, or the 
operator reaches the maximum allowable length, MLFOP.

4. The white noise adjustment factor, WNADJ, is used to modify the the estimate of the variance of the 
time series W used in the computation of the autocorrelation function of W. In the absence of white 
noise, WNADJ should be set to zero.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Application of routine SPWF to these data produces the following results:

      USE GDATA_INT
      USE SPWF_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    MLFOP, NOBS, NOUT, IMEAN, I
      PARAMETER  (MLFOP=1, NOBS=100)
!     INTEGER    I, IMEAN, LFOP, NCOL, NOUT, NROW

      REAL       EPS, FOP(MLFOP), RDATA(176,2), W(NOBS), WMEAN, WNADJ
      REAL       NROW, NCOL, LFOP
!
      EQUIVALENCE (W(1), RDATA(22,2))
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Center on arithmetic mean
      IMEAN = 0
      WMEAN = 46.976
!                                 White noise adjustment
      WNADJ = 0.0
!                                 Bound on normalized MSE
      EPS = 0.1
!                                 Determine autoregressive model
      CALL SPWF (W, WNADJ, EPS, MLFOP, LFOP, FOP, IWMEAN=IMEAN, &
           WMEAN=WMEAN)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99997) LFOP
99997 FORMAT (/, 1X, 'Forecast operator length, LFOP = ', I2)
      WRITE (NOUT,99998)

Type Code Description

3 5 No operator could be found of length less than or equal to MLFOP that pro-
duced a normalized mean square error less than EPS.
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99998 FORMAT (/, 1X, ' I           FOP(I)')
      DO 10  I=1, LFOP
         WRITE (NOUT,99999) I, FOP(I)
99999    FORMAT (1X, I2, 2X, F12.4)
   10 CONTINUE
!
      END

Output

*** WARNING  ERROR 5 from SPWF.  No operator could be found of length less
***          than or equal to 1 which produced a normalized mean square
***          error less than 1.000000E-01.

Forecast operator length, LFOP =  1

I           FOP(I)
1        0.8063
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NSBJF

Computes Box-Jenkins forecasts and their associated probability limits for a nonseasonal ARMA model.

Required Arguments
W — Vector of length NOBS containing the time series.  (Input)
PAR — Vector of length NPAR containing the autoregressive parameters.  (Input)
LAGAR — Vector of length NPAR containing the order of the autoregressive parameters.  (Input) 

The elements of LAGAR must be greater than zero.
PMA — Vector of length NPMA containing the moving average parameters.  (Input)
LAGMA — Vector of length NPMA containing the order of the moving average parameters.  (Input) 

The elements of LAGMA must be greater than zero.
ICNST — Option for including the overall constant in the model.  (Input)

CNST — Estimate of the overall constant.  (Input)
AVAR — Estimate of the random shock variance.  (Input) 

AVAR must be greater than 0.
ALPHA — Value in the exclusive interval (0, 1) used to specify the 100(1 - ALPHA)% probability limits of 

the forecasts.  (Input) 
Typical choices for ALPHA are 0.10, 0.05, and 0.01.

MXBKOR — Maximum backward origin.  (Input) 
MXBKOR must be greater than or equal to zero and less than or equal to 
NOBS - max(MAXAR, MAXMA) where MAXAR = max(LAGAR(i)) and MAXMA = max(LAGMA(j)). Forecasts at 
origins NOBS - MXBKOR through NOBS are generated.

MXLEAD — Maximum lead time for forecasts.  (Input) 
MXLEAD must be greater than zero.

FCST — MXLEAD by (MXBKOR + 3) matrix defined below.  (Output)

ICNST Action

0 No overall constant is included.

1 The overall constant is included.

Column Content

j Forecasts for lead times l = 1, …, MXLEAD at origins 
NOBS - MXBKOR - 1 + j, j = 1, …, MXBKOR + 1.

MXBKOR + 2 Deviations from each forecast that give the 100(1 - ALPHA)% 
probability limits.

MXBKOR + 3 Psi weights of the infinite order moving average form of the 
model.
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Optional Arguments
NOBS — Number of observations in the time series W.  (Input)

NOBS must be greater than ICONST + max(LAGAR(i)) + max(LAGMA(j)).
Default: NOBS = size (W,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

NPAR — Number of autoregressive parameters.  (Input) 
NPAR must be greater than or equal to zero.
Default: NPAR = size (PAR,1).

NPMA — Number of moving average parameters.  (Input) 
NPMA must be greater than or equal to zero.
Default: NPMA = size (PMA,1).

LDFCST — Leading dimension of FCST exactly as specified in the dimension statement in the calling pro-
gram.  (Input) 
LDFCST must be greater than or equal to MXLEAD.
Default: LDFCST = size (FCST,1).

FORTRAN 90 Interface
Generic: CALL NSBJF (W, PAR, LAGAR, PMA, LAGMA, ICNST, CNST, AVAR, ALPHA, MXBKOR, MXLEAD, 

FCST [, …])
Specific: The specific interface names are S_NSBJF and D_NSBJF.

FORTRAN 77 Interface
Single: CALL NSBJF (NOBS, W, IPRINT, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA, ICNST, CNST, 

AVAR, ALPHA, MXBKOR, MXLEAD, FCST, LDFCST)
Double: The double precision name is DNSBJF.

Description

Routine NSBJF computes Box-Jenkins forecasts and their associated probability limits for a nonseasonal 
ARMA model given a sample of n = NOBS observations {Wt} for t = 1, 2, …, n. 

Suppose the time series {Wt} is generated by a nonseasonal ARMA model of the form

IPRINT Action

0 No printing is performed.

1 Prints the forecasts for lead times l = 1, …, MXLEAD at 
each origin t = (NOBS - MXBKOR ), …, NOBS, the 
100(1 - ALPHA)% probability limit deviations, and the 
psi weights.
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where B is the backward shift operator, θ0 = CONST,

p = NPAR and q = NPMA. Without loss of generality, we assume

so that the nonseasonal ARMA model is of order (pʹ, qʹ) where pʹ = lɸ (p) and qʹ = lθ (q). Note that the usual 
hierarchal model assumes

The Box-Jenkins forecast at origin t for lead time l of Wt+l is defined in terms of the difference equation

where 

The 100(1 - α)% probability limits for Wt+l are given by

where za/2 is the 100(1 - α/2) percentile of the standard normal distribution, 

and { Ψj } are the parameters of the random shock form of the difference equation. Note that the forecasts are 
computed for lead times l = 1, 2, …, L at origins t = (n - b), (n - b + 1), …, n where L = MXLEAD and 
b = MXBKOR. 

The Box-Jenkins forecasts minimize the mean square error 
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Also, the forecasts may be easily updated according to the equation

This approach and others are given in Chapter 5 of Box and Jenkins (1976).

Comments
1. Workspace may be explicitly provided, if desired, by use of N2BJF/DN2BJF. The reference is:

CALL N2BJF (NOBS, W, IPRINT, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA, ICNST, CNST, AVAR, 
ALPHA, MXBKOR, MXLEAD, FCST, LDFCST, PARH, PMAH, PSIH, PSI, LAGPSI)

The additional arguments are as follows:

PARH — Work vector of length equal to IARDEG + 1.

PMAH — Work vector of length equal to IMADEG + 1.

PSIH — Work vector of length equal to MXLEAD + 1.

PSI — Work vector of length equal to MXLEAD + 1.

LAGPSI — Work vector of length equal to MXLEAD + 1.
2. If the W series has been transformed using a Box-Cox transformation with parameters POWER and 

SHIFT, the forecasts and probability limits for the original series may be obtained by application of 
routine BCTR with the same parameters and argument IDIR set equal to one.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Routine NSBJF is used to computed forecasts and 95% probability limits for the 
forecasts for an ARMA(2, 1) model fit using routine NSPE. With MXBKOR = 3, columns one through four of 
FCST give forecasts given the data through 1866, 1867, 1868, and 1869, respectively. Column 5 gives the devi-
ations from the forecast for computing probability limits, and column six gives the psi weights, which can be 
used to update forecasts once more data is available. For example, the forecast for the 102-nd observation 
(year 1871) given the data through the 100-th observation (year 1869) is 77.21, and 95% probability limits are 
given by 77.21 ∓ 56.30. After observation 101 (W101 for year 1870) is available, the forecast can be updated by 
using equation 7 with the psi weight (Ψ1 = 1.37) and the one-step-ahead forecast error for observation 101 
(W101 - 83.72) to give

77.21 + 1.37 (W101 − 83.72)

Since this updated forecast is one step ahead, the 95% probability limits are now given by the forecast 
∓ 33.22.

      USE GDATA_INT
      USE NSPE_INT
      USE NSBJF_INT
      USE WRRRL_INT
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      IMPLICIT   NONE
      INTEGER    LDFCST, MXBKOR, MXLEAD, NOBS, NPAR, NPMA
      PARAMETER  (MXBKOR=3, MXLEAD=12, NOBS=100, NPAR=2, NPMA=1, &
                 LDFCST=MXLEAD)
!
      INTEGER    ICNST, LAGAR(NPAR), LAGMA(NPMA), NCOL, NROW
      REAL       ALPHA, AVAR, CNST, FCST(LDFCST,MXBKOR+3), PAR(NPAR), &
                 PMA(NPMA), RDATA(176,2), W(NOBS), WMEAN
      CHARACTER  CLABEL(MXBKOR+4)*40, RLABEL(1)*6
!
      EQUIVALENCE (W(1), RDATA(22,2))
!
      DATA LAGAR(1), LAGAR(2)/1, 2/
      DATA LAGMA(1)/1/
      DATA RLABEL/'NUMBER'/, CLABEL/'%/Lead%/Time', &
          '%/Forecast%/From 1866', '%/Forecast%/From 1867', &
          '%/Forecast%/From 1868', '%/Forecast%/From 1869', &
          ' Deviation %/  for 95%  %/Prob. Limits', '%/%/Psi'/
!                                  Wolfer Sunspot Data for
!                                  years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Compute preliminary parameter
!                                 estimates for ARMA(2,1) model
      CALL NSPE (W, CNST, PAR, PMA, AVAR)
!
!                                 Include constant in forecast model
      ICNST = 1
!                                 Specify 95 percent probability
!                                 limits for forecasts
      ALPHA = 0.05
!                                 Compute forecasts
      CALL NSBJF (W, PAR, LAGAR, PMA, LAGMA, &
                 ICNST, CNST, AVAR, ALPHA, MXBKOR, MXLEAD, FCST)
!                                 Print results
      CALL WRRRL ('FCST', FCST, RLABEL, CLABEL, FMT='(5F9.2, F6.3)')
!
      END

Output

                               FCST
                                                   Deviation
Lead   Forecast   Forecast   Forecast   Forecast     for 95%
Time  From 1866  From 1867  From 1868  From 1869  Prob. Limits    Psi
 1      18.28      16.62      55.19      83.72         33.22   1.368
 2      28.92      32.02      62.76      77.21         56.30   1.127
 3      41.01      45.83      61.89      63.46         67.62   0.616
 4      49.94      54.15      56.46      50.10         70.64   0.118
 5      54.09      56.56      50.19      41.38         70.75  -0.208
 6      54.13      54.78      45.53      38.22         71.09  -0.326
 7      51.78      51.17      43.32      39.30         71.91  -0.286
 8      48.84      47.71      43.26      42.46         72.53  -0.169
 9      46.53      45.47      44.46      45.77         72.75  -0.045
10      45.35      44.69      45.98      48.08         72.77   0.041
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11      45.21      44.99      47.18      49.04         72.78   0.077
12      45.71      45.82      47.81      48.91         72.82   0.072
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IRNSE

Computes estimates of the impulse response weights and noise series of a univariate transfer function 
model.

Required Arguments
X — Vector of length NOBS containing the input time series.  (Input)
Y — Vector of length NOBS containing the output time series.  (Input)
MWTIR  — Maximum index of the impulse response weights.  (Input) 

MWTIR must be greater than or equal to zero and less than or equal to NOBS - 1.
MWTSN — Maximum index of the impulse response weights used to compute the noise series.  (Input) 

MWTSN must be greater than or equal to zero and less than or equal to MWTIR.
WTIR — Vector of length MWTIR + 1 containing the impulse response weight estimates.  (Output) 

The impulse response weight estimate of index k is given by WTIR(k) for 
k = 0, 1, …, MWTIR.

SNOISE — Vector of length NOBS - MWTSN containing the noise series based on the impulse response 
weight estimates.  (Output)

XPW — Vector of length NOBS - NPAR containing the prewhitened input time series X.  (Output)
YPW — Vector of length NOBS - NPAR containing the prewhitened output time series Y.  (Output)

Optional Arguments
NOBS — Number of observations in each time series.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

NPAR — Number of prewhitening autoregressive parameters.  (Input) 
NPAR must be greater than or equal to zero.
Default: NPAR = size (PAR,1) if PAR is present otherwise NPAR = 0. 

PAR — Vector of length NPAR containing the prewhitening autoregressive parameters.  (Input)
Default: PAR = 0.0.

NPMA — Number of prewhitening moving average parameters.  (Input) 
NPMA must be greater than or equal to zero.
Default: NPMA = size (PMA,1) if PAR is present, otherwise NPMA = 0. 

PMA — Vector of length NPMA containing the prewhitening moving average parameters.  (Input)
Default: PMA = 0.0.

IPRINT Action

0 No printing is performed.

1 Prints the estimates of the impulse response 
weights and the noise series.
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FORTRAN 90 Interface
Generic: CALL IRNSE (X, Y, MWTIR, MWTSN, WTIR, SNOISE, XPW, YPW [, …])
Specific: The specific interface names are S_IRNSE and D_IRNSE.

FORTRAN 77 Interface
Single: CALL IRNSE (NOBS,  X, Y, IPRINT, NPAR, PAR, NPMA, PMA, MWTIR, MWTSN, WTIR, SNOISE, 

XPW, YPW)
Double: The double precision name is DIRNSE.

Description

Routine IRNSE estimates the impulse response weights and noise series of a transfer function model given a 
sample of n = NOBS observations of the input {xt} and output {yt} for t = 1, 2, …, n. Define {xt} and {yt}, respec-
tively, by

and

where {Xt} and {Yt} for t = (-d + 1), …, n represent the undifferenced input and output series with 

estimates of their respective means. The differenced input and output series may be obtained using the rou-
tine DIFF following any preliminary transformation of the data.

The transfer function model is defined by

Yt = ν(B)Xt + Nt

or, equivalently,

yt = ν(B)xt + nt

with transfer function 

ν(B) = ν0 + ν1B + ν2B2 + …

and differenced noise series nt =∇dNt.

The prewhitened input and output series are computed for t = (p + 1), …, n according to
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αt = ɸ(B)xt + θ1(B) αt
βt = ɸ(B)yt + θ1(B) βt

where

ɸ(B) = 1 − ɸ1B − ɸ2B2 − … − ɸpBp

θ(B) = θ1B + θ2B2 + … + θqBq

The parameters of the prewhitening transformation may be estimated roughly using the routine NSPE or 
more precisely using the routine NSLSE. The correlation relationship between {αt}, { βt}, and {nt} may be fur-
ther examined using the routines ACF, PACF, and CCF. 

The impulse response weights { νk} are estimated by

where K = MWTIR, 

denote the standard deviation of { αt} and { βt};

represents the cross-correlation function between {αt} and { βt}. The differenced noise series {nt} for 
t = (Kʹ + 1), …, n is reconstructed using the model

where Kʹ = MWTSN.

Comments
1. Workspace may be explicitly provided, if desired, by use of I2NSE/DI2NSE. The reference is:

CALL I2NSE (NOBS, X, Y, IPRINT, NPAR, PAR, NPMA, PMA, MWTIR, MWTSN, WTIR, SNOISE, XPW, 
YPW, ACPWX, ACPWY, CCPW)

The additional arguments are as follows:

ACPWX — Vector of length MWTIR + 1 containing the estimated autocorrelation function of PWX.  
(Output)

ACPWY — Vector of length MWTIR + 1 containing the estimated autocorrelation function of PWY.  
(Output)

CCPW — Vector of length 2 * MWTIR + 1 containing the estimated cross-correlation function of 
PWX and PWY.  (Output)

2. The input series X and output series Y are assumed to be the result of transforming and differencing 
the raw input and output series. The routines BCTR and DIFF may be used, respectively, to perform a 
Box-Cox transformation and difference the raw input and output series.
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3. Note that the prewhitened input and output are computed at time t = NPAR + 1 through t = NOBS. 
Also, the noise series is computed at time t = MWTSN + 1 through t = NOBS.

Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X is the input gas rate in cubic 
feet/minute and Y is the percent CO2 in the outlet gas. Application of routine IRNSE to these data produces 
the following results:

      USE GDATA_INT
      USE IRNSE_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDX, MWTIR, MWTSN, NDX, NOBS, NOPRIN, NPAR, NPMA
      PARAMETER  (LDX=296, MWTIR=10, NDX=2, NOBS=296, &
                 NOPRIN=0, NPAR=3, NPMA=0, MWTSN=MWTIR)
!
      INTEGER    NCOL, NROW
      REAL       PAR(NPAR), PMA(1), RDATA(296,2), SNOISE(NOBS-MWTSN), &
                 WTIR(MWTIR+1), X(NOBS), XPW(NOBS-NPAR), Y(NOBS), &
                 YPW(NOBS-NPAR)
!
      EQUIVALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))
!                                 Gas Furnace Data
      CALL GDATA (7, RDATA, NROW, NCOL)
!                                 Specify AR parameters for
!                                 prewhitening transformation
      PAR(1) = 1.97
      PAR(2) = -1.37
      PAR(3) = 0.34
!                                 Compute estimates of impulse
!                                 response weights and noise series
      CALL IRNSE (X, Y, MWTIR, MWTSN, WTIR, SNOISE, XPW, YPW, PAR=PAR)
!                                 Print results
      CALL WRRRN ('WTIR', WTIR, 1, 11, 1)
      CALL WRRRN ('SNOISE', SNOISE, 1, 20, 1)
!
      END

Output

                                WTIR
      1        2        3        4        5        6        7        8
-0.0355   0.0716  -0.0764  -0.5655  -0.6549  -0.8936  -0.5358  -0.3482

      9       10       11
-0.0782   0.0277  -0.1364

                                SNOISE
    1      2      3       4       5       6       7       8       9      10
53.21  53.49  53.72   54.05   53.98   53.95   53.69   53.02   52.56   52.33
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   11     12     13      14      15      16      17      18      19      20
52.47  52.69  52.57   52.63   52.81   53.14   53.21   53.20   53.05   52.88
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TFPE

Computes preliminary estimates of parameters for a univariate transfer function model.

Required Arguments
NDELAY — Time delay parameter.  (Input) 

NDELAY must be greater than or equal to zero.
WTIR — Vector of length MWTIR + 1 containing the impulse response weight estimates.  (Input) 

The impulse response weight estimate of index k is given by WTIR(k) for k = 0, 1, …, MWTIR.
SNOISE — Vector of length NSNOIS containing the noise series.  (Input)
AVAR — Estimate of the random shock variance.  (Output)

Optional Arguments
IPRINT — Printing option.  (Input) 

Default: IPRINT = 0.

NPLHS — Number of left-hand side transfer function parameters.  (Input) 
NPLHS must be greater than or equal to zero.
Default: NPLHS = size (PLHS,1) if PLHS is present. Otherwise, NPLHS=0. 

NPRHS — Number of right-hand side transfer function parameters (excluding the index 0 parameter).  
(Input) 
NPRHS must be greater than or equal to zero.
Default: NPRHS = size (PRHS,1) – 1 if PRHS is present. Otherwise, NPRHS=0.

NPNAR — Number of noise autoregressive parameters.  (Input) 
NPNAR must be greater than or equal to zero.
Default: NPNAR = size (PNAR,1) if PNAR is present. Otherwise, NPNAR=0.

NPNMA — Number of noise moving average parameters.  (Input) 
NPNMA must be greater than or equal to zero.
Default: NPNMA = size (PNMA,1) if PNMA is present. Otherwise, NPNMA=0.

MWTIR — Maximum index of the impulse response weights.  (Input) 
MWTIR must be greater than or equal to NPLHS + NPRHS + NDELAY.
Default: MWTIR = size (WTIR,1) –1.

more...

IPRINT Action

0 No printing is performed.

1 Prints estimates of transfer function parameters, estimates of noise 
model parameters, and an estimate of the random shock variance.
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NSNOIS — Number of elements in the noise series.  (Input) 
NSNOIS must be greater than or equal to NPNAR + NPNMA + 1.
Default: NSNOIS = size (SNOISE,1).

RELERR — Stopping criterion for use in the nonlinear equation solver.  (Input) 
If RELERR = 0.0, then the default value RELERR = 100.0 * AMACH(4) is used. See the documentation for 
routine AMACH in the Reference Material section of this manual.
Default: RELERR = 0.0.

MAXIT — The maximum number of iterations allowed in the nonlinear equation solver.  (Input) 
If MAXIT = 0, then the default value MAXIT = 200 is used.
Default: MAXIT = 0.

PLHS — Vector of length NPLHS containing the estimates of the left-hand side transfer function parame-
ters.  (Output) 
The LHS weight estimates are PLHS(k), k = 1, …, NPLHS.

PRHS — Vector of length NPRHS + 1 containing the estimates of the right-hand side transfer function 
parameters.  (Output) 
The RHS weight estimates are PRHS(k), k = 0, …, NPRHS.

PNAR — Vector of length NPNAR containing the estimates of the noise autoregressive parameters.  
(Output)

PNMA — Vector of length NPNMA containing the estimates of the noise moving average parameters.  
(Output)

FORTRAN 90 Interface
Generic: CALL TFPE (NDELAY, WTIR, SNOISE, AVAR [, …])
Specific: The specific interface names are S_TFPE and D_TFPE.

FORTRAN 77 Interface
Single: CALL TFPE (IPRINT, NPLHS, NPRHS, NPNAR, NPNMA, NDELAY, MWTIR, WTIR, NSNOIS, 

SNOISE, RELERR, MAXIT, PLHS, PRHS, PNAR, PNMA, AVAR)
Double: The double precision name is DTFPE.

Description

Routine TFPE computes preliminary estimates of the parameters of a transfer function model given a sample 
of n = NOBS observations of the differenced input {xt} and differenced output {yt} for t = 1, 2, …, n.

Define {xt} and {yt}, respectively, by

and 
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where {Xt} and {Yt} for t = (-d + 1), …, n represent the undifferenced input and output series with

estimates of their respective means. The differenced input and output series may be obtained using the rou-
tine DIFF following any preliminary transformation of the data.

The transfer function model is defined by

Yt = δ−1(B)ω(B)Xt−b + Nt

or, equivalently,

yt = δ−1(B)ω(B)xt−b + nt

where nt =∇dNt and the left-hand side and right-hand side transfer function polynomial operators are

δ(B) = 1 − δ1B − δ2B2 − … − δr B
r

ω(B) = ω0 − ω1B − ω2B2 − … − ωs B
s

with r = NPLHS, s = NPRHS, and b = NDELAY. The noise process {Nt} and the input process {Xt} are assumed to 
be independent with the noise process given by the ARIMA model

ɸ(B)nt = θ(B)At

where

ɸ(B) = 1 − ɸ1B − ɸ2B2 − … − ɸp Bp

θ(B) = 1 − θ1B − θ2B2 − … − θq Bq

with p = NPNAR and q = NPNMA.

The impulse response weights and the transfer function parameters are related by

See Abraham and Ledolter (1983, page 341). The r left-hand side transfer function parameters are estimated 
using the difference equation given as the last case above. The resulting estimates 

are then substituted into the middle two cases to determine the s + 1 estimates 
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The noise series parameters are estimated using the routine NSPE. The impulse response weights { νk} and 
differenced noise series{nt} may be computed using the routine IRNSE. See Box and Jenkins (1976, pages 511–
513).

Comments
1. Workspace may be explicitly provided, if desired, by use of T2PE/DT2PE. The reference is:

CALL T2PE (IPRINT, NPLHS, NPRHS, NPNAR, NPNMA, NDELAY, MWTIR, WTIR, NSNOIS, SNOISE, 
RELERR, MAXIT, PLHS, PRHS, PNAR, PNMA, AVAR, A, FAC, IPVT, WK, ACV, PARWK, ACVMOD, 
TAUINI, TAU, FVEC, FJAC, R, QTF, WKNLN, H)

The additional arguments are as follows:

A — Work vector of length (max(NPLHS, NPNAR))2.

FAC — Work vector of length (max(NPLHS, NPNAR))2.

IPVT — Work vector of length max(NPLHS, NPNAR).

WK — Work vector of length max(NPLHS, NPNAR).

ACV — Work vector of length NPNAR + NPNMA + 1.

PARWK — Work vector of length NPNAR + 1.

ACVMOD — Work vector of length NPNMA + 1.

TAUINI — Work vector of length NPNMA + 1.

TAU — Work vector of length NPNMA + 1.

FVEC — Work vector of length NPNMA + 1.

FJAC — Work vector of length (NPNMA + 1)2.

R — Work vector of length (NPNMA + 1) * (NPNMA + 2)/2.

QTF — Work vector of length NPNMA + 1.

WKNLN — Work vector of length 5 * (NPNMA + 1).

H — Work vector of length NPLHS.
2. Informational error

3. The impulse response weight estimates and the noise series may be computed using routine IRNSE.

Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X is the input gas rate in cubic 
feet/minute and Y is the percent CO2 in the outlet gas. The data is retrieved by routine GDATA. Routine 
IRNSE computes the impulse response weights. Application of routine TFPE to these weights produces the 
following results:

      USE GDATA_INT
      USE IRNSE_INT

Type Code Description

4 1 The nonlinear equation solver did not converge to RELERR within MAXIT 
iterations.
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      USE WROPT_INT
      USE TFPE_INT

      IMPLICIT   NONE
      INTEGER    MWTIR, MWTSN, NDELAY, NOBS, NPAR, NPLHS, NPMA, NPNAR, &
                NPNMA, NPRHS, NSNOIS
      PARAMETER  (MWTIR=10, NDELAY=3, NOBS=100, NPAR=3, NPLHS=2, &
                NPMA=0, NPNAR=2, NPNMA=0, NPRHS=2, MWTSN=MWTIR, &
                NSNOIS=NOBS-MWTSN)
!
      INTEGER    IPRINT, ISETNG, NCOL, NROW
      REAL       AVAR, PAR(NPAR), PLHS(NPLHS), PMA(1), PNAR(NPNAR), &
                PNMA(1), PRHS(NPRHS+1), RDATA(296,2), &
                SNOISE(NOBS-MWTSN), WTIR(MWTIR+1), X(NOBS), &
                XPW(NOBS-NPAR), Y(NOBS), YPW(NOBS-NPAR)
!
      EQUIVALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))
!                                 Gas Furnace Data
      CALL GDATA (7, RDATA, NROW, NCOL)
!                                 Specify AR parameters for
!                                 prewhitening transformation
      PAR(1) = 1.97
      PAR(2) = -1.37
      PAR(3) = 0.34
!                                 Compute estimates of impulse
!                                 response weights and noise series
      CALL IRNSE (X, Y, MWTIR, MWTSN, WTIR, &
                 SNOISE, XPW, YPW, PAR=PAR)
!                                 Convergence parameters
!                                 Compute preliminary estimates of
!                                 transfer function parameters
      ISETNG = 1              
      CALL WROPT (-6, ISETNG, 1)
      IPRINT = 1
      CALL TFPE (NDELAY, WTIR, SNOISE, AVAR, IPRINT=IPRINT, NPLHS=NPLHS, &
                 NPRHS=NPRHS, NPNAR=NPNAR, PLHS=PLHS, PRHS=PRHS, PNAR=PNAR)
!
      END

Output

PLHS from TFPE/T2PE
       1             2
0.120342      0.326149

        PRHS from TFPE/T2PE
        1             2             3
-0.623240      0.318698      0.362488

PNAR from TFPE/T2PE
      1             2
1.64679      -0.70916

PNMA is not written since NPNMA = 0
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AVAR from TFPE/T2PE =     2.85408E-02
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MLSE

Computes least-squares estimates of a linear regression model for a multichannel time series with a specified 
base channel.

Required Arguments
X — NOBSX by NCHANX matrix containing the time series.  (Input) 

Each row of X corresponds to an observation of a multivariate time series, and each column of X corre-
sponds to a univariate time series. The base time series or output channel is contained in the first 
column.

NDIFF — Vector of length NCHANX containing the order of differencing for each channel of X.  (Input) 
The elements of NDIFF must be greater than or equal to zero.

NDPREG — Vector of length NCHANX containing the number of regression parameters in the differenced 
form of the model for each channel of X.  (Input) The elements of NDPREG must be greater than or 
equal to zero.

LAG — Vector of length NCHANX containing the amount of time that each channel of X is to lag the base 
series.  (Input) 
The elements of LAG must be greater than or equal to zero.

CNST — Estimate of the overall constant.  (Output)
NPREG — Number of regression parameters in the undifferenced model.  (Output)

NPREG = IADD + (NDPREG(1) + NDIFF(1)) + … + (NDPREG(NCHANX) +  DIFF(NCHANX)
where
IADD = NDIFF(1), if NDPREG(1) = 0
IADD = max (0, min(LAG(1) - 1, NDIFF(1))), if NDPREG(1) > 0.

PREG — Vector of length NPREG containing the regression parameters in the undifferenced model.  
(Output) 
The parameter estimates are concatenated as follows.
Channel 1: REG(i), i = 1, 2, …, IADD + NDPREG(1) + NDIFF(1)
Channel j:  PREG(i), i = I(j) + 1, I(j) + 2, …, I(j) + NDPREG(j) + NDIFF(j)
where
I(j) = IADD + NDPREG(1) + NDIFF(1) + … + NDPREG(j - 1) + NDIFF(j - 1)
for j = 2, 3, …, NCHANX.

more...
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Optional Arguments
NOBSX — Number of observations in each channel of the time series X.  (Input) 

NOBSX must be less than or equal LDX and greater than max(NDPREG(i) + LAG(i)) for 
i = 1, 2, …, NCHANX.
Default: NOBSX = size (X,1).

NCHANX — Number of channels in the time series X.  (Input) 
NCHANX must be greater than or equal to one.
Default: NCHANX = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDX = size (X,1).

IMEAN — Option for computation of the means of the channels of X.  (Input)
Default: IMEAN = 1.

XMEAN — Vector of length NCHANX containing the means of the channels of X.  (Input, if IMEAN = 0; out-
put, if IMEAN = 1)

FORTRAN 90 Interface
Generic: CALL MLSE (X, NDIFF, NDPREG, LAG, CNST, NPREG, PREG [, …])
Specific: The specific interface names are S_MLSE and D_MLSE.

FORTRAN 77 Interface
Single: CALL MLSE (NOBSX, NCHANX, X, LDX, IMEAN, XMEAN, NDIFF, NDPREG, LAG, CNST, NPREG, 

PREG)
Double: The double precision name is DMLSE.

Description

Routine MLSE performs least-squares estimation of a linear regression model for a multichannel time series 
with a specified base channel. 

Define the multichannel time series X by

X = (X1, X2, …, Xm)

where

Xj = (X1j, X2j, …, Xnj)
T j = 1, 2, …, m

with n = NOBSX and m = NCHANX. The columns of X correspond to individual channels of a multichannel 
time series and may be examined from a univariate perspective. The rows of X correspond to observations of 
an m-variate time series and may be examined from a multivariate perspective. Note that an alternative 

IMEAN Action

0 XMEAN is user specified.

1 XMEAN is set to the vector of arithmetic means of the channels of X.
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characterization of the multivariate time series X considers the columns of X to be observations of an m-vari-
ate time series with the rows of X containing univariate time series. For example, see Priestley (1981, page 
692) and Fuller (1976, page 14). 

The model is formed by regressing the base series X1 on its previous values and on the remaining channels 
X2, …, Xm. The differenced form of the model is given by

where θ0 = CNST is the overall constant, dk = NDIFF(k) is the order of differencing Xk, lk = LAG(k) is the 
amount Xk lags X1,

and pk = NDPREG(k) for k = 1, 2, …, m.

The undifferenced form of the model is given by

where the undifferenced parameters  are defined by

for k = 1, 2, …, m. Note that if l1 ≥ d1 ≥ 0, the base series terms Xt−j,1 at lags j = 1, …, (l1 - 1) are omitted from 
the right-hand side of the above model when d1 ≥ 1. In the actual computations, these terms are included.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2SE/DM2SE. The reference is:

CALL M2SE (NOBSX, NCHANX, X, LDX, IMEAN, XMEAN, NDIFF, NDPREG, LAG, CNST, NPREG, PREG, 
XWK, IWK)

The additional arguments are as follows:

XWK — Work vector of length NOBSX * NCHANX+ 2 * NSUM2+ max(IADD, NCHANX + NSUM), where 
NSUM = NDPREG(1) + … + NDPREG(NCHANX).

IWK — Work vector of length NSUM.
2. Prior to parameter estimation, the channels of X are centered and/or differenced according to XMEAN 

and NDIFF, respectively.
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3. The undifferenced predictive form of the model is
X(t, 1) = CNST + PREG(1) * X(t - 1, 1) + … + PREG(IADD) * X(t - IADD, 1) +
PREG(IADD + 1) * X(t - LAG(1), 1) + … + PREG(IADD + NDPREG(1) + NDIFF(1)) * 
X(t - LAG(1) + 1 - NDPREG(1) - NDIFF(1), 1) + … + PREG(I(j) + 1) * X(t - LAG(j), j) 
+ … + PREG(I(j)+NDPREG(j)+NDIFF(j)) * X(t - LAG(j) + 1 - NDPREG(j) - NDIFF(j),j)
+ … 
where
I(j) = IADD + NDPREG(1) + NDIFF(1) + … + NDPREG(j - 1) 
+ NDIFF(j - 1)
for j = 2, 3, …, NCHANX.

Examples

Example 1

Consider the Wölfer Sunspot Data (Box and Jenkins 1976, page 530) along with data on northern light activ-
ity and earthquake activity (Robinson 1967, page 204) to be a three-channel time series. Routine MLSE is 
applied to these data to examine the regressive relationship between the channels.

      USE GDATA_INT
      USE MLSE_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LDX, NCHANX, NOBSX
      PARAMETER  (NCHANX=3, NOBSX=100, LDX=NOBSX)
!
      INTEGER    I, IMEAN, LAG(NCHANX), NCOL, NDIFF(NCHANX), &
                 NDPREG(NCHANX), NOUT, NPREG, NROW 
      REAL       CNST, PREG(20), RDATA(100,4), X(LDX,NCHANX), &
                 XMEAN(NCHANX)
!
      EQUIVALENCE (X(1,1), RDATA(1,2)), (X(1,2), RDATA(1,3)), &
                (X(1,3), RDATA(1,4))
!
      DATA NDIFF(1), NDIFF(2), NDIFF(3)/1, 1, 0/
      DATA LAG(1), LAG(2), LAG(3)/1, 2, 1/
      DATA NDPREG(1), NDPREG(2), NDPREG(3)/2, 1, 3/
!
      CALL GDATA (8, RDATA, NROW, NCOL)
!     USE Default Option to estimate channel means
!                                 Compute regression parameters
      CALL MLSE (X, NDIFF, NDPREG, LAG, CNST, NPREG, PREG, XMEAN=XMEAN)
!
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99993)
99993 FORMAT (//, 1X, '     Results of MLSE/M2SE')
      WRITE (NOUT,99994)
99994 FORMAT (1X, '  I   NDIFF(I)  LAG(I)  NDPREG(I)     XMEAN(I)')
      DO 10  I=1, NCHANX
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         WRITE (NOUT,99995) I, NDIFF(I), LAG(I), NDPREG(I), XMEAN(I)
99995    FORMAT (1X, 4(I3,6X), F12.4)
   10 CONTINUE
      WRITE (NOUT,99996) CNST
99996 FORMAT (1X, 'Overall constant, CNST = ', F12.4)
      WRITE (NOUT,99997) NPREG
99997 FORMAT (//, 1X, 'Total number of parameters, NPREG = ', I2)
      WRITE (NOUT,99998)
99998 FORMAT (//, 1X, ' I          PREG(I)')
      DO 20  I=1, NPREG
         WRITE (NOUT,99999) I, PREG(I)
99999    FORMAT (1X, I2, 5X, F12.4)
   20 CONTINUE
!
      END

Output

Results of MLSE/M2SE
I   NDIFF(I)  LAG(I)  NDPREG(I)     XMEAN(I)
1        1        1        2           46.9400
2        1        2        1           63.4300
3        0        1        3           97.9700
Overall constant, CNST =      -7.2698

Total number of parameters, NPREG =  8

I          PREG(I)
1          -0.1481
2          -1.3444
3           0.4925
4          -0.0302
5           0.0302
6          -0.0210
7           0.0187
8           0.0765

Example 2

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X1 is the percent CO2 in the out-
let gas and X2 is the input gas rate in cubic feet/minute. Application of routine MLSE to these data produces 
the following results:

      USE GDATA_INT
      USE SCOPY_INT
      USE MLSE_INT
      USE UMACH_INT 

      IMPLICIT   NONE
      INTEGER    LDX, NCHANX, NOBSX
      PARAMETER  (NCHANX=2, NOBSX=296, LDX=NOBSX)
!
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      INTEGER    I, IMEAN, LAG(NCHANX), NCOL, NDIFF(NCHANX), &
                 NDPREG(NCHANX), NOUT, NPREG, NROW
      REAL       CNST, PREG(20), RDATA(296,2), X(LDX,NCHANX), &
                 XMEAN(NCHANX)
!
      DATA NDIFF(1), NDIFF(2)/0, 0/
      DATA LAG(1), LAG(2)/1, 3/
      DATA NDPREG(1), NDPREG(2)/2, 3/
!                                 Gas Furnace Data
      CALL GDATA (7, RDATA, NROW, NCOL)
!                                 Multichannel X consists of
!                                 Column 1: Output percent CO2
!                                 Column 2: Input gas rate
      CALL SCOPY (NOBSX, RDATA(1:,2), 1, X(1:,1), 1)
      CALL SCOPY (NOBSX, RDATA(1:,1), 1, X(1:,2), 1)
!                                 Option to estimate channel means
      IMEAN = 1
!                                 Compute regression parameters
      CALL MLSE (X, NDIFF, NDPREG, LAG, CNST, NPREG, PREG, XMEAN=XMEAN)
!
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99993)
99993 FORMAT (1X, 'Results of MLSE/M2SE on Gas Furnace Data')
      WRITE (NOUT,99994)
99994 FORMAT (1X, '  I   NDIFF(I)  LAG(I)  NDPREG(I)       XMEAN(I)')
      DO 10  I=1, NCHANX
         WRITE (NOUT,99995) I, NDIFF(I), LAG(I), NDPREG(I), XMEAN(I)
99995    FORMAT (1X, 4(I3,6X), F12.4)
   10 CONTINUE
      WRITE (NOUT,99996) CNST
99996 FORMAT (1X, 'Overall constant, CNST = ', F12.4)
      WRITE (NOUT,99997) NPREG
99997 FORMAT (1X, 'Total number of parameters, NPREG = ', I2)
      WRITE (NOUT,99998)
99998 FORMAT (1X, ' I          PREG(I)')
      DO 20  I=1, NPREG
         WRITE (NOUT,99999) I, PREG(I)
99999    FORMAT (1X, I2, 5X, F12.4)
   20 CONTINUE
!
      END

Output

Results of MLSE/M2SE on Gas Furnace Data
I   NDIFF(I)  LAG(I)  NDPREG(I)       XMEAN(I)
1        0        1        2           53.5091
2        0        3        3           -0.0568
Overall constant, CNST =       2.6562
Total number of parameters, NPREG =  5
I          PREG(I)
1           1.6063
2          -0.6561
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3          -0.4837
4          -0.1653
5           0.5052
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MWFE

Computes least-squares estimates of the multichannel Wiener filter coefficients for two mutually stationary 
multichannel time series.

Required Arguments
CXX — Array of size NCHX by NCHX by MLFIL containing the autocovariances of the input time series X.  

(Input)
CZX — Array of size NCHZ by NCHX by MLFIL containing the cross-covariances between the desired out-

put time series Z and the input time series X.  (Input)
EPS — Lower bound for the normalized mean square error.  (Input)
TRACE — Trace of the autocovariance matrix of the desired output time series Z at time lag zero.  (Input)
LFIL — Length of the Wiener filter.  (Output)
FIL — Array of size NCHZ by NCHX by MLFIL containing the multichannel Wiener filter coefficients.  

(Output)
ENMS — Vector of length MLFIL containing the normalized mean square error corresponding to each fil-

ter length.  (Output)

Optional Arguments
NCHX — Number of input channels.  (Input) 

NCHX must be greater than or equal to one.
Default: NCHX = size (CXX,1).

MLFIL — Maximum length of the Wiener filter.  (Input) 
MLFIL must be greater than or equal to one.
Default: MLFIL = size (CXX,3).

LDCXX — Leading dimension of CXX exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
LDCXX must be greater than or equal to NCHX.
Default: LDCXX = size (CXX,1).

MDCXX — Middle dimension of CXX exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
MDCXX must be greater than or equal to NCHX.
Default: MDCXX = size (CXX,2).

NCHZ — Number of channels in desired output time series.  (Input) 
NCHZ must be greater than or equal to one.
Default: NCHZ = size (CZX,1).

more...
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LDCZX — Leading dimension of CZX exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
LDCZX must be greater than or equal to NCHZ.
Default: LDCZX = size (CZX,1).

MDCZX — Middle dimension of CZX exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
MDCZX must be greater than or equal to NCHX.
Default: MDCZX = size (CZX,2).

LDFIL — Leading dimension of FIL exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
LDFIL must be greater than or equal to NCHZ.
Default: LDFIL = size (FIL,1).

MDFIL — Middle dimension of FIL exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
MDFIL must be greater than or equal to NCHX.
Default: MDFIL = size (FIL,2).

FORTRAN 90 Interface
Generic: CALL MWFE (CXX, CZX, EPS, TRACE, LFIL, FIL, ENMS [, …])
Specific: The specific interface names are S_MWFE and D_MWFE.

FORTRAN 77 Interface
Single: CALL MWFE (NCHX, MLFIL, CXX, LDCXX, MDCXX, NCHZ, CZX, LDCZX, MDCZX, EPS, TRACE, 

LFIL, FIL, LDFIL, MDFIL ENMS)
Double: The double precision name is DMWFE.

Description

Routine MFFE computes least-squares estimates of the multichannel Wiener filter coefficients for two mutu-
ally stationary multichannel time series. 

Define the multichannel time series X by

X = (X1, X2, …, Xp)

where

Xj = (X1j, X2j, …, Xnj)
T j = 1, 2, …, p

with p = NCHX. Similarly, define the multichannel time series Z by

Z = (Z1, Z2, …, Zq)

where 

Zj = (Z1j, Z2j, …, Zmj)
T j = 1, 2, …, q
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with q = NCHZ. The columns of X and Z correspond to individual channels of multichannel time series and 
may be examined from a univariate perspective. The rows of X and Z correspond to observations of p-variate 
and q-variate time series and may be examined from a multivariate perspective. Note that an alternative 
characterization of a multivariate time series X considers the columns of X to be observations of a p-variate 
time series with the rows of X containing univariate time series. For example, see Priestley (1981, page 692) 
and Fuller (1976, page 14). 

Let

be the row vector containing the means of the channels of X. In particular,

where for j = 1, 2, …, p

Let

be similarly defined. In what follows, assume the channels of both X and Z have been centered about their 
respective means 

Suppose the desired output is the multichannel time series Z defined by the model

where

and ɸk is the array of dimension p × q containing the Wiener filter coefficients 

for k = 1, …, K. The array ɸk is the (k + 1)-st level of the 3-dimensional array FIL. 
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The filter coefficients are computed by solving a set of normal equations. The algorithm utilizes the block 
Toeplitz (or Töplitz) matrix structure of these equations and is given by Robinson (1967, pages 238–246). In 
particular, the required input consists of the multichannel autocovariance matrices ΣX, ΣZ, and the multi-
channel cross-covariance matrix ΣZX. The routine MCCF may be used to estimate these covariance matrices. 

Note that successively longer filters are estimated until either the normalized mean square error is less than 
EPS or the filter length K = LFIL equals MLFIL. The normalized mean square error is defined by 

where tr ΣZ(0) = TRACE is the trace of the multichannel autocorrelation coefficient of the desired output at lag 
zero. The values of Qk for the successive filters of length k = 1, 2, …, K are contained in ENMS.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2FE/DM2FE. The reference is:

CALL M2FE (NCHX, MLFIL, CXX, LDCXX, MDCXX, NCHZ, CZX, LDCZX, MDCZX, EPS, TRACE, LFIL, 
FIL, LDFIL, MDFIL, ENMS, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length NCHX.

WK — Work vector of length NCHX * NCHX * (2 * MLFIL + 12) + NCHZ.
2. The length of the filter is determined by the arguments EPS and MLFIL. Iteration to a longer filter 

stops when either the normalized mean square error ENMS is less than EPS, or the filter reaches the 
maximum allowable length, MLFIL.

3. The routine MCCF may be used to obtain the input arguments CXX, CZX, and TRACE. For TRACE, rou-
tine MCCF may be used to obtain the autocovariances of the desired output series Z. In particular, 
TRACE = ZVAR(1) + … + ZVAR(NCHZ).

4. For a given lag k, the multichannel cross-covariance coefficient between Z and X is defined as the array 
of size NCHZ by NCHX whose elements are the single-channel crosscovariance coefficients CZX(i, j, k).

Example

Consider the Wölfer Sunspot Data (Box and Jenkins 1976, page 530) along with data on northern light activ-
ity and earthquake activity (Robinson 1967, page 204) to be a three-channel time series. Routine MWFE 
applied to these data determines the following Wiener filter:

      USE GDATA_INT
      USE SCOPY_INT
      USE MCCF_INT
      USE MWFE_INT
      USE UMACH_INT

      IMPLICIT   NONE

      INTEGER    LDCXX, LDCZX, LDFIL, LDX, LDZ, MAXLAG, MDCXX, &
                 MDCZX, MDFIL, MLFIL, NCHANX, NCHANZ, NOBSX, NOBSZ
      REAL       SSUM
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      PARAMETER  (MLFIL=3, NCHANX=3, NCHANZ=3, NOBSX=99, NOBSZ=99, &
                  LDCXX=NCHANX, LDCZX=NCHANZ, LDFIL=NCHANX, LDX=NOBSX, &
                  LDZ=NOBSZ, MAXLAG=MLFIL-1, MDCXX=NCHANX, MDCZX=NCHANX, &
                  MDFIL=NCHANZ)
!
      INTEGER    I, J, K, LFIL, NCOL, NOUT, NROW
      REAL       CVXX(LDCXX,MDCXX,-MAXLAG:MAXLAG), CVXX1(3,3,3), &
                 CVZX(LDCZX,MDCZX,-MAXLAG:MAXLAG), CVZX1(3,3,3), &
                 CXX(LDCXX,MDCXX,-MAXLAG:MAXLAG), &
                 CZX(LDCZX,MDCZX,-MAXLAG:MAXLAG), ENMS(MLFIL), EPS, &
                 FIL(LDFIL,MDFIL,MLFIL), R(0:2), RDATA(100,4), &
                 TRACE, X(LDX,NCHANX), XMEAN(NCHANX), XVAR(NCHANX), &
                 YMEAN, YVAR, Z(LDZ,NCHANZ), ZMEAN(NCHANZ), &
                 ZVAR(NCHANZ)

!
      EQUIVALENCE (CVXX(1,1,0), CVXX1(1,1,1)), (CVZX(1,1,0), CVZX1(1,1, &
                1))
!                                 Wolfer sunspot numbers
!                                 Northern lights activity
!                                 Earthquake activity
      CALL GDATA (8, RDATA, NROW, NCOL)
!
      CALL SCOPY (NOBSX, RDATA(1:,2), 1, X(1:,1), 1)
      CALL SCOPY (NOBSX, RDATA(1:,3), 1, X(1:,2), 1)
      CALL SCOPY (NOBSX, RDATA(1:,4), 1, X(1:,3), 1)
!
      CALL SCOPY (NOBSZ, RDATA(2:,2), 1, Z(1:,1), 1)
      CALL SCOPY (NOBSZ, RDATA(2:,3), 1, Z(1:,2), 1)
      CALL SCOPY (NOBSZ, RDATA(2:,4), 1, Z(1:,3), 1)
!                                 Compute multichannel ACF of Z
      CALL MCCF (Z, Z, MAXLAG, CXX, XVAR=XVAR, CCV=CVXX) 
!                                 Compute TRACE
      TRACE = SSUM(NCHANZ,XVAR,1)
!                                 Compute multichannel ACF of X
      CALL MCCF (X, X, MAXLAG, CXX, CCV=CVXX)
!                                 Compute multichannel CCF of Z and X
      CALL MCCF (Z, X, MAXLAG, CZX, CCV=CVZX)
!                                 Bound normalized MSE to be positive
      EPS = 0.0
!                                 Reverse the LAG direction and scale
!                                 to agree with Robinson (1967)
      R(0)  = 99.D0
      R(1)  = 98.D0
      R(2)  = 97.D0
      TRACE = TRACE*R(0)
      DO 10  K=0, MAXLAG
         DO 10  J=1, NCHANX
            DO 10  I=1, NCHANX
               CVXX(I,J,K) = CVXX(I,J,-K)*R(K)
               CVZX(I,J,K) = CVZX(I,J,-K)*R(K)
   10 CONTINUE
!                                 Compute multichannel Wiener filter
      CALL MWFE (CVXX1, CVZX1, EPS, TRACE, LFIL, FIL, ENMS)
!                                 Print results
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      CALL UMACH (2, NOUT)
      WRITE (NOUT,99994) LFIL
99994 FORMAT (1X, 'Number of filter coefficients, LFIL = ', I3)
      DO 30  K=1, LFIL
         WRITE (NOUT,99995) K
99995    FORMAT (//, 1X, 'Wiener filter coefficient of index K = ', I3)
         DO 20  I=1, NCHANX
            WRITE (NOUT,99996) (FIL(I,J,K),J=1,NCHANZ)
99996       FORMAT (1X, 3F12.4)
   20    CONTINUE
   30 CONTINUE
      WRITE (NOUT,99997)
99997 FORMAT (//, 1X, 'Normalized mean square error')
      WRITE (NOUT,99998)
99998 FORMAT (1X, ' K          ENMS(K)')
      DO 40  K=1, LFIL
         WRITE (NOUT,99999) K, ENMS(K)
99999    FORMAT (1X, I2, 5X, F12.4)
   40 CONTINUE
!
      END

Output

Number of filter coefficients, LFIL =   3

Wiener filter coefficient of index K =   1
 1.3834      0.0348      0.0158
 0.0599      0.8266      0.0629
-0.1710     -0.0332     -0.1205

Wiener filter coefficient of index K =   2
 -0.7719     -0.0183     -0.0318 
-0.0040     -0.2328      0.0484
-0.2170      0.1912     -0.0667

Wiener filter coefficient of index K =   3
 0.0516      0.0563     -0.0138
-0.0568      0.1084     -0.1731
 0.0007      0.2177     -0.0152

Normalized mean square error
 K          ENMS(K)
 1           0.6042
 2           0.5389
 3           0.5174
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KALMN

Performs Kalman filtering and evaluates the likelihood function for the state-space model.

Required Arguments
Y — Vector of length NY containing the observations.  (Input)
Z — NY by NB matrix relating the observations to the state vector in the observation equation.  (Input)

R — NY by NY matrix such that R * σ2 is the variance-covariance matrix of errors in the observation equa-
tion.  (Input) 
σ2 is a positive unknown scalar. Only elements in the upper triangle of R are referenced.

B — Estimated state vector of length NB.  (Input/Output) 
The input is the estimated state vector at time k given the observations thru time k - 1. The output is 
the estimated state vector at time k + 1 given the observations thru time k. On the first call to KALMN, 
the input B must be the prior mean of the state vector at time 1.

COVB — NB by NB matrix such that COVB * σ2 is the mean squared error matrix for B.  (Input/Output)
Before the first call to KALMN, COVB * σ2 must equal the variance-covariance matrix of the state vector.

N — Rank of the variance-covariance matrix for all the observations.  (Input/Output)
N must be initialized to zero before the first call to KALMN. In the usual case when the variance-covari-
ance matrix is nonsingular, N equals the sum of the NY’s from the invocations to KALMN.

SS — Generalized sum of squares.   (Input/Output) 
SS must be initialized to zero before the first call to KALMN. The estimate of σ2 is given by SS/N.

ALNDET — Natural log of the product of the nonzero eigenvalues of P where P * σ2 is the variance-covari-
ance matrix of the observations.  (Input/Output) 
Although ALNDET is computed, KALMN avoids the explicit computation of P. ALNDET must be initial-
ized to zero before the first call to KALMN. In the usual case when P is nonsingular, ALNDET is the 
natural log of the determinant of P.

Optional Arguments
NY — Number of observations for current update.  (Input) 

If NY = 0, no update is performed.
Default: NY = size (Y,1).

NB — Number of elements in the state vector.  (Input)
Default: NB = size (Z,2).

LDZ — Leading dimension of Z exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDZ = size (Z,1). 

more...
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LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

IT — Transition matrix option.  (Input) 
Default: IT = 1.

T — NB by NB transition matrix in the state equation.  (Input, if IT = 0) 
If IT = 1, then T is not referenced and can be a vector of length one.

LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

IQ — State equation error option.  (Input) 
Default: IQ = 1.

Q — NB by NB matrix such that Q * σ2 is the variance-covariance matrix of the error vector in the state 
equation.  (Input, if IQ = 0) 
σ2 is a positive unknown scalar. If IQ = 1, then Q is not referenced and can be a 1x1 array. If IQ = 0, 
only the elements in the upper triangle of Q are referenced.

LDQ — Leading dimension of Q exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDQ = size (Q,1).

TOL — Tolerance used in determining linear dependence.  (Input) 
TOL = 100.0 * AMACH(4) is a common choice. See the documentation for routine AMACH in the Reference 
Material.
Default: TOL = 1.e-5 for single precision and 2.d –14 for double precision.

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOVB = size (COVB,1),

V — Vector of length NY containing the one-step-ahead prediction error.  (Output) 
If Y is not needed, then V and Y can occupy the same storage locations.

COVV — NY by NY matrix such that COVV * σ2 is the variance-covariance matrix of V.  (Output) 
If R is not needed, then COVV and R can occupy the same storage locations.

LDCOVV — Leading dimension of COVV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)

FORTRAN 90 Interface
Generic: CALL KALMN (Y, Z, R, B, COVB, N, SS, ALNDET [, …])

IT Action

0 T is the transition matrix in the state equation.

1 The identity is the transition matrix in the state 
equation.

IQ Action

0 There is an error term in the state equation.

1 There is no error term in the state equation.
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Specific: The specific interface names are S_KALMN and D_KALMN.

FORTRAN 77 Interface
Single: CALL KALMN (NY, Y, NB, Z, LDZ, R, LDR, IT, T, LDT, IQ, Q, LDQ, TOL, B, COVB, LDCOVB, N, 

SS, ALNDET, V, COVV, LDCOVV)
Double: The double precision name is DKALMN.

Description

Routine KALMN is based on a recursive algorithm given by Kalman (1960), which has come to be known as 
the Kalman filter. The underlying model is known as the state-space model. The model is specified stage by 
stage where the stages generally correspond to time points at which the observations become available. The 
routine KALMN avoids many of the computations and storage requirements that would be necessary if one 
were to process all the data at the end of each stage in order to estimate the state vector. This is accomplished 
by using previous computations and retaining in storage only those items essential for processing of future 
observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in Y) be the nk × 1 vector of 
observations that become available at time k. The subscript k is used here rather than t, which is more cus-
tomary in time series, to emphasize that the model is expressed in stages k = 1, 2, … and that these stages 
need not correspond to equally spaced time points. In fact, they need not correspond to time points of any 
kind. The observation equation for the state-space model is

yk = Zkbk + ek k = 1, 2, …
Here, Zk (input in Z) is an nk × q known matrix and bk is the q × 1 state vector. The state vector bk is allowed to 
change with time in accordance with the state equation

bk+1 = Tk+1bk + wk+1 k = 1, 2, …
starting with b1 = μ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the transition matrix Tk+1(input in T), 
which is assumed known. It is assumed that the q-dimensional wk’s (k = 1, 2, ).are independently distributed 

multivariate normal with mean vector 0 and variance-covariance matrix σ2Qk, that the nk-dimensional ek’s 
(k = 1, 2,).are independently distributed multivariate normal with mean vector 0 and variance-covariance 

matrix σ2Rk, and that the wk’s and ek’s are independent of each other. Here, μ1 is the mean of b1 and is 

assumed known, σ2 is an unknown positive scalar. Qk+1 (input in Q) and Rk (input in R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations y1, y2, …, yj by
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By definition, the mean squared error matrix for 

   is

At the time of the k-th invocation, we have

and Ck∣k−1, which were computed from the (k-1)-st invocation, input in B and COVB, respectively. During the 
k-th invocation, routine KALMN computes the filtered estimate

along with Ck∣k. These quantities are given by the update equations:

where

and where 

Here, vk (stored in V) is the one-step-ahead prediction error, and σ2Hk is the variance-covariance matrix for 
vk. Hk is stored in COVV. The “start-up values” needed on the first invocation of KALMN are

and C1∣0 = Q1 input via B and COVB, respectively. Computations for the k-th invocation are completed by 
KALMN computing the one-step-ahead estimate 
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along with Ck+1∣k given by the prediction equations:

If both the filtered estimates and one-step-ahead estimates are needed by the user at each time point, KALMN 
can be invoked twice for each time point—first with IT = 1 and IQ = 1 to produce

and Ck∣k, and second with NY = 0 to produce

and Ck+1∣k (With IT = 1 and IQ = 1, the prediction equations are skipped. With NY = 0, the update equations 
are skipped.) 

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an estimate of

is needed where k > j + 1. At time j, KALMN is invoked to compute

Subsequent invocations of KALMN with NY = 0 can compute

Computations for

and Ck∣j assume the variance-covariance matrices of the errors in the observation equation and state equation 

are known up to an unknown positive scalar multiplier, σ2. The maximum likelihood estimate of σ2 based on 
the observations y1, y2, …, ym, is given by

where
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If σ2 is known, the Rk’s and Qk’s can be input as the variance-covariance matrices exactly. The earlier discus-

sion is then simplified by letting σ2 = 1. 

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may be known functions of 
an unknown parameter vector θ. In this case, KALMN can be used in conjunction with an optimization pro-
gram (see routine UMINF, (IMSL MATH/LIBRARY)) to obtain a maximum likelihood estimate of θ. The 
natural logarithm of the likelihood function for y1, y2, …, ym differs by no more than an additive constant 
from

(Harvey 1981, page 14, equation 2.21). Here,

(stored in ALNDET) is the natural logarithm of the determinant of V where σ2V is the variance-covariance 
matrix of the observations. 

Minimization of -2L(θ, σ2; y1, y2, …, ym) over all θ and σ2 produces maximum likelihood estimates. Equiva-
lently, minimization of -2Lc(θ; y1, y2, …, ym) where

produces maximum likelihood estimates 

The minimization of -2Lc(θ; y1, y2, …, ym) instead of -2L(θ, σ2; y1, y2, …, ym), reduces the dimension of the 
minimization problem by one. The two optimization problems are equivalent since 

minimizes -2L(θ, σ2; y1, y2, …, ym) for all θ, consequently, 

can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that differs by no more than an additive 
constant from Lc(θ; y1, y2, …, ym). 
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The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification for singular distribu-
tions described by Rao (1973, pages 527–528) is used. The necessary changes in the preceding discussion are 
as follows:

1. Replace

by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

3. Replace N by

Maximum likelihood estimation of parameters in the Kalman filter is discussed by Sallas and Harville (1988) 
and Harvey (1981, pages 111–113).

Comments
1. Workspace may be explicitly provided, if desired, by use of K2LMN/DK2LMN. The reference is:

CALL K2LMN (NY, Y, NB, Z, LDZ, R, LDR, IT, T, LDT, IQ, Q, LDQ, TOL, B, COVB, LDCOVB, N, SS, 
ALNDET, V, COVV, LDCOVV, COVVCH, WK1, WK2)

The additional arguments are as follows.

COVVCH — Work vector of length NY * NY containing the Cholesky factor of the COVV matrix. If R 
and COVV are not needed, COVVCH, R, and COVV can occupy the same storage locations and 
LDR must equal LDCOVV.

WK1 — Work vector of length NB * NB.

WK2 — Work vector of length NB * NY + max(NB, NY).
2. Informational errors

3. If R, Q, and T are known functions of unknown parameters, KALMN can be used in conjunction with 
routine UMINF (IMSL MATH/LIBRARY) to perform maximum likelihood estimation of these 
unknown parameters. UMINF should be used to minimize the function

N * ALOG(SS/N) + ALNDET

Type Code Description

4 1 R + Z * COVB * ZT is not nonnegative definite within the tolerance defined by 
TOL. Either TOL is too small, or R or COVB is not nonnegative definite.

4 2 The system of equations COVVCHT * x = V is inconsistent. The variance-covari-
ance matrix of the observations is inconsistent with the observations input in 
Y.

4 3 The system of equations COVVCHT * x = Z * COVB is inconsistent. The 
Cholesky factorization to compute COVVCH may be based on too large a 
value for TOL. The input of a smaller value for TOL may be appropriate.
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4. In order to maintain acceptable numerical accuracy, the double precision version of  KALMN is usually 
required.

Examples

Example 1

Routine KALMN is used to compute the filtered estimates and one-step-ahead estimates for a scalar problem 
discussed by Harvey (1981, pages 116–117). The observation equation and state equation are given by

where the ek’s are identically and independently distributed normal with mean 0 and variance σ2, the wk’s 

are identically and independently distributed normal with mean 0 and variance 4σ2, and b1is distributed 

normal with mean 4 and variance 16σ2. Two invocations of KALMN are needed for each time point in order to 
compute the filtered estimate and the one-step-ahead estimate. The first invocation uses Default: IQ = 1 and 
IT = 1 so that the prediction equations are skipped in the computations. The second invocation uses NY = 0 
so that the update equations are skipped in the computations. 

This example also computes the one-step-ahead prediction errors. Harvey (1981, page 117) contains a mis-
print for the value v4 that he gives as 1.197. The correct value of v4 = 1.003 is computed by KALMN.

      USE UMACH_INT
      USE KALMN_INT

      IMPLICIT   NONE
      INTEGER    LDCOVB, LDCOVV, LDQ, LDR, LDT, LDZ, NB, NOBS, NY
      PARAMETER  (NB=1, NOBS=4, NY=1, LDCOVB=NB, LDCOVV=NY, LDQ=NB, &
                LDR=NY, LDT=NB, LDZ=NY)
!
      INTEGER    I, IQ, IT, N, NOUT
      REAL       ALNDET, B(NB), COVB(LDCOVB,NB), &
                 COVV(LDCOVV,NY), Q(LDQ,NB), R(LDR,NY), SS, T(LDT,NB), &
                 V(NY), Y(NY), YDATA(NOBS), Z(LDZ,NB)
!
      DATA YDATA/4.4, 4.0, 3.5, 4.6/, Z/1.0/, R/1.0/, Q/4.0/, T/1.0/
!
      CALL UMACH (2, NOUT)
!                                 Initial estimates for state vector
!                                 and variance-covariance matrix.
!                                 Initialize SS and ALNDET.
      B(1)      = 4.0
      COVB(1,1) = 16.0
      N         = 0
      SS        = 0.0
      ALNDET    = 0.0
      WRITE (NOUT,99998)
!
      DO 10  I=1, NOBS
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!                                 Update
         Y(1) = YDATA(I)
         CALL KALMN (Y, Z, R, B, COVB, N, SS, ALNDET, T=T, Q=Q, V=V, &
                     COVV=COVV)
         WRITE (NOUT,99999) I, I, B(1), COVB(1,1), N, SS, ALNDET, &
                          V(1), COVV(1,1)
!                                 Prediction
         IQ = 0
         IT = 0
         CALL KALMN (Y, Z, R, B, COVB, N, SS, ALNDET, NY=0, IT=IT, T=T, &
                     IQ=IQ, Q=Q, V=V, COVV=COVV)
         WRITE (NOUT,99999) I + 1, I, B(1), COVB(1,1), N, SS, ALNDET, &
                          V(1), COVV(1,1)
   10 CONTINUE
99998 FORMAT (' k/j', '   B    ', '  COVB  ', ' N', '   SS   ', &
            ' ALNDET ', '   V    ', '  COVV  ')
99999 FORMAT (I2, '/', I1, 2F8.3, I2, 4F8.3)
      END

Output

k/j   B      COVB   N   SS    ALNDET    V      COVV
1/1   4.376   0.941 1   0.009   2.833   0.400  17.000
2/1   4.376   4.941 1   0.009   2.833   0.400  17.000
2/2   4.063   0.832 2   0.033   4.615  -0.376   5.941
3/2   4.063   4.832 2   0.033   4.615  -0.376   5.941
3/3   3.597   0.829 3   0.088   6.378  -0.563   5.832
4/3   3.597   4.829 3   0.088   6.378  -0.563   5.832
4/4   4.428   0.828 4   0.260   8.141   1.003   5.829
5/4   4.428   4.828 4   0.260   8.141   1.003   5.829

Example 2

Routine KALMN is used with routine UMINF (IMSL MATH/LIBRARY) to find a maximum likelihood estimate 
of the parameter θ in a MA(1) time series represented by yk = ɛk - θɛk−1. Routine RNARM (see Chapter 18, 
“Random Number Generation”) is used to generate 200 random observations from an MA(1) time series with 

θ = 0.5 and σ2 = 1.

The MA(1) time series is cast as a state-space model of the following form (see Harvey 1981, pages 103–
104, 112):

where the two-dimensional wk’s are independently distributed bivariate normal with mean 0 and variance 

σ2 Qk and
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The warning error that is printed as part of the output is not serious and indicates that UMINF is generally 
used for multi-parameter minimization.

      USE RNSET_INT
      USE RNARM_INT
      USE UMINF_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS, NTHETA
      PARAMETER  (NOBS=200, NTHETA=1)
!
      INTEGER    IADIST, IPARAM(7), ISEED, LAGAR(1), LAGMA(1), NOUT, &
                NPAR, NPMA
      REAL       A(NOBS+1), AVAR, CNST, FSCALE, FVALUE, PAR(1), &
                PMA(1), RPARAM(7), THETA(NTHETA), WI(1), XGUESS(1), &
                XSCALE(1), YDATA(NOBS)
      COMMON     /MA1/ YDATA
      EXTERNAL   FCN
!
      ISEED = 123457
      CALL RNSET (ISEED)
      PMA(1)   = 0.5
      LAGMA(1) = 1
      CNST    = 0.0
      NPAR     = 0
      NPMA     = 1
      IADIST   = 0
      AVAR     = 1.0
      CALL RNARM (CNST, PAR, LAGAR, PMA, LAGMA, &
                 IADIST, AVAR, A, WI, YDATA, NPAR=NPAR)
!                                 Use UMINF to find maximum likelihood
!                                 estimate of the MA parameter THETA.
      CALL UMINF (FCN, THETA)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,*) '* * * Final Estimate for THETA * * *'
      WRITE (NOUT,*) 'Maximum likelihood estimate, THETA = ', THETA(1)
      END
!                                Use KALMN to evaluate the likelihood.
      SUBROUTINE FCN (NTHETA, THETA, FUNC)
      USE KALMN_INT
      INTEGER    NTHETA
      REAL       THETA(NTHETA), FUNC
!
      INTEGER    LDCOVB, LDCOVV, LDQ, LDR, LDT, LDZ, NB, NOBS, NY
      PARAMETER  (NB=2, NOBS=200, NY=1, LDCOVB=NB, LDCOVV=NY, LDQ=NB, &
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                LDR=NY, LDT=NB, LDZ=NY)
!
      INTEGER    I, IQ, IT, N
      REAL       ABS, ALNDET, ALOG, B(NB), COVB(LDCOVB,NB), &
                COVV(LDCOVV,NY), Q(LDQ,NB), R(LDR,NY), SS, T(LDT,NB), &
                TOL, V(NY), Y(NY), YDATA(NOBS), Z(LDZ,NB)
      COMMON     /MA1/ YDATA
      INTRINSIC  ABS, ALOG
!
      DATA T/0.0, 0.0, 1.0, 0.0/, Z/1.0, 0.0/
!
      IF (ABS(THETA(1)) .GT. 1.0) THEN
!                                 Estimate out of parameter space.
!                                 Set function to a large number.
         FUNC = 1.E10
         RETURN
      END IF
      IQ     = 0
      Q(1,1) = 1.0
      Q(1,2) = -THETA(1)
      Q(2,1) = -THETA(1)
      Q(2,2) = THETA(1)**2
      IT     = 0
!                                 No error in the
!                                 observation equation.
      R(1,1) = 0.0
!                                 Initial estimates for state vector
!                                 and variance-covariance matrix.
!                                 Initialize SS and ALNDET.
      B(1)      = 0.0
      B(2)      = 0.0
      COVB(1,1) = 1.0 + THETA(1)**2
      COVB(1,2) = -THETA(1)
      COVB(2,1) = -THETA(1)
      COVB(2,2) = THETA(1)**2
      N         = 0
      SS        = 0.0
      ALNDET    = 0.0
!
      DO 10  I=1, NOBS
         Y(1) = YDATA(I)
         CALL KALMN (Y, Z, R, B, COVB, N, SS, ALNDET, IT=IT, T=T, &
                     IQ=IQ, Q=Q)
   10 CONTINUE
      FUNC = N*ALOG(SS/N) + ALNDET
      RETURN
      END

Output

*** WARNING  ERROR 1 from U5INF.  This routine may be inefficient for a
***          problem of size N = 1.
  Here is a traceback of subprogram calls in reverse order:
  Routine name                    Error type  Error code
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  ------------                    ----------  ----------
   U5INF                               6           1    (Called internally)
   U3INF                               0           0    (Called internally)
   U2INF                               0           0    (Called internally)
   UMINF                               0           0
   USER                                0           0
* * * Final Estimate for THETA * * *
Maximum likelihood estimate, THETA =    0.452944
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AUTO_UNI_AR

Automatic selection and fitting of a univariate autoregressive time series model. The lag for the model is 
automatically selected using Akaike’s Information Criterion (AIC). Estimates of the autoregressive parame-
ters for the model with minimum AIC are calculated using method of moments or maximum likelihood.

Required Arguments

W — Vector containing the stationary time series. (Input)
MAXLAG — Maximum number of autoregressive parameters requested. (Input)
NPAR — Number of autoregressive parameters. (Output)
PAR — Vector of length MAXLAG, which contains the estimates for the autoregressive parameters in the 

model with the minimum AIC. The estimates are in the first NPAR values of this vector. (Output)

Optional Arguments
IPRINT — Printing option. (Input)

Default: IPRINT = 0.
IMETH — Estimation method option. (Input)

Default: IMETH = 0.
MAXIT — Maximum number of estimation iterations. (Input)

Default: MAXIT = 500.
AVAR — Innovation variance. (Output)
AIC — Akaike’s Information Criterion. (Output)

FORTRAN 90 Interface
Generic: CALL AUTO_UNI_AR (W, MAXLAG, NPAR, PAR [, …])

more...

0 No printing

1 Prints final results only

2 Prints intermediate and final 
results

0 Method of moments

1 Maximum likelihood

2 Method of least-squares
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Specific: The specific interface names are S_AUTO_UNI_AR and D_AUTO_UNI_AR.

Description

The routine AUTO_UNI_AR automatically selects the order of the AR model that best fits the data and then 
computes the AR coefficients. The algorithm used in AUTO_UNI_AR is derived from the work of Akaike, H., 
et. al (1979) and Kitagawa & Akaike (1978). This code was adapted from the UNIMAR procedure published 
as part of the TIMSAC-78 Library.

The best-fit AR model is determined by successively fitting AR models with 1, 2, ..., MAXLAG autoregressive 
coefficients. For each model, Akaike’s Information Criterion (AIC) is calculated based on the formula:

AIC = -2ln(likelihood) + 2(NPAR)

AUTO_UNI_AR uses the approximation to this formula developed by Ozaki and Oda (1979).

The best fit model is the model with minimum AIC. If the number of parameters in this model is equal to the 
highest order autoregressive model fitted, i.e., NPAR=MAXLAG, then a model with smaller AIC might exist for 
larger values of MAXLAG. In this case, increasing MAXLAG to explore AR models with additional autoregres-
sive parameters might be warranted.

If IMETH = 0, estimates of the autoregressive coefficients for the model with the minimum AIC are calculated 
using method of moments. If IMETH = 1, the model with the minimum AIC is identified and coefficients are 
then estimated using maximum likelihood. Otherwise, if IMETH = 2, the coefficients for the model with min-
imum AIC are computed using the method of least-squares.

Example

Consider the Wolfer Sunspot Data (Box and Jenkins 1976, page 530) consisting of the number of sunspots 
observed for each year from 1770 through 1869. In this example, AUTO_UNI_AR found the minimum AIC fit 
is an autoregressive model with 10 lags:

using the formula 

the lag 10 AR model for this series can be represented as:
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      use auto_uni_ar_int
      use wrrrn_int
      use gdata_int
      implicit none
!                                  SPECIFICATIONS FOR PARAMETERS
      integer, parameter   :: maxlag=20
      integer              :: npar
      real(kind(1e0))      :: aic, avar
      real(kind(1e0))      :: par(maxlag)
      real(kind(1e0))      :: x(176,2)
      integer              :: ncol, nrow
!                                  SPECIFICATIONS FOR LOCAL VARIABLES
      integer              :: nout
!
      call umach (2, nout)
      write(nout,*) 'AIC Automatic Order selection '
      write(nout,*) 'AR coefficients estimated using Maximum Likelihood'
      write(nout,*)
!                                  Get Wolfer Sunspot Data
      call gdata(2,x,nrow,ncol)
!                                  Example #1
      call auto_uni_ar(x(22:,2), maxlag, npar, par, aic=aic, imeth=1,&
                       avar=avar)
      write(nout,*) 'Order Selected: ', npar
      write(nout,*) 'AIC = ', aic,'      Variance = ', avar
      call wrrrn('Final AR Coefficients estimated by MAXIMUM LIKELIHOOD', &
                  par, nra=npar, nca=1, lda=npar)
      end

Output

 AIC Automatic Order selection 
 AR coefficients estimated using Maximum Likelihood
 
 Order Selected:  10
 AIC =  1092.0347  Variance =  211.70743
  
 Final AR Coefficients estimated by MAXIMUM LIKELIHOOD
                       1   1.243
                       2  -0.503
                       3  -0.158
                       4   0.230
                       5  -0.200
                       6   0.114
                       7  -0.079
                       8   0.094
                       9   0.010
                      10   0.096
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TS_OUTLIER_IDENTIFICATION

Detects and determines outliers and simultaneously estimates the model parameters in a time series whose 
underlying outlier free series follows a general seasonal or nonseasonal ARMA model.

Required Arguments
MODEL —   Array of length 4 containing the order (p, 0, q) x (0, d, 0)s of the ARIMA model the outlier free 

series is following. Specifically, MODEL(1) =  p, MODEL(2) = q, MODEL(3) = s, MODEL(4) = d. (Input)
W —   Array of length NOBS containing the original time series. (Input)
X —   Array of length NOBS containing the outlier free series.  (Output)

Optional Arguments
NOBS —  Number of observations in time series W. (Input)

Default: NOBS = size (W). 
DELTA — The dynamic dampening effect parameter used in the detection of a Temporary Change Outlier 

(TC), 0.0 < DELTA < 1.0.  (Input)
Default: DELTA = 0.7 .

CRITICAL —  Critical value used as a threshold for outlier detection, CRITICAL > 0.  (Input)
Default: CRITICAL = 3.0.

EPSILON — Positive tolerance value controlling the accuracy of parameter estimates during outlier detec-
tion.  (Input)
Default: EPSILON = 0.001.

RELERR — Stopping criterion for use in the nonlinear equation solver used by NSPE, see routine NSPE for 
more details.  (Input)
Default: RELERR = 1.0e-10.

TOLSS — Tolerance level used to determine convergence of the nonlinear least-squares algorithm used by 
NSLSE, see routine NSLSE for more details.  (Input)
TOLSS must be greater than zero and less than one.
Default: TOLSS = 0.9 × AMACH(4).

RESIDUAL — Array of length NOBS containing the residuals for the outlier free series.  (Output)
RESSIGMA — Residual standard error of the outlier free series.  (Output)
NOUTLIERS — The number of outliers detected.  (Output)

more...
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IOUTLIERSTATS — Pointer to an array of size NOUTLIERS by 2 containing outlier statistics. The first col-
umn contains the time at which the outlier was observed ( ) and the second 

column contains an identifier indicating the type of outlier observed. Outlier types fall into one of five 
categories:

If no outliers are detected, an array of size 0 is returned.  (Output)
TAUSTAT — Pointer to an array of length NOUTLIERS containing the t value for each detected outlier.  

(Output)

OMEGA — Pointer to an array of length NOUTLIERS containing the computed weights for the detected 
outliers.  (Output)

PARAMS — Array of length 1+p+q containing the estimated constant, AR and MA parameters, respec-
tively.  (Output)

AIC — Akaike's Information Criterion (AIC) for the fitted model.  (Output)
AICC— Akaike's Corrected Information Criterion (AICC) for the fitted model.  (Output)
BIC — Bayesian Information Criterion (BIC) for the fitted model.  (Output)

FORTRAN 90 Interface
Generic: CALL TS_OUTLIER_IDENTIFICATION (MODEL, W, X [, …])
Specific: The specific interface names are S_TS_OUTLIER_IDENTIFICATION and 

D_TS_OUTLIER_IDENTIFICATION.

Description

Consider a univariate time series {Yt} that can be described by the following multiplicative seasonal ARIMA 
model of order (p, 0, q) x (0, d, 0)s:

Here, ,  . B is the lag operator, 

,  is a white noise process, and μ denotes the mean of the series {Yt}.

IOUTLIERSTATS Category

0 Innovational Outliers (IO)

1 Additive Outliers (AO)

2 Level Shift Outliers(LS)

3 Temporary Change Outliers(TC)

4 Unable to Identify(UI)
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In general, {Yt} is not directly observable due to the influence of outliers. Chen and Liu (1993) distinguish 
between four types of outliers: innovational outliers (IO), additive outliers (AO), temporary changes (TC)  
and level shifts (LS). If an outlier occurs as the last observation of the series, then Chen and Liu’s algorithm is 
unable to determine the outlier’s classification. In TS_OUTLIER_IDENTIFICATION, such an outlier is called 
a UI (unable to identify) and is treated as an innovational outlier.

In order to take the effects of multiple outliers occurring at time points t1, t2, …, tm into account, Chen and 
Liu consider the following model:

Here, {Yt
*} is the observed outlier contaminated series, and ωj and Lj(B) denote the magnitude and dynamic 

pattern of outlier j, respectively. It(tj) is an indicator function that determines the temporal course of the out-

lier effect, Itj(tj) = 1, It(tj) = 0 otherwise. Note that Lj(B) operates on It via BkIt = It-k, k = 0, 1, … . 

The last formula shows that the outlier free series {Yt} can be obtained from the original series {Yt
*} by remov-

ing all occurring outlier effects:

The different types of outliers are characterized by different values for :

1.  for an innovational outlier,

2.  for an additive outlier,

3.  for a level shift outlier and

4.  for a temporary change outlier.

TS_OUTLIER_IDENTIFICATION is an implementation of Chen and Liu’s algorithm. It determines the coef-
ficients inφ (B), θ (B), and the outlier effects in the model for the observed series jointly in three stages. The 
magnitude of the outlier effects is determined by least squares estimates. Outlier detection itself is realized by 
examination of the maximum value of the standardized statistics of the outlier effects. For a detailed descrip-
tion, see Chen and Liu’s original paper (1993).

Intermediate and final estimates for the coefficients in φ (B) and θ (B) are computed by routines NSPE and 
NSLSE. If the roots of φ (B) or θ (B) lie on or within the unit circle, then the algorithm stops with an appropri-
ate error message. In this case, different values for p and q should be tried.
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Examples

Example 1

This example is based on estimates of the Canadian lynx population. TS_OUTLIER_IDENTIFICATION is 

used to fit an ARIMA(2,2,0) model of the form , t = 1, 2, ..., 144, {at} Gauss-
ian White noise, to the given series. TS_OUTLIER_IDENTIFICATION computes parameters φ1 = 0.123609 
and φ2 = -0.178963, and identifies a LS outlier at time point t = 16.

      use umach_int
      use ts_outlier_identification_int

      implicit none

      integer :: i, nout
      integer :: noutliers
      integer, dimension(4) :: model
      integer, dimension(:,:), pointer :: outlierstat
      real(kind(1e0)) :: ressigma, aic
      real(kind(1e0)), dimension(3) :: parameters
      real(kind(1e0)), dimension(114) :: w, x 

      w = (/ 0.24300E01,0.25060E01,0.27670E01,0.29400E01,0.31690E01,&
             0.34500E01,0.35940E01,0.37740E01,0.36950E01,0.34110E01,&
             0.27180E01,0.19910E01,0.22650E01,0.24460E01,0.26120E01,&
             0.33590E01,0.34290E01,0.35330E01,0.32610E01,0.26120E01,&
             0.21790E01,0.16530E01,0.18320E01,0.23280E01,0.27370E01,&
             0.30140E01,0.33280E01,0.34040E01,0.29810E01,0.25570E01,&
             0.25760E01,0.23520E01,0.25560E01,0.28640E01,0.32140E01,&
             0.34350E01,0.34580E01,0.33260E01,0.28350E01,0.24760E01,&
             0.23730E01,0.23890E01,0.27420E01,0.32100E01,0.35200E01,&
             0.38280E01,0.36280E01,0.28370E01,0.24060E01,0.26750E01,&
             0.25540E01,0.28940E01,0.32020E01,0.32240E01,0.33520E01,&
             0.31540E01,0.28780E01,0.24760E01,0.23030E01,0.23600E01,&
             0.26710E01,0.28670E01,0.33100E01,0.34490E01,0.36460E01,&
             0.34000E01,0.25900E01,0.18630E01,0.15810E01,0.16900E01,&
             0.17710E01,0.22740E01,0.25760E01,0.31110E01,0.36050E01,&
             0.35430E01,0.27690E01,0.20210E01,0.21850E01,0.25880E01,&
             0.28800E01,0.31150E01,0.35400E01,0.38450E01,0.38000E01,&
             0.35790E01,0.32640E01,0.25380E01,0.25820E01,0.29070E01,&
             0.31420E01,0.34330E01,0.35800E01,0.34900E01,0.34750E01,&
             0.35790E01,0.28290E01,0.19090E01,0.19030E01,0.20330E01,&
             0.23600E01,0.26010E01,0.30540E01,0.33860E01,0.35530E01,&
             0.34680E01,0.31870E01,0.27230E01,0.26860E01,0.28210E01,&
             0.30000E01,0.32010E01,0.34240E01,0.35310E01 /)

      model = (/ 2,0,1,2 /)

      call ts_outlier_identification(model, w, x, CRITICAL=3.5, &
                 RESSIGMA=ressigma, NOUTLIERS=noutliers,&
                 IOUTLIERSTATS=outlierstat, PARAMS=parameters,&
                 AIC=aic)
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      call umach(2, nout)
      write(nout,FMT="(T2,A,I2)") 'Number of outliers:', noutliers
      write(nout,FMT="(T2,A)") 'Outlier statistics:'
      write(nout,FMT="(T4,A,TR10,A)") 'Time point','Outlier type'
      write(nout,FMT="(I8,TR20,I2)") (outlierstat(i,:),i=1,noutliers)
      write(nout,FMT="(/,T2,A)") 'ARMA parameters:'
      write(nout,FMT="(T3,I2,TR5,f10.6)") (i,parameters(i),i=1,3)
      write(nout,FMT="(/,T2,A,f10.6)") 'RSE: ', ressigma
      write(nout,FMT="(T2,A,f10.6)") 'AIC: ', aic
      write(nout,FMT="(/,T2,A)") 'Extract from the series:'
      write(nout,FMT="(T2,A,TR6,A,TR6,A)") 'time point',&
                           'original series', 'outlier free series'
      do i=1,36
        write(nout, FMT="(T5,I2,T15,F15.6,T35,F19.6)") i, w(i), x(i)
      end do
      end

Output

 Number of outliers: 1
 Outlier statistics:
   Time point          Outlier type
      16                     2

 ARMA parameters:
   1       0.000000
   2       0.124390
   3      -0.179959

 RSE:   0.319650
 AIC: 282.995575

 Extract from the series:
 time point      original series      outlier free series
     1               2.430000                2.430000
     2               2.506000                2.506000
     3               2.767000                2.767000
     4               2.940000                2.940000
     5               3.169000                3.169000
     6               3.450000                3.450000
     7               3.594000                3.594000
     8               3.774000                3.774000
     9               3.695000                3.695000
    10               3.411000                3.411000
    11               2.718000                2.718000
    12               1.991000                1.991000
    13               2.265000                2.265000
    14               2.446000                2.446000
    15               2.612000                2.612000
    16               3.359000                2.701984
    17               3.429000                2.771984
    18               3.533000                2.875984
    19               3.261000                2.603984
    20               2.612000                1.954984
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    21               2.179000                1.521984
    22               1.653000                0.995984
    23               1.832000                1.174984
    24               2.328000                1.670984
    25               2.737000                2.079984
    26               3.014000                2.356984
    27               3.328000                2.670984
    28               3.404000                2.746984
    29               2.981000                2.323984
    30               2.557000                1.899984
    31               2.576000                1.918984
    32               2.352000                1.694984
    33               2.556000                1.898984
    34               2.864000                2.206984
    35               3.214000                2.556984
    36               3.435000                2.777984

Example 2

This example is an artificial realization of an ARMA(1,1) process via formula 

  Gaussian white noise, .

An additive outlier with  was added at time point , a temporary change outlier with 

 was added at time point .

      use umach_int
      use ts_outlier_identification_int

      implicit none

      integer :: i, nout
      integer :: noutliers
      integer, dimension(4) :: model
      integer, dimension(:,:), pointer :: outlierstat
      real(kind(1e0)) :: ressigma, aic
      real(kind(1e0)), dimension(3) :: parameters
      real(kind(1e0)), dimension(300) :: w, x
      real(kind(1e0)), dimension(:), pointer :: omega

      w = (/ 50.0000000,50.2728081,50.6242599,51.0373917,51.9317627,&
             50.3494759,51.6597252,52.7004929,53.5499802,53.1673279,&
             50.2373505,49.3373871,49.5516472,48.6692696,47.6606636,&
             46.8774185,45.7315445,45.6469727,45.9882355,45.5216560,&
             46.0479660,48.1958656,48.6387749,49.9055367,49.8077278,&
             47.7858467,47.9386749,49.7691956,48.5425873,49.1239853,&
             49.8518791,50.3320694,50.9146347,51.8772049,51.8745689,&
             52.3394470,52.7273712,51.4310036,50.6727448,50.8370399,&
             51.2843437,51.8162918,51.6933670,49.7038231,49.0189247,&
             49.455703,50.2718010,49.9605980,51.3775749,50.2285385,&
             48.2692299,47.6495590,49.2938499,49.1924858,49.6449242,&
             50.0446815,51.9972496,54.2576981,52.9835434,50.4193535,&
             50.3617897,51.8276901,53.1239929,54.0682144,54.9238319,&
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             55.6877632,54.8896332,54.0701065,52.2754097,52.2522354,&
             53.1248703,51.1287193,50.5003815,49.6504173,47.2453079,&
             45.4555626,45.8449707,45.9765129,45.7682228,45.2343674,&
             46.6496811,47.0894432,49.3368340,50.8058052,49.9132500,&
             49.5893288,48.2470627,46.9779968,45.6760864,45.7070389,&
             46.6158409,47.5303612,47.5630417,47.0389214,46.0352287,&
             45.8161545,45.7974396,46.0015373,45.3796463,45.3461685,&
             47.6444016,49.3327446,49.3810692,50.2027817,51.4567032,&
             52.3986320,52.5819206,52.7721825,52.6919098,53.3274345,&
             55.1345940,56.8962631,55.7791634,55.0616989,52.3551178,&
             51.3264084,51.0968323,51.1980476,52.8001442,52.0545082,&
             50.8742943,51.5150337,51.2242050,50.5033989,48.7760124,&
             47.4179192,49.7319527,51.3320541,52.3918304,52.4140434,&
             51.0845947,49.6485748,50.6893463,52.9840813,53.3246994,&
             52.4568024,51.9196091,53.6683121,53.4555359,51.7755814,&
             49.2915611,49.8755112,49.4546776,48.6171913,49.9643021,&
             49.3766441,49.2551308,50.1021881,51.0769119,55.8328133,&
             52.0212708,53.4930801,53.2147255,52.2356453,51.9648819,&
             52.1816330,51.9898071,52.5623627,51.0717278,52.2431946,&
             53.6943054,54.3752098,54.1492615,53.8523254,52.1093712,&
             52.3982697,51.2405128,50.3018112,51.3819618,49.5479546,&
             47.5024452,47.4447708,47.8939056,48.4070015,48.2440681,&
             48.7389755,49.7309227,49.1998024,49.5798340,51.1196213,&
             50.6288414,50.3971405,51.6084099,52.4564743,51.6443901,&
             52.4080658,52.4643364,52.6257210,53.1604691,51.9309731,&
             51.4137230,52.1233368,52.9867249,53.3180733,51.9647636,&
             50.7947655,52.3815842,50.8353729,49.4136009,52.8355217,&
             52.2234840,51.1392517,48.5245132,46.8700218,46.1607285,&
             45.2324257,47.4157829,48.9989090,49.6230736,50.4352913,&
             51.1652985,50.2588654,50.7820129,51.0448799,51.2880516,&
             49.6898804,49.0288200,49.9338837,48.2214432,46.2103348,&
             46.9550171,47.5595894,47.7176018,48.4502945,50.9816895,&
             51.6950073,51.6973495,52.1941261,51.8988075,52.5617599,&
             52.0218391,49.5236053,47.9684906,48.2445183,48.8275146,&
             49.7176971,51.5649338,52.5627213,52.0182419,50.9688835,&
             51.5846901,50.9486771,48.8685837,48.5600624,48.4760094,&
             48.5348396,50.4187813,51.2542381,50.1872864,50.4407692,&
             50.6222687,50.4972000,51.0036087,51.3367500,51.7368202,&
             53.0463791,53.6261253,52.0728683,48.9740753,49.3280830,&
             49.2733917,49.8519020,50.8562126,49.5594254,49.6109200,&
             48.3785629,48.0026474,49.4874268,50.1596375,51.8059540,&
             53.0288620,51.3321075,49.3114815,48.7999306,47.7201881,&
             46.3433914,46.5303612,47.6294632,48.6012459,47.8567657,&
             48.0604057,47.1352806,49.5724792,50.5566483,49.4182968,&
             50.5578079,50.6883736,50.6333389,51.9766159,51.0595245,&
             49.3751640,46.9667702,47.1658173,47.4411278,47.5360374,&
             48.9914742,50.4747620,50.2728043,51.9117165,53.7627792 /)

      model = (/ 1,1,1,0 /)

      call ts_outlier_identification(model, w, x, CRITICAL=3.5,&
                        RESSIGMA=ressigma, NOUTLIERS=noutliers,&
                        IOUTLIERSTATS=outlierstat,OMEGA=omega,&
                        PARAMS=parameters, AIC=aic, RELERR=1.0e-05)
TS_OUTLIER_IDENTIFICATION         Chapter 8: Time Series Analysis and Forecasting      863



      call umach(2, nout)
      write(nout,FMT="(/,T2,A)") 'ARMA parameters:'
      write(nout,FMT="(T3,I2,TR5,f10.6)") (i,parameters(i),i=1,3)
      write(nout,FMT="(/,T2,A,I2)") 'Number of outliers:', noutliers
      write(nout,FMT="(/,T2,A)") 'Outlier statistics:'
      write(nout,FMT="(T4,A,TR10,A)") 'Time point','Outlier type'
      write(nout,FMT="(I8,TR20,I2)") (outlierstat(i,:),i=1,noutliers)
      write(nout,FMT="(/,T2,A)") 'Omega statistics:'
      write(nout,FMT="(T4,A,TR10,A)") 'Time point','Omega'
      write(nout,FMT="(I9,TR10,f10.6)") (outlierstat(i,1),omega(i),&
                                           i=1,noutliers)
      write(nout,FMT="(/,T2,A,f10.6)") 'RSE: ', ressigma
      write(nout,FMT="(T2,A,f12.6)") 'AIC: ', aic
      end

Output

ARMA parameters:
   1      10.700689
   2       0.787765
   3      -0.498039

 Number of outliers: 2

 Outlier statistics:
   Time point          Outlier type
     150                     1
     200                     3

 Omega statistics:
   Time point          Omega
      150            4.478198
      200            3.381984

 RSE:   1.007209
 AIC:  1417.036377
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TS_OUTLIER_FORECAST

Computes forecasts, associated probability limits and Ψ weights for an outlier contaminated time series.

Required Arguments
W —  Array of length NOBS containing the outlier free time series. (Input)
RESIDUAL — Array of length NOBS containing the residuals of the outlier free time series determined 

from routine TS_OUTLIER_IDENTIFICATION. (Input)
NOUTLIERS — The number of outliers in W, determined from routine TS_OUTLIER_IDENTIFICATION. 

(Input)
IOUTLIERSTATS — Array of size NOUTLIERS by 2 containing outlier statistics from routine 

TS_OUTLIER_IDENTIFICATION. (Input). 
The first column contains the time at which the outlier was observed ( ) 
and the second column contains an identifier indicating the type of outlier observed. Outlier types fall 
into one of five categories:

If NOUTLIERS = 0 this array is ignored.
OMEGA — Array of length NOUTLIERS containing the omega weights for the outliers determined 

through routine TS_OUTLIER_IDENTIFICATION. (Input)
DELTA — The dynamic dampening effect parameter used in the outlier detection,

 0.0 < DELTA < 1.0. (Input)
MODEL — Array of length four containing estimates for p, q, s and d in MODEL(1), MODEL(2), MODEL(3) 

and MODEL(4), respectively. (Input)
PARAMS — Array of length 1+p+q containing the estimated constant, AR and MA parameters as output 

from routine TS_OUTLIER_IDENTIFICATION. (Input)
MXLEAD — Maximum lead time for forecasts. (Input)

The forecasts are taken at origin , the time point of the last observed value in the series, for 
lead times 1, 2,…, MXLEAD.
MXLEAD must be greater than zero.

FCST — An array of size MXLEAD by 3 containing the forecasted values for the outlier contaminated series 
in the first column. The second column contains the deviations from each forecast that give the 
100(1-ALPHA)% probability limits, and the third column contains the  weights of the infinite order 
moving average form of the model.  (Output)

IOUTLIERSTATS Category

0 Innovational Outliers (IO)

1 Additive Outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI)
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Optional Arguments
NOBS —  Number of observations in the time series W. (Input)

Default: NOBS = size (W). 
ALPHA — Value in the exclusive interval (0,1) used to specify the 100(1-ALPHA)% probability limits of the 

forecast. (Input)
Default: ALPHA = 0.05

OUTFREEFCST — An MXLEAD by 3 array containing the forecasted values for the original outlier free 
series in the first column. The second column contains standard errors for these forecasts, and the third 
column contains the  weights of the infinite order moving average form of the model. (Output)

FORTRAN 90 Interface
Generic: CALL TS_OUTLIER_FORECAST (W, RESIDUAL, NOUTLIERS, IOUTLIERSTATS, OMEGA, 

DELTA, MODEL, PARAMS, MXLEAD, FCST [, …])
Specific: The specific interface names are S_TS_OUTLIER_FORECAST and 

D_TS_OUTLIER_FORECAST.

Description

Consider the following model for a given outlier contaminated univariate time series :

For an explanation of the notation, see the “Description” section for TS_OUTLIER_IDENTIFICATION. It fol-

lows from the formula above that the Box-Jenkins forecast at origin t for lead time , , can be computed 
as:

Therefore, computation of the forecasts for  is done in two steps: 

1.   Computation of  the forecasts for the outlier free series .

2. Computation of  the forecasts for the original series  by adding the multiple outlier effects to the 

forecasts for  .

Step 1 above:

Since
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where

the Box-Jenkins forecast at origin  for lead time , , can be computed recursively as:

Here,

and

Step 2 above: 

The formulas for Lj(B) for the different types of outliers are as follows:

Assuming the outlier occurs at time point tj, the outlier impact is therefore:

Innovational outliers (IO)

Additive outliers (AO)

Level shifts (LS)

Temporary changes (TC)

Innovational outliers (IO)

Additive outliers (AO)
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From these formulas, the forecasts  can be computed easily.

The  percent probability limits for  and   are given by 

where  is the  percentile of the standard normal distribution,  is an estimate of the vari-

ance  of the random shocks (returned from routine TS_OUTLIER_IDENTIFICATION), and the  weights 

 are the coefficients in 

For a detailed explanation of these concepts, see Chapter 5: “Forecasting”, Box, Jenkins and Reinsel (1994).

Example

This example is a realization of an ARMA(2,1) process described by the model 

, a Gaussian white noise process.

Outliers were artificially added to the outlier free series  at time points  (level shift, 

) and  (additive outlier, ), resulting in the outlier contaminated series 

. For both series, forecasts were determined for time points  and compared with 
the actual values of the series.

USE TS_OUTLIER_IDENTIFICATION_INT
USE TS_OUTLIER_FORECAST_INT
USE WRRRL_INT
USE UMACH_INT

IMPLICIT NONE

real(kind(1e0)), dimension(290) :: w = (/ &
  41.6699982,41.6699982,42.0752144,42.6123962,43.6161919,42.1932831, &
  43.1055450,44.3518715,45.3961258,45.0790215,41.8874397,40.2159805, &
  40.2447319,39.6208458,38.6873589,37.9272423,36.8718872,36.8310852, &

Level shifts (LS)

Temporary changes (TC)
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  37.4524879,37.3440933,37.9861374,40.3810501,41.3464622,42.6495285, &
  42.6096764,40.3134537,39.7971268,41.5401535,40.7160759,41.0363541, &
  41.8171883,42.4190292,43.0318832,43.9968109,44.0419617,44.3225212, &
  44.6082611,43.2199631,42.0419197,41.9679718,42.4926224,43.2091255, &
  43.2512283,41.2301674,40.1057358,40.4510574,41.5329170,41.5678177, &
  43.0090141,42.1592140,39.9234505,38.8394127,40.4319878,40.8679352, &
  41.4551926,41.9756317,43.9878922,46.5736389,45.5939293,42.4487762, &
  41.5325394,42.8830910,44.5771217,45.8541985,46.8249474,47.5686378, &
  46.6700745,45.4120026,43.2305107,42.7635345,43.7112923,42.0768661, &
  41.1835632,40.3352280,37.9761467,35.9550056,36.3212509,36.9925880, &
  37.2625008,37.0040665,38.5232544,39.4119797,41.8316803,43.7091446, &
  42.9381447,42.1066780,40.3771248,38.6518707,37.0550499,36.9447708, &
  38.1017685,39.4727097,39.8670387,39.3820763,38.2180786,37.7543488, &
  37.7265244,38.0290642,37.5531158,37.4685936,39.8233147,42.0480766, &
  42.4053535,43.0117416,44.1289330,45.0393829,45.1114540,45.0086479, &
  44.6560631,45.0278931,46.7830849,48.7649765,47.7991905,46.5339661, &
  43.3679199,41.6420822,41.2694893,41.5959740,43.5330009,43.3643608, &
  42.1471291,42.5552788,42.4521446,41.7629128,39.9476891,38.3217010, &
  40.5318718,42.8811569,44.4796944,44.6887932,43.1670265,41.2226143, &
  41.8330154,44.3721924,45.2697029,44.4174194,43.5068550,44.9793015, &
  45.0585403,43.2746620,40.3317070,40.3880501,40.2627106,39.6230278, &
  41.0305252,40.9262009,40.8326912,41.7084885,42.9038048,45.8650513, &
  46.5231590,47.9916115,47.8463135,46.5921936,45.8854408,45.9130440, &
  45.7450371,46.2964249,44.9394569,45.8141251,47.5284042,48.5527802, &
  48.3950577,47.8753052,45.8880005,45.7086983,44.6174774,43.5567932, &
  44.5891113,43.1778679,40.9405632,40.6206894,41.3330421,42.2759552, &
  42.4744949,43.0719833,44.2178459,43.8956337,44.1033440,45.6241455, &
  45.3724861,44.9167595,45.9180603,46.9077835,46.1666603,46.6013489, &
  46.6592331,46.7291603,47.1908340,45.9784355,45.1215782,45.6791115, &
  46.7379875,47.3036957,45.9968834,44.4669495,45.7734680,44.6315041, &
  42.9911766,46.3842583,43.7214432,43.5276833,41.3946495,39.7013168, &
  39.1033401,38.5292892,41.0096245,43.4535828,44.6525154,45.5725899, &
  46.2815285,45.2766647,45.3481712,45.5039482,45.6745682,44.0144806, &
  42.9305000,43.6785469,42.2500534,40.0007210,40.4477005,41.4432716, &
  42.0058670,42.9357758,45.6758842,46.8809929,46.8601494,47.0449791, &
  46.5420647,46.8939934,46.2963371,43.5479164,41.3864059,41.4046364, &
  42.3037987,43.6223717,45.8602371,47.3016396,46.8632469,45.4651413, &
  45.6275482,44.9968376,42.7558670,42.0218239,41.9883728,42.2571678, &
  44.3708687,45.7483635,44.8832512,44.7945862,44.8922577,44.7409401, &
  45.1726494,45.5686874,45.9946709,47.3151054,48.0654068,46.4817467, &
  42.8618279,42.4550323,42.5791168,43.4230957,44.7787971,43.8317108, &
  43.6481781,42.4183960,41.8426285,43.3475227,44.4749908,46.3498306, &
  47.8599319,46.2449913,43.6044006,42.4563484,41.2715340,39.8492508, &
  39.9997292,41.4410820,42.9388237,42.5687332,42.6384087,41.7088661, &
  43.9399033,45.4284401,44.4558411,45.1761856,45.3489113,45.1892662, &
  46.3754730,45.6082802 /)
    
integer :: i, nout
integer, dimension(4) :: model
integer :: noutliers, nobs=280, mxlead=10
integer, dimension(:,:), pointer :: outlierstat
real(kind(1e0)), dimension(:), pointer :: omega
real(kind(1e0)) :: delta = 0.7, res_sigma, aic
real(kind(1e0)), dimension(280) :: x, residual
real(kind(1e0)), dimension(10,4) :: forecast_table
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real(kind(1e0)), dimension(10,3) :: fcst, outfreefcst
real(kind(1e0)), dimension(4) :: params
character (len = 10) :: fmt
character (len = 20), dimension(5) :: clabel
character (len = 4), dimension(10) :: rlabel

fmt = '(F11.4)'
clabel(1) = '   '
clabel(2) = 'Orig. series'
clabel(3) = 'forecast'
clabel(4) = 'prob. limits'
clabel(5) = 'psi weights'

rlabel = (/ ' 1',' 2',' 3',' 4',' 5',' 6',' 7',' 8',' 9','10' /)

model = (/ 2,1,1,0 /)

CALL TS_OUTLIER_IDENTIFICATION (model, w, x, NOBS=nobs, DELTA=delta,  &
           RELERR=1.0e-5, RESIDUAL=residual,  &
           RESSIGMA=res_sigma, NOUTLIERS=noutliers, &
           IOUTLIERSTATS=outlierstat, OMEGA=omega, &
           PARAMS=params, AIC=aic)

CALL UMACH(2, nout)
WRITE (nout,*) 'ARMA parameters:'
DO i=1, 1+model(1)+model(2)
  WRITE (nout,*) i,'    ', params(i)
END DO

WRITE (nout,*)
WRITE (nout,*) 'Number of outliers: ', noutliers
WRITE (nout,*)
WRITE (nout,*) 'Outlier statistics: '
WRITE (nout,FMT="(T2, A, T22, A)") 'Time point','Outlier type'
DO i=1,noutliers
  WRITE (nout,FMT="(T2, I10, T22, I12)") outlierstat(i,1), outlierstat(i,2)
END DO

WRITE (nout,*)
WRITE (nout,*) 'RSE: ', res_sigma
WRITE (nout,*) 'AIC: ', aic
WRITE (nout,*)

CALL TS_OUTLIER_FORECAST (x, residual, noutliers, outlierstat, &
               omega, delta, model, params, mxlead, fcst,  &
               NOBS=nobs, OUTFREEFCST=outfreefcst)

forecast_table(1:mxlead,1) = w(281:290)
forecast_table(1:mxlead,2:4) = fcst(1:mxlead,1:3)

CALL WRRRL ('* * * Forecast Table for outlier contaminated series * * *',&
             forecast_table, rlabel, clabel, FMT=fmt)

forecast_table(1:mxlead,1) = w(281:290) - 2.5
forecast_table(1:mxlead,2:4) = outfreefcst(1:mxlead,1:3)
TS_OUTLIER_FORECAST         Chapter 8: Time Series Analysis and Forecasting      870



WRITE (nout,*)

clabel(2) = 'Outlier free series'
CALL WRRRL ('* * * Forecast Table for outlier free series * * *', &
             forecast_table, RLABEL, CLABEL, FMT=fmt)
END

Output

ARMA parameters:
  1      8.837544
  2      0.9461826
  3      -0.1512835
  4      -0.5606939
 
 Number of outliers:  2
 
 Outlier statistics: 
 Time point          Outlier type
        150                     2
        200                     1
  
 RSE:  1.0042976
 AIC:  1323.6127

             * * * Forecast Table for outlier contaminated series * * *
                  Orig. series     forecast  prob. limits  psi weights
               1       42.6384      42.3113        1.9684       1.5069
               2       41.7089      42.7868        3.5598       1.2745
               3       43.9399      43.2756        4.3550       0.9779
               4       45.4284      43.6662        4.7615       0.7325
               5       44.4558      43.9618        4.9750       0.5451
               6       45.1762      44.1825        5.0894       0.4050
               7       45.3489      44.3465        5.1514       0.3007
               8       45.1893      44.4683        5.1853       0.2233
               9       46.3755      44.5588        5.2039       0.1658
              10       45.6083      44.6259        5.2141       0.1231

             * * * Forecast Table for outlier free series * * *
                 Outlier free     forecast  prob. limits  psi weights
                       series
              1       40.1384      40.5805        1.9684       1.5069
              2       39.2089      41.0560        3.5598       1.2745
              3       41.4399      41.5449        4.3550       0.9779
              4       42.9284      41.9355        4.7615       0.7325
              5       41.9558      42.2311        4.9750       0.5451
              6       42.6762      42.4517        5.0894       0.4050
              7       42.8489      42.6158        5.1514       0.3007
              8       42.6893      42.7376        5.1853       0.2233
              9       43.8755      42.8281        5.2039       0.1658
             10       43.1083      42.8952        5.2141       0.1231
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AUTO_ARIMA

Automatically identifies time series outliers, determines parameters of a multiplicative seasonal 
ARIMA (p,0,q) ×  (0,d,0)s model and produces forecasts that incorporate the effects of outliers whose effects 
persist beyond the end of the series.

Required Arguments
ITIME_POINTS — Array of  length NOBS containing the time points  at which the time 

series was observed. Time points must be integer and in strictly ascending order. It is assumed that the 
time points of the time series after estimation of the missing values are equidistant with distance 1 
between two consecutive time points. (Input)

W — Array of length NOBS containing the observed time series values . This series can 
contain outliers and missing observations. Outliers are identified by this routine and missing values 
are identified by the time values in array ITIME_POINTS. If the time interval between two consecu-
tive time points is greater than one, i.e. , then  missing values are assumed to 

exist between  and  at times . Therefore, the gap free series is assumed to 
be defined for equidistant time points . Missing values are automatically estimated prior to identifying 
outliers and producing forecasts. Forecasts are generated for both missing and observed values. 
(Input)

PARAMS — Allocatable array of length 1+p+q containing the estimated constant, AR and MA parameters 
of the adjusted optimum seasonal ARIMA (p,0,q) ×  (0,d,0)s model. If d = 0, then an ARMA(p, q) model 

is fitted to the outlier-free version of the observed series . If  d > 0, these parameters are computed 

for an ARMA(p,q) representation of the seasonally adjusted series , 

where   and s ≥ 1….  (Output)

Optional Arguments
NOBS — Number of observations in the time series. Assuming that the series is defined at time points 

t1, …, tNOBS, the actual length of the series, including missing values, is . (Input)
Default: NOBS = size (W).

IMETH — Method to be used in model selection. (Input)
1 –Automatic   selection

2 – Grid search (requires arguments IAR and IMA)
3 – Specified  model (Requires argument MODEL)

Default: IMETH = 1.

more...
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MAXLAG — Maximum number of autoregressive parameters allowed in fitting an AR model to the series. 
(Input)
Default: MAXLAG = 10.

INFOCRIT — The information criterion used for optimum model selection.  (Input) 

Default: INFOCRIT = 0. 
DELTA — Dynamic dampening effect parameter used in the detection of a Temporary Change Outlier 

(TC). (Input)
It is required that  0.0 < DELTA < 1.0.  
Default: DELTA = 0.7.

CRITICAL —  Critical value used as a threshold for outlier detection.  (Input)
CRITICAL must be greater than zero.
Default: CRITICAL = 3.0.

EPSILON — Positive tolerance value controlling the accuracy of parameter estimates during outlier detec-
tion.  (Input)
Default: EPSILON = 0.001.

TOLSS — Tolerance level used to determine convergence of the nonlinear least-squares algorithm used by 
NSLSE, see routine NSLSE for more details.  (Input)
TOLSS must be greater than zero and less than one.
Default: TOLSS = 0.9 × AMACH(4).

IAR — Array containing the candidate values for the AR order p from which the optimum is being 
selected. All candidate values in IAR must be non-negative and IAR must contain at least one value. If 
IMETH = 2 then IAR must be defined. Otherwise, IAR is ignored.  (Input)

IMA — Array containing the candidate values for the MA order q from which the optimum is being 
selected. All candidate values in IMA must be non-negative and IMA must contain at least one value. If 
IMETH = 2 then IMA must be defined. Otherwise, IMA is ignored.  (Input)

IPER — Array containing the candidate values for s from which the optimum is being selected. All candi-
date values in IPER must be positive and IPER must contain at least one value.  (Input)
Default: IPER(:) = 1

IORD — Array containing the candidate values for d from which the optimum is being selected. All candi-
date values in IORD must be non-negative and IORD must contain at least one value. (Input)
Default: IORD (:) = 0

ALPHA — Value in the exclusive interval (0,1) used to specify the 100(1-ALPHA)% probability limits of the 
forecast.  (Input)
Default: ALPHA = 0.05.

MXLEAD — Maximum lead time for forecasts. (Input)
Default: MXLEAD = 0.

MODEL — Array of  length 4 containing values for p, q, s, and d.  (Input/Output)
For IMETH = 1 or IMETH = 2 ,  MODEL is ignored on input. If IMETH = 3 then p and q must be defined on 
input. If IPER and IORD are not defined then s and d must also be defined on input. On output,  
MODEL contains optimum values for p, q, s, and d in MODEL(1), MODEL(2), MODEL(3) and MODEL(4), 
respectively.

INFOCRIT         selected information criterion

0 Akaike’s Information Criterion (AIC)

1 Akaike’s Corrected Information Criterion (AICC)

2 Bayesian Information Criterion (BIC)
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RESIDUAL — Array of length  containing estimates for the white noise in the gap-free 
and outlier-free original series. (Output)

RSE — Residual standard error (RSE) of the outlier-free and gap-free original series. (Output)
NOUTLIERS — Number of outliers detected. (Output)
IOUTLIERSTATS — Pointer to an array of size NOUTLIERS by 2 containing the outlier statistics. The first 

column contains the time point at which the outlier was observed (time points ranging from  to ) 
and the second column contains an identifier indicating the type of outlier observed. Outlier types fall 
into one of five categories:

If no outliers are detected, then an array of size 0 is returned.  (Output)
AIC — Akaike's Information Criterion (AIC) for the fitted optimum model. Uses an approximation of the 

maximum log-likelihood based on an estimate of the innovation variance of the series.  (Output)
AICC — Akaike's Corrected Information Criterion (AICC) for the fitted optimum model. Uses an approxi-

mation of the maximum log-likelihood based on an estimate of the innovation  variance of the series.  
(Output)

BIC — Bayesian Information Criterion (BIC) for the fitted optimum model. Uses an approximation of the 
maximum log-likelihood based on an estimate of the innovation  variance of the series. (Output)

OUTFREESERIES — Array of size N by 2 containing the adjusted time series. The first column contains 

the NOBS observations from the original series, , plus estimated values for any time gaps. The sec-
ond column contains the same values as the first column adjusted by removing any outlier effects. In 

effect, the second column contains estimates of the underlying outlier-free series, . If no outliers 
are detected then both columns will contain identical values.  (Output)

OUTFREEFCST — Array of size MXLEAD by 3 containing the forecasted values for the original outlier and 
gap free series at origin  for lead times  in the first column. The second column 
contains standard errors for these forecasts, and the third column contains the Ψ weights of the infinite 
order moving average form of the model. (Output)

OUTLIERFCST — Array of size MXLEAD by 3 containing the forecasted values for the original and gap 
free series for  in the first column. The second column contains 
standard errors for these forecasts, and the third column contains the Ψ weights of the infinite order 
moving average form of the model.  (Output)

FORTRAN 90 Interface
Generic: CALL AUTO_ARIMA (ITIME_POINTS, W, PARAMS [, …])
Specific: The specific interface names are S_AUTO_ARIMA and D_AUTO_ARIMA.

IOUTLIERSTATS Category

0 Innovational Outliers (IO)

1 Additive Outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI)
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Description

Routine AUTO_ARIMA determines the parameters of a multiplicative seasonal ARIMA (p,0,q) × (0,d,0)s 
model, and then uses the fitted model to identify outliers and prepare forecasts. The order of this model can 
be specified or automatically determined. 

The ARIMA (p,0,q) × (0,d,0)s model handled by AUTO_ARIMA has the following form:

where 

and

It is assumed that all roots of φ(B) and θ(B) lie outside the unit circle. Clearly, if s = 1 this reduces to the tradi-
tional ARIMA(p, d, q) model.

Yt is the unobserved, gap-free and outlier-free time series with mean μ, and white noise at. This model is 
referred to as the underlying, outlier-free model. Routine AUTO_ARIMA does not assume that this series is 
observable. It assumes that the observed values might be contaminated by one or more outliers, whose 
effects are added to the underlying outlier-free series:

Outlier identification uses the algorithm developed by Chen and Liu (1993). Outliers are classified into 1 of 5 
types:

1. innovational

2. additive

3. level shift

4. temporary change and 

5. unable to identify

Once outliers are identified, AUTO_ARIMA estimates Yt, the outlier-free series representation of the data, by 
removing the estimated outlier effects.

Using the information about the adjusted ARIMA (p,0,q) ×  (0,d,0)s model and the removed outliers, forecasts 
are then prepared for the outlier-free series. Outlier effects are added to these forecasts to produce a forecast 

for the observed series, . If there are no outliers, then the forecasts for the outlier-free series and the 
observed series will be identical.
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Model Selection

Users have an option of either specifying specific values for p, q, s and d or have AUTO_ARIMA automatically 
select best fit values. Model selection can be conducted in one of three methods listed below depending upon 
the value of optional argument IMETH.

Method 1: Automatic ARIMA (p,0,0) x (0,d,0)s Selection

This method initially searches for the AR(p) representation with minimum AIC for the noisy data, where 
p = 0,..., MAXLAG.

If IORD is defined then the values in IPER and IORD are included in the search to find an optimum 
ARIMA (p,0,0) ×  (0,d,0)s representation of the series. Here, every possible combination of values for p, s in 
IPER and d in IORD is examined. The best found ARIMA (p,0,0) ×  (0,d,0)s representation is then used as 
input for the outlier detection routine.

The optimum values for p, q, s and d are returned in MODEL(1), MODEL(2), MODEL(3)and MODEL(4), 
respectively.

Method 2: Grid Search

The second automatic method conducts a grid search for p and q using all possible combinations of candidate 
values in IAR and IMA. Therefore, for this method the definition of IAR and IMA is required.

If IORD is defined, the grid search is extended to include the candidate values for s and d given in IPER and 
IORD, respectively.

If IORD is not defined, no seasonal adjustment is attempted, and the grid search is restricted to searching for 
optimum values of p and q only.

The optimum values of p, q, s and d are returned in MODEL(1), MODEL(2), MODEL(3) and MODEL(4), 
respectively.

Method 3: Specified ARIMA (p,0,q) x (0,d,0)s Model

In the third method, specific values for p, q, s and d are given. The values for p and q must be defined in 
MODEL(1) and MODEL(2), respectively. If IPER and IORD are  not defined, then values s > 0 and d ≥ 0 must 
be specified in MODEL(3) and MODEL(4). If IPER and IORD are defined, then a grid search for the opti-
mum values of s and d is conducted using all possible combinations of input values in IPER and IORD. The 
optimum values of  s and d can be found in MODEL(3) and MODEL(4), respectively.

Outliers

The algorithm of Chen and Liu (1993) is used to identify outliers. The number of outliers identified is 
returned in NOUTLIERS. Both the time and classification for these outliers are returned in IOUTLIERSTATS. 
Outliers are classified into one of five categories based upon the standardized statistic for each outlier type. 
The time at which the outlier occurred is given in the first column of IOUTLIERSTATS. The outlier identifier 
returned in the second column is according to the descriptions in the following table:
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Except for additive outliers (AO), the effect of an outlier persists to observations following that outlier. Fore-
casts produced by AUTO_ARIMA take this into account.

Examples

Example 1

This example uses time series LNU03327709 from the US Department of Labor, Bureau of Labor Statistics. It 
contains the unadjusted special unemployment rate, taken monthly from January 1994  through September 
2005. The values 01/2004 – 03/2005 are used by AUTO_ARIMA for outlier detection and parameter estimation. 
In this example , Method 1 without seasonal adjustment is chosen to find an appropriate AR(p) model. A 
forecast is done for the following six months and compared with the actual values 04/2005 – 09/2005.

      use auto_arima_int
      use wrrrl_int 
      use umach_int
                 
      implicit none
!                                  Specifications for parameters
      integer :: nobs, mxlead, i, noutliers, nout
      integer, dimension(4) :: model
      integer, dimension(:,:), pointer :: outlierstat

Outlier

Identifier

Name General Description 

0 (IO)
Innovational 
Outlier

Innovational outliers persist. That is, there is an initial impact at the time 
the outlier occurs. This effect continues in a lagged fashion with all future 
observations. The lag coefficients are determined by the coefficient of the 
underlying ARIMA (p,0,q) ×  (0,d,0)s model.

1 (AO)
Additive Outlier

Additive outliers do not persist. As the name implies, an additive outlier 
affects only the observation at the time the outlier occurs. Hence additive 
outliers have no effect on future forecasts.

2 (LS)
Level Shift

Level shift outliers persist. They have the effect of either raising or lower-
ing the mean of the series starting at the time the outlier occurs. This shift 
in the mean is abrupt and permanent.

3 (TC)
Temporary 
Change

Temporary change outliers persist and are similar to level shift outliers 
with one major exception. Like level shift outliers, there is an abrupt 
change in the mean of the series at the time this outlier occurs. However, 
unlike level shift outliers, this shift is not permanent. The TC outlier gradu-
ally decays, eventually bringing the mean of the series back to its original 
value. The rate of this decay is modeled using the parameter DELTA. The 
default of DELTA= 0.7 is the value recommended for general use by Chen 
and Liu (1993).

4 (UI)
Unable to 
Identify

If an outlier is identified as the last observation, then the algorithm is 
unable to determine the outlier’s classification. For forecasting, a UI outlier 
is treated as an IO outlier. That is, its effect is lagged into the forecasts. 
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      integer, dimension(141) :: times
      real(kind(1e0)) :: aic, rse
      real(kind(1e0)), dimension(141) :: x
      real(kind(1e0)), dimension(6,3) :: outlierfcst
      real(kind(1e0)), dimension(6,4) :: forecast_table
      real(kind(1e0)), dimension(:), allocatable :: parameters
      character (len=10), dimension(1) :: rlabel
      character (len = 14), dimension(5) :: clabel
      character (len = 10) :: fmt
!                                  Time series data
      x = (/ 12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,&
                9.7,11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,&
                 9.6,9.7,10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,&
                    8.8,8.9,9.2,10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,&
                      8.3,7.9,8.0,8.2,9.3,8.9,8.9,7.7,7.6,8.4,8.5,&
                      7.8,7.6,7.3,7.2,7.3,8.5,8.2,7.9,7.4,7.1,7.9,&
                      7.7,7.2,7.0,6.7,6.8,6.9,7.8,7.6,7.4,6.6,6.8,&
                      7.2,7.2,7.0,6.6,6.3,6.8,6.7,8.1,7.9,7.6,7.1,&
                    7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3,10.5,10.1,9.9,&
                    9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6,11.0,10.8,&
                 10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6,10.9,&
                    10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1,&
                            10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5 /)
         
      times = (/                       1,2,3,4,5,6,7,8,9,10,11,12,&
                              13,14,15,16,17,18,19,20,21,22,23,24,&
                              25,26,27,28,29,30,31,32,33,34,35,36,&
                              37,38,39,40,41,42,43,44,45,46,47,48,&
                              49,50,51,52,53,54,55,56,57,58,59,60,&
                              61,62,63,64,65,66,67,68,69,70,71,72,&
                              73,74,75,76,77,78,79,80,81,82,83,84,&
                              85,86,87,88,89,90,91,92,93,94,95,96,&
                     97,98,99,100,101,102,103,104,105,106,107,108,&
                  109,110,111,112,113,114,115,116,117,118,119,120,&
                  121,122,123,124,125,126,127,128,129,130,131,132,&
                             133,134,135,136,137,138,139,140,141 /)
         
      rlabel(1) = 'NUMBER'
      clabel(1) = '   '
      clabel(2) = 'Series'
      clabel(3) = 'Forecast'
      clabel(4) = 'Prob. Limits'
      clabel(5) = 'Psi Weights'
      mxlead = 6
      nobs = 135
 
      call auto_arima (times, x, parameters, NOBS=nobs, MAXLAG=5,&
              MODEL=model, AIC=aic, CRITICAL=4.0,&
              NOUTLIERS=noutliers, IOUTLIERSTATS=outlierstat,&
              RSE=rse, MXLEAD=mxlead, OUTLIERFCST=outlierfcst)

      call umach (2,nout)
      write (nout,*) 'Method 1: Automatic ARIMA model selection,'//&
                     ' no differencing'
      write (nout,FMT="(T2,4(A,I2))") 'Model chosen: p =', model(1),&
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             ', q =', model(2), ', s =', model(3), ', d =', model(4)
      write (nout,*)
      write (nout,FMT="(T2,A,I2)") 'Number of outliers: ', noutliers
      write (nout,*) 'Outlier statistics:'
      write (nout,*) 'Time point    Outlier type'
      do i=1,noutliers
        write (nout,FMT="(I11,T15,I13)") outlierstat(i,1),&
                outlierstat(i,2)
      end do
      write (nout,*)
      write (nout,*) 'AIC = ', aic
      write (nout,*) 'RSE = ', rse
      write (nout,*)
      write(nout,FMT="(/,T2,A)") 'ARMA parameters:'
      do i=1, 1+model(1)+model(2)
        write (nout,FMT="(T3,I2,TR5,f10.6)") i, parameters(i)
      end do
      forecast_table(1:mxlead,1) = x(nobs+1:nobs+mxlead)
      forecast_table(1:mxlead, 2:4) = outlierfcst(1:mxlead, 1:3)
      write (nout,*)
      fmt = '(F11.4)'
      call wrrrl('* * * Forecast Table * * *',  forecast_table,&
               rlabel, clabel, FMT = fmt)
      end

Output
Method 1: Automatic ARIMA model selection, no differencing
 Model chosen: p = 5, q = 0, s = 1, d = 0
 
 Number of outliers:  4
 Outlier statistics:
 Time point    Outlier type
          8               2
         13               0
         97               0
        109               0
 
 AIC =    397.5339    
 RSE =   0.3966153    
 

 ARMA parameters:
   1       0.481449
   2       0.813321
   3      -0.043181
   4      -0.220261
   5       0.199172
   6       0.199179
 
               * * * Forecast Table * * *
         Series     Forecast  Prob. Limits  Psi Weights
 1       8.7000       9.0273        0.7774       0.8133
 2       8.6000       9.0309        1.0020       0.6183
 3       9.3000       9.3195        1.1113       0.2475
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 4       9.1000       9.4767        1.1278       0.1946
 5       8.8000       9.4176        1.1379       0.3726
 6       8.5000       9.2256        1.1742       0.5253

Example 2

This is the same as Example 1, except now AUTO_ARIMA uses Method 2 with a possible seasonal adjustment. 
As a result, the unadjusted model with p = 3, q = 2, s = 1, d = 0 is chosen as optimum.
      
      use auto_arima_int
      use wrrrl_int
      use umach_int

      implicit none
!                                  Specifications for parameters
      integer :: nobs, mxlead, i, noutliers, nout
      integer, dime nsion(4) :: model
      integer, dimension(2) :: iper = (/ 1,2 /)
      integer, dimension(3) :: iord = (/ 0,1,2 /)
      integer, dimension(4) :: ima = (/ 0,1,2,3 /)
      integer, dimension(4) :: iar = (/ 0,1,2,3 /)
      integer, dimension(141) :: times
      integer, dimension(:,:), pointer ::  outlierstat
      real(kind(1e0)) :: aic, rse
      real(kind(1e0)), dimension(:), allocatable :: parameters
      real(kind(1e0)), dimension(6,3) :: outlierfcst
      real(kind(1e0)), dimension(6,4) :: forecast_table
      real(kind(1e0)), dimension(141) :: x
      character (len = 10), dimension(1) :: rlabel
      character (len = 14), dimension(5) :: clabel
      character (len = 10) :: fmt

!                                  Time series data
      x = (/ 12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,&
                9.7,11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,&
                 9.6,9.7,10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,&
                    8.8,8.9,9.2,10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,&
                      8.3,7.9,8.0,8.2,9.3,8.9,8.9,7.7,7.6,8.4,8.5,&
                      7.8,7.6,7.3,7.2,7.3,8.5,8.2,7.9,7.4,7.1,7.9,&
                      7.7,7.2,7.0,6.7,6.8,6.9,7.8,7.6,7.4,6.6,6.8,&
                      7.2,7.2,7.0,6.6,6.3,6.8,6.7,8.1,7.9,7.6,7.1,&
                    7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3,10.5,10.1,9.9,&
                    9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6,11.0,10.8,&
                 10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6,10.9,&
                    10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1,&
                            10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5 /)

      times = (/                       1,2,3,4,5,6,7,8,9,10,11,12,&
                              13,14,15,16,17,18,19,20,21,22,23,24,&
                              25,26,27,28,29,30,31,32,33,34,35,36,&
                              37,38,39,40,41,42,43,44,45,46,47,48,&
                              49,50,51,52,53,54,55,56,57,58,59,60,&
                              61,62,63,64,65,66,67,68,69,70,71,72,&
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                              73,74,75,76,77,78,79,80,81,82,83,84,&
                              85,86,87,88,89,90,91,92,93,94,95,96,&
                     97,98,99,100,101,102,103,104,105,106,107,108,&
                  109,110,111,112,113,114,115,116,117,118,119,120,&
                  121,122,123,124,125,126,127,128,129,130,131,132,&
                             133,134,135,136,137,138,139,140,141 /)

      rlabel(1) = 'NUMBER'
      clabel(1) = '   '
      clabel(2) = 'Series'
      clabel(3) = 'Forecast'
      clabel(4) = 'Prob. Limits'
      clabel(5) = 'Psi Weights'

      mxlead = 6
      nobs = 135
      call auto_arima (times, x, parameters, NOBS=nobs, MAXLAG=5,&
                       MODEL=model, AIC=aic,CRITICAL=4.0,&
                       NOUTLIERS=noutliers, IMETH=2,&
                       IAR=iar, IMA=ima, IPER=iper, IORD=iord,&
                       IOUTLIERSTATS=outlierstat, RSE=rse,&
                       MXLEAD=mxlead, OUTLIERFCST=outlierfcst)

      call umach (2, nout)
      write (nout,*) 'Method 2: Grid search, differencing allowed'
      write (nout,FMT="(T2,4(A,I2))") 'Model chosen: p =', model(1),&
             ', q =', model(2), ', s =', model(3), ', d =', model(4)
      write (nout,*)
      write (nout,FMT="(T2,A,I2)") 'Number of outliers: ', noutliers
      write (nout,*) 'Outlier statistics:'
      write (nout,*) 'Time point    Outlier type'
      do i=1,noutliers
        write (nout, FMT="(I11, T15, I13)") outlierstat(i,1),&
               outlierstat(i,2)
      end do
      write (nout,*)
      write (nout,*) 'AIC = ', aic
      write (nout,*) 'RSE = ', rse
      write (nout,*)
      write (nout,*) 'ARMA parameters:'
      do i=1, 1+model(1)+model(2)
        write (nout,FMT="(T3,I2,TR5,f10.6)") i, parameters(i)
      end do
      write (nout,*)
      forecast_table(1:mxlead,1) = x(nobs+1:nobs+mxlead)
      forecast_table(1:mxlead,2:4) = outlierfcst(1:mxlead, 1:3)
      fmt = '(F11.4)'
      call wrrrl('* * * Forecast Table * * *', forecast_table,&
                 rlabel, clabel, FMT = fmt)
      end

Output

 Method 2: Grid search, differencing allowed
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 Model chosen: p = 3, q = 2, s = 1, d = 0
 
 Number of outliers:  1
 Outlier statistics:
 Time point    Outlier type
        109               0
 
 AIC =    408.0768    
 RSE =   0.4124085    
 
 ARMA parameters:
   1       0.509427
   2       1.944686
   3      -1.901132
   4       0.901670
   5       1.113016
   6      -0.915008
 
               * * * Forecast Table * * *
         Series     Forecast  Prob. Limits  Psi Weights
 1       8.7000       9.1109        0.8083       0.8317
 2       8.6000       9.1811        1.0513       0.6312
 3       9.3000       9.5185        1.1686       0.5481
 4       9.1000       9.7804        1.2497       0.6157
 5       8.8000       9.7117        1.3452       0.7245
 6       8.5000       9.3842        1.4671       0.7326

Example 3

This example is the same as Example 1 but now Method 3 with the optimum model parameters p = 3, q = 2, 
s = 1, d = 0 from Example 2 is chosen for outlier detection and forecasting.

      use auto_arima_int
      use wrrrl_int
      use umach_int

      implicit none
!                                  Parameter specifications
      integer :: nobs, mxlead, i, noutliers, nout
      integer, dimension(4) :: model
      integer, dimension(141) :: times
      integer, dimension(:,:), pointer :: outlierstat
      real(kind(1e0)) :: aic, rse
      real(kind(1e0)), dimension(141) :: x
      real(kind(1e0)), dimension(6,3) :: outlierfcst
      real(kind(1e0)), dimension(6,4) :: forecast_table
      real(kind(1e0)), dimension(:), allocatable :: parameters
      character (len = 10), dimension(1) :: rlabel
      character (len = 14), dimension(5) :: clabel
      character (len = 10) :: fmt
!                                  Time series data
      x = (/ 12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,&
                9.7,11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,&
                 9.6,9.7,10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,&
                    8.8,8.9,9.2,10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,&
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                      8.3,7.9,8.0,8.2,9.3,8.9,8.9,7.7,7.6,8.4,8.5,&
                      7.8,7.6,7.3,7.2,7.3,8.5,8.2,7.9,7.4,7.1,7.9,&
                      7.7,7.2,7.0,6.7,6.8,6.9,7.8,7.6,7.4,6.6,6.8,&
                      7.2,7.2,7.0,6.6,6.3,6.8,6.7,8.1,7.9,7.6,7.1,&
                    7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3,10.5,10.1,9.9,&
                    9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6,11.0,10.8,&
                 10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6,10.9,&
                    10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1,&
                             10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5/)
                           
      times = (/                       1,2,3,4,5,6,7,8,9,10,11,12,&
                              13,14,15,16,17,18,19,20,21,22,23,24,&
                              25,26,27,28,29,30,31,32,33,34,35,36,&
                              37,38,39,40,41,42,43,44,45,46,47,48,&
                              49,50,51,52,53,54,55,56,57,58,59,60,&
                              61,62,63,64,65,66,67,68,69,70,71,72,&
                              73,74,75,76,77,78,79,80,81,82,83,84,&
                              85,86,87,88,89,90,91,92,93,94,95,96,&
                     97,98,99,100,101,102,103,104,105,106,107,108,&
                  109,110,111,112,113,114,115,116,117,118,119,120,&
                  121,122,123,124,125,126,127,128,129,130,131,132,&
                              133,134,135,136,137,138,139,140,141/)

      mxlead = 6 
      nobs = 135
      model = (/ 3, 2, 1, 0 /)

      rlabel(1) = 'NUMBER'
      clabel(1) = '   '
      clabel(2) = 'Series'
      clabel(3) = 'Forecast'
      clabel(4) = 'Prob. Limits'
      clabel(5) = 'Psi Weights'

      call auto_arima (times, x, parameters, NOBS=nobs, MODEL=model,&
                AIC=aic, CRITICAL=4.0, NOUTLIERS=noutliers, IMETH=3,& 
                IOUTLIERSTATS=outlierstat, RSE=rse, MXLEAD=mxlead,&
                OUTLIERFCST=outlierfcst)

      call umach (2, nout)
      write (nout,*) 'Method 3: Specified ARIMA model'
      write (nout,FMT="(T2,4(A,I2))") 'Model: p =',model(1),', q =',&
                      model(2), ', s =', model(3), ', d =', model(4)
      write (nout,*)
      write (nout,FMT="(T2,A,I2)") 'Number of outliers: ', noutliers
      write (nout,*) 'Outlier statistics:'
      write (nout,*) 'Time point   Outlier type'
      do i=1,noutliers
        write (nout,FMT="(I11,T15,I12)") outlierstat(i,1),&
                      outlierstat(i,2)
      end do
      write (nout,*)
      write (nout,*) 'AIC=', aic
      write (nout,*) 'RSE=', rse
      write (nout,*)
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      write (nout,*) 'ARMA parameters:'
      do i=1, 1+model(1)+model(2)
        write (nout,FMT="(T3,I2,TR5,f10.6)") i, parameters(i)
      end do
      forecast_table(1:mxlead,1) = x(nobs+1:mxlead)
      forecast_table(1:mxlead,2:4) = outlierfcst(1:mxlead,1:3)
      write (nout,*)
      fmt = '(F11.4)'
      call wrrrl ('* * * Forecast Table * * *', forecast_table,&
                rlabel, clabel, FMT = fmt)
      end

Output

 Method 3: Specified ARIMA model
 Model: p = 3, q = 2, s = 1, d = 0
 
 Number of outliers:  1
 Outlier statistics:
 Time point   Outlier type
        109              0
 
 AIC=   408.0768    
 RSE=  0.4124085    
 
 ARMA parameters:
   1       0.509427
   2       1.944686
   3      -1.901132
   4       0.901670
   5       1.113016
   6      -0.915008
 
               * * * Forecast Table * * *
         Series     Forecast  Prob. Limits  Psi Weights
 1       8.7000       9.1109        0.8083       0.8317
 2       8.6000       9.1811        1.0513       0.6312
 3       9.3000       9.5185        1.1686       0.5481
 4       9.1000       9.7804        1.2497       0.6157
 5       8.8000       9.7117        1.3452       0.7245
 6       8.5000       9.3842        1.4671       0.7326
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AUTO_FPE_UNI_AR

Automatic selection and fitting of a univariate autoregressive time series model using Akaike’s Final Predic-
tion Error (FPE) criteria. Estimates of the autoregressive parameters for the model with minimum FPE are 
calculated using the methodology described in Akaike, H., et. al (1979).

Required Arguments
MAXLAG — Maximum lag of the sample autocovariances for the stationary time series, W. (Input)
ACV — Vector of length MAXLAG + 1 containing the sample autocovariances of W. The first element, ACV(0) 

must be the sample variance of the series and the remaining elements, ACV(1), …, ACV(MAXLAG), con-
tain the autocovariances of the series for lags 1 through MAXLAG. (Input)

NOBS — Number of observations in the time series. (Input)
NPAR — Number of autoregressive parameters in the the selected model. (Output)
PAR — Vector of length MAXLAG containing estimates for the autoregressive parameters in the model with 

the minimum Final Prediction Error. The estimates are in the first NPAR values of this vector. The 
remaining values are set to 0. (Output)

Optional Arguments
IPRINT — Printing option. (Input)

Default: IPRINT = 0.
FPE — Final Prediction Error for fitted model. (Output)
CHISQ — Chi-square statistic, with 1 degree of freedom, for the selected model. CHISQ is used to examine 

the significance of the fitted model. (Output)
AVAR — Estimate of noise variance. (Output)

FORTRAN 90 Interface
Generic: CALL AUTO_FPE_UNI_AR (MAXLAG, ACV, NOBS, NPAR, PAR [, …])
Specific: The specific interface names are S_AUTO_FPE_UNI_AR and D_AUTO_FPE_UNI_AR.

Description

This routine is based upon the FPEAUT program published in the TIMSAC –71 Library described by Akaike, 
H. and Nakagawa, T (1972).

The Final Prediction Error for an autoregressive model with lag k is defined as:

0 No printing

1 Prints final results only

2 Prints intermediate and final results
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where N = NOBS and  is the minimum of

with respect to the autoregressive coefficients 

 is estimated using the formula:

where  is calculated from the recursive relationship:

The model selected and parameter estimates vary depending upon the value of MAXLAG. Akaike and Nak-
agawa (1972) recommend that MAXLAG start with values between and . 

In every case, however, MAXLAG must be strictly less than .

As MAXLAG is increased numerical accuracy decreases. It is even possible numerically for the estimated FPE 
to become negative. If this happens, use double precision.

Example

Consider the Wolfer Sunspot Data (Box and Jenkins 1976, page 530) consisting of the number of sunspots 
observed each year from 1770 through 1869. In this example, AUTO_FPE_UNI_AR, found the minimum FPE 
solution is an autoregressive model with 10 lags. This is slightly different from the optimum solution found 
by AUTO_UNI_AR, using minimum AIC instead of FPE. 

The solution reported by AUTO_UNI_AR is an AR model with 2 lags.

Using the formula 

we obtain the following representation for this series.
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      use auto_fpe_uni_ar_int
      use wrrrn_int
      use gdata_int
      use acf_int
      implicit none
!                                  SPECIFICATIONS FOR PARAMETERS
      integer, parameter   :: maxlag=20, nobs=100
      integer              :: npar
      real(kind(1e0))      :: fpe, chisq
      real(kind(1e0))      :: ac(maxlag+1), avar
      real(kind(1e0))      :: acv(maxlag+1), par(maxlag)
      real(kind(1e0))      :: x(176,2)
      integer              :: ncol, nrow
!
!                                  Get Wolfer Sunspot Data
      call gdata(2,x,nrow,ncol)
!
      npar = 20
      write(*,*) 'Univariate FPE Automatic Order selection '
      write(*,*) ' '
!                                  Compute the autocovariances
      call acf (x(22:,2), maxlag, ac, acv=acv, nobs=nobs)
!                                  Example #1
      call auto_fpe_uni_ar(maxlag, acv, nobs, npar, par,  &
                           fpe=fpe, chisq=chisq, avar=avar)
!
      write(*,*) 'Minimum FPE = ', fpe
      write(*,*) 'Chi-squared = ', chisq
      write(*,*) 'Avar = ', avar
      call wrrrn('AR Coefficients', par, nra=npar, nca=1, lda=npar)
!
      end

Output
 
 Univariate FPE Automatic Order selection 
  
 Minimum FPE =  306.91787
 Chi-squared =  39.056877
 Avar = 289.03915
  
 AR Coefficients
    1   1.318
    2  -0.635
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AUTO_PARM

Estimates structural breaks in non-stationary univariate time series.

Required Arguments
Y — Array containing the time series. (Input)
NPCS — Number of requested/estimated pieces or segments of the time series. NPCS is considered input 

when IFITONLY = 1.  (Input/Output)
ARP — A pointer to an array of size NPCS × 2. ARP is considered input when IFITONLY = 1.  

(Input/Output)

ARFIT — A pointer to an array of size NPCS × MAXARORDER containing the AR coefficient estimates for 
each segment. ARFIT (i,j) is the j-th coefficient for segment i where i=1, NPCS and j=l, ARP(i,2).  (Out-
put)
Note that the intercept is not reported.

ARSTAT — A pointer to an array of size NPCS × 2.  (Output)

SCVAL — Final value of the selection criterion.  (Output)

Optional
MAXARORDER—Maximum order to consider for each AR model.  (Input)

Default:  MAXARORDER = 20.
IMTH — Method of estimation.  (Input)

Default:  IMTH = 0.
ISELCRI — Selection criterion.  (Input)

Column Index Description

1 Requested/estimated break points

2 AR order for each segment

Column Index Description

1 Likelihood values for each of the fitted AR models

2 Residual variances for each of the fitted AR models

Value Method

0 Yule-Walker

1 Least Squares

2 Burg
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Default:  ISELCRI = 0.
ILIKE — Likelihood computation method.   (Input)

Default:  ILIKE =  0.
IFITONLY — Option to only fit the specified model. (Input)

Default:  IFITONLY = 0.
IPRINT — Printing option. (Input)

Default: IPRINT = 0.
ISEED — Seed of the random number generator. (Input)

For the same data and parameter settings, AUTO_PARM will return the same results each time if 
ISEED = 1, 2 … 2147483646. If ISEED = 0, the system clock will be used to generate a seed. The result 
will be nondeterministic.
Default: ISEED = 0.

PDISTN — Array of length MAXARORDER + 1 giving the probability distribution over the AR order vari-
able p = 0,…,  MAXARORDER.  (Input)
j = 1,…,  MAXARORDER + 1 is used to randomly assign an AR order to breakpoint position j for a given 
chromosome. PDISTN(j) > = 0 and if SUM(PDISTN) is not equal to 1, the values will be normalized, i.e., 
PDISTN(j) = PDISTN(j)/SUM(PDISTN).
Default:  PDISTN (j) = 1/(MAXARORDER + 1) for all j.

Value Method

0 Minimum Description Length (MDL)

1 Akaike’s Information Criterion (AIC)

Value Method

0 Exact

1 Approximate

Value Action

0 No, do all the computations

1 Yes, only fit the specified model

Value Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results

Note: The following arguments are for setting up and running the embedded Genetic Algorithm. In most 
situations, the default values should be used for these arguments. Users may wish to change some or all 
for testing or research purposes.
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MSPAN — Array of length MAXARORDER + 1 containing minimum number of observations required for 
valid estimates of AR model with order p = 0, …, MAXARORDER. (Input)
Default:  MSPAN (p+ 1) = 2 * (number of parameters) + 2 = 2 * (p + 2) + 2.

GAPARM — Array of length 4 containing parameters that control the behavior of the genetic algorithm. 
These values should be strictly greater than zero and less than one to avoid unexpected results.   
(Input)
GAPARM (1) — Probability used to set initial break points in a chromosome. 
Default:  MIN (MSPAN) / size(Y). 
GAPARM (2) — Probability of crossover used to decide between a crossover and a mutation.
Default: 1 – MIN (MSPAN) / size(Y).
GAPARM (3) — In the mutation operation, probability an AR(p) model is enforced at the current 
position.
Default:   0.4.
GAPARM (4) — In the mutation operation, probability a break point is disallowed at the current 
position.
Default:   0.3.

ISLAND — Array of length 5 containing the migration policy parameters. (Input)
ISLAND (1) — Number of islands.
Default:  40.
ISLAND (2) — Number of generations that pass before migration occurs. Note that the convergence of 
the algorithm is revised whether migrations take place or not (see argument ISLAND(5)).
Default:  5.
ISLAND (3) — Number of subjects that migrate at each migration event.
Default:  2.
ISLAND (4) — Population size (number of chromosomes) per island.
Default:  40.
ISLAND (5) = Migration flag. If 1, migration is performed. 
Default:  1.

MAXMIG — Maximum number of times that migrations may take place before the routine is stopped if 
convergence has not occurred.  (Input) 
Default:  MAXMIG = 20.

STOPITERS — Number of iterations. The routine will declare convergence and stop the iterations if the 
criterion value (MDL/AIC) has not changed after STOPITERS consecutive migrations. Otherwise, the 
algorithm will declare non-convergence and stop after MAXMIG migrations have taken place. See also 
MAXMIG and ISLAND(2). Note that logically, STOPITERS < MAXMIG. (Input)
Default:  STOPITERS = 10.

Interface
Generic: CALL AUTO_PARM (Y, NPCS, ARP, ARFIT, ARSTAT, SCVAL [, …])
Specific: The specific interface names are S_AUTO_PARM and D_AUTO_PARM. 

Note: GAPARM(3) and GAPARM(4) must be valid probabilities and their sum must be between 0 and 1. 1 – 
GAPARM(3)– GAPARM(4) is the probability that the chromosome j inherits the parent’s chromosome j.
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Description

Routine AUTO_PARM estimates the structural breaks of a non-stationary time series using, with permission 
from the Authors, the method developed by Davis et al (2006). AUTO_PARM estimates a partition of the time 
index and models the time series in each segment as a separate auto-regressive (AR(p)) process. The routine 
returns the estimated breakpoints, the estimated AR(p) models, and supporting statistics. 

For the observed time series ,  the problem is to find m(m+1 = NPCS), the number of breaks, their 

locations,  (ARP(:,1)), and Pj(ARP(:,2)), j = 1, …, m + 1, the order of the AR 

process in which the j-th segment is modeled.  That is,   for  (for convenience,  

and )  where {Xt,j} is an AR process of order Pj.

 

and ɛt, the noise sequence, is i.i.d. with mean 0 and variance 1. Note that a series with m breaks will have 
m + 1 segments.

The vector  completely specifies a piecewise AR model. To estimate this vector 

AUTO_PARM optimizes, with respect to this vector, one of two selection critieria:  the first is a Minimum 
Description Length (MDL) criterion, and the second is the Akaike’s Information Criterion (AIC). The MDL is 
defined as 

while the AIC criterion is given by

where,  given a candidate value of the vector , L is the likelihood of the fitted piecewise 

AR model evaluated at the parameter estimates,  

The parameters  of the j-th AR segment are estimated by the choice of one of three estima-

tion methods: Yule-Walker, Burg, or Least Squares. 
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For simplicity, assume the mean of each series  is 0 and that the errors are Gaussian. Then, the piece-
wise AR model has Gaussian likelihood 

where  is the variance-covariance of the  j-th AR segment (of order ) and  is the vector of observations 

of the j-th segment, i.e., 

To find the minimizer {m, j, pj}* of either MDL or AIC, AUTO_PARM employs a Genetic Algorithm with 
islands, migration, cross-over and mutations. See Davis et.al. (2006) for further details.

Comments
1. AUTO_PARM approximates locally stationary time series by independent auto-regressive processes. 

Experimental results suggest that AUTO_PARM gives reasonable estimates of the structural breaks of a 
given time series, even if the segment series are not autoregressive. Also, based on experimental 
results, MDL gives better results than AIC as a selection criterion.

2. Informational Error

Examples

The examples below illustrate different scenarios using AUTO_PARM. The example series used in each case is 
the airline demand data (Box, Jenkins and Reinsel, 1994), which gives monthly total demand for the period 
January 1949 through December 1960. Each scenario sets the optional argument, ISEED = 123457. 

      use gdata_int
      use auto_parm_int
      use diff_int
      use umach_int
      implicit none
!                                  Specifications for local variables
!                                  arguments for auto_parm
      integer :: npcs, maxarorder, ifitonly, iprint, island(5), iseed
      integer, pointer :: arp(:,:)
      real(kind(1e0)) :: x(144,1), scval
      real(kind(1e0)), pointer, dimension(:,:) :: arfit, arstat
!                                  Other locals
      integer :: n, nvar, idata, nlost, iper(1), iord(1), nout
      real(kind(1e0)) :: dx(144,1)

Type Code Description

3 1 ISEED has been set out of range. ISEED is being reset to 123457.

3 2 MAXMIG migrations were reached in the genetic algorithm before 
the selection criterion value converged. Try increasing MAXMIG or 
using the double precision routine.
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      call umach(2, nout)
!                                  Get the data
      iseed = 123457
      idata = 4
      nullify(arp)
      nullify(arfit)
      nullify(arstat)
      call gdata(idata, x, n, nvar)

!                                  Example 1: Use defaults and print
!                                  final results
      write(nout,*)'Example 1: Use defaults'
      write(nout,*)
      call auto_parm(x(:,1), npcs, arp, arfit, arstat, scval, &
                     iseed=iseed, iprint=1)

!                                  Example 2: Differenced series
!                                  set period for the difference.
!                                  iper is in years for this data set
      write(nout,*)
      write(nout,*)'Example 2: Differenced series'
      write(nout,*)
!                                  Set the order for the difference.
      iper(1) = 1
      iord(1) = 1
!                                  Get differenced series dx
      call diff(x(:,1),iper,iord,n,dx(:,1),nlost=nlost)
!                                  Compare results on the differenced
!                                  series
      deallocate(arp)
      deallocate(arfit)
      deallocate(arstat)
      call auto_parm(dx((1+nlost):n,1), npcs, arp, arfit, arstat, &
                     scval, iseed=iseed, iprint=1)

!                                 Example 3: Original series
!                                 lower maximum AR order
      write(nout,*)
      write(nout,*)'Example 3: Original series, lower order allowed'
      write(nout,*)
      maxarorder = 5
      deallocate(arp)
      deallocate(arfit)
      deallocate(arstat)
      call auto_parm(x(:,1), npcs, arp, arfit, arstat, scval, &
                     maxarorder=maxarorder, iseed=iseed, iprint=1)

!                                  Example 4: differenced series, lower
!                                  maximum AR order
      write(nout,*)
      write(nout,*)'Example 4: Differenced series, lower maximum'// &
                   ' AR order'
      write(nout,*)
      deallocate(arp)
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      deallocate(arfit)
      deallocate(arstat)
      call auto_parm(dx((1+nlost):n,1), npcs, arp, arfit, arstat, &
                     scval, maxarorder=maxarorder, iseed=iseed, &
                     iprint=1)

!                                  Example 5: Original series, force
!                                             fit the segments
!                                  Fit the specified model only at the
!                                  break points
      write(nout,*)
      write(nout,*)'Example 5: Original series'
      write(nout,*)'Force fit the segments at the break points'
      write(nout,*)
      npcs = 2
      deallocate(arp)
      allocate(arp(npcs,2))
      arp(1,2) =  2
      arp(2,2) =  1
      arp(1,1) =  1
      arp(2,1) = 60
      deallocate(arfit)
      deallocate(arstat)
      call auto_parm(x(:,1), npcs, arp, arfit, arstat, scval, &
                     ifitonly=1, iseed=iseed, iprint=1)
      end

Output

Example 1: Use defaults

    ============== final results ===============
 number of pieces:            2

selection criteria value:   684.242

 total time:  0.7198125     conv:             1

 ==================== final model estimates =====================
 break point   order     est. coeff.    likelihood     resid. var
  ARP( 1,1)  ARP( 1,2)   ARFIT( 1,:)    ARSTAT( 1,1)   ARSTAT( 1,2)
    1           1        0.77542
                                        186.945        355.025
  ARP( 2,1)  ARP( 2,2)   ARFIT( 2,:)    ARSTAT( 2,1)   ARSTAT( 2,2)
   44          13        1.03701
                        -0.07802
                        -0.03890
                        -0.03452
                         0.11961
                        -0.12852
                         0.01990
                        -0.04886
                         0.08090
                        -0.13118
                         0.22122
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                         0.53863
                        -0.61515
                                        486.665        691.471

 Example 2: Differenced series

    ============== final results ===============
 number of pieces:            1

selection criteria value:   624.284

 total time:  0.7204375     conv:             1

 ==================== final model estimates =====================
 break point   order     est. coeff.    likelihood     resid. var
  ARP( 1,1)  ARP( 1,2)   ARFIT( 1,:)    ARSTAT( 1,1)   ARSTAT( 1,2)
    1          12       -0.02842
                        -0.22436
                        -0.16846
                        -0.24267
                        -0.10573
                        -0.22429
                        -0.12126
                        -0.26446
                        -0.07087
                        -0.24327
                        -0.07136
                         0.57129
                                        619.321        297.351

 Example 3: Original series, lower order allowed

    ============== final results ===============
 number of pieces:            2

selection criteria value:   705.297

 total time:  0.3136875     conv:             1

 ==================== final model estimates =====================
 break point   order     est. coeff.    likelihood     resid. var
  ARP( 1,1)  ARP( 1,2)   ARFIT( 1,:)    ARSTAT( 1,1)   ARSTAT( 1,2)
    1           1        0.89533
                                        270.393        333.564
  ARP( 2,1)  ARP( 2,2)   ARFIT( 2,:)    ARSTAT( 2,1)   ARSTAT( 2,2)
   63           2        1.19788
                        -0.35922
                                        424.270       1632.337

 Example 4: Differenced series, lower maximum AR order

    ============== final results ===============
 number of pieces:            2

selection criteria value:   698.359
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 total time:  0.2981875     conv:             1

 ==================== final model estimates =====================
 break point   order     est. coeff.    likelihood     resid. var
  ARP( 1,1)  ARP( 1,2)   ARFIT( 1,:)    ARSTAT( 1,1)   ARSTAT( 1,2)
    1           0        -------
                                        335.565        357.388
  ARP( 2,1)  ARP( 2,2)   ARFIT( 2,:)    ARSTAT( 2,1)   ARSTAT( 2,2)
   77           1        0.33310
                                        352.175       1786.345

 Example 5: Original series
 Force fit the segments at the break points

    ============== final results ===============
 number of pieces:            2

selection criteria value:   712.521

 ==================== final model estimates =====================
 break point   order     est. coeff.    likelihood     resid. var
  ARP( 1,1)  ARP( 1,2)   ARFIT( 1,:)    ARSTAT( 1,1)   ARSTAT( 1,2)
    1           2        1.12156
                        -0.24876
                                        258.192        313.889
  ARP( 2,1)  ARP( 2,2)   ARFIT( 2,:)    ARSTAT( 2,1)   ARSTAT( 2,2)
   60           1        0.88605
                                        443.696       1937.635
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AUTO_MUL_AR

Automatic selection and fitting of a multivariate autoregressive time series model. This is the multivariate 
version of AUTO_UNI_AR. The lag for the model is automatically selected using Akaike’s Information Crite-
rion (AIC). 

Required Arguments

X — NOBS by NCHANX matrix containing the stationary multivariate time series. (Input)
Each row of X corresponds to an observation of a multivariate time series, and each column of X corre-
sponds to a univariate time series.

MAXLAG — Maximum number of autoregressive parameters requested. (Input)
NMATRIX — Number of autoregressive parameter matrices in the minimum AIC model. (Output)
PAR — Three dimensional NMATRIX by NCHANX by NCHANX array containing estimates for the autoregres-

sive parameters in the model. (Output)

Optional Arguments
NOBS — Number of observations in each time series. 

Default:  NOBS = size(X,1)  (Input)
NCHANX — Number of variables, channels, in the multivariate time series. (Input)

NCHANX is the number of columns in X that should be processed. Default:  NCHANX = size(X,2)  
IPRINT — Printing option. (Input)

Default: IPRINT = 0
AVAR — NCHANX by NCHANX array of estimates of the noise variance. (Output)
NPAR — Vector of length NCHANX containing the number of autoregressive parameters fitted for each time 

series. (Output)
AIC — Akaike’s Information Criterion . (Output)

FORTRAN 90 Interface
Generic: CALL AUTO_MUL_AR (X, MAXLAG, NMATRIX, PAR [, …])
Specific: The specific interface names are S_AUTO_MUL_AR and D_AUTO_MUL_AR.

Description

The routine AUTO_MUL_AR automatically selects the order of the multivariate AR model that best fits the 
data and then displays the AR coefficients. This procedure is an adaptation of the MULMAR procedure pub-
lished in the TIMSAC-78 Library by Akaike, H., et. al (1979) and Kitagawa & Akaike (1978). 

0 No printing

1 Prints final results only

2 Prints intermediate and final 
results
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A multivariate AR model can be expressed as:

where

is a column vector containing the values for the NCHANX univariate time series at time = t. 

are the NCHANX by NCHANX matrices containing the autoregressive parameter estimates for lags 1, 2, …, 
NMATRIX. And

is a column vector containing the values for the NCHANX white noise values for each time series at time = t.

The best fit AR model is determined by successfully fitting multivariate AR models with 1 to NMATRIX 
autoregressive coefficients. For each model, Akaike’s Information Criterion (AIC) is calculated using the 
formula:

where

K = number of non-zero autoregressive coefficients in the parameter matrices.

The best fit model is the model with the minimum AIC. If the number of parameters in this model is equal to 
the highest order autoregressive model fitted, i.e., NMATRIX=MAXLAG, then a model with smaller AIC might 
exist for larger values of MAXLAG. In this case, increasing MAXLAG to explore AR models with additional 
autoregressive parameters might be warranted.

Example

Consider the data in northern light activity and earthquakes in Robinson 1967, page 204, for the years 1770 
through 1869. 

     USE GDATA_INT
     USE AUTO_MUL_AR_INT
     USE WRRRN_INT

     IMPLICIT NONE
     INTEGER, PARAMETER :: NOBS=100, MAXLAG=10
     INTEGER NCOL, NROW, NMATRIX, I
     REAL(KIND(1E0)) RDATA(NOBS,4), X(NOBS,3), PAR(MAXLAG,3,3)
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     CALL GDATA, RDATA, NROW, NCOL)
     X(:,1) = Rdata(:,3)
     X(:,2) = Rdata(:,4)
     X(:,3) = Rdata(:,2)

     CALL AUTO_MUL_AR(X,MAXLAG,NMATRIX,PAR)
       WRITE(*,*) "PAR = "
DO I=1,NMATRIX
       CALL WRRRN("",PAR(I,:,:))
   ENDDO
     END

Output

 PAR =

         1       2       3
 1   0.822   0.000   0.000
 2   0.000   0.000  -0.290
 3   0.098   0.000   1.214

          1        2        3
 1  -0.1136   0.0000   0.0000
 2   0.2489   0.0000   0.0000
 3   0.0040   0.0000  -0.8682

          1        2        3
 1   0.0000   0.0000   0.0000
 2   0.0000   0.0000   0.0000
 3   0.0725   0.0000   0.3374

          1        2        3
 1   0.0000   0.0000   0.0000
 2   0.0000   0.0000   0.0000
 3  -0.0693   0.0400  -0.2217

          1        2        3
 1   0.0000   0.0000   0.0000
 2   0.0000   0.0000   0.0000
 3   0.0745  -0.0025   0.1253

          1        2        3
 1   0.0000   0.0000   0.0000
 2   0.0000   0.0000   0.0000
 3  -0.0299   0.0510  -0.1570

           1         2         3
 1   0.00000   0.00000   0.00000
 2   0.00000   0.00000   0.00000
 3   0.00806   0.05025   0.04558

           1         2         3
 1   0.00000   0.00000   0.00000
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 2   0.00000   0.00000   0.00000
 3   0.03858   0.01929  -0.09825

          1        2        3
 1   0.0000   0.0000   0.0000
 2   0.0000   0.0000   0.0000
 3   0.0904  -0.0154   0.1376

           1         2         3
 1   0.00000   0.00000   0.00000
 2   0.00000   0.00000   0.00000
 3   0.00000  -0.06879   0.00000
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AUTO_FPE_MUL_AR

Automatic selection and fitting of a multivariate autoregressive time series model using Akaike’s  Multivari-
ate Final Prediction Error (MFPE) criteria. 

Required Arguments
X — NOBS by NCHANX matrix containing the stationary time series. Each row corresponds to an observa-

tion in the time series, and each column corresponds to a univariate time series for one of the channels. 
(Input)

MAXLAG  — Maximum number of autoregressive parameters requested. (Input) 
NMATRIX — Number of autoregressive parameter matrices in minimum FPE model. (Output)
PAR  — MAXLAG by NCHANX by NCHANX array containing estimates for the autoregressive parameters in 

the selected model. (Output) 

Optional Arguments
IPRINT — Printing option. (Input)

Default: IPRINT = 0
NOBS — Number of observations in each time series. (Input)   

Default = size(X,1).
NCHANX — Number of variables, channels, in the multivariate time series. (Input)

Default = size(X,2).
CCV —  NCHANX by NCHANX by MAXLAG+1 matrix containing the sample crosscovariances of the NCHANX 

time series variables. For the i-th time series variable, the first element, CCV(i,i, 1) is the sample vari-
ance for the i-th series and the remaining elements, CCV(i,i, 2) … CCV(i,i, MAXLAG+1), contain the 
autocovariances of the i-th series for lags 1 thru MAXLAG. Elements 
CCV(i,j, 2), …, CCV(i,j, MAXLAG+1,), contain the autocovariances between the i-th and j-th series for 
lags 1 thru MAXLAG (Output)

AVAR — NCHANX by NCHANX matrix containing estimates of the noise variance for each of the NCHANX 
time series. (Output)

FPE — Multivariate Final Prediction Error for fitted model. (Output)

FORTRAN 90 Interface
Generic: CALL AUTO_FPE_MUL_AR (X, MAXLAG, NMATRIX, PAR [, …])
Specific: The specific interface names are S_AUTO_FPE_MUL_AR and  D_AUTO_FPE_MUL_AR.

0 No printing

1 Prints final results only

2 Prints intermediate and final results
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Description

The AUTO_FPE_MUL_AR routine is based upon the FPEC program published in the TIMSAC –71 Library 
described by Akaike, H. and Nakagawa, T (1972). Estimates of the autoregressive parameters for the model 
with minimum FPE are calculated using the methodology described in Akaike, H., et. al (1979). 

The multivariate Final Prediction Error for a multivariate autoregressive model with lag p is defined as:

where  is the determinant of the estimated NCHANX by NCHANX matrix of covariances of the white noise 
in the NCHANX series, m = NCHANX and N = NOBS.

The model selected and parameter estimates vary depending upon the value of MAXLAG. Akaike and 
Nakagawa (1972) recommend that MAXLAG start with values between  and , and that 

MAXLAG does not exceed .  

In every case, however, MAXLAG must never exceed .

The numerical accuracy decreases as MAXLAG increases. In this case, it is possible for the estimated FPE to 
become negative. If this happens , using double percision may help.

Example

Consider the Wolfer Sunspot Data (Box and Jenkins 1976, page 530) along with data on northern light and 
earthquake activity (Robinson 1967, page 204) for each year from 1770 through 1869 to be a 3-channel time 
series. The following program automatically fits this data to an AR model with a MAXLAG = 10. In this exam-
ple, AUTO_FPE_MUL_AR selects a multivariate autoregressive model with 2 lags.

      use auto_fpe_mul_ar_int
      use wrrrl_int
      use gdata_int
      implicit none
!                                  SPECIFICATIONS FOR PARAMETERS

      integer,parameter     :: nobs=100, nvar=3, maxlag=10, npar=2
      integer               :: nrow, ncol, nmatrix
      real(kind(1e0))       :: ccv(maxlag+1,nvar,nvar)
      real(kind(1e0))       :: x(nobs,nvar+1)
      real(kind(1e0))       :: par(maxlag, nvar, nvar)
      real(kind(1e0))       :: avar(nvar, nvar), aic, fpe

!                                  SPECIFICATIONS FOR LOCAL VARIABLES
      character             :: label(1)*4
      integer               :: i
!                                  EXAMPLE #1
      label(1) = 'NONE'
!                                  GET ROBINSON MULTICHANNEL DATA
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      call gdata( 8, x, nrow, ncol)
!
      call auto_fpe_mul_ar(x(1:,2:), maxlag, nmatrix, par,  aic=aic, &
           fpe=fpe, avar=avar)
!
      write(*,*) 'Order Selected: ', nmatrix
      write(*,*) 'FPE = ', fpe
      do i = 1, npar
         call wrrrl('PAR ', par(i, 1:nvar, 1:nvar), label, &
                label, fmt='(F15.10)')
      enddo
      write(*,*) ' '
      call wrrrl('AVAR (White Noise)', avar, label, label,  &
                 fmt='(F15.10)')
      end

Output
Order Selected:  2
 FPE =  825727500.0
                        PAR
    1.2989480495     0.0272710621     0.0238259397
    0.0364407972     0.7911528349     0.0851913393
   -0.2183818072    -0.0601412356    -0.0717520714
                        PAR
   -0.6405253410     0.0186619535    -0.0319643840
    0.0082284175    -0.1621686369     0.0587148108
   -0.1242173612     0.3418768048    -0.0425752103
  
                AVAR (White Noise)
  281.7733154297   231.8975372314    57.6690979004
  231.8975982666  1296.4528808594    70.7170333862
   57.6690635681    70.7170333862  1752.6368408203
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BAY_SEA

Bayesian seasonal adjustment modeling. The model allows for a decomposition of a time series into trend, 
seasonal, and an error component. 

Required Arguments
W — Vector containing the stationary time series. (Input)

Optional Arguments
IORDER — Order of trend differencing. (Input)

Default: IORDER = 2.
ISORDER — Order of seasonal differencing. (Input)

Default: ISORDER = 1.
NFOCAST — Number of forecasted values.  (Input)

Default: NFOCAST = 0.
NPERIOD — Number of seasonals within a period. (Input)

Default: NPERIOD = 12.
RIGID — Controls rigidity of the seasonal pattern. (Input)

Default: RIGID = 1.0.
LOGT — Model option. (Input) 

Default: LOGT = 0.
IPRINT — Printing option. (Input)  

Default: IPRINT = 0.
ABIC — The Akaike Bayesian Information Criterion for the estimated model.  (Output)
TREND — Vector of length size(W)+ NFOCAST containing the estimated trend component for each data 

value followed by the trend estimates for the NFOCAST forecasted values. (Output)
SEASONAL — Vector of length size(W)+ NFOCAST containing the estimated seasonal components for 

each data value followed by the estimates for the NFOCAST forecasted seasonal values. (Output)
COMP — Vector of length size(W)containing the estimated irregular components.  (Output)
SMOOTHED — Vector of length size(W)+ NFOCAST containing the estimated smoothed estimates for 

each of the time series values followed by the NFOCAST forecast values. (Output)

LOGT Model

0 Non-additive model

1 Log additive model

IPRINT Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results
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FORTRAN 90 Interface
Generic: CALL BAY_SEA (W [, …])
Specific: The specific interface names are S_BAY_SEA and D_BAY_SEA.

Description

Routine BAY_SEA is based upon the algorithm published by Akaike (1980). This algorithm uses a Bayesian 
approach to the problem of fitting the following autoregressive model for a time series Wt decomposed into a 
trend and a seasonal component. 

Adopting the notation described earlier in the Usage Notes section of this chapter, if 

then a seasonal autoregressive model can be represented by the following relationship:

where Wt is the stationary time series with mean μ, Tt denotes an underlying trend, St seasonal component 
and At a noise or irregular component.

A non-Bayesian approach to this problem would be to estimate the trend and seasonal components by 
minimizing

where p is the period of the seasonal component, and d, r, and z are properly chosen constants.

In BAY_SEA, the approach is to select the parameter d, which controls the smoothness of the trend and sea-
sonality estimates, using Bayesian methods. The prior distribution controls the smoothness of the trend and 
seasonal components by assuming low order Gaussian autoregressive models for some differences of these 
components. The choice of the variance of the Gaussian distribution is realized by maximizing the log likeli-
hood of the Bayesian model.

The other smoothing parameters, r and z, are determined by the value of RIGID. The default value for RIGID 
is 1. Larger values of RIGID produce a more rigid seasonal pattern. Normally, a series is first fit using the 
default value for RIGID. The smoothness of the trend and seasonality estimates are examined and then 
RIGID is either increased or decreased depending upon whether more or less seasonal smoothing is needed.

Additionally, BAY_SEA selects the optimum autoregressive model as the model that minimizes ABIC.

ABIC = -2∙ln(likelihood) ,

where the likelihood in this case is the mixed Bayesian maximum likelihood. Smaller values of ABIC represent 
a better fit.
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Example

This example uses unadjusted unemployment for women over 20 years of age in the U.S. for 1991-2001, as 
reported by the U.S. Bureau of Labor Statistics (www.bls.gov). Figure 8.4 displays this data together with 
the smoothed preditions from BAY_SEA. Figure 8.5 displays the same data with trend predictions from 
BAY_SEA.

       use bay_sea_int
       use wrrrl_int

       IMPLICIT     NONE
!                                  SPECIFICATIONS FOR PARAMETERS
       integer, parameter :: focast=12, nobs=132, nyears=11
       real(kind(1e0))           :: b(nobs)
!                                  U.S. Labor Statistics 
!                                  unemployment for women 
!                                  over 20 years of age
       data b/ 2968D0,3009D0,2962D0,2774D0,3040D0,3165D0,& !1991
               3104D0,3313D0,3178D0,3142D0,3129D0,3107D0,&
               3397D0,3447D0,3328D0,3229D0,3286D0,3577D0,& !1992
               3799D0,3867D0,3655D0,3360D0,3310D0,3369D0,&
               3643D0,3419D0,3108D0,3118D0,3146D0,3385D0,& !1993
               3458D0,3468D0,3330D0,3244D0,3135D0,3005D0,&
               3462D0,3272D0,3275D0,2938D0,2894D0,3106D0,& !1994
               3150D0,3289D0,3136D0,2829D0,2776D0,2467D0,&
               2944D0,2787D0,2749D0,2762D0,2578D0,2900D0,& !1995
               3100D0,3102D0,2934D0,2864D0,2652D0,2456D0,&
               3088D0,2774D0,2701D0,2555D0,2677D0,2741D0,& !1996
               3052D0,2966D0,2772D0,2723D0,2705D0,2640D0,&
               2898D0,2788D0,2718D0,2406D0,2520D0,2645D0,& !1997
               2708D0,2811D0,2666D0,2380D0,2292D0,2187D0,&
               2750D0,2595D0,2554D0,2213D0,2218D0,2449D0,& !1998
               2532D0,2639D0,2449D0,2326D0,2302D0,2065D0,&
               2447D0,2398D0,2381D0,2250D0,2086D0,2397D0,& !1999
               2573D0,2475D0,2299D0,2054D0,2127D0,1935D0,&
               2425D0,2245D0,2298D0,2005D0,2208D0,2379D0,& !2000
               2459D0,2539D0,2182D0,1959D0,2012D0,1834D0,&
               2404D0,2329D0,2285D0,2175D0,2245D0,2492D0,& !2001
               2636D0,2892D0,2784D0,2771D0,2878D0,2856D0/

       integer  :: i
       real(kind(1e0)) :: abicm
       real(kind(1e0)) :: trend(nobs+focast), season(nobs+focast)
       real(kind(1e0)) :: irreg(nobs), smooth(nobs+focast)
       character       :: months(focast)*3, years(nyears+2)*4
       data months/'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', &
                   'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'/
       data years/'    ', '1991', '1992', '1993', '1994', '1995', &
                  '1996', '1997','1998','1999','2000','2001','2002'/

       call bay_sea(b, trend=trend, seasonal=season, &
                    comp=irreg, abic=abicm, iorder=2, isorder=1,&
                    nfocast=focast, smoothed=smooth)
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       write(*,*) 'ABIC = ', abicm
       call wrrrl('TREND with last 12 values forecasted',trend,months, &
                   years, nra=12,nca=nyears+1,lda=12)

         call wrrrl('SEASONAL with last 12 values forecasted',season,&
                      months,years, nra=12,nca=nyears+1, lda=12)
         call wrrrl('IRREGULAR=Original data-TREND-SEASONAL',irreg, &
                     months,years, nra=12,nca=nyears,lda=12)

       end

Output

 ABIC =  1297.6403

                    TREND with last 12 values forecasted
         1991     1992     1993     1994     1995     1996     1997     1998
 Jan   2879.8   3318.9   3422.6   3228.7   2827.3   2795.7   2743.1   2481.3
 Feb   2918.2   3359.9   3387.8   3206.0   2815.8   2785.6   2720.6   2469.7
 Mar   2955.1   3399.1   3355.5   3177.0   2812.4   2777.9   2694.2   2455.4
 Apr   2990.0   3436.1   3329.5   3142.1   2814.7   2773.2   2665.2   2439.0
 May   3022.7   3469.0   3309.6   3103.9   2819.3   2771.3   2636.0   2422.8
 Jun   3052.8   3496.1   3294.8   3064.8   2825.5   2771.0   2607.4   2408.5
 Jul   3082.8   3514.5   3283.8   3025.7   2830.9   2772.4   2580.8   2396.8
 Aug   3116.2   3521.9   3276.0   2987.3   2833.2   2773.6   2557.2   2387.7
 Sep   3153.4   3517.8   3270.3   2949.0   2831.7   2774.7   2536.3   2380.3
 Oct   3193.8   3503.7   3264.8   2911.3   2826.1   2774.5   2518.0   2373.6
 Nov   3235.6   3482.4   3256.8   2876.6   2816.6   2770.4   2503.0   2366.6
 Dec   3277.6   3455.2   3245.3   2847.6   2805.9   2760.2   2491.5   2359.1

         1999     2000     2001     2002
 Jan   2352.1   2235.9   2206.0   3166.1
 Feb   2345.6   2237.6   2239.0   3275.1
 Mar   2338.1   2239.3   2281.4   3384.1
 Apr   2328.3   2238.9   2333.1   3493.0
 May   2315.5   2235.2   2393.9   3602.0
 Jun   2301.4   2226.3   2464.7   3710.9
 Jul   2286.0   2212.8   2545.7   3819.9
 Aug   2269.8   2196.6   2636.7   3928.9
 Sep   2255.5   2181.3   2735.7   4037.8
 Oct   2244.6   2171.9   2840.4   4146.8
 Nov   2238.3   2172.1   2948.2   4255.8
 Dec   2235.6   2183.3   3057.2   4364.7

                   SEASONAL with last 12 values forecasted
        1991    1992    1993    1994    1995    1996    1997    1998    1999
 Jan   162.9   165.6   169.3   172.0   173.8   176.3   176.4   177.3   176.4
 Feb    51.4    51.5    50.5    49.5    48.6    48.8    50.0    51.1    51.0
 Mar   -24.0   -23.9   -23.4   -18.8   -16.3   -13.0    -8.7    -4.9    -3.0
 Apr  -191.0  -190.1  -189.1  -188.0  -186.6  -187.8  -188.5  -187.9  -186.6
 May  -140.6  -143.3  -145.4  -147.4  -148.1  -147.1  -147.1  -147.9  -147.7
 Jun    67.2    66.6    65.8    64.4    63.3    62.2    62.7    63.6    64.9
 Jul   176.9   180.1   181.6   183.0   185.5   186.6   185.8   186.1   187.2
 Aug   251.9   253.0   252.6   253.3   253.1   252.8   253.7   254.4   255.2
 Sep    76.4    77.2    77.1    77.3    75.5    73.3    72.6    70.7    68.9
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 Oct   -79.5   -80.5   -80.1   -80.8   -81.5   -84.3   -87.6   -90.1   -93.4
 Nov  -119.8  -120.7  -120.5  -120.2  -120.4  -119.7  -119.7  -118.1  -117.6
 Dec  -235.7  -237.9  -243.0  -247.9  -250.5  -251.2  -254.2  -256.2  -257.5

        2000    2001    2002
 Jan   177.2   177.6   177.5
 Feb    50.8    51.6    51.5
 Mar    -1.9    -1.7    -1.8
 Apr  -187.2  -186.5  -186.6
 May  -145.7  -145.6  -145.7
 Jun    65.6    65.1    65.0
 Jul   186.4   184.7   184.7
 Aug   256.8   256.9   256.9
 Sep    67.3    67.0    67.0
 Oct   -95.1   -94.6   -94.6
 Nov  -117.3  -116.6  -116.6
 Dec  -258.1  -257.1  -257.1

                   IRREGULAR=Original data-TREND-SEASONAL
        1991    1992    1993    1994    1995    1996    1997    1998    1999
 Jan   -74.7   -87.5    51.1    61.2   -57.1   116.0   -21.5    91.4   -81.5
 Feb    39.4    35.6   -19.3    16.5   -77.4   -60.4    17.3    74.2     1.5
 Mar    30.9   -47.2  -224.1   116.8   -47.1   -63.9    32.5   103.5    45.9
 Apr   -25.0   -17.0   -22.5   -16.1   133.9   -30.5   -70.6   -38.0   108.3
 May   157.8   -39.7   -18.2   -62.6   -93.1    52.8    31.2   -56.9   -81.9
 Jun    45.0    14.3    24.4   -23.1    11.2   -92.1   -25.1   -23.2    30.7
 Jul  -155.6   104.4    -7.4   -58.6    83.6    93.0   -58.6   -50.9    99.9
 Aug   -55.0    92.1   -60.6    48.4    15.7   -60.4     0.1    -3.1   -49.9
 Sep   -51.8    60.0   -17.4   109.6    26.8   -76.0    57.1    -2.1   -25.3
 Oct    27.7   -63.3    59.3    -1.5   119.4    32.8   -50.3    42.5   -97.1
 Nov    13.2   -51.7    -1.3    19.5   -44.3    54.3   -91.3    53.5     6.3
 Dec    65.1   151.7     2.7  -132.8   -99.4   131.0   -50.3   -37.9   -43.1

        2000    2001
 Jan    11.9    20.4
 Feb   -43.5    38.4
 Mar    60.5     5.3
 Apr   -46.7    28.5
 May   118.5    -3.3
 Jun    87.1   -37.7
 Jul    59.9   -94.4
 Aug    85.6    -1.6
 Sep   -66.6   -18.7
 Oct  -117.8    25.3
 Nov   -42.7    46.4
 Dec   -91.2    56.0
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Figure 8.4 — Sample Smoothed Predictions from BAY_SEA

Figure 8.5 — Sample Trend Predictions from BAY_SEA
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OPT_DES

Optimal controller design based upon the methodology of Akaike and Nakagaw (1972). The routine allows 
for multiple channels for both the controlled and manipulated variables. The gain matrix is computed after 
automatically selecting the best autoregressive model using minimum multivariate final prediction error 
(MFPE).

Required Arguments
MAXLAG — Maximum number of autoregressive parameters requested. (Input) 
X — NOBS by NCHANX matrix containing the multi-channel time series for the manipulated variables, also 

called control system input variables. Each row corresponds to a different observation in the series, 
and each column of X corresponds to a univariate time series for one of the controlled channels. 
(Input)

Y — NOBS by NCHANY matrix containing the multi-channel time series for the controlled variables, also 
called control system output variables. Each row  corresponds to a different observations in the series, 
and each column of Y corresponds to a univariate time series for one of the manipulated channels. 
(Input)

NPAR — Number of autoregressive parameter matrices in minimum FPE model. (Output)
GAIN — NCHANX by NPAR gain matrix. (Output)

Optional Arguments
Q — NCHANY by NCHANY non-negative definite symmetric weighting matrix for the quadratic optimiza-

tion criterion. (Input)
Default: If AVAR is non-singular,  Q = Inverse of AVAR. If AVAR is singular, then 
Q = diag(1/AVAR1,1, 1/AVAR2,2, …, 1/AVARNCHANY,NCHANY).

R — A NCHANX by NCHANX positive definite symmetric weighting matrix for the quadratic optimization 
criterion. (Input)
Default: R = diag(1/σ2

X1, 1/σ2
X2, …, 1/σ2

XNCHANX)

IPRINT — Printing option. (Input)  

Default: IPRINT = 0.

more...

0 No printing

1 Prints final results only

2 Prints intermediate and final results
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 NCHANX — Number of time series for manipulated variables. (Input) 
Default: NCHANX = size(X,2)

NCHANY — Number of time series for controlled variables. (Input) 
Default: NCHANY = size(Y,2)

NOBS — Number of observations in each time series. (Input) 
Default: NOBS = size(X,1)

NSTAGE — Number of stages used to compute the gain matrix, GAIN. (Input)
Default: NSTAGE = 20

TRANSY —NPAR by NCHANY by NCHANY transition matrix. (Output)
GAMMAX — NPAR by NCHANY by NCHANX gamma matrix. (Output)
CCV —  NCHAN by NCHAN by (MAXLAG+1) matrix containing the sample autocovariances of the NCHAN 

time series variables, where NCHAN = NCHANX+NCHANY. For the i-th time series variable, the first ele-
ment, CCV(i,i,1) is the sample variance for the i-th series and the remaining elements, CCV(i,i,2) …  
CCV(i,i,MAXLAG+1), contain the autocovariances of the i-th series for lags 1 thru MAXLAG. Elements 
CCV(i,j,2) …  CCV(i,j,MAXLAG +1) contain the autocovariances between the i-th and j-th series for lags 
1 through MAXLAG. (Output)

AVAR — NCHANY by NCHANY matrix containing estimates of the noise variances, autocovariances and 
cross-covariances for the NCHANY time series. (Output)

FPE — Final Prediction Error for fitted model. (Output)
AIC — Akaike’s Information Criterion for fitted model. (Output)

FORTRAN 90 Interface
Generic: CALL OPT_DES (MAXLAG, X, Y, NPAR, GAIN [, …])
Specific: The specific interface names are S_OPT_DES and D_OPT_DES.

Description

The routine OPT_DES is based upon the FPEC and OPTDES program published in the 
TIMSAC –71 Library described by Akaike, H. and Nakagawa, T (1972). Estimates of the autoregressive 
parameters for the model with minimum multivariate final prediction error (MFPE) are calculated using the 
methodology described in Akaike, H., et. al (1979). Their methodology produces an estimate of the gain 
matrix, G, in a feedback control system with the following relationship:

where 

Xt is a vector containing the value of the NCHANX control variables at time = t, 

Zt = the state vector at time = t, and

G is the NCHANX by NPAR gain matrix (GAIN).

The gain matrix is estimated by minimizing the quadratic criterion:
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where E is the expectation operator, and I = NSTAGE.

Akaike and Nikagawa (1972) describe a process for obtaining the optimum gain matrix by adjusting the qua-
dratic criterion matrices, Q and R. Initially they recommend setting Q and R to the default values described 
above for Q and R. They recommend that the behavior of the controller using the gain matrix obtained from 
these defaults be examined by simulating the controller. 

From these simulations, the variances of the control input variables (X) should be examined to identify chan-
nels whose variances are too large or too small. If they are too large or small, their corresponding diagonal 
elements in R and Q should be decreased or increased. 

The multivariate final prediction error for a multivariate autoregressive model with lag p is defined as:

where  is the determinant of the estimated NCHANY × NCHANY matrix of covariances of the white noise 
in the multivariate series, N =NOBS and m =NCHANY.

The model selected and parameter estimates vary depending upon the value of MAXLAG. Akaike and Nak-
agawa (1972) provide a rule of thumb for MAXLAG: start with values between  and , and 

keep MAXLAG below .

Similar to the univariate case, MAXLAG must never exceed .

The numerical accuracy decreases as MAXLAG increases. In this case, it is possible for the estimated MFPE to 
become negative. If this happens try using double precision.

NSTAGE, the number of stages used to compute the gain matrix, should be selected to provide an accurate 
estimate of the gain matrix. Essentially, the gain matrix is the matrix for control of the system at 
time = NSTAGE. As NSTAGE is increased, the gain matrix converges to a constant solution. That is, as NSTAGE 
is increased, 

It is tempting to set NSTAGE to a large value. However, this will increase execution time and subject the final 
estimates to rounding errors.

Example

The following example uses the Gas Furnace Data (Box and Jenkins 1976, pages 532-533). In this example, the 
controller has one variable, percent CO2 , that is controlled by a single manipulated variable, input gas rate in 
cubic feet/minute. These multi-channel series consist of NOBS=296 observations.
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      USE GDATA_INT
      USE WRRRN_INT
      USE OPT_DES_INT

      IMPLICIT NONE
      INTEGER, PARAMETER :: MAXLAG=10, NOBS=296
      INTEGER NCOL, NROW, NPAR
      REAL(KIND(1E0)) RDATA(NOBS,2), X(NOBS,1), Y(NOBS,1), GAIN(1,MAXLAG), &
      Q(1,1), R(1,1)
      EQUIVALENCE (X, RDATA(1,1)), (Y, RDATA(1,2))

      Q(1,1) = 0.16E0
      R(1,1) = 0.001E0
      GAIN=0.0E0
      CALL GDATA (7, RDATA, NROW, NCOL)
      CALL OPT_DES(MAXLAG, X, Y, NPAR, GAIN, Q=Q, R=R)
      CALL WRRRN("GAIN", GAIN(:,:NPAR))
      END

Output:

              GAIN
      1       2       3       4
  1.418   1.851   1.894   1.502
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LOFCF

Performs lack-of-fit test for a univariate time series or transfer function given the appropriate correlation 
function.

Required Arguments
NOBS — Number of observations in the stationary time series.  (Input) 

NOBS must be greater than or equal to two.
LAGMIN — Minimum lag of the correlation function.  (Input) 

LAGMIN corresponds to the lower bound of summation in the lack of fit test statistic. Generally, 
LAGMIN is set to one if CF is an autocorrelation function and is set to zero if CF is a cross correlation 
function.

LAGMAX — Maximum lag of the correlation function.  (Input) 
LAGMAX corresponds to the upper bound of summation in the lack of fit test statistic. LAGMAX must be 
greater than or equal to LAGMIN and less than NOBS.

CF — Vector of length LAGMAX + 1 containing the correlation function.  (Input) 
The correlation coefficient for lag k is given by CF(k + 1), k = LAGMIN, LAGMIN + 1, …, LAGMAX.

NPFREE — Number of free parameters in the formulation of the time series model.  (Input) 
NPFREE must be greater than or equal to zero and less than LAGMAX.

Q — Lack of fit test statistic.  (Output)
PVALUE — p-value of the test statistic Q.  (Output) 

Under the null hypothesis, Q has an approximate chi-squared distribution with 
LAGMAX - LAGMIN + 1 - NPFREE degrees of freedom.

FORTRAN 90 Interface
Generic: CALL LOFCF (NOBS, LAGMIN, LAGMAX, CF, NPFREE, Q, PVALUE)
Specific: The specific interface names are S_LOFCF and D_LOFCF.

FORTRAN 77 Interface
Single: CALL LOFCF (NOBS, LAGMIN, LAGMAX, CF, NPFREE, Q, PVALUE)
Double: The double precision name is DLOFCF.

Description

Routine LOFCF performs a portmanteau lack of fit test for a time series or transfer function containing n 
observations given the appropriate sample correlation function

for k = L, L + 1, …, K where L = LAGMIN and K = LAGMAX. 

The basic form of the test statistic Q is
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with L = 1 if 

is an autocorrelation function and L = 0 if 

is a cross-correlation function. Given that the model is adequate, Q has a chi-squared distribution with 
K - L + 1 - m degrees of freedom where m = NPFREE is the number of parameters estimated in the model. If 
the mean of the time series is estimated, Woodfield (1990) recommends not including this in the count of the 
parameters estimated in the model. Thus, for an ARMA(p, q) model set NPFREE = p + q regardless of whether 
the mean is estimated or not. The original derivation for time series models is due to Box and Pierce (1970) 
with the above modified version discussed by Ljung and Box (1978). The extension of the test to transfer 
function models is discussed by Box and Jenkins (1976, pages 394–395).

Comments

Routine LOFCF may be used to diagnose lack of fit in both ARMA and transfer function models. Typical 
arguments for these situations are 

See the “Description” section for further information.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. An ARMA(2,1) with nonzero mean is fitted using routine NSLSE. The autocorrela-
tions of the residuals are estimated using routine ACF. A portmanteau lack of fit test is computed using 10 
lags with LOFCF. 

The warning message from NSLSE in the output can be ignored. (See the Example for routine NSLSE for a 
full explanation of the warning message.)

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IARDEG, IMEAN, IPRINT, ISEOPT, LAGMAX, LAGMIN, LDCOV,&
                 LDX, MAXBC, MDX, NOBS, NP, NPAR, NPFREE, NPMA

Model LAGMIN LAGMAX NPFREE

ARMA(p, q) 1 p + q 

Transfer function 0 r + s 
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      PARAMETER  (IARDEG=2, IMEAN=1, IPRINT=0, ISEOPT=0, LAGMAX=10, &
                 LAGMIN=1, LDX=176, MAXBC=10, MDX=2, NOBS=100, NPAR=2, & 
                 NPFREE=4, NPMA=1, NP=NPAR+NPMA+IMEAN, LDCOV=NP)
!
      INTEGER    LAGAR(NPAR), LAGMA(NPMA), MAXIT, NA, NCOL, NOUT, NROW
      REAL       A(NOBS-IARDEG+MAXBC), ACV(LAGMAX+1), AVAR, &
                 CF(LAGMAX+1), CNST, COV(LDCOV,NP), PAR(NPAR), &
                 PMA(NPMA), PVALUE, Q, RELERR, SEAC(LAGMAX), TOLBC, &
                 TOLSS, W(NOBS), WMEAN, X(LDX,MDX)
!
      EQUIVALENCE (W(1), X(22,2))
!
      DATA LAGAR/1, 2/, LAGMA/1/
!
      CALL UMACH (2, NOUT)
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, X, NROW, NCOL)
!                                 USE Default Convergence parameters
!                                 Compute preliminary parameter
!                                 estimates for ARMA(2,1) model
      CALL NSPE (W, CNST, PAR, PMA, AVAR, WMEAN=WMEAN)
!                                 Compute least squares estimates
!                                 for model
      TOLSS = 0.125
!
      CALL NSLSE (W, PAR, LAGAR, PMA, LAGMA, MAXBC, CNST, COV, &
                 AVAR, IMEAN=IMEAN, WMEAN=WMEAN, TOLSS=TOLSS, A=A)
!                                 Compute autocorrelations of the
!                                 residuals
      CALL ACF (A, LAGMAX, CF)
!
      CALL LOFCF (NOBS, LAGMIN, LAGMAX, CF, NPFREE, Q, PVALUE)
!
      WRITE (NOUT,99998) Q
      WRITE (NOUT,99999) LAGMAX - LAGMIN + 1 - NPFREE, PVALUE
!
99998 FORMAT (/4X, 'Lack of Fit statistic (Q) = ', F12.3)

99999 FORMAT (/4X, 'Degrees of freedom (LAGMAX-LAGMIN+1-NPFREE) = ', &
            I8/4X, 'P-value (PVALUE) = ', F12.4)
      END

Output

***WARNING  ERROR 1 from NSLSE.  Least squares estimation of the parameters
***         has failed to converge.  Increase MAXBC and/or TOLBC and/or
***         TOLSS.  The estimates of the parameters at the last iteration
***         may be used as new starting values.

Lack of Fit statistic (Q) =       14.572

Degrees of freedom (LAGMAX-LAGMIN+1-NPFREE) =        6
P-value (PVALUE) =       0.0239
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DIRIC

This function computes the Dirichlet kernel.

Function Return Value
DIRIC — Function value.  (Output)

Required Arguments
M — Spectral window parameter.  (Input)
RANGLE — Angle in radians.  (Input)
EPS — Positive bound on ∣RANGLE∣ that determines when an approximation to the Dirichlet kernel is 

appropriate.  (Input) 
EPS must be between 0 and π inclusive. The approximation is used when ∣RANGLE∣ is less than EPS.

FORTRAN 90 Interface
Generic: DIRIC (M, RANGLE, EPS)
Specific: The specific interface names are S_DIRIC and D_DIRIC.

FORTRAN 77 Interface
Single: DIRIC (M, RANGLE, EPS)
Double: The double precision name is DDIRIC.

Description

Routine DIRIC evaluates the Dirichlet kernel, DM(θ), for a given parameter M, angle θ = RANGLE, and toler-
ance ɛ = EPS. The computational form of the function is given by

The first case is an approximation to DM(θ) for small θ, and the second case is the usual theoretical definition.
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In spectral analysis, the Dirichlet kernel corresponds to the truncated periodogram spectral window, and M 
is called the spectral window parameter. Since the Dirichlet kernel may be negative for certain values of θ, 
the truncated periodogram estimate of the spectral density may also be negative. This is an undesirable prop-
erty since the true spectral density is a nonnegative function. See Priestley (1981, pages 437–438) and 
Anderson (1971, pages 508–511) for further discussion.

Comments
1. The Dirichlet kernel is equivalent to the truncated periodogram spectral window. The spectral win-

dow parameter denotes the truncation point in the weighted sum of sample autocovariances used to 
estimate the spectral density.

2. The Dirichlet kernel produces negative values for certain values of RANGLE. Thus, spectral windows 
that use the Dirichlet kernel may also take on negative values.

3. The Dirichlet kernel is defined between -π and π, inclusive, and is zero otherwise.

Example

In this example, DIRIC is used to compute the Dirichlet kernel at θ = ± kπ/(2M + 1) for k = 0, 1, …, (2M + 1) 
where M = 5 and ɛ = 0.01.

      USE UMACH_INT
      USE DIRIC_INT

      IMPLICIT   NONE

      INTEGER    K, M, NOUT
      REAL       EPS, PI, REAL, THETA, WT
      INTRINSIC  REAL
!
      M   = 5
      EPS = .01
      PI  = 3.14159
!
      CALL UMACH (2, NOUT)
!
      WRITE (NOUT,99998)
99998 FORMAT ('  K     THETA     WEIGHT ')
      DO 10  K=0, 2*M + 1
         THETA = (PI*REAL(K))/REAL(2*M+1)
         WT    = DIRIC(M,THETA,EPS)
         WRITE (NOUT,99999) K, THETA, WT
99999    FORMAT (1X, I2, 2(3X,F8.5))
   10 CONTINUE
!
      END

Output

 K     THETA     WEIGHT
 0    0.00000    1.75070
 1    0.28560    1.11833
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 2    0.57120    0.00000
 3    0.85680   -0.38312
 4    1.14240    0.00000
 5    1.42800    0.24304
 6    1.71359    0.00000
 7    1.99919   -0.18919
 8    2.28479    0.00000
 9    2.57039    0.16587
10    2.85599    0.00000
11    3.14159   -0.15915
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FEJER

This function computes the Fejér kernel.

Function Return Value
FEJER — Function value.  (Output)

Required Arguments
M — Spectral window parameter.  (Input)
RANGLE — Angle in radians.  (Input)
EPS — Positive bound on ∣RANGLE∣ that determines when an approximation to the Fejér kernel is appro-

priate.  (Input)
EPS must be between 0 and π inclusive. The approximation is used when ∣RANGLE∣ is less than EPS.

FORTRAN 90 Interface
Generic: FEJER(M, RANGLE, EPS)
Specific: The specific interface names are S_FEJER and D_FEJER.

FORTRAN 77 Interface
Single: FEJER(M, RANGLE, EPS)
Double: The double precision name is DFEJER.

Description

Routine FEJER evaluates the Fejér kernel, FM(θ), for a given parameter M, angle θ = RANGLE, and tolerance 
ɛ = EPS. The computational form of the function is given by

The first case is an approximation to FM(θ) for small θ, and the second case is the usual theoretical definition.

In spectral analysis, the Fejér kernel corresponds to the modified Bartlett spectral window, and M is called 
the spectral window parameter. Since the Fejér kernel is nonnegative for all values of θ, the modified Bartlett 
estimate of the spectral density is also nonnegative. This is a desirable property since the true spectral density 
is a nonnegative function. See Priestley (1981, pages 439–440) and Anderson (1971, pages 508–511) for further 
discussion.
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Comments
1. The Fejér kernel is equivalent to the modified Bartlett spectral window. The spectral window parame-

ter denotes the truncation point in the weighted sum of sample autocovariances used to estimate the 
spectral density.

2. The Fejér kernel produces nonnegative values for all values of RANGLE. Thus, spectral windows based 
on the Fejér kernel are always nonnegative.

3. The Fejér kernel is defined between -π and π, inclusive, and is zero otherwise.

Example

In this example, FEJER is used to compute the Fejér kernel at θ = ±kπ/M for k = 0, 1, …, M where M = 11 
and ɛ = 0.01.

      USE UMACH_INT
      USE FEJER_INT

      IMPLICIT   NONE
   
      INTEGER    K, M, NOUT
      REAL       EPS, PI, REAL, THETA, WT
      INTRINSIC  REAL
!
      M   = 11
      EPS = .01
      PI = 3.14159265
      CALL UMACH (2, NOUT)
!
      WRITE (NOUT,99998)
99998 FORMAT ('  K     THETA      WEIGHT ')
      DO 10  K=0, M
         THETA = (PI*REAL(K))/REAL(M)
         WT    = FEJER(M,THETA,EPS)
         WRITE (NOUT,99999) K, THETA, WT
99999    FORMAT (1X, I2, 2(3X,F8.5))
   10 CONTINUE
!
      END

Output

 K     THETA     WEIGHT
 0    0.00000    1.75070
 1    0.28560    0.71438
 2    0.57120    0.00000
 3    0.85680    0.08384
 4    1.14240    0.00000
 5    1.42800    0.03374
 6    1.71360    0.00000
 7    1.99920    0.02044
 8    2.28479    0.00000
 9    2.57039    0.01572
10    2.85599    0.00000
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11    3.14159    0.00000
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ARMA_SPEC

Calculates the rational power spectrum for an ARMA model. It also computes the rational power spectrum 
for AR and MA models by setting the number of MA or AR coefficients to zero, respectively.

Required Arguments
PAR — Vector of length NPAR. If NPAR > 0 then PAR contains coefficients for the autoregressive terms in 

the model. If NPAR = 0, then the contents of PAR are ignored. (Input)
PMA — Vector of length NPMA. If NPMA > 0 then PMA contains the coefficients for the moving-average 

terms in the ARMA model. If NPMA = 0 then the contents of PMA are ignored. (Input)
NF — Number of frequencies at which to evaluate the spectral density estimate. NF must be greater than or 

equal to one. (Input)
AVAR — Estimate of the random shock variance. AVAR must be greater than zero. (Input)
S — Vector of length NF+1 containing the estimated power spectrum. (Output)

Optional Arguments
NPAR — Number of autoregressive (AR) parameters. NPAR must be greater than or equal to zero. (Input)

Default: NPAR=size(PAR). 
NPMA — Number of moving-average (MA) parameters. Must be greater than or equal to zero. (Input)

Default: NPMA= size(PMA).
IPRINT — Printing option.  (Input)

Default: IPRINT = 0.

FORTRAN 90 Interface
Generic: CALL ARMA_SPEC (PAR, PMA, NF, AVAR, S [, …])
Specific: The specific interface names are S_ARMA_SPEC and D_ARMA_SPEC.

Description

The routine ARMA_SPEC is derived from the rational power spectrum analysis described by Akaike and Nak-
agawa (1972) and the RASPEC routine published in the original TIMSAC Library.

Using the notation developed in the introduction to this chapter, the stationary time series Wt with mean μ 
can be represented by the nonseasonal autoregressive moving average model (ARMA) by the following 
relationship:

IPRINT Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results
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where 

B is the backward shift operator defined by , 

and 

Routine ARMA_SPEC uses estimates for the coefficients ɸ1, ɸ2, …, ɸNPAR, and Θ 1, Θ 2, …, Θ NPMA as input to 
its algorithm, PAR and PMA respectively. These estimates can be derived from MAX_ARMA or by using NSLSE. 

Routine ARMA_SPEC also requires an initial estimate for the variance of the white noise in the series. In 
MAX_ARMA this is returned as AVAR. This is also returned from the autocovariance procedure ACF as ACV(0).

Example

Consider the Wolfer Sunspot Data (Box and Jenkins 1976, page 530) consisting of the number of sunspots 
observed each year from 1770 through 1869. These data can be modeled using the following model 
[ARMA(NPAR=2, NPMA=1)]  

In this example, estimates of the coeffiecients in this model are obtained using MAX_ARMA. These are then 
sent to ARMA_SPEC to obtain the estimated power spectrum.

      USE GDATA_INT
      USE ARMA_SPEC_INT
      USE MAX_ARMA_INT
      USE WRRRN_INT

      IMPLICIT NONE
      INTEGER, PARAMETER :: NF=20, LDX=176, NDX=2
      INTEGER NCOL, NROW
      REAL(KIND(1E0))  PAR(2), PMA(1), RDATA(LDX,NDX), &
           W(100), S(0:NF), AVAR
      EQUIVALENCE (W(1), RDATA(22,2))
      DATA PAR/-0.5783E0, 0.18594E0/
      DATA PMA/-0.1E0/

!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
      CALL MAX_ARMA(W, PAR, PMA, AVAR=AVAR)
      CALL ARMA_SPEC(PAR, PMA, NF, AVAR, S)
      CALL WRRRN("S", S)
      END
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Output

      S     
  1    714.8
  2    786.7
  3   1030.2
  4   1450.4
  5   1619.6
  6   1146.4
  7    670.4
  8    407.2
  9    269.3
 10    192.3
 11    146.2
 12    116.7
 13     96.9
 14     83.2
 15     73.4
 16     66.3
 17     61.3
 18     57.7
 19     55.3
 20     53.9
 21     53.5
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PFFT

Computes the periodogram of a stationary time series using a fast Fourier transform.

Required Arguments
X — Vector of length NOBS containing the stationary time series.  (Input)
PM — (⌊N/2⌋ + 1) by 5 matrix that contains a summarization of the periodogram analysis.  (Output) 

For k = 0, 1, …, ⌊N/2⌋, the (k + 1)-st element of the j-th column of PM is defined as:
 

Optional Arguments
NOBS — Number of observations in the stationary time series X.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

XCNTR — Constant used to center the time series X.  (Input)
Default: XCNTR = the arithmetic mean.

NPAD — Number of zeroes used to pad the centered time series.  (Input) 
NPAD must be greater than or equal to zero. The length of the centered and padded time series is 
N = NOBS + NPAD.
Default: NPAD = NOBS – 1.

more...

Col Description

1 Frequency, ωk where ωk = 2πk/N for IFSCAL = 0 and ωk = k/N for IFSCAL = 1.

2 Period, pk where pk = 2π/ ωk for IFSCAL = 0 and pk = 1/ ωk for IFSCAL = 1. If ωk = 0, pk is 
set to missing.

3 Periodogram ordinate, I(ωk).

4 Cosine transformation coefficient, A(ωk).

5 Sine transformation coefficient, B(ωk).

IPRINT Action

0 No printing is performed.

1 Prints the periodogram, and the cosine and sine transformations of the centered and 
padded time series.
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IFSCAL — Option for frequency scale.  (Input) 
Default: IFSCAL = 0.

IPVER — Option for version of the periodogram.  (Input)
Default: IPVER = 0.

Refer to the “Description” section for further details.
LDPM — Leading dimension of PM exactly as specified in the dimension statement of the calling program.  

(Input)
LDPM must be greater than or equal to ⌊N/2⌋ + 1.
Default: LDPM = size (PM,1).

FORTRAN 90 Interface
Generic: CALL PFFT (X, PM [, …])
Specific: The specific interface names are S_PFFT and D_PFFT.

FORTRAN 77 Interface
Single: CALL PFFT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM, LDPM)
Double: The double precision name is DPFFT.

Description

Routine PFFT computes the periodogram of a stationary time series given a sample of n = NOBS observations 
{Xt} for t = 1, 2, …, n. 

Let

for t = 1, …, N represent the centered and padded data where N = NOBS + NPAD,

and 

IFSCAL Action

0 Frequency in radians per unit time

1 Frequency in cycles per unit time

IPVER Action

0 Compute usual periodogram.

1 Compute modified periodogram.
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is determined by 

The discrete Fourier transform of

for t = 1, …, N is defined by

over the discrete set of frequencies

An alternative representation of

in terms of cosine and sine transforms is

where 

and 

The fast Fourier transform algorithm is used to compute the discrete Fourier transform. The periodogram of 
the sample sequence {Xt}, t = 1, …, n computed with the centered and padded sequence 
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t = 1, …, N is defined by

where K is the scale factor

The scale factor of the usual periodogram relates the ordinates to the sum of squares of

(Fuller 1976, pages 276–277). If the first ordinate (corresponding to k = 0) is replaced by one-half of its value, 
then if N is odd, the sum of the ⌊N/2⌋ + 1 ordinates corresponding to k = 0, 1, …, ⌊N/2⌋ is

For N even, if the first ordinate (corresponding to k = 0) and the last ordinate (corresponding to k = N/2) are 
each replaced by one-half of their values, then the same relationship holds. The modified periodogram is an 
asymptotically unbiased estimate of the nonnormalized spectral density function at each frequency ωk 
(Priestley 1981, page 417). The argument IPVER is used to specify the version of the periodogram.

The alternative representation of the discrete Fourier transform implies

where 

and

represent the (scaled) cosine and sine transforms, respectively. Since the periodogram is an even function of 
the frequency, it is sufficient to estimate the periodogram at the discrete set of nonnegative frequencies

Use of the centered data
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(without padding) instead of the original data {Xt} for t = 1, …, n does not affect the asymptotic sampling 
properties of the periodogram. In fact,

For ωk = 0, both

and

reflect the mean of the data. See Priestley (1981, page 417) for further discussion.

Comments
1. Workspace may be explicitly provided, if desired, by use of P2FT/DP2FT. The reference is:

CALL P2FT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM, LDPM, CX, COEF, WFFTC, CPY)
The additional arguments are as follows:

CX — Complex work vector of length N.

COEF — Complex work vector of length N.

WFFTC — Work vector of length 4N + 15.

CPY — Work vector of length 2N.
2. The centered and padded time series is defined by 

3. The periodogram I(ω) is an even function of the frequency ω. The relation I(-ω) = I(ω) for ω > 0.0 
recovers the periodogram for negative frequencies.

4. Since cos(ω) is an even function of ω and sin(ω) is an odd function of ω, the cosine and sine transfor-
mations, respectively, satisfy A(-ω) = A(ω) and B(-ω) = -B(ω) for ω > 0.0. Similarly, the complex 
Fourier coefficients, stored in COEF, satisfy COEF(-ω) = conj(COEF(ω)).

5. Computation of the 2 * NOBS - 1 autocovariances of X using the inverse Fourier transform of the peri-
odogram requires NPAD = NOBS - 1.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Application of routine PFFT to these data produces the following results.

CX(j) = X(j) - XCNTR for j = 1, …, NOBS

CX(j) = 0 for j = NOBS + 1, …, N

where N = NOBS + NPAD.
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      USE GDATA_INT
      USE PFFT_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    LDPM, NOBS
      PARAMETER  (LDPM=100, NOBS=100)
!
      INTEGER    IPVER, NCOL, NPAD, NROW
      REAL       PM(LDPM,5), RDATA(176,2), REAL, X(NOBS)
      CHARACTER  CLABEL(6)*9, FMT*20, RLABEL(1)*6
      INTRINSIC  REAL
!
      EQUIVALENCE (X(1), RDATA(22,2))
!
      DATA RLABEL/'NONE'/, CLABEL/' ', 'Frequency', 'Period', &
           'I(w(k))', 'A(w(k))', 'B(w(k))'/
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Center on arithmetic mean
!                                 Pad standard amount
!                                 Frequency in radians per unit time
!                                 Modified periodogram version
      IPVER = 1
!                                 Compute the periodogram
      CALL PFFT (X, PM, IPVER=IPVER)
!                                 Print results
      FMT = '(F9.4, F6.2, 3F10.2)'
      CALL WRRRL (' ', PM, RLABEL, CLABEL, 20, 5, FMT=FMT)
!
      END

Output

Frequency  Period     I(w(k))     A(w(k))     B(w(k))
   0.0000     NaN        0.00        0.00        0.00
   0.0316  199.00      183.97        3.72      -13.04
   0.0631   99.50     1363.37       35.45      -10.32
   0.0947   66.33     2427.09       29.31       39.60
   0.1263   49.75     1346.64      -21.74       29.56
   0.1579   39.80      139.74      -11.69       -1.79
   0.1894   33.17       44.67       -4.65        4.80
   0.2210   28.43      123.47      -11.11       -0.33
   0.2526   24.88      176.04       -4.79      -12.37
   0.2842   22.11      143.06        9.92       -6.69
   0.3157   19.90       44.17        6.43        1.68
   0.3473   18.09       38.95        5.40        3.13
   0.3789   16.58       63.20        7.14        3.49
   0.4105   15.31      537.64        0.89       23.17
   0.4420   14.21      944.68      -30.73       -0.75
   0.4736   13.27      162.02       -0.95      -12.69
   0.5052   12.44      908.09      -24.51      -17.53
   0.5368   11.71     3197.84       34.84      -44.54
PFFT         Chapter 8: Time Series Analysis and Forecasting      931



   0.5683   11.06     1253.82       19.69       29.43
   0.5999   10.47      850.45       -8.75      -27.82
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SSWD

Estimates the nonnormalized spectral density of a stationary time series using a spectral window given the 
time series data.

Required Arguments
X — Vector of length NOBS containing the stationary time series.  (Input)
F — Vector of length NF containing the frequencies at which to evaluate the spectral density estimate.  

(Input) 
The units of F correspond to the scale specified by IFSCAL. The elements of F must be in the range 
(-π/TINT,π/TINT), inclusive for IFSCAL = 0 and  (-1/(2 * TINT), 1/(2 * TINT)) inclusive for 
IFSCAL = 1.

M — Vector of length NM containing the values of the spectral window parameters M.  (Input) 
For the Parzen spectral window (ISWVER = 5), all values of the spectral window parameters M must be 
even.

PM — (⌊N/2⌋ + 1) by 5 matrix that contains a summarization of the periodogram analysis.  (Output) 
For k = 0, 1, …, ⌊N/2⌋, the (k + 1)-st element of the j-th column of PM is defined as 

Note N = NOBS + NPAD.
SM — NF by NM + 2 matrix containing a summarization of the spectral analysis.  (Output) 

The k-th element of the j-th column of SM is defined as 

more...

Col. Description

1 Frequency, ωk where ωk = 2πk/N for IFSCAL = 0 or ωk = k/N for IFSCAL = 1.

2 Period, pk where pk = 2π/ωk for IFSCAL = 0 and pk = 1/ωk for IFSCAL = 1. If ωk = 0, pk 
is set to missing.

3 Periodogram ordinate, I(ωk).

4 Cosine transformation coefficient, A(ωk).

5 Sine transformation coefficient, B(ωk).

Col. Description

1 Frequency, F(k).

2 Period, pk where pk = 2π/F(k) for IFSCAL = 0 and pk = 1/F(k) for IFSCAL = 1. If 
F(k) = 0, pk is set to missing.

3 Spectral density estimate at F(k) using the spectral window parameter M(1).
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where k = 1, …, NF.

Optional Arguments
NOBS — Number of observations in the stationary time series X.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

XCNTR — Constant used to center the time series X.  (Input)
Default: XCNTR = the arithmetic mean.

NPAD — Number of zeroes used to pad the centered time series.  (Input) 
NPAD must be greater than or equal to zero.
Default: NPAD = NOBS – 1.

IFSCAL — Option for frequency scale.  (Input)
Default: IFSCAL = 0.

NF — Number of frequencies at which to evaluate the spectral density estimate.  (Input)
Default: NF = size (F,1).

TINT — Time interval at which the series is sampled.  (Input) 
For a discrete parameter process, usually TINT = 1. For a continuous parameter process, TINT > 0. 
TINT is used to adjust the spectral density estimate.
Default: TINT = 1.0.

ISWVER — Option for version of the spectral window.  (Input)
Default: ISWVER = 1

4 Spectral density estimate at F(k) using the spectral window parameter M(2).

⋮
⋮

NM +2 Spectral density estimate at F(k) using the spectral window parameter M(NM)

IPRINT Action

0 No printing is performed.

1 Prints the periodogram, cosine transform and sine transform of the centered and 
padded time series, and the spectral density estimate based on a  specified version of 
a spectral window for a given set of spectral window parameters.

IFSCAL Action

0 Frequency in radians per unit time.

1 Frequency in cycles per unit time.

ISWVER Action

1 Modified Bartlett

2 Daniell

Col. Description
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Refer to the “Algorithm” section for further details.
NM — Number of spectral window parameters M used to compute the spectral density estimate for a 

given spectral window version.  (Input) 
NM must be greater than or equal to one.
Default: NM = size (M,1).

LDPM — Leading dimension of PM exactly as specified in the dimension statement of the calling program.  
(Input) 
LDPM must be greater than or equal to ⌊N/2⌋ + 1.
Default: LDPM = size (PM,1).

LDSM — Leading dimension of SM exactly as specified in the dimension statement of the calling program.  
(Input) 
LDSM must be greater than or equal to NF.
Default: LDSM = size (SM,1).

FORTRAN 90 Interface
Generic: CALL SSWD (X, F, M, PM, SM [, …])
Specific: The specific interface names are S_SSWD and D_SSWD.

FORTRAN 77 Interface
Single: CALL SSWD (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT, ISWVER, NM, M, PM, 

LDPM, SM, LDSM)
Double: The double precision name is DSSWD.

Description

Routine SSWD estimates the nonnormalized spectral density function of a stationary time series using a spec-
tral window given a sample of n = NOBS observations {Xt} for t = 1, 2, …, n.

Let 

for t = 1, …, N represent the centered and padded data where N = NOBS + NPAD,

3 Tukey-Hamming

4 Tukey-Hanning

5 Parzen

6 Bartlett-Priestley

ISWVER Action
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and 

is determined by

The modified periodogram of 

for t = 1, …, N is estimated by

where

and 

represent the

cosine and sine transforms, respectively, and K is the scale factor equal to 1/(2πn). Since the periodogram is 
an even function of the frequency, it is sufficient to estimate the periodogram over the discrete set of nonneg-
ative frequencies
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The routine PFFT is used to compute the modified periodogram of 

The estimate of the nonnormalized spectral density hX (ω) is computed according to

where the spectral window Wn(θ) is specified by argument ISWVER. The following spectral windows Wn(θ) 
are available.

Modified Bartlett

where FM(θ) corresponds to the Fejér kernel of order M.

Daniell

Tukey

where DM(θ) represents the Dirichlet kernel. The Tukey-Hamming window is obtained when 
a = 0.23 and the Tukey-Hanning window is obtained when a = 0.25.

Parzen

where M is even. If M is odd, then M + 1 is used instead of M in the above formula.
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Bartlett-Priestley

The argument NM specifies the number of window parameters M and corresponds to the number of spectral 
density estimates to be computed for a given spectral window. The nonnormalized spectral density is esti-
mated over the set of frequencies

ω = fi i = 1, …, nƒ

where nƒ = NF. These frequencies are in the scale specified by the argument IFSCAL but are transformed to 
the scale of radians per unit time for computational purposes. 

The above formula for

assumes the data {Xt} correspond to a realization of a discrete-parameter stationary process observed consec-
utively in time. In this case, the observations are equally spaced in time with interval Δt = TINT equivalent to 
one. However, if the data correspond to a realization of a continuous-parameter stationary process recorded 
at equal time intervals, then the estimate of the nonnormalized spectral density must be adjusted for the 
effect of aliasing. In general, the estimate of hX(ω) is given by

Note that the frequency ω of the desired spectral estimate is assumed to be input in a form already adjusted 
for the time interval Δt. Approximate confidence intervals for h(ω) can be computed using formulas given in 
the introduction.

Comments
1. Workspace may be explicitly provided, if desired, by use of S2WD/DS2WD. The reference is:

CALL S2WD (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT, ISWVER, NM, M, PM, LDPM, SM, 
LDSM, CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex vector of length N containing the centered and padded time series X.  (Output)

COEF — Complex vector of length N containing the Fourier coefficients of the finite Fourier trans-
form of CX.  (Output) 
Note that COEF(k) is the appropriately scaled Fourier coefficient at frequency 
ωk, k = 0, 1, …, N - 1.

WFFTC — Vector of length 4N + 15.

CPY — Vector of length 2N.
2. The normalized spectral density estimate is obtained by dividing the nonnormalized spectral density 

estimate in matrix SM by an estimate of the variance of X.
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Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Application of routine SSWD to these data produces the following results:

      USE GDATA_INT
      USE SSWD_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    LDPM, LDSM, NF, NM, NOBS
      REAL       PI
      PARAMETER  (NF=20, NM=3, NOBS=100, PI=3.141592654, &
                LDPM=NOBS, LDSM=NF)
!
      INTEGER    I, ISWVER, M(NM), NCOL, NROW
      REAL       F(NF), PM(LDPM,5), RDATA(176,2), FLOAT, SM(LDSM,5), & 
                  X(NOBS)
      CHARACTER  CLABEL(6)*9, FMT*20, RLABEL(1)*6, TITLE*60
      INTRINSIC  REAL
!
      EQUIVALENCE (X(1), RDATA(22,2))
!
      DATA RLABEL/'NONE'/, CLABEL/' ', 'Frequency', 'Period', &
          'M = 10', 'M = 20', 'M = 30'/
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Center on arithmetic mean
!                                 Pad standard amount (Default)
!     USE Default Frequency in radians per unit time
!                                 Determine frequencies at which
!                                 to evaluate spectral density
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
!     USE Default Time interval for discrete data
!                                 Spectral window parameters
      M(1) = 10
      M(2) = 20
      M(3) = 30
!                                 Compute spectral density using
!                                 the Parzen window
      ISWVER = 5
      CALL SSWD (X, F, M, PM, SM,  ISWVER=ISWVER)
!                                 Print results
      TITLE = 'Spectral Density Using the Parzen Window'
      FMT   = '(F9.4, F6.2, 3F10.2)'
      CALL WRRRL (TITLE, SM, RLABEL, CLABEL, FMT=FMT)
!                                 Compute spectral density using
!                                 the Bartlett-Priestley window
      ISWVER = 6
      CALL SSWD (X, F, M, PM, SM, ISWVER=ISWVER)
!                                 Print results
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      TITLE = '%/Spectral Density Using the Bartlett-Priestley '// &
             'Window'
      CALL WRRRL (TITLE, SM, RLABEL, CLABEL, FMT=FMT)
!
      END

Output

      Spectral Density Using the Parzen Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      659.64      617.42      619.73
   0.3142   20.00      666.95      554.70      339.61
   0.4712   13.33      653.73      770.64      860.49
   0.6283   10.00      598.77      857.80     1046.13
   0.7854    8.00      497.47      582.85      550.77
   0.9425    6.67      367.72      266.33      186.98
   1.0996    5.71      240.65      121.46      104.79
   1.2566    5.00      142.41       76.17       76.74
   1.4137    4.44       81.28       54.20       47.19
   1.5708    4.00       49.13       40.16       41.39
   1.7279    3.64       32.57       27.58       26.46
   1.8850    3.33       22.44       16.52       14.40
   2.0420    3.08       15.53       10.93        9.87
   2.1991    2.86       11.19        8.30        8.32
   2.3562    2.67        8.66        6.18        5.86
   2.5133    2.50        6.93        4.75        4.22
   2.6704    2.35        5.51        4.62        4.35
   2.8274    2.22        4.47        4.91        5.24
   2.9845    2.11        3.61        4.23        4.75
   3.1416    2.00        2.62        2.44        2.27

 Spectral Density Using the Bartlett-Priestley Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      604.34      712.73      757.61
   0.3142   20.00      564.28      176.81      107.08
   0.4712   13.33      767.63      927.14      981.10
   0.6283   10.00      900.32     1190.30     1172.23
   0.7854    8.00      607.45      494.85      571.65
   0.9425    6.67      237.16      127.65       87.36
   1.0996    5.71      103.34      113.93      135.34
   1.2566    5.00       75.74       74.88       57.57
   1.4137    4.44       52.64       44.98       38.59
   1.5708    4.00       38.50       44.56       50.59
   1.7279    3.64       27.35       25.28       21.76
   1.8850    3.33       15.68       13.84       13.10
   2.0420    3.08       10.33        9.79        7.41
   2.1991    2.86        7.95        8.31        8.67
   2.3562    2.67        6.04        5.86        7.08
   2.5133    2.50        4.56        3.67        2.90
   2.6704    2.35        4.44        4.38        4.06
   2.8274    2.22        4.99        5.62        5.40
   2.9845    2.11        4.31        5.07        5.08
   3.1416    2.00        2.43        2.23        2.44
SSWD         Chapter 8: Time Series Analysis and Forecasting      940



SSWP

Estimates the nonnormalized spectral density of a stationary time series using a spectral window given the 
periodogram.

Required Arguments
N — Number of observations in the centered and padded time series X.  (Input) 

N must be greater than or equal to two.
PX — Vector of length ⌊N/2⌋ + 1 containing the (modified) periodogram of X.  (Input) 

The periodogram ordinate evaluated at (angular) frequency wk = 2πk/N is given by 
PX(k + 1), k = 0, 1, …, ⌊N/2⌋.

F — Vector of length NF containing the (angular) frequencies at which the spectral density is estimated.  
(Input) 

M — Spectral window parameter.  (Input) 
M must be greater than or equal to one and less than N.

SX — Vector of length NF containing the estimate of the spectral density of the time series X.  (Output)

Optional Arguments
NF — Number of (angular) frequencies.  (Input) 

NF must be greater than or equal to one.
Default: NF = size (F,1).

ISWVER — Option for version of the spectral window.  (Input) 
Default: ISWVER = 1.

Refer to the “Algorithm” section for further details.

FORTRAN 90 Interface
Generic: CALL SSWP (N, PX, F, M, SX [, …])
Specific: The specific interface names are S_SSWP and D_SSWP.

FORTRAN 77 Interface
Single: CALL SSWP (N, PX, NF, F, ISWVER, M, SX)
Double: The double precision name is DSSWP.

ISWVER Action

1 Modified Bartlett

2 Daniell

3 Tukey-Hamming

4 Tukey-Hanning

5 Parzen

6 Bartlett-Priestley
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Description

Routine SSWP estimates the nonnormalized spectral density function of a stationary time series using a spec-
tral window given the modified periodogram of the appropriately centered and padded data

The routine PFFT may be used to obtain the modified periodogram

over the discrete set of nonnegative frequencies

The symmetry of the periodogram is used to recover the ordinates at negative frequencies.

The estimate of the nonnormalized spectral density hX(ω) is computed according to

where the spectral window Wn(θ) is specified by argument ISWVER. The following spectral windows Wn(θ) 
are available.

Modified Bartlett

where FM(θ) corresponds to the Fejér kernel of order M.

Daniell

Tukey

where DM(θ) represents the Dirichlet kernel. The Tukey-Hamming window is obtained when 
a = 0.23 and the Tukey-Hanning window is obtained when a = 0.25.
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Parzen

where M is even. If M is odd, then M + 1 is used instead of M in the above formula.

Bartlett-Priestley

Only one window parameter M may be specified so that only one estimate of hX(ω) is computed. The non-
normalized spectral density is estimated over the set of frequencies

ω = ƒi, i = 1, …, nƒ

where nƒ = NF. These frequencies are in the scale of radians per unit time. The time sampling interval Δt is 
assumed to be equal to one.

Comments
1. The periodogram of X may be computed using the routine PFFT. Estimation of the spectral density of 

X using the modified periodogram preserves the scale of the spectral density up to adjustment for the 
time sampling interval.

2. The time sampling interval, TINT, is assumed to be equal to one. This assumption is appropriate for 
discrete parameter processes. The adjustment for continuous parameter processes (TINT > 0.0) 
involves multiplication of the frequency vector F by 1/TINT and multiplication of the spectral density 
estimate by TINT.

3. To convert the frequency scale from radians per unit time to cycles per unit time, multiply F by 1/(2π).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Application of routine SSWP to these data produces the following results:

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDPM, LDSM, NF, NM, NOBS
      REAL       PI, NPAD
      PARAMETER  (NF=20, NM=3, NOBS=100, PI=3.141592654, &
                 LDPM=NOBS, LDSM=NF)
!
      INTEGER    I, IPVER, ISWVER, J, M(NM), N, NCOL, NROW
      REAL       F(NF), PM(LDPM,5), PX(LDPM), RDATA(176,2), FLOAT, &
                 SM(NF,5), SX(NF), X(NOBS)
      CHARACTER  CLABEL(6)*9, FMT*20, RLABEL(1)*6, TITLE*60
SSWP         Chapter 8: Time Series Analysis and Forecasting      943



      INTRINSIC  FLOAT
!
      EQUIVALENCE (PX(1), PM(1,3)), (F(1), SM(1,1))
      EQUIVALENCE (X(1), RDATA(22,2))
!
      DATA RLABEL/'NONE'/, CLABEL/' ', 'Frequency', 'Period', &
          'M = 10', 'M = 20', 'M = 30'/
!                                 Wolfer Sunspot Data for
!                                 years 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NCOL)
!                                 Center on arithmetic mean
!                                 Pad standard amount
      NPAD = NOBS-1
!                                 Frequency in radians per unit time
!                                 Modified periodogram version
      IPVER = 1
!                                 Compute periodogram
      CALL PFFT (X, PM, IPVER=IPVER)
!                                 Number of observations used to
!                                 compute the periodogram
      N = NOBS + NPAD
!                                 Determine frequency and period
!                                 at which to evaluate the spectral
!                                 density
      DO 10  I=1, NF
         SM(I,1) = PI*FLOAT(I)/FLOAT(NF)
         SM(I,2) = 2.0*FLOAT(NF)/FLOAT(I)
   10 CONTINUE
!                                 Spectral window parameters
      M(1) = 10
      M(2) = 20
      M(3) = 30
!                                 Compute spectral density using
!                                 the Parzen window
      ISWVER = 5
      DO 20  J=1, NM
         CALL SSWP (N, PX, F, M(J), SX, ISWVER=ISWVER)
!                                 Copy into SM
         CALL SCOPY (NF, SX, 1, SM(1:,2+J), 1)
   20 CONTINUE
!                                 Print results
      TITLE = 'Spectral Density Using the Parzen Window'
      FMT   = '(F9.4, F6.2, 3F10.2)'
      CALL WRRRL (TITLE, SM, RLABEL, CLABEL, FMT=FMT)
!                                 Compute spectral density using
!                                 the Bartlett-Priestley window
      ISWVER = 6
      DO 30  J=1, NM
         CALL SSWP (N, PX, F, M(J), SX, ISWVER=ISWVER)
!                                 Copy into SM
         CALL SCOPY (NF, SX, 1, SM(1:,2+J), 1)
   30 CONTINUE
!                                 Print results
      TITLE = '%/Spectral Density Using the Bartlett-Priestley '// &
             & 'Window' 
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      CALL WRRRL (TITLE, SM, RLABEL, CLABEL, FMT=FMT)
!
      END

Output

      Spectral Density Using the Parzen Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      659.64      617.42      619.73
   0.3142   20.00      666.95      554.70      339.61
   0.4712   13.33      653.73      770.64      860.49
   0.6283   10.00      598.77      857.80     1046.13
   0.7854    8.00      497.47      582.85      550.77
   0.9425    6.67      367.72      266.33      186.98
   1.0996    5.71      240.65      121.46      104.79
   1.2566    5.00      142.41       76.17       76.74
   1.4137    4.44       81.28       54.20       47.19
   1.5708    4.00       49.13       40.16       41.39
   1.7279    3.64       32.57       27.58       26.46
   1.8850    3.33       22.44       16.52       14.40
   2.0420    3.08       15.53       10.93        9.87
   2.1991    2.86       11.19        8.30        8.32
   2.3562    2.67        8.66        6.18        5.86
   2.5133    2.50        6.93        4.75        4.22
   2.6704    2.35        5.51        4.62        4.35
   2.8274    2.22        4.47        4.91        5.24
   2.9845    2.11        3.61        4.23        4.75
   3.1416    2.00        2.62        2.44        2.27

Spectral Density Using the Bartlett-Priestley Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      604.34      712.73      757.61
   0.3142   20.00      564.28      176.81      107.08
   0.4712   13.33      767.63      927.14      981.10
   0.6283   10.00      900.32     1190.30     1172.23
   0.7854    8.00      607.45      494.85      571.65
   0.9425    6.67      237.16      127.65       87.36
   1.0996    5.71      103.34      113.93      135.34
   1.2566    5.00       75.74       74.88       57.57
   1.4137    4.44       52.64       44.98       38.59
   1.5708    4.00       38.50       44.56       50.59
   1.7279    3.64       27.35       25.28       21.76
   1.8850    3.33       15.68       13.84       13.10
   2.0420    3.08       10.33        9.79        7.41
   2.1991    2.86        7.95        8.31        8.67
   2.3562    2.67        6.04        5.86        7.08
   2.5133    2.50        4.56        3.67        2.90
   2.6704    2.35        4.44        4.38        4.06
   2.8274    2.22        4.99        5.62        5.40
   2.9845    2.11        4.31        5.07        5.08
   3.1416    2.00        2.43        2.23        2.44
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SWED

Estimations of the nonnormalized spectral density of a stationary time series based on specified periodogram 
weights given the time series data.

Required Arguments
X — Vector of length NOBS containing the stationary time series.  (Input)
F — Vector of length NF containing the frequencies at which to evaluate the spectral density estimate.  

(Input) 
The units of F correspond to the scale specified by IFSCAL. The elements of F must be in the range 
(-π/TINT, π/TINT), inclusive, for IFSCAL = 0 and (-1/(2 * TINT), 1/(2 * TINT)), inclusive, for 
IFSCAL = 1.

WT — Vector of length NWT containing the weights used to smooth the periodogram.  (Input) 
The actual weights are the values in WT normalized to sum to 1 with the current periodogram ordinate 
taking the middle weight for NWT odd or the weight to the right of the middle for NWT even.

PM — (⌊N/2⌋ + 1) by 5 matrix that contains a summarization of the periodogram analysis.  (Output) 
For k = 0, 1, …, ⌊N/2⌋, the (k + 1)-st element of the j-th column of PM is defined as 

SM — NF by 3 matrix containing a summarization of the spectral analysis.  (Output) 
The k-th element of the j-th column of SM is defined as 

where k = 1, …, NF.

more...

Col. Description

1 Frequency, ωk where ωk = 2πk/N for IFSCAL = 0 or ωk = k/N for IFSCAL = 1.

2 Period, pk where pk = 2π/ωk for IFSCAL = 0 and pk = 1/ ωk for IFSCAL = 1. If ωk = 0, pk 
is set to the missing value or NaN (not a number).

3 Periodogram ordinate, I(ωk).

4 Cosine transformation coefficient, A(ωk).

5 Sine transformation coefficient, B(ωk).

Col. Description

1 Frequency, F(k).

2 Period, pk where pk = 2π/F(k) for IFSCAL = 0 and pk = 1/F(k) for IFSCAL = 1. If F(k) = 0, 
pk is set to missing.

3 Spectral density estimate at F(k) using the specified weights WT.
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Optional Arguments
NOBS — Number of observations in the stationary time series X.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

XCNTR — Constant used to center the time series X.  (Input)
Default: XCNTR = the arithmetic mean.

NPAD — Number of zeroes used to pad the centered time series.  (Input) 
NPAD must be greater than or equal to zero. The length of the centered and padded time series is 
N = NOBS + NPAD.
Default: NPAD = NOBS –1. 

IFSCAL — Option for frequency scale.  (Input)
Default: IFSCAL = 0.

NF — Number of frequencies at which to evaluate the spectral density estimate.  (Input) 
NF must be greater than zero.
Default: NF = size (F,1). 

TINT — Time interval at which the series is sampled.  (Input) 
For a discrete parameter process, usually TINT = 1.0. For a continuous parameter process, TINT > 0.0. 
TINT is used to adjust the spectral density estimate.
Default: TINT = 1.0.

NWT — Number of weights.  (Input) 
NWT must be greater than or equal to one.
Default: NWT = size (WT,1).

LDPM — Leading dimension of PM exactly as specified in the dimension statement in the calling program.  
(Input) 
LDPM must be greater than or equal to ⌊N/2⌋ + 1.
Default: LDPM = size (PM,1).

LDSM — Leading dimension of SM exactly as specified in the dimension statement in the calling program.  
(Input) 
LDSM must be greater than or equal to NF.
Default: LDSM = size (SM,1).

IPRINT Action

0 No printing is performed.

1 Prints the periodogram, cosine and sine transforms of the centered 
and padded time series, and the spectral density estimate based on a 
specified weight sequence.

IFSCAL Action

0 Frequency in radians per unit time.

1 Frequency in cycles per unit time.
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FORTRAN 90 Interface
Generic: CALL SWED (X, F, WT, PM, SM [, …])
Specific: The specific interface names are S_SWED and D_SWED.

FORTRAN 77 Interface
Single: CALL SWED (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT, NWT, WT, PM, LDPM, SM, 

LDSM)
Double: The double precision name is DSWED.

Description

Routine SWED estimates the nonnormalized spectral density function of a stationary time series using a fixed 
sequence of weights, given a sample of n = NOBS observations {Xt}, for
 t = 1, 2, …, n.

Let

represent the centered and padded data where N = NOBS + NPAD,

and

is determined by 

The modified periodogram of

is estimated by

where 
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and 

represent the

cosine and sine transforms, respectively, and K is the scale factor equal to 1/(2πn). Since the periodogram is 
an even function of the frequency, it is sufficient to estimate the periodogram at the discrete set of nonnega-
tive frequencies

(Here, ⌊a⌋ means the greatest integer less than or equal to a.) The routine PFFT is used to compute the modi-
fied periodogram of

Consider the sequence of m = NWT weights

{wj} for j = −⌊m/2⌋, …, (m −⌊m/2⌋ −1)

where

Σjwj = 1

These weights are fixed in the sense that they do not depend on the frequency ω at which to estimate the 
nonnormalized spectral density hX(ω). The estimate of the nonnormalized spectral density is computed 
according to

where 

and k(ω) is the integer such that ωk,0 is closest to ω. The weights specified by argument WT may be relative 
since they are normalized to sum to one in the actual computation of
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Usually, m is odd with the weights symmetric about the middle weight w0. If m is even, the weight to the 
right of the middle is considered w0. Note that periodogram ordinate

is replaced by

and the sum reflects at each end. 

The nonnormalized spectral density is estimated over the set of frequencies

ω = fi, i = 1, …, nƒ

where nƒ = NF. These frequencies are in the scale specified by the argument IFSCAL but are transformed to 
the scale of radians per unit time for computational purposes.

The above formula for

assumes the data {Xt} correspond to a realization of a discrete-parameter stationary process observed consec-
utively in time. In this case, the observations are equally spaced in time with interval Δt = TINT equivalent to 
one. However, if the data correspond to a realization of a continuous-parameter stationary process recorded 
at equal time intervals, then the estimate of the nonnormalized spectral density must be adjusted for the 
effect of aliasing. In general, the estimate of hX(ω) is given by

Note that the frequency ω of the desired spectral estimate is assumed to be input in a form already adjusted 
for the time interval Δt.

Approximate confidence intervals for h(ω) can be computed using formulas given in the introduction.

Comments
1. Workspace may be explicitly provided, if desired, by use of S2ED/DS2ED. The reference is:

CALL S2ED (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT,  NWT, WT, PM, LDPM, SM, 
LDSM,CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex vector of length N containing the centered and padded time series X.  (Output)
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COEF — Complex vector of length N containing the Fourier coefficients of the finite Fourier trans-
form of CX.  (Output) 
Note that COEF(k + 1) is the appropriately scaled Fourier coefficient at frequency 
ωk, k = 0, 1, …, N - 1.

WFFTC — Work vector of length 4N + 15.

CPY — Work vector of length 2N.
2. The centered and padded time series is defined by 

CX(j) = X(j) - XCNTR for j = 1, …, NOBS 
CX(j) = 0 for j = NOBS + 1, …, N 
where N = NOBS + NPAD.

3. The normalized spectral density estimate is obtained by dividing the nonnormalized spectral density 
estimate in matrix SM by an estimate of the variance of X.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Application of routine SWED to these data produces the following results:

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDPM, LDRDAT, LDSM, NDRDAT, NF, NOBS, NPAD, NWT
      PARAMETER  (LDRDAT=176, NDRDAT=2, NF=20, NOBS=100, NWT=7, &
                  LDSM=NF, NPAD=NOBS-1, LDPM=(NOBS+NPAD)/2+1)
!
      INTEGER    I, NROW, NVAR
      REAL       F(NF), PI, PM(LDPM,5), RDATA(LDRDAT,NDRDAT), &
                 REAL, SM(LDSM,3), WT(NWT), X(NOBS), IFSCAL, IPRINT, TINT
      CHARACTER  CLABEL(4)*20, FMT*20, RLABEL(1)*4, TITLE*28
      INTRINSIC  FLOAT
!
      EQUIVALENCE (X(1), RDATA(22,2))
!
      DATA WT/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
      DATA IPRINT/0/, IFSCAL/0/, TINT/1.0/
      DATA FMT/'(F9.4, F6.2, F9.4)'/
      DATA RLABEL/'NONE'/
      DATA CLABEL/' ', '%/Frequency', '%/Period', 'Spectral%/Estimates' &
          /
      DATA TITLE/'Results of Spectral Analysis'/
!                                 Initializations
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
!                                 Wolfer Sunspot Data for years
!                                 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NVAR)
!                                 Center on arithmetic mean
!                                 Spectral density
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      CALL SWED (X, F, WT, PM, SM)
!                                 Print Results
      CALL WRRRL (TITLE, SM, RLABEL, CLABEL, FMT=FMT)
!
      END

Output

Results of Spectral Analysis
                    Spectral
Frequency  Period  Estimates
   0.1571   40.00   710.8386
   0.3142   20.00   116.3940
   0.4712   13.33   937.1508
   0.6283   10.00  1209.8268
   0.7854    8.00   538.9236
   0.9425    6.67    84.9561
   1.0996    5.71   128.0791
   1.2566    5.00    55.0304
   1.4137    4.44    40.2022
   1.5708    4.00    46.4240
   1.7279    3.64    21.0053
   1.8850    3.33    12.1449
   2.0420    3.08     8.8654
   2.1991    2.86     7.2589
   2.3562    2.67     6.8078
   2.5133    2.50     3.3873
   2.6704    2.35     3.9504
   2.8274    2.22     5.7418
   2.9845    2.11     4.4652
   3.1416    2.00     4.1216
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SWEP

Estimations of the nonnormalized spectral density of a stationary time series based on specified periodogram 
weights given the periodogram.

Required Arguments
N — Number of observations in the appropriately centered and padded time series X.  (Input) 

N must be greater than or equal to two.
PX — Vector of length ⌊N/2⌋ + 1 containing the (modified) periodogram of X.  (Input) 

The periodogram ordinate evaluated at (angular) frequency ωk = 2πk/N is given by 
PX(k + 1), k = 0, 1, …, ⌊N/2⌋.

F — Vector of length NF containing the (angular) frequencies at which the spectral density is estimated.  
(Input) 

WT — Vector of length NWT containing the weights used to smooth the periodogram.  (Input) 
The actual weights are the values in WT normalized to sum to 1 with the current periodogram ordinate 
taking the middle weight for NWT odd or the weight to the right of the middle for NWT even.

SX — Vector of length NF containing the estimate of the spectral density of the time series X.  (Output)

Optional Arguments
NF — Number of (angular) frequencies.  (Input) 

NF must be greater than or equal to one.
Default: NF = size (F,1).

NWT — Number of weights.  (Input) 
NWT must be greater than or equal to one.
Default: NWT = size (WT,1).

FORTRAN 90 Interface
Generic: CALL SWEP (N, PX, F, WT, SX [, …])
Specific: The specific interface names are S_SWEP and D_SWEP.

FORTRAN 77 Interface
Single: CALL SWEP (N, PX, NF, F, NWT, WT, SX)
Double: The double precision name is DSWEP.

Description

Routine SWEP estimates the nonnormalized spectral density function of a stationary time series using a fixed 
sequence of weights given the modified periodogram of the appropriately centered and padded data
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The routine PFFT may be used to obtain the modified periodogram 

over the discrete set of nonnegative frequencies

(Here, ⌊a⌋ means the greatest integer less than or equal to a.) The symmetry of the periodogram is used to 
recover the ordinates at negative frequencies. 

Consider the sequence of m = NWT weights {wj} for j = -⌊m/2⌋, …, (m -⌊m/2⌋ -1) where Σjwj = 1. These 
weights are fixed in the sense that they do not depend on the frequency ω at which to estimate the nonnor-
malized spectral density hX(ω). The estimate of the nonnormalized spectral density is computed according 
to

where 

and k(ω) is the integer such that ωk,0 is closest to ω. The weights specified by argument WT may be relative 
since they are normalized to sum to one in the actual computation of

Usually, m is odd with the weights symmetric about the middle weight w0. If m is even, the weight to the 
right of the middle is considered w0. Note that periodogram ordinate

is replaced by

and the sum reflects at each end.

The nonnormalized spectral density estimate is computed over the set of frequencies

ω = ƒi,     i = 1, …, nƒ

where nƒ = NF. These frequencies are in the scale of radians per unit time. The time sampling interval Δt is 
assumed to be equal to one.

Approximate confidence intervals for h(ω) can be computed using formulas given in the introduction.
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Comments
1. The periodogram of X may be computed using the routine PFFT. Estimation of the spectral density of 

X using the modified periodogram preserves the scale of the spectral density up to adjustment for the 
time sampling interval.

2 The time sampling interval, TINT, is assumed to be equal to one. This assumption is appropriate for 
discrete parameter processes. The adjustment for continuous parameter processes (TINT > 0) involves 
multiplication of the frequency vector F by 1/TINT and multiplication of the spectral density estimate 
by TINT.

3. To convert the frequency scale from radians per unit time to cycles per unit time, multiply F by 1/(2π).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Application of routine SWEP to these data produces the following results:

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDPM, LDRDAT, N, NDRDAT, NF, NOBS, NPAD, NWT
      PARAMETER  (LDRDAT=176, NDRDAT=2, NF=20, NOBS=100, NWT=7, &
                NPAD=NOBS-1, LDPM=(NOBS+NPAD)/2+1, N=NOBS+NPAD)
!
      INTEGER    I, IFSCAL, IPVER, NROW, NVAR
      REAL       F(NF), PI, PM(LDPM,5), RDATA(LDRDAT,NDRDAT), &
                 FLOAT, SM(NF,2), SX(NF), WT(NWT), X(NOBS)
      CHARACTER  CLABEL(3)*30, FMT*20, RLABEL(1)*4, TITLE*28
      INTRINSIC  FLOAT
!
      EQUIVALENCE (X(1), RDATA(22,2))
!
      DATA WT/1., 2., 3., 4., 3., 2., 1./
      DATA IPVER/1/, IFSCAL/0/
      DATA FMT/'(F9.4)'/
      DATA CLABEL/'     ', '%/Frequency', 'Spectral%/Estimates'/
      DATA RLABEL/'NONE'/
      DATA TITLE/'Results of Spectral Analysis'/
!                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
!                                 Wolfer Sunspot Data for years
!                                 1770 through 1869
      CALL GDATA (2, RDATA, NROW, NVAR)
!                                 Compute modified periodogram
      CALL PFFT (X, PM, IPVER=IPVER)
!
!                                 Compute spectral density
      CALL SWEP (N, PM(:,3), F, WT, SX)
!
!                                 Print results
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!
!                                 Copy the frequencies to the output
!                                 matrix
      CALL SCOPY (NF, F, 1, SM(1:,1), 1)
!                                 Copy the spectral estimates to the
!                                 output matrix
      CALL SCOPY (NF, SX, 1, SM(1:,2), 1)
!                                 Call printing routine
      CALL WRRRL (TITLE, SM, RLABEL, CLABEL, FMT=FMT)
!
      END

Output

Results of Spectral Analysis
            Spectral
Frequency  Estimates
   0.1571   710.8386
   0.3142   116.3940
   0.4712   937.1508
   0.6283  1209.8268
   0.7854   538.9236
   0.9425    84.9561
   1.0996   128.0791
   1.2566    55.0304
   1.4137    40.2022
   1.5708    46.4240
   1.7279    21.0053
   1.8850    12.1449
   2.0420     8.8654
   2.1991     7.2589
   2.3562     6.8078
   2.5133     3.3873
   2.6704     3.9504
   2.8274     5.7418
   2.9845     4.4652
   3.1416     4.1216
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CPFFT

Computes the cross periodogram of two stationary time series using a fast Fourier transform.

Required Arguments
X — Vector of length NOBS containing the first stationary time series.  (Input)
Y — Vector of length NOBS containing the second stationary time series.  (Input)
CPM — (⌊N/2⌋ + 1) by 10 matrix containing a summarization of the results of the cross periodogram anal-

ysis.  (Output) 
For k = 0, 1, …, ⌊N/2⌋, the (k + 1)-st element of the j-th column of CPM is defined as 

Optional Arguments
NOBS — Number of observations in each stationary time series X and Y.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

more...

Col. Description

1 Frequency, ωk where ωk = 2πk/N for IFSCAL = 0 or ωk = k/N for IFSCAL = 1.

2 Period, pk where pk = 2π/ ωk for IFSCAL = 0 and pk = 1/ ωk for IFSCAL = 1. If 
ωk = 0, pk is set to missing.

3 X periodogram ordinate, IX(ωk)

4 X cosine transformation coefficient, AX(ωk)

5 X sine transformation coefficient, BX(ωk)

6 Y periodogram ordinate, IY(ωk)

7 Y cosine transformation coefficient, AY(ωk)

8 Y sine transformation coefficient, BY(ωk)

9 Real part of the XY cross periodogram ordinate IXY(ωk).

10 Imaginary part of the XY cross periodogram ordinate IXY(ωk).
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XCNTR — Constant used to center the time series X.  (Input)
Default: XCNTR = the arithmetic mean.

YCNTR — Constant used to center the time series Y.  (Input)
Default: YCNTR = the arithmetic mean.

NPAD — Number of zeroes used to pad each centered time series.  (Input) 
NPAD must be greater than or equal to zero. The length of each centered and padded time series is 
N = NOBS + NPAD.
Default: NPAD = NOBS – 1.

IFSCAL — Option for frequency scale.  (Input) 
Default: IFSCAL= 0.

IPVER — Option for version of the periodogram.  (Input)
Default: IPVER = 0.

Refer to the “Description” section for further details.
LDCPM — Leading dimension of CPM exactly as specified in the dimension statement of the calling pro-

gram.  (Input) 
LDCPM must be greater than or equal to ⌊N/2⌋ + 1.
Default: LDCPM = size (CPM,1). 

FORTRAN 90 Interface
Generic: CALL CPFFT (X, Y, CPM [, …])
Specific: The specific interface names are S_CPFFT and D_CPFFT.

FORTRAN 77 Interface
Single: CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, IPVER, CPM, LDCPM)
Double: The double precision name is DCPFFT.

IPRINT Action

0 No printing is performed.

1 Prints the periodogram, cosine and sine series, and the real and 
imaginary components of the cross periodogram.

IFSCAL Action

0 Frequency in radians per unit time

1 Frequency in cycles per unit time

IPVER Action

0 Compute usual periodogram.

1 Compute modified periodogram.
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Description

Routine CPFFT computes the cross periodogram of two jointly stationary time series given a sample of 
n = NOBS observations {Xt} and {Yt} for t = 1, 2, …, n.

Let

represent the centered and padded data where N = NOBS + NPAD,

and

is determined by

Similarly, let

represent the centered and padded data where

and

is determined by
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The periodogram of the sample sequence {Xt}, t = 1, …, n computed with the padded sequence

is defined by

where 

and 

represent the

cosine and sine transforms, respectively, and K is the scale factor

The periodogram of the sample sequence {Yt}, t = 1, …, n computed with the padded sequence

is defined by

where 
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and

represent the

cosine and sine transforms, respectively. Since the periodogram is an even function of the frequency, it is suf-
ficient to estimate the periodogram at the discrete set of nonnegative frequencies

(Here, ⌊a⌋ means the greatest integer less than or equal to a). The routine PFFT is used to compute the peri-
odograms of both

according to the version specified by the argument IPVER. The computational formula for the cross periodo-
gram is given by

where

and

The real part of the (modified) cross periodogram represents the ’raw’ sample cospectrum and the negative 
of the imaginary part of the (modified) cross periodogram represents the ‘raw’ sample quadrature spectrum 
(Priestley 1981, page 695). The relationship between the cross periodogram and its complex conjugate is 
given by

and may be used to recover the cross periodogram at negative frequencies.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2FFT/DC2FFT. The reference is:

CALL C2FFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, IPVER, CPM, LDCPM, CX, COEF, 
WFFTC, CPY)
CPFFT         Chapter 8: Time Series Analysis and Forecasting      961



The additional arguments are as follows:

CX — Complex work vector of length N.

COEF — Complex work vector of length N.

WFFTC — Work vector of length 4N + 15.

CPY — Work vector of length 2N.
2. The centered and padded time series are defined by 

3. The cross periodogram IXY(ω) is complex valued in general. The relation 
IXY(-ω) = conj(IXY(ω)) for w > 0.0 recovers the cross periodogram for negative frequencies since 
real(IXY(-ω)) = real(IXY(ω)) and imag(IXY(-ω)) = -imag(IXY(ω)). The periodogram I(ω) is an even 
function of the frequency ω. The relation I(-ω) = I(ω) for ω > 0.0 recovers the periodogram for nega-
tive frequencies.

4. Since cos(ω) is an even function of ω and sin(ω) is an odd function of ω, the cosine and sine transfor-
mations, respectively, satisfy A(-ω) = A(ω) and B(-ω) = -B(ω) for ω > 0.0. Similarly, the complex 
Fourier coefficients, stored in COEF, satisfy COEF(-ω) = conj(COEF(ω)).

5. Computation of the 2 * NOBS - 1 cross-covariances of X and Y using the inverse Fourier transform of 
the cross periodogram requires NPAD = NOBS - 1.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967, page 204) where X is the Wölfer sun-
spot number and Y is the northern light activity for the time period from 1770 through 1869. Application of 
routine CPFFT to these data produces the following results. Note that CPFFT sets CPM (1, 2) to the missing 
value code via routine AMACH.The printing of CPM (1, 2) depends on the computer.

      USE GDATA_INT
      USE CPFFT_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    LDCPM, LDRDAT, NDRDAT, NOBS, NPAD
      PARAMETER  (LDRDAT=100, NDRDAT=4, NOBS=100, NPAD=NOBS-1, &
                 LDCPM=(NOBS+NPAD)/2+1)
!
      INTEGER    IPVER, NRCOL, NRROW
      REAL       CPM(LDCPM,10), FLOAT, RDATA(LDRDAT,NDRDAT), &
                 X(NOBS), Y(NOBS)
      CHARACTER  CLABEL1(6)*9, CLABEL2(6)*9, FMT*7, RLABEL(1)*6, &
                  TITLE*41 

I AOV(I)

CX(j) = X(j) - XCNTR for j = 1, …, NOBS

CX(j) = 0 for j = NOBS + 1, …, N

and 

CY(j) = Y(j) - YCNTR for j = 1, …, NOBS

CY (j) = 0 for j = NOBS + 1, …, N where 
N = NOBS + NPAD.
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      INTRINSIC  FLOAT
!
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
!
      DATA TITLE/'Results of the Cross Periodogram Analysis'/
      DATA FMT/'(F10.3)'/
      DATA CLABEL1/'k+1', 'w(k)', 'p(k)', 'IX(w(k))', 'AX(w(k))', &
          'BX(w(k))'/
      DATA CLABEL2/'k+1', 'IY(w(k))', 'AY(w(k))', 'BY(w(k))', &
          'Real IXY', 'Imag. IXY'/
      DATA RLABEL/'NUMBER'/
!
!                                 Robinson Data
      CALL GDATA (8, RDATA, NRROW, NRCOL)
!                                 Center on arithmetic means
!                                 Frequency in radians per unit time
!                                 Modified periodogram version
      IPVER = 1
!                                 Compute the cross periodogram
      CALL CPFFT (X, Y, CPM, IPVER=IPVER)
!
!                                 Print results (First 10 rows)
      CALL WRRRL (TITLE, CPM, RLABEL, CLABEL1, 10, 5, FMT=FMT)
      CALL WRRRL ('%/', CPM(1:,6), RLABEL, CLABEL2, 10, 5, FMT=FMT)
!
      END

Output

          Results of the Cross Periodogram Analysis
k+1        w(k)        p(k)    IX(w(k))    AX(w(k))    BX(w(k))
  1       0.000         NaN       0.000       0.000       0.000
  2       0.032     199.000     184.159       3.742     -13.044
  3       0.063      99.500    1364.408      35.457     -10.354
  4       0.095      66.333    2433.933      29.411      39.610
  5       0.126      49.750    1351.002     -21.749      29.631
  6       0.158      39.800     140.421     -11.716      -1.773
  7       0.189      33.167      44.117      -4.671       4.722
  8       0.221      28.429     121.186     -11.003      -0.343
  9       0.253      24.875     176.275      -4.782     -12.386
 10       0.284      22.111     144.867      10.038      -6.642

k+1    IY(w(k))    AY(w(k))    BY(w(k))    Real IXY   Imag. IXY
  1       0.000       0.000       0.000       0.000       0.000
  2    1689.212     -37.480     -16.866      79.776    -552.014
  3    4113.003      41.232     -49.122    1970.577   -1314.779
  4    3255.785      44.214      36.068    2729.031    -690.474
  5    1757.663      -8.162      41.122    1396.006    -652.513
  6    1002.050     -30.107       9.778     335.410    -167.954
  7      62.360      -6.825       3.972      50.636      13.678
  8    1481.396     -38.096       5.487     417.288     -73.451
  9    1274.161     -17.176     -31.291     469.704     -63.095
 10     488.479     -12.442     -18.267      -3.570    -265.992
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CSSWD

Estimates the nonnormalized cross-spectral density of two stationary time series using a spectral window 
given the time series data.

Required Arguments
X — Vector of length NOBS containing the first stationary time series.  (Input)
Y — Vector of length NOBS containing the second stationary time series.  (Input)
F — Vector of length NF containing the frequencies at which to evaluate the cross-spectral density estimate.  

(Input) 
The units of F correspond to the scale specified by IFSCAL. The elements of F must be in the range 
(-π/TINT, π /TINT), inclusive, for IFSCAL = 0 and 
(-1/(2 * TINT), 1/(2 * TINT)), inclusive, for IFSCAL = 1.

ISWVER — Option for version of the spectral window.  (Input)

Refer to the “Algorithm” section for further details.
M — Vector of length NM containing the values of the spectral window parameter M.  (Input) 

For the Parzen spectral window (ISWVER = 5), all values of the spectral window parameters M must be 
even.

CPM — (⌊N/2⌋ + 1) by 10 matrix containing a summarization of the cross periodogram analysis.  
(Output) 
For k = 0, 1, …, ⌊N/2⌋, the (k + 1)-st element of the j-th column of CPM is defined as 

more...

ISWVER Action

1 Modified Bartlett

2 Daniell

3 Tukey-Hamming

4 Tukey-Hanning

5 Parzen

6 Bartlett-Priestley

Col. Description

1 Frequency, ωk where ωk = 2πk/N for IFSCAL = 0 or ωk = k/N for IFSCAL = 1.

2 Period, pk where pk = 2π/ωk for IFSCAL = 0 and pk = 1/ωk for IFSCAL = 1. If ωk = 0, pk is 
set to missing.
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Note N = NOBS + NPAD.
CSM — NF by (NM * 7 + 2) matrix containing a summarization of the cross-spectral analysis.  (Output) 

The k-th element of the j-th column of CSM is defined as

where k = 1, …, NF.

Optional Arguments
NOBS — Number of observations in each stationary time series X and Y.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

3 X periodogram ordinate, IX(ωk)

4 X cosine transformation coefficient, AX(ωk)

5 X sine transformation coefficient, BX(ωk)

6 Y periodogram ordinate, IY(ωk)

7 Y cosine transformation coefficient, AY(ωk)

8 Y sine transformation coefficient, BY(ωk)

9 Real part of the XY cross periodogram ordinate IXY(ωk).

10 Imaginary part of the XY cross periodogram ordinate IXY(ωk).

Col. Description

1 Frequency, F(k).

2 Period, pk where pk = 2π/F(k) for IFSCAL = 0 and pk = 1/F(k) for IFSCAL = 1. If 
F(k) = 0, pk is set to missing.

3 spectral density estimate at F(k) using the spectral window parameter M(1).

4 Y spectral density estimate at F(k) using the spectral window parameter M(1).

5 Cospectrum estimate at F(k) using the spectral window parameter M(1).

6 Quadrature spectrum estimate at F(k) using the spectral window parameter M(1).

7 Cross-amplitude spectrum estimate at F(k) using the spectral window parameter M(1).

8 Phase spectrum estimate at F(k) using the spectral window parameter M(1).

9 Coherence estimate at F(k) using the spectral window parameter M(1).

⋮
NM * 7 + 2 Coherence estimate at F(k) using the spectral window parameter M(NM).

Col. Description
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IPRINT — Printing option.  (Input)
Default: IPRINT = 0.

XCNTR — Constant used to center the time series X.  (Input)
Default: XCNTR = the arithmetic mean.

YCNTR — Constant used to center the time series Y.  (Input)
Default: YCNTR = the arithmetic mean.

NPAD — Number of zeroes used to pad each centered time series.  (Input)
NPAD must be greater than or equal to zero. The length of each centered and padded time series is 
N = NOBS + NPAD.
Default: NPAD = NOBS – 1.

IFSCAL — Option for frequency scale.  (Input) 
Default: IFSCAL = 0.

NF — Number of frequencies at which to evaluate the cross-spectral density estimate.  (Input)
Default: NF = size (F,1).

TINT — Time interval at which the series are sampled.  (Input)
For a discrete parameter process, usually TINT = 1. For a continuous parameter process, TINT > 0. 
TINT is used to adjust the cross-spectral density estimate.
Default: TINT = 1.0.

NM — Number of spectral window parameters M used to compute the cross-spectral density estimate for a 
given spectral window version.  (Input) 
NM must be greater than or equal to one.
Default: NM = size (M,1).

LDCPM — Leading dimension of CPM exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
LDCPM must be greater than or equal to ⌊N/2⌋, + 1.
Default: LDCPM = size (CPM,1).

LDCSM — Leading dimension of CSM exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
LDCSM must be greater than or equal to NF.
Default: LDCSM = size (CSM,1). 

FORTRAN 90 Interface
Generic: CALL CSSWD (X, Y, F, ISWVER, M, CPM, CSM[, …])
Specific: The specific interface names are S_CSSWD and D_CSSWD.

IPRINT Action

0 No printing is performed.

1 Prints the cross periodogram and cross-spectral density estimate based on a specified 
version of a spectral window for a given set of spectral window parameters.

IFSCAL Action

0 Frequency in radians per unit time.

1 Frequency in cycles per unit time.
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FORTRAN 77 Interface
Single: CALL CSSWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF, F, TINT, ISWVER, 

NM, M, CPM, LDCPM, CSM, LDCSM)
Double: The double precision name is DCSSWD.

Description

Routine CSSWD estimates the nonnormalized cross-spectral density function of two jointly stationary time 
series using a spectral window given a sample of n = NOBS observations {Xt} and {Yt} for t = 1, 2, …, n.

Let

represent the centered and padded data where N = NOBS + NPAD,

and

is determined by

Similarly, let

represent the centered and padded data where

and

is determined by
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The modified periodogram of

is estimated by

where 

and

represent the

cosine and sine transforms, respectively, and K is the scale factor equal to 1/(2πn). The modified periodo-
gram of

is estimated by

where

and
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represent the

cosine and sine transforms, respectively. Since the periodogram is an even function of the frequency, it is suf-
ficient to estimate the periodogram at the discrete set of nonnegative frequencies

The routine PFFT is used to compute the modified periodograms of both

The computational formula for the cross periodogram is given by

where 

and

The routine CPFFT is used to compute the modified cross periodogram between

The nonnormalized spectral density of Xt is estimated by

and the nonnormalized spectral density of Yt is estimated by

where the spectral window Wn(θ) is specified by argument ISWVER. The following spectral windows Wn(θ) 
are available.
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Modified Bartlett

where FM(θ) corresponds to the Fejér kernel of order M.

Daniell

Tukey

where DM(θ) represents the Dirichlet kernel. The Tukey-Hamming window is obtained when 
a = 0.23 and the Tukey-Hanning window is obtained when a = 0.25.

Parzen

where M is even. If M is odd, then M + 1 is used instead of M in the above formula.

Bartlett-Priestley

The argument NM specifies the number of window parameters M and, hence, corresponds to the number of 
spectral density estimates to be computed for a given spectral window. Note that the same spectral window 
Wn(θ) and set of parameters M are used to obtain both

The above spectral density formulas assume the data {Xt} and {Yt} correspond to a realization of a bivariate 
discrete-parameter stationary process observed consecutively in time. In this case, the observations are 
equally spaced in time with interval Δt = TINT equal to one. However, if the data correspond to a realization 
of a bivariate continuous-parameter stationary process recorded at equal time intervals, then the spectral 
density estimates must be adjusted for the effect of aliasing. In general, the estimate of hX(ω) is given by
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and the estimate of hY(ω) is given by

The nonnormalized spectral density is estimated over the set of frequencies

ω = fi, i = 1, …, nƒ

where nƒ = NF. These frequencies are in the scale specified by the argument IFSCAL but are transformed to 
the scale of radians per unit time for computational purposes. The frequency ω of the desired spectral esti-
mate is assumed to be input in a form already adjusted for the time interval Δt.

The cross-spectral density function is complex-valued in general and may be written in the following form:

The cospectrum is estimated by

and the quadrature spectrum is estimated by

Note that the same spectral window Wn(θ) and window parameter M used to derive

are also used to compute

The nonnormalized cross-spectral density estimate is computed over the same set of frequencies as the non-
normalized spectral density estimates with a similar adjustment for Δt.

An equivalent representation of hXY(ω) is the polar form defined by

The cross-amplitude spectrum is estimated by
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and the phase spectrum is estimated by

Finally, the coherency spectrum is estimated by

The coherence or squared coherency is output.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2SWD/DC2SWD. The reference is:

CALL C2SWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF, F, TINT, ISWVER, NM, M, 
CPM, LDCPM, CSM, LDCSM, CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex work vector of length N.  (Output)

COEF — Complex work vector of length N.  (Output)

WFFTC — Vector of length 4N + 15.

CPY — Vector of length 2N.
2. The centered and padded time series are defined by 

CX(j) = X(j) - XCNTR for j = 1, …, NOBS
CX(j) = 0 for j = NOBS + 1, …, N
and 
CY(j) = Y(j) - YCNTR for j = 1, …, NOBS
CY(j) = 0 for j = NOBS + 1, …, N 
where N = NOBS + NPAD.

3. The normalized cross-spectral density estimate is obtained by dividing the nonnormalized cross-spec-
tral density estimate in matrix CSM by the product of the estimated standard deviation of X and the 
estimated standard deviation of Y.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967, page 204) where X is the Wölfer sun-
spot number and Y is the northern light activity for the time period from 1770 through 1869. Application of 
routine CSSWD to these data produces the following results:

      USE UMACH_INT
      USE GDATA_INT
      USE CSSWD_INT
      USE WRRRL_INT
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      IMPLICIT   NONE
      INTEGER    LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NM, &
                NOBS, NPAD
      PARAMETER  (LDRDAT=100, NDRDAT=4, NF=10, NM=2, &
                  NOBS=100, LDCSM=NF, NPAD=NOBS-1, N=NOBS+NPAD,&
                  LDCPM=N/2+1)
!
      INTEGER    I, ISWVER, J, JPT, M(NM), NOUT, NRCOL, NRROW
      REAL       ASIN, CPM(LDCPM,10), CSM(LDCSM,NM*7+2), F(NF), FLOAT, &
                 PI, RDATA(LDRDAT,NDRDAT), TINT, X(NOBS), Y(NOBS)
      CHARACTER  CLABEL1(3)*9, CLABEL2(6)*16, FMT*7, RLABEL(1)*6, &
                 TITLE*80
      INTRINSIC  ASIN, FLOAT
!
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
!
      DATA FMT/'(F10.4)'/
      DATA CLABEL1/' k', 'Frequency', 'Period'/
      DATA CLABEL2/'%/ k', '%/Cospectrum', '%/Quadrature', &
          'Cross%/Amplitude', '%/Phase', '%/Coherence'/
      DATA RLABEL/'NUMBER'/
!                                 Initialization
      CALL UMACH (2, NOUT)
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
!                                 Robinson Data
      CALL GDATA (8, RDATA, NRROW, NRCOL)
!                                 Center on arithmetic means
!                                 Frequency in radians per unit time
!                                 Spectral window parameters
      M(1) = 10
      M(2) = 30
!                                 Time interval for discrete data
!                                 Compute cross-spectral density
!                                 using the Parzen window
      ISWVER = 5
      CALL CSSWD (X, Y, F, ISWVER, M, CPM, CSM)
!                                 Print results
      TITLE = 'Cross-Spectral Analysis Using Parzen Window'
      CALL WRRRL (TITLE, CSM, RLABEL, CLABEL1, NF, 2, FMT=FMT)
      DO 20  J=1, NM
         JPT   = 7*(J-1) + 5
         TITLE = '%/Results of the Cross-Spectral Analysis With '// &
                'Spectral Window Parameter M = '
         WRITE (TITLE(77:78),'(I2)') M(J)
         CALL WRRRL (TITLE, CSM(1:,JPT:), RLABEL, CLABEL2, NF, 5, FMT=FMT)
   20 CONTINUE
!
      END
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Output

Cross-Spectral Analysis Using Parzen Window
         k   Frequency      Period
         1      0.3142     20.0000
         2      0.6283     10.0000
         3      0.9425      6.6667
         4      1.2566      5.0000
         5      1.5708      4.0000
         6      1.8850      3.3333
         7      2.1991      2.8571
         8      2.5133      2.5000
         9      2.8274      2.2222
        10      3.1416      2.0000

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 10
                                         Cross
         k  Cospectrum  Quadrature   Amplitude       Phase   Coherence
         1    463.5888    -65.9763    468.2600      0.1414      0.2570
         2    286.5450    -75.0209    296.2029      0.2561      0.1710
         3    150.1073    -57.8263    160.8604      0.3677      0.1438
         4     52.9840    -32.3642     62.0866      0.5483      0.0998
         5     21.5435    -15.0888     26.3020      0.6110      0.0794
         6     21.4228     -9.8188     23.5658      0.4298      0.1716
         7     15.7005     -5.3704     16.5936      0.3296      0.2112
         8      8.0118     -1.8887      8.2314      0.2315      0.1272
         9      2.7682      0.2007      2.7754     -0.0724      0.0446
        10      0.5777      0.1008      0.5864     -0.1727      0.0091

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 30
                                         Cross
         k  Cospectrum  Quadrature   Amplitude       Phase   Coherence
         1    169.7542   -193.4384    257.3615      0.8505      0.1620
         2    452.6187     32.3813    453.7755     -0.0714      0.2213
         3     94.5221    -90.8159    131.0800      0.7654      0.2629
         4     -0.2096     -6.1127      6.1163      1.6051      0.0019
         5     27.4711    -22.1946     35.3166      0.6796      0.2492
         6     29.1329     -4.0128     29.4080      0.1369      0.3170
         7     11.2058     -9.3403     14.5881      0.6948      0.2594
         8      8.0017      0.8813      8.0501     -0.1097      0.1928
         9     -0.4199      2.2893      2.3275     -1.7522      0.0468
        10      0.5570     -1.0767      1.2123      1.0934      0.0678
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CSSWP

Estimates the nonnormalized cross-spectral density of two stationary time series using a spectral window 
given the spectral densities and cross periodogram.

Required Arguments
N — Number of observations in each of the appropriately centered and padded time series X and Y.  

(Input) 
N must be greater than or equal to two.

SX — Vector of length NF containing the estimate of the spectral density of the first time series X.  (Input)
SY — Vector of length NF containing the estimate of the spectral density of the second time series Y.  (Input)
CPREAL — Vector of length ⌊N/2⌋ + 1 containing the real part of the cross periodogram between X and Y.  

(Input) 
The real part of the cross periodogram evaluated at (angular) frequency wk = 2πk/N is given by 
CPREAL(k + 1), k = 0, 1, …, ⌊N/2⌋.

CPIMAG — Vector of length ⌊N/2⌋ + 1 containing the imaginary part of the cross periodogram between X 
and Y.  (Input) 
The imaginary part of the cross periodogram evaluated at (angular) frequency wk = 2πk/N is given by 
CPIMAG(k + 1), k = 0, 1, …, ⌊N/2⌋.

F — Vector of length NF containing the (angular) frequencies at which the spectral and cross-spectral den-
sities are estimated.  (Input)

ISWVER — Option for version of the spectral window.  (Input)

Refer to the “Description” section for further details.
M — Spectral window parameter.  (Input) 

M must be greater than or equal to one and less than N. For the Parzen spectral window (ISWVER = 5), 
the spectral window parameter M must be even.

COSPEC — Vector of length NF containing the estimate of the cospectrum.  (Output)
QUADRA — Vector of length NF containing the estimate of the quadrature spectrum.  (Output)
CRAMPL — Vector of length NF containing the estimate of the cross-amplitude spectrum.  (Output)
PHASE — Vector of length NF containing the estimate of the phase spectrum.  (Output)
COHERE — Vector of length NF containing the estimate of the coherence or squared coherency.  (Output)

SWVER Action

1 Modified Bartlett

2 Daniell

3 Tukey-Hamming

4 Tukey-Hanning

5 Parzen

6 Bartlett-Priestley
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Optional Arguments
NF — Number of (angular) frequencies.  (Input) 

NF must be greater than or equal to one. Default: NF = size (F,1).

FORTRAN 90 Interface
Generic: CALL CSSWP (N, SX, SY, CPREAL, CPIMAG, F, ISWVER, M, COSPEC, QUADRA, CRAMPL, 

PHASE, COHERE [, …])
Specific: The specific interface names are S_CSSWP and D_CSSWP.

FORTRAN 77 Interface
Single: CALL CSSWP (N, SX, SY, CPREAL, CPIMAG, NF, F, ISWVER, M, COSPEC, QUADRA, CRAMPL, 

PHASE, COHERE)
Double: The double precision name is DCSSWP.

Description

Routine CSSWP estimates the nonnormalized cross-spectral density function of two jointly stationary time 
series using a spectral window given the modified cross-periodogram and spectral densities of the appropri-
ately centered and padded data

for t = 1, …, N. 

The routine CPFFT may be used to compute the modified periodograms

and cross periodogram 

over the discrete set of nonnegative frequencies

(Here, ⌊a⌋ means the greatest integer less than or equal to a.) Either routine SSWP or routine SWEP may be 
applied to the periodograms to obtain nonnormalized spectral density estimates

over the set of frequencies

ω = fi, i = 1, …, nƒ
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where nƒ = NF. These frequencies are in the scale of radians per unit time. The time sampling interval Δt is 
assumed to be equal to one. Note that the spectral window or weight sequence used to compute

may differ from that used to compute

The cross-spectral density function is complex-valued in general and may be written as

The cospectrum is estimated by

and the quadrature spectrum is estimated by

where the spectral window Wn(θ) is specified by argument ISWVER. The following spectral windows Wn(θ) 
are available.

Modified Bartlett

where FM(θ) corresponds to the Fejér kernel of order M.
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Daniell

Tukey

where DM(θ) represents the Dirichlet kernel. The Tukey-Hamming window is obtained when 
a = 0.23 and the Tukey-Hanning window is obtained when a = 0.25.

Parzen

where M is even. If M is odd, then M + 1 is used instead of M in the above formula.

Bartlett-Priestley

Only one window parameter M may be specified so that only one estimate of hXY (ω) is computed. The non-
normalized cross-spectral density estimate is computed over the same set of frequencies as the 
nonnormalized spectral density estimates discussed above. However, the particular spectral window used to 
compute

need not correspond to either the spectral window or the weight sequence used to compute either

An equivalent representation of hXY(ω) is the polar form defined by

The cross-amplitude spectrum is estimated by

and the phase spectrum is estimated by
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Finally, the coherency spectrum is estimated by

The coherence or squared coherency is output.

Comments
1. The periodograms of X and Y and cross periodogram between X and Y may be computed using the 

routine CPFFT. The spectral densities of X and Y may then be estimated using any of the routines 
SSWD, SWED, SSWP, or SWEP. Thus, different window types and/or weight sequences may be used to 
estimate the spectral and cross-spectral densities given either the series or their periodograms. Note 
that use of the modified periodograms and modified cross periodogram ensures that the scale of the 
spectral and cross-spectral densities and their estimates is equivalent.

2 The time sampling interval, TINT, is assumed to be equal to one. This assumption is appropriate for 
discrete parameter processes. The adjustment for continuous parameter processes (TINT > 0.0) 
involves multiplication of the frequency vector F by 1/TINT and multiplication of the spectral and 
cross-spectral density estimates by TINT.

3. To convert the frequency scale from radians per unit time to cycles per unit time, multiply F by 1/(2π).

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967, page 204) where X is the Wölfer sun-
spot number and Y is the northern light activity for the years 1770 through 1869. Application of routine 
CSSWP to these data produces the following results.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NM, &
                 NOBS, NPAD
      PARAMETER  (LDRDAT=100, NDRDAT=4, NF=10, NM=2, &
                 NOBS=100, LDCSM=NF, NPAD=NOBS-1, N=NOBS+NPAD, &
                 LDCPM=N/2+1)
!
      INTEGER    I, IPVER, ISWVER, J, JPT, JST, M(NM), NRCOL, NRROW
      REAL       COHERE(NF), COSPEC(NF), CPIMAG(LDCPM), &
                 CPM(LDCPM,10), CPREAL(LDCPM), CRAMPL(NF), &
                 CSM(LDCSM,7*NM+2), F(NF), FLOAT, P(NF), PHASE(NF), &
                 PI, PX(LDCPM), PY(LDCPM), QUADRA(NF), &
                 RDATA(LDRDAT,NDRDAT), SX(NF), SY(NF), X(NOBS), Y(NOBS)
      CHARACTER  CLABEL1(3)*9, CLABEL2(6)*16, FMT*8, RLABEL(1)*6,&
                 TITLE*80
      INTRINSIC  FLOAT
!
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
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      EQUIVALENCE (PX(1), CPM(1,3)), (PY(1), CPM(1,6))
      EQUIVALENCE (CPREAL(1), CPM(1,9)), (CPIMAG(1), CPM(1,10))
      EQUIVALENCE (CSM(1,1), F(1)), (CSM(1,2), P(1))
!
      DATA FMT/'(F12.4)'/
      DATA CLABEL1/' k', 'Frequency', 'Period'/
      DATA CLABEL2/'%/ k', '%/Cospectrum', '%/Quadrature',&
          'Cross%/Amplitude', '%/Phase', '%/Coherence'/
      DATA RLABEL/'NUMBER'/
!                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
         P(I) = 2.0*FLOAT(NF)/FLOAT(I)
   10 CONTINUE
!                                 Robinson Data
      CALL GDATA (8, RDATA, NRROW, NRCOL)
!                                 Center on arithmetic means
!                                 Frequency in radians per unit time
!                                 Modified periodogram version
      IPVER = 1
!                                 Compute cross periodogram
      CALL CPFFT (X, Y, CPM, IPVER=IPVER)
!                                 Spectral window parameters
      M(1) = 10
      M(2) = 30
!                                 Compute cross-spectral density
!                                 using the Parzen window
!
!                                 Print frequency and period
      TITLE = 'Cross-Spectral Analysis Using Parzen Window'
      CALL WRRRL (TITLE, CSM, RLABEL, CLABEL1, NF, 2, FMT=FMT)
      ISWVER = 5
      DO 20  J=1, NM
!                                 Estimate the spectral densities
         CALL SSWP (N, PX, F, M(J), SX, ISWVER=ISWVER)
         CALL SSWP (N, PY, F, M(J), SY, ISWVER=ISWVER)
!                                 Estimate the cross-spectral density
         CALL CSSWP (N, SX, SY, CPREAL, CPIMAG, F, ISWVER, M(J), &
                    COSPEC, QUADRA, CRAMPL, PHASE, COHERE)
!                                 Copy results to output matrices
         JPT = 7*(J-1) + 2
         JST = 7*(J-1) + 5
         CALL SCOPY (NF, SX, 1, CSM(1:,JPT+1), 1)
         CALL SCOPY (NF, SY, 1, CSM(1:,JPT+2), 1)
         CALL SCOPY (NF, COSPEC, 1, CSM(1:,JPT+3), 1)
         CALL SCOPY (NF, QUADRA, 1, CSM(1:,JPT+4), 1)
         CALL SCOPY (NF, CRAMPL, 1, CSM(1:,JPT+5), 1)
         CALL SCOPY (NF, PHASE, 1, CSM(1:,JPT+6), 1)
         CALL SCOPY (NF, COHERE, 1, CSM(1:,JPT+7), 1)
!                                 Print results
         TITLE = '%/Results of the Cross-Spectral Analysis With '// &
                'Spectral Window Parameter M = '
         WRITE (TITLE(77:78),'(I2)') M(J)
         CALL WRRRL (TITLE, CSM(1:,JST), RLABEL, CLABEL2, NF, 5, FMT=FMT)
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   20 CONTINUE
!
      END

Output

Cross-Spectral Analysis Using Parzen Window
       k     Frequency        Period
       1        0.3142       20.0000
       2        0.6283       10.0000
       3        0.9425        6.6667
       4        1.2566        5.0000
       5        1.5708        4.0000
       6        1.8850        3.3333
       7        2.1991        2.8571
       8        2.5133        2.5000
       9        2.8274        2.2222
      10        3.1416        2.0000

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 10
                                         Cross
   k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
   1      463.5888      -65.9763      468.2600        0.1414        0.2570
   2      286.5450      -75.0209      296.2029        0.2561        0.1710
   3      150.1073      -57.8263      160.8604        0.3677        0.1438
   4       52.9840      -32.3642       62.0866        0.5483        0.0998
   5       21.5435      -15.0888       26.3020        0.6110        0.0794
   6       21.4228       -9.8188       23.5658        0.4298        0.1716
   7       15.7005       -5.3704       16.5936        0.3296        0.2112
   8        8.0118       -1.8887        8.2314        0.2315        0.1272
   9        2.7682        0.2007        2.7754       -0.0724        0.0446
  10        0.5777        0.1008        0.5864       -0.1727        0.0091

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 30
                                         Cross
   k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
   1      169.7542     -193.4384      257.3615        0.8505        0.1620
   2      452.6187       32.3813      453.7755       -0.0714        0.2213
   3       94.5221      -90.8159      131.0800        0.7654        0.2629
   4       -0.2096       -6.1127        6.1163        1.6051        0.0019
   5       27.4711      -22.1946       35.3166        0.6796        0.2492
   6       29.1329       -4.0128       29.4080        0.1369        0.3170
   7       11.2058       -9.3403       14.5881        0.6948        0.2594
   8        8.0017        0.8813        8.0501       -0.1097        0.1928
   9       -0.4199        2.2893        2.3275       -1.7522        0.0468
  10        0.5570       -1.0767        1.2123        1.0934        0.0678
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CSWED

Estimates the nonnormalized cross-spectral density of two stationary time series using a weighted cross peri-
odogram given the time series data.

Required Arguments
X — Vector of length NOBS containing the first stationary time series.  (Input)
Y — Vector of length NOBS containing the second stationary time series.  (Input)
F — Vector of length NF containing the frequencies at which to evaluate the cross-spectral density estimate.  

(Input) 
The units of F correspond to the scale specified by IFSCAL. The elements of F must be in the range 
(-π/TINT, π/TINT) inclusive, for IFSCAL = 0 and 
(-1/(2 * TINT), 1/(2 * TINT)) inclusive, for IFSCAL = 1.

WT — Vector of length NWT containing the weights used to smooth the periodogram.  (Input) 
The actual weights are the values in WT normalized to sum to 1 with the current periodogram ordinate 
taking the middle weight for NWT odd or the weight to the right of the middle for NWT even.

CPM — (⌊N/2⌋ + 1) by 10 matrix containing a summarization of the cross periodogram analysis.  (Out-
put) 
For k = 0, 1, …, ⌊N/2⌋, the (k + 1)-st element of the j-th column of CPM is defined as 

more...

Col. Description

1 Frequency, ωk where ωk = 2πk/N for IFSCAL = 0 or ωk = k/N for 
IFSCAL = 1

2 Period, pk where pk = 2π/ωk for IFSCAL = 0 and pk = 1/ωk for IFSCAL = 1. 
If ωk = 0, pk is set to missing.

3 X periodogram ordinate, IX(ωk)

4 X cosine transformation coefficient, AX(ωk)

5 X sine transformation coefficient, BX(ωk)

6 Y periodogram ordinate, IY(ωk)

7 Y cosine transformation coefficient, AY(ωk)

8 Y sine transformation coefficient, BY(ωk)

9 Real part of the XY cross periodogram ordinate IXY(ωk).

10 Imaginary part of the XY cross periodogram ordinate IXY(ωk).
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CSM — NF by 9 matrix containing a summarization of the cross-spectral analysis.  (Output) 
The k-th element of the j-th column of CSM is defined as

where k = 1, …, NF.

Optional Arguments
NOBS — Number of observations in each stationary time series X and Y.  (Input) 

NOBS must be greater than or equal to two.
Default: NOBS = size (X,1).

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

XCNTR — Constant used to center the time series X.  (Input)
Default: XCNTR = the arithmetic mean.

YCNTR — Constant used to center the time series Y.  (Input)
Default: YCNTR = the arithmetic mean.

NPAD — Number of zeroes used to pad each centered time series.  (Input)
NPAD must be greater than or equal to zero. The length of each centered and padded time series is 
N = NOBS + NPAD.
Default: NPAD = NOBS – 1.

Col. Description

1 Frequency, F(k).

2 Period, pk where pk = 2π/F(k) for IFSCAL = 0 and pk = 1/F(k) for 
IFSCAL = 1. If F(k) = 0, pk is set to missing.

3 X spectral density estimate at F(k) using the specified relative weights 
contained in WT.

4 Y spectral density estimate at F(k) using the specified relative weights 
contained in WT.

5 Co-spectrum estimate at F(k) using the specified relative weights con-
tained in WT.

6 Quadrature spectrum estimate at F(k) using the specified relative 
weights contained in WT.

7 Cross-amplitude spectrum estimate at F(k).

8 Phase spectrum estimate at F(k).

9 Coherence estimate at F(k).

IPRINT Action

0 No printing is performed.

1 Prints the periodogram, cosine and sine transformations of each centered  
and padded time series, the real and imaginary components of the cross 
periodogram, and the cross-spectral density estimate based on a specified 
weight sequence.
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IFSCAL — Option for frequency scale.  (Input)
Default: IFSCAL = 0.

NF — Number of frequencies at which to evaluate the cross-spectral density estimate.  (Input)
Default: NF = size (F,1).

TINT — Time interval at which the series are sampled.  (Input) 
For a discrete parameter process, usually TINT = 1.0. For a continuous parameter process, TINT > 0.0. 
TINT is used to adjust the cross-spectral density estimate.
Default: TINT = 1.0.

NWT — Number of weights.  (Input) 
NWT must be greater than or equal to one.
Default: NWT= size (WT,1).

LDCPM — Leading dimension of CPM exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
LDCPM must be greater than or equal to ⌊N/2⌋ + 1.
Default: LDCPM = size (CPM,1).

LDCSM — Leading dimension of CSM exactly as specified in the dimension statement of the calling pro-
gram.  (Input) 
LDCSM must be greater than or equal to NF.
Default: LDCSM = size (CSM,1). 

FORTRAN 90 Interface
Generic: CALL CSWED (X, Y, F, WT, CPM, CSM [, …])
Specific: The specific interface names are S_CSWED and D_CSWED.

FORTRAN 77 Interface
Single: CALL CSWED (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF, F, TINT, NWT, WT, 

CPM, LDCPM, CSM, LDCSM)
Double: The double precision name is DCSWED.

Description

Routine CSWED estimates the nonnormalized cross-spectral density function of two jointly stationary time 
series using a fixed sequence of weights given a sample of n = NOBS observations {Xt} and {Yt} for 
t = 1, 2, …, n. Let

IFSCAL Action

0 Frequency in radians per unit time.

1 Frequency in cycles per unit time.
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for t = 1, …, N represent the centered and padded data where N = NOBS + NPAD, 

and

is determined by

Similarly, let

for t = 1, …, N represent the centered and padded data where

and

is determined by

The modified periodogram of

for t = 1, …, N is estimated by
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where

 

and 

represent the

cosine and sine transforms, respectively, and K is the scale factor equal to 1/(2πn). The modified periodo-
gram of {Yt} for t = 1, …, N is estimated by

where 

and

represent the 

cosine and sine transforms, respectively. Since the periodogram is an even function of the frequency, it is suf-
ficient to estimate the periodogram at the discrete set of nonnegative frequencies

(Here, ⌊a⌋ means the greatest integer less than or equal to a). The routine PFFT is used to compute the modi-
fied periodograms of both

The computational formula for the cross periodogram is given by
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where 

and

The routine CPFFT is used to compute the modified cross periodogram between 

The nonnormalized spectral density of Xt is estimated by 

and the nonnormalized spectral density of Yt is estimated by 

where 

and k(ω) is the integer such that ωk,0 is closest to ω. The sequence of m = NWT weights {wj} for 
j = -⌊m/2⌋, …, (m -⌊m/2⌋ -1) satisfies Σjwj = 1. These weights are fixed in the sense that they do not depend 
on the frequency ω at which to estimate the spectral density. Usually, m is odd with the weights symmetric 
about the middle weight w0. If m is even, the weight to the right of the middle is considered w0. The argu-
ment WT may contain relative weights since they are normalized to sum to one in the actual computations. 
The above spectral density formulas assume the data {Xt} and {Yt} correspond to a realization of a bivariate 
discrete-parameter stationary process observed consecutively in time. In this case, the observations are 
equally spaced in time with interval Δt = TINT equivalent to one. However, if the data correspond to a reali-
zation of a bivariate continuous-parameter stationary process recorded at equal time intervals, then the 
spectral density estimates must be adjusted for the effect of aliasing. In general, the estimate of hX(ω) is given 
by
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and the estimate of hY(ω) is given by

The nonnormalized spectral density is estimated over the set of frequencies

ω = ƒi, i = 1, …, nƒ

where nƒ = NF. These frequencies are in the scale specified by the argument IFSCAL but are transformed to 
the scale of radians per unit time for computational purposes. The frequency ω of the desired spectral esti-
mate is assumed to be input in a form already adjusted for the time interval Δt. The cross-spectral density 
function is complex-valued in general and may be written as

hXY(ω) = cXY (ω) − iqXY(ω)

The cospectrum is estimated by

and the quadrature spectrum is estimated by

Note that the same sequence of weights {wj} used to estimate

is used to estimate

The nonnormalized cross-spectral density estimate is computed over the same set of frequencies as the non-
normalized spectral density estimates discussed above with a similar adjustment for Δt. An equivalent 
representation of hXY(ω) is the polar form defined by

The cross-amplitude spectrum is estimated by
CSWED         Chapter 8: Time Series Analysis and Forecasting      988



and the phase spectrum is estimated by

Finally, the coherency spectrum is estimated by

The coherence or squared coherency is output.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2WED/DC2WED. The reference is:

CALL C2WED (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF, F, TINT, NWT, WT, CPM, 
LDCPM, CSM, LDCSM, CWK, COEFWK, WFFTC, CPY)

The additional arguments are as follows:

CWK — Complex work vector of length N.  (Output)

COEFWK — Complex work vector of length N.  (Output)

WFFTC — Vector of length 4N + 15.

CPY — Vector of length 2N.
2. The normalized cross-spectral density estimate is obtained by dividing the nonnormalized cross-spec-

tral density estimate in matrix CSM by the product of the estimated standard deviation of X and the 
estimated standard deviation of Y.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967, page 204) where X is the Wölfer sun-
spot number and Y is the northern light activity for the years 1770 through 1869. Application of routine 
CSWED to these data produces the following results.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NOBS, &
                 NPAD, NWT
      PARAMETER  (LDRDAT=100, NDRDAT=4, NF=10, NOBS=100, &
                 NWT=7, LDCSM=NF, NPAD=NOBS-1, N=NPAD+NOBS, &
                 LDCPM=N/2+1)
!
      INTEGER    I, NRCOL, NRROW
      REAL       CPM(LDCPM,10), CSM(LDCSM,9), F(NF), FLOAT, PI, &
                 RDATA(LDRDAT,NDRDAT), WT(NWT), X(NOBS), Y(NOBS)
      CHARACTER  CLABEL1(5)*24, CLABEL2(6)*16, FMT*7, RLABEL(1)*6, &
                 TITLE1*32, TITLE2*40
      INTRINSIC  FLOAT
!
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      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
!
      DATA WT/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
      DATA FMT/'(F12.4)'/
      DATA CLABEL1/'%/%/ k', '%/%/Frequency', '%/%/Period', &
          'Spectral%/Estimate%/of X', 'Spectral%/Estimate%/of Y'/
      DATA CLABEL2/'%/ k', '%/Cospectrum', '%/Quadrature', &
          'Cross%/Amplitude', '%/Phase', '%/Coherence'/
      DATA RLABEL/'NUMBER'/
      DATA TITLE1/'Results of the Spectral Analyses'/
      DATA TITLE2/'%/Results of the Cross-Spectral Analysis'/
!                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
!                                 Robinson data
      CALL GDATA (8, RDATA, NRROW, NRCOL)
!                                 Center on arithmetic means
!                                 Frequency in radians per unit time
!                                 Time interval for discrete data
!                                 Compute the cross periodogram
      CALL CSWED (X, Y, F, WT, CPM, CSM)
!                                 Print results
      CALL WRRRL (TITLE1, CSM, RLABEL, CLABEL1, NF, 4, FMT=FMT)
      CALL WRRRL (TITLE2, CSM(1:,5), RLABEL, CLABEL2, NF, 5, FMT=FMT)
!
      END

Output

             Results of the Spectral Analyses
                                    Spectral      Spectral
                                    Estimate      Estimate
 k     Frequency        Period          of X          of Y
 1        0.3142       20.0000      116.9550     1315.8370
 2        0.6283       10.0000     1206.6086     1005.1219
 3        0.9425        6.6667       84.8369      317.2589
 4        1.2566        5.0000       55.2120      270.2111
 5        1.5708        4.0000       46.5748      115.6768
 6        1.8850        3.3333       12.4050      250.0125
 7        2.1991        2.8571        7.0934       82.6773
 8        2.5133        2.5000        3.4091       62.3267
 9        2.8274        2.2222        5.6828       12.8970
10        3.1416        2.0000        4.0346       17.6441

                 Results of the Cross-Spectral Analysis
                                       Cross
 k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
 1       94.0531     -254.0125      270.8659        1.2162        0.4767
 2      702.5118       21.9823      702.8557       -0.0313        0.4073
 3       70.2379      -31.4431       76.9547        0.4209        0.2200
 4       -1.8715      -36.1639       36.2123        1.6225        0.0879
 5       36.6366      -18.5925       41.0843        0.4696        0.3133
 6       32.7071       -6.6569       33.3776        0.2008        0.3592
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 7        9.4887       -9.1692       13.1950        0.7683        0.2969
 8        9.2534       -0.3000        9.2583        0.0324        0.4034
 9       -0.5568        2.9455        2.9977       -1.7576        0.1226
10        1.7640       -1.8321        2.5433        0.8043        0.0909
CSWED         Chapter 8: Time Series Analysis and Forecasting      991



CSWEP

Estimates the nonnormalized cross-spectral density of two stationary time series using a weighted cross peri-
odogram given the spectral densities and cross periodogram.

Required Arguments
N — Number of observations in each of the appropriately centered and padded 

time series X and Y.  (Input) 
N must be greater than or equal to two.

SX — Vector of length NF containing the estimate of the spectral density of the first time series X.  (Input)
SY — Vector of length NF containing the estimate of the spectral density of the second time series Y.  

(Input)
CPREAL — Vector of length ⌊N/2⌋ +1 containing the real part of the cross periodogram between X and Y.  

(Input)
The real part of the cross periodogram evaluated at (angular) frequency ωk = 2πk/N is given by 
CPREAL(k + 1), k = 0, 1, …, ⌊N/2⌋.

CPIMAG — Vector of length ⌊N/2⌋ + 1 containing the imaginary part of the cross periodogram between X 
and Y.  (Input)
The imaginary part of the cross periodogram evaluated at (angular) frequency ωk = 2πk/N is given by 
CPIMAG(k + 1), k = 0, 1, …, ⌊N/2⌋.

F — Vector of length NF containing the (angular) frequencies at which the spectral density is estimated.  
(Input) 

WT — Vector of length NWT containing the weights used to smooth the periodogram.  (Input) 
The actual weights are the values in WT normalized to sum to 1 with the current periodogram ordinate 
taking the middle weight for NWT odd or the weight to the right of the middle for NWT even.

COSPEC — Vector of length NF containing the estimate of the cospectrum.  (Output)
QUADRA — Vector of length NF containing the estimate of the quadrature spectrum.  (Output)
CRAMPL — Vector of length NF containing the estimate of the cross-amplitude spectrum.  (Output)
PHASE — Vector of length NF containing the estimate of the phase spectrum.  (Output)
COHERE — Vector of length NF containing the estimate of the coherence.  (Output)

Optional Arguments
NF — Number of (angular) frequencies.  (Input) 

NF must be greater than or equal to one.
Default: NF = size (F,1).

NWT — Number of weights.  (Input)
NWT must be greater than or equal to one.
Default: NWT = size (WT,1).

FORTRAN 90 Interface
Generic: CALL CSWEP (N, SX, SY, CPREAL, CPIMAG, F, WT, COSPEC, QUADRA, CRAMPL, PHASE, 

COHERE [, …])
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Specific: The specific interface names are S_CSWEP and D_CSWEP.

FORTRAN 77 Interface
Single: CALL CSWEP (N, SX, SY, CPREAL, CPIMAG, NF, F, NWT, WT, COSPEC, QUADRA, CRAMPL, 

PHASE, COHERE)
Double: The double precision name is DCSWEP.

Description

Routine CSWEP estimates the nonnormalized cross-spectral density function of two jointly stationary time 
series using a fixed sequence of weights given the modified cross-periodogram and spectral densities of the 
appropriately centered and padded data

and

for t = 1, …, N. The routine CPFFT may be used to compute the modified periodograms

and cross-periodogram

over the discrete set of nonnegative frequencies

(Here, ⌊a⌋ means the greatest integer less than or equal to a.) Either routine SSWP or routine SWEP may be 
applied to the periodograms to obtain nonnormalized spectral density estimates

over the set of frequencies

ω = ƒi, i = 1, …, nƒ

where nƒ = NF. These frequencies are in the scale of radians per unit time. The time sampling interval Δt is 
assumed to be equal to one. Note that the spectral window or weight sequence used to compute
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may differ from that used to compute

The cross-spectral density function is complex-valued in general and may be written as

The cospectrum is estimated by

and the quadrature spectrum is estimated by

where 

and k(ω) is the integer such that ωk,0 is closest to ω. The sequence of m = NWT weights {wj} for 
j = -⌊m/2⌋, …, (m - ⌊m/2⌋ - 1) satisfies Σjwj = 1. These weights are fixed in the sense that they do not 
depend on the frequency ω at which to estimate hXY(ω). Usually, m is odd with the weights symmetric about 
the middle weight w0. If m is even, the weight to the right of the middle is considered w0. The argument WT 
may contain relative weights since they are normalized to sum to one in the actual computations. The non-
normalized cross-spectral density estimate is computed over the same set of frequencies as the 
nonnormalized spectral density estimates. However, the particular weight sequence used to compute

need not correspond to either the weight sequence or spectral window used to compute either 

An equivalent representation of hXY(ω) is the polar form defined by

The cross-amplitude spectrum is estimated by

and the phase spectrum is estimated by
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Finally, the coherency spectrum is estimated by

The coherence or squared coherency is output.

Comments
1. The periodograms of X and Y and cross periodogram between X and Y may be computed via the rou-

tine CPFFT. The spectral densities of X and Y may then be estimated using any of the routines SSWD, 
SWED, SSWP, or SWEP. Thus, different window types and/or weight sequences may be used to esti-
mate the spectral and cross-spectral densities given either the series or their periodograms. Note that 
use of the modified periodograms and modified cross periodogram ensures that the scales of the spec-
tral and cross-spectral densities and their estimates are equivalent.

2 The time sampling interval, TINT, is assumed to be equal to one. This assumption is appropriate for 
discrete parameter processes. The adjustment for continuous parameter processes (TINT > 0.0) 
involves multipication of the frequency vector F by 1/TINT and multiplication of the spectral and 
cross-spectral density estimates by TINT.

3. To convert the frequency scale from radians per unit time to cycles per unit time, multiply F by 1/(2π).

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967, page 204) where X is the Wölfer sun-
spot number and Y is the northern light activity for the years 1770 through 1869. Application of routine 
CSWEP to these data produces the following results.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NOBS, &
                NPAD, NWT
      PARAMETER  (LDRDAT=100, NDRDAT=4, NF=10, NOBS=100, &
                NWT=7, LDCSM=NF, NPAD=NOBS-1, N=NOBS+NPAD, &
                LDCPM=N/2+1)
!
      INTEGER    I, IPVER, NROW, NVAR
      REAL       COHERE(NF), COSPEC(NF), CPIMAG(LDCPM), &
                 CPM(LDCPM,10), CPREAL(LDCPM), CRAMPL(NF), &
                 CSM(LDCSM,9), F(NF), FLOAT, PHASE(NF), PI, PX(LDCPM), &
                 PY(LDCPM), QUADRA(NF), RDATA(LDRDAT,NDRDAT), &
                 SX(NF), SY(NF), WT(NWT), X(NOBS), Y(NOBS)
      CHARACTER  CLABEL1(5)*24, CLABEL2(6)*16, FMT*8, RLABEL(1)*6, &
                 TITLE1*32, TITLE2*40
      INTRINSIC  FLOAT

!
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      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
      EQUIVALENCE (PX(1), CPM(1,3)), (PY(1), CPM(1,6))
      EQUIVALENCE (CPREAL(1), CPM(1,9)), (CPIMAG(1), CPM(1,10))
!
      DATA WT/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
      DATA FMT/'(F12.4)'/
      DATA CLABEL1/'%/%/ k', '%/%/Frequency', '%/%/Period', &
          'Spectral%/Estimate%/of X', 'Spectral%/Estimate%/of Y'/ 
      DATA CLABEL2/'%/ k', '%/Cospectrum', '%/Quadrature', &
          'Cross%/Amplitude', '%/Phase', '%/Coherence'/
      DATA RLABEL/'NUMBER'/
      DATA TITLE1/'Results of the Spectral Analyses'/
      DATA TITLE2/'%/Results of the Cross-Spectral Analysis'/
!                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
         CALL SCOPY (NF, F, 1, CSM(1:,1), 1)
         CSM(I,2) = 2.0*FLOAT(NF)/FLOAT(I)
   10 CONTINUE
!                                 Robinson data
      CALL GDATA (8, RDATA, NROW, NVAR)
!                                 Center on arithmetic means
!                                 Frequency in radians per unit time
!                                 Modified periodogram version
      IPVER = 1
!                                 Compute the cross periodogram
      CALL CPFFT (X, Y, CPM, IPVER=IPVER)
!                                 Estimate the spectral densities
      CALL SWEP (N, PX, F, WT, SX)
      CALL SWEP (N, PY, F, WT, SY)
!                                 Estimate the cross-spectral density
      CALL CSWEP (N, SX, SY, CPREAL, CPIMAG, F, WT, COSPEC, &
                 QUADRA, CRAMPL, PHASE, COHERE)
!                                 Print results
!
!                                 Copy results to output matrices
      CALL SCOPY (NF, SX, 1, CSM(1:,3), 1)
      CALL SCOPY (NF, SY, 1, CSM(1:,4), 1)
      CALL SCOPY (NF, COSPEC, 1, CSM(1:,5), 1)
      CALL SCOPY (NF, QUADRA, 1, CSM(1:,6), 1)
      CALL SCOPY (NF, CRAMPL, 1, CSM(1:,7), 1)
      CALL SCOPY (NF, PHASE, 1, CSM(1:,8), 1)
      CALL SCOPY (NF, COHERE, 1, CSM(1:,9), 1)
!                                 Call printing routines
      CALL WRRRL (TITLE1, CSM, RLABEL, CLABEL1, NF, 4, FMT=FMT)
      CALL WRRRL (TITLE2, CSM(1:,5), RLABEL, CLABEL2, NF, 5, FMT=FMT)
!
      END
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Output

             Results of the Spectral Analyses
                                    Spectral      Spectral
                                    Estimate      Estimate
 k     Frequency        Period          of X          of Y
 1        0.3142       20.0000      116.9550     1315.8370
 2        0.6283       10.0000     1206.6086     1005.1219
 3        0.9425        6.6667       84.8369      317.2589
 4        1.2566        5.0000       55.2120      270.2111
 5        1.5708        4.0000       46.5748      115.6768
 6        1.8850        3.3333       12.4050      250.0125
 7        2.1991        2.8571        7.0934       82.6773
 8        2.5133        2.5000        3.4091       62.3267
 9        2.8274        2.2222        5.6828       12.8970
10        3.1416        2.0000        4.0346       17.6441

                Results of the Cross-Spectral Analysis
                                      Cross
 k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
 1       94.0531     -254.0125      270.8659        1.2162        0.4767
 2      702.5118       21.9823      702.8557       -0.0313        0.4073
 3       70.2379      -31.4431       76.9547        0.4209        0.2200
 4       -1.8715      -36.1639       36.2123        1.6225        0.0879
 5       36.6366      -18.5925       41.0843        0.4696        0.3133
 6       32.7071       -6.6569       33.3776        0.2008        0.3592
 7        9.4887       -9.1692       13.1950        0.7683        0.2969
 8        9.2534       -0.3000        9.2583        0.0324        0.4034
 9       -0.5568        2.9455        2.9977       -1.7576        0.1226
10        1.7640       -1.8321        2.5433        0.8043        0.0909
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Usage Notes

Notation that is consistently used throughout this chapter is given in the following table. The FORTRAN 
equivalent of the symbols used are also given.

Notation Used

The routines in this chapter can generally be used for one or more of several purposes. Among these pur-
poses are the following:

1. Data description: The information in the data is summarized by the factor loadings or by the eigenvec-
tors and eigenvalues.

2. Data reduction: The information in a multivariate sample is reduced to a much smaller number of fac-
tors or principal components.

3. Variable clustering: The principal component coefficients or factor loadings lead to a grouping (clus-
tering) of the variables.

4. Model building: Linear models relating the variables to the factors or principal components are esti-
mated. Hypothesis tests may be used to obtain parsimonious and/or other descriptions of the data.

Principal Components

The idea in principal components is to find a small number of linear combinations of the original variables 
that maximize the variance accounted for in the original data. This amounts to an eigensystem analysis of the 
covariance (or correlation) matrix. In addition to the eigensystem analysis, routine PRINC computes standard 
errors for the eigenvalues. Correlations of the original variables with the principal component scores are also 
computed. 

The computation of common principal components via routine KPRIN is equivalent to finding the “eigenvec-
tors” that best simultaneously diagonalize one or more variance-covariance matrices. For only one input 
variance-covariance matrix, the vectors computed actually are the eigenvectors of the matrix.

Symbol FORTRAN 
Symbol

Meaning

p NVAR Number of variables in the observed 
variables

k NF Number of factors

Σ COV Population (or sample) covariance 
(correlation) matrix

A A Unrotated factor loadings

B B Rotated factor loadings

T T Factor rotation matrix

TI Image transformation matrix

β SCOEF Factor score coefficients
Usage Notes         Chapter 9: Covariance Structures and Factor Analysis      1000



Factor Analysis

Factor analysis and principal component analysis, while quite different in assumptions, often serve the same 
ends. Unlike principal components in which linear combinations yielding the highest possible variances are 
obtained, factor analysis generally obtains linear combinations of the observed variables according to a 
model relating the observed variables to hypothesized underlying factors, plus a random error term called 
the unique error or uniqueness. In factor analysis, the unique errors associated with each variable are usually 
assumed to be independent of the factors. In addition, in the common factor model, the unique errors are 
assumed to be mutually independent. The factor analysis model is

x − μ = Λf + e

where x is the p vector of observed variables, μ is the p vector of variable means, Λ is the p × k matrix of factor 
loadings, f is the k vector of hypothesized underlying random factors, and e is the p vector of hypothesized 
unique random errors. 

Because much of the computation in factor analysis was originally done by hand or was expensive on early 
computers, quick (but dirty) algorithms that made the calculations possible were developed. One result is the 
many factor extraction methods available today. Generally speaking, in the exploratory or model building 
phase of a factor analysis, a method of factor extraction that is not computationally intensive (such as princi-
pal components, principal factor, or image analysis) is used. If desired, a computationally intensive method 
is then used to obtain (what is hoped will be) the final factors. 

In exploratory factor analysis, the unrotated factor loadings obtained from the factor extraction are generally 
transformed (rotated) to simplify the interpretation of the factors. Rotation is possible because of the overpa-
rameterization in the factor analysis model. The method used for rotation may result in factors that are 
independent (orthogonal rotations) or correlated (oblique rotations). Prior information may be available (or 
hypothesized) in which case a Procrustes rotation could be used. When no prior information is available, an 
analytic rotation can be performed. 

Once the factor loadings have been extracted and rotated (if desired), estimates for the hypothesized under-
lying factors can be computed. First, one of several available methods in routine FCOEF is used to compute 
the factor score coefficients. Routine FSCOR is then called with these factor score coefficients to compute the 
factor scores.

The steps generally used in a factor analysis are summarized as follows:
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Independence of Sets of Variables and Canonical Correlation Analysis

Routine MVIND computes the Wilks likelihood-ratio test of independence among several sets of variables. 
Routines CANCR and CANVC compute some other tests of independence between exactly two sets of vari-
ables. Routine CANCR uses the raw data as input while CANVC uses the sample variance-covariance matrix. 
Furthermore, CANCR and CANVC perform a canonical correlation analysis. Since CANCR uses a better algo-
rithm in terms of numerical stability (it does not compute the covariance matrix), CANCR should be used if 
possible. However, if the raw data is not available, or if there is too much data for all of it to reside in memory 
at the same time, or if multiple canonical correlation analyses are to be performed based on the same pre-com-
puted sample variance-covariance matrix, then the use of CANVC may be necessary. Canonical correlation 
analysis is useful for characterizing the independent linear statistical relationships that exist between the two 
sets of variables. This involves computing linear combinations of the variables in the two separate sets and 
their associated correlation. The coefficients of the variables in the linear combinations are called the “canon-
ical coefficients,” and the correlations are called “canonical correlations.” Evaluation of the linear 
combinations using the canonical coefficients gives the “canonical scores.” Routine CANCR computes the 
canonical scores for the observed data. Routine FSCOR can be used to compute the canonical scores for new 
data or for the observed data if CANVC is used.
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PRINC

Computes principal components from a variance-covariance matrix or a correlation matrix.

Required Arguments
NDF — Number of degrees of freedom in COV.  (Input) 

If NDF is less than or equal to 0, 100 degrees of freedom are assumed.
COV — NVAR by NVAR matrix containing the covariance or correlation matrix.  (Input) 

Only the upper triangular part of COV is referenced.
EVAL — Vector of length NVAR containing the eigenvalues from matrix COV ordered from largest to small-

est.  (Output)

Optional Arguments
NVAR — Order of matrix COV.  (Input)

Default: NVAR = size (COV,2).
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOV = size (COV,1).

ICOV — Covariance/Correlation matrix option parameter.  (Input) 
ICOV = 0 means that a covariance matrix is input. Otherwise, a correlation matrix is input.
Default: ICOV = 0.

PCT — Vector of length NVAR containing the cumulative percent of the total variance explained by each 
principal component.  (Output)

STD — Vector of length NVAR containing the estimated asymptotic standard errors of the eigenvalues.  
(Output)

EVEC — NVAR by NVAR matrix containing the eigenvectors of COV, stored columnwise.  (Output) 
Each vector is normalized to have Euclidean length equal to the value one. Also, the sign of each vec-
tor is set so that the largest component in magnitude (the first of the largest if there are ties) is made 
positive.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDEVEC = size( EVEC, 1).

A — NVAR by NVAR matrix containing the correlations of the principal components (the columns) with the 
observed/standardized variables (the rows).  (Output) 
If ICOV = 0, then the correlations are with the observed variables. Otherwise, the correlations are with 
the standardized (to a variance of 1.0) variables. In the principal component model for factor analysis, 
matrix A is the matrix of unrotated factor loadings.

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDA = size( A, 1).
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FORTRAN 90 Interface
Generic: CALL PRINC (NDF, COV, EVAL [, …])
Specific: The specific interface names are S_PRINC and D_PRINC.

FORTRAN 77 Interface
Single: CALL PRINC (NDF, NVAR, COV, LDCOV, ICOV, EVAL, PCT, STD, EVEC, LDEVEC, A, LDA)
Double: The double precision name is DPRINC.

Description

Routine PRINC finds the principal components of a set of variables from a sample covariance or correlation 
matrix. The characteristic roots, characteristic vectors, standard errors for the characteristic roots, and the cor-
relations of the principal component scores with the original variables are computed. Principal components 
obtained from correlation matrices are the same as principal components obtained from standardized (to unit 
variance) variables.

The principal component scores are the elements of the vector y = ΓTx where Γ is the matrix whose columns 
are the characteristic vectors (eigenvectors) of the sample covariance (or correlation) matrix and x is the vec-
tor of observed (or standardized) random variables. The variances of the principal component scores are the 
characteristic roots (eigenvalues) of the the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girshick (1939) and are given more 
recently by Kendall, Stuart, and Ord (1983, page 331). These variances are computed either for covariance 
matrices (ICOV = 0) or for correlation matrices (ICOV ≠ 0).

The correlations of the principal components with the observed (or standardized) variables are given in the 
matrix A. When the principal components are obtained from a correlation matrix, A is the same as the matrix 
of unrotated factor loadings obtained for the principal components model for factor analysis.

Comments
Informational Errors

Example

Principal components are computed for a nine-variable matrix.

      USE PRINC_INT
      USE WRRRN_INT

      IMPLICIT   NONE

Type Code Description

3 1 Because NDF is zero or less, 100 degrees of freedom will be used.

3 2 One or more eigenvalues much less than zero are computed. The matrix COV 
is not nonnegative definite. In order to continue computations of STD and A, 
these eigenvalues are treated as zero.
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      INTEGER    ICOV, LDA, LDCOV, LDEVEC, NDF, NVAR
      PARAMETER  (ICOV=1, LDA=9, LDCOV=9, LDEVEC=9, NDF=100, NVAR=9)
!
      REAL       A(LDA,NVAR), COV(LDCOV,NVAR), EVAL(NVAR), &
           EVEC(LDEVEC,NVAR), PCT(NVAR), STD(NVAR)
!
      DATA COV/&
      1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, &
      0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, & 
      0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254, & 
      0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, 0.691, &  
      0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691, &  
      1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254, &  
      0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547, &  
      0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434, &  
      0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470, &  
      0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, &  
      1.000/
!
      CALL PRINC (NDF, COV, EVAL, ICOV=ICOV, PCT=PCT, STD=STD, &
                  EVEC=EVEC, A=A)
!
      CALL WRRRN ('EVAL', EVAL, 1, NVAR, 1)
      CALL WRRRN ('PCT', PCT, 1, NVAR, 1)
      CALL WRRRN ('STD', STD, 1, NVAR, 1)
      CALL WRRRN ('EVEC', EVEC)
      CALL WRRRN ('A', A)
      END

Output

                                EVAL
    1       2       3       4       5       6       7       8       9
4.677   1.264   0.844   0.555   0.447   0.429   0.310   0.277   0.196

                                 PCT
    1       2       3       4       5       6       7       8       9
0.520   0.660   0.754   0.816   0.865   0.913   0.947   0.978   1.000

                                 STD
     1        2        3        4        5        6        7        8
0.6498   0.1771   0.0986   0.0879   0.0882   0.0890   0.0944   0.0994

     9
0.1113

                                  EVEC
         1        2        3        4        5        6        7        8
1   0.3462  -0.2354   0.1386  -0.3317  -0.1088   0.7974   0.1735  -0.1240
2   0.3526  -0.1108  -0.2795  -0.2161   0.7664  -0.2002   0.1386  -0.3032
3   0.2754  -0.2697  -0.5585   0.6939  -0.1531   0.1511   0.0099  -0.0406
4   0.3664   0.4031   0.0406   0.1196   0.0017   0.1152  -0.4022  -0.1178
5   0.3144   0.5022  -0.0733  -0.0207  -0.2804  -0.1796   0.7295   0.0075
6   0.3455   0.4553   0.1825   0.1114   0.1202   0.0696  -0.3742   0.0925
7   0.3487  -0.2714  -0.0725  -0.3545  -0.5242  -0.4355  -0.2854  -0.3408
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8   0.2407  -0.3159   0.7383   0.4329   0.0861  -0.1969   0.1862  -0.1623
9   0.3847  -0.2533  -0.0078  -0.1468   0.0459  -0.1498  -0.0251   0.8521

         9
1  -0.0488
2  -0.0079
3  -0.0997
4   0.7060
5   0.0046
6  -0.6780
7  -0.1089
8   0.0505
9   0.1225

                                    A
         1        2        3        4        5        6        7        8
1   0.7487  -0.2646   0.1274  -0.2471  -0.0728   0.5224   0.0966  -0.0652
2   0.7625  -0.1245  -0.2568  -0.1610   0.5124  -0.1312   0.0772  -0.1596
3   0.5956  -0.3032  -0.5133   0.5170  -0.1024   0.0990   0.0055  -0.0214
4   0.7923   0.4532   0.0373   0.0891   0.0012   0.0755  -0.2240  -0.0620
5   0.6799   0.5646  -0.0674  -0.0154  -0.1875  -0.1177   0.4063   0.0039
6   0.7472   0.5119   0.1677   0.0830   0.0804   0.0456  -0.2084   0.0487
7   0.7542  -0.3051  -0.0666  -0.2641  -0.3505  -0.2853  -0.1589  -0.1794
8   0.5206  -0.3552   0.6784   0.3225   0.0576  -0.1290   0.1037  -0.0854
9   0.8319  -0.2848  -0.0072  -0.1094   0.0307  -0.0981  -0.0140   0.4485

         9
1  -0.0216
2  -0.0035
3  -0.0442
4   0.3127
5   0.0021
6  -0.3003
7  -0.0482
8   0.0224
9   0.0543
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KPRIN

Maximums likelihood or least-squares estimates for principal components from one or more matrices.

Required Arguments
COV — NVAR by NVAR by NMAT array containing the NMAT covariance or correlation matrices.  (Input) 

Only the upper triangular elements of each matrix are referenced.
ANI — Vector of length NMAT containing the number of observations in each of the covariance matrices.  

(Input) 
For least-squares estimation, the square root of ANI(I) is the weight to be used for the I-th covariance 
matrix. Since the elements of ANI are used as weights, they need not be integers.

EVEC — NVAR by NVAR matrix containing the estimated principal components.  (Output) 
Each column of EVEC contains a principal component vector (an “eigenvector”). The ordering of the 
eigenvectors is such that the sum of the corresponding eigenvalues are ordered from largest to small-
est. Each vector is normalized to have Euclidean length equal to the value one.

Optional Arguments
NVAR — Number of variables in each matrix.  (Input) 

NVAR must be 2 or greater.
Default: NVAR = size (COV,2).

NMAT — Number of matrices.  (Input)
Default: NMAT = size (COV,3).

LDCOV — Leading and second dimensions of COV exactly as specified in the dimension statement of the 
calling program.  (Input) 
The first two dimensions of COV must be equal.
Default: LDCOV = size (COV,1).

IMETH — Method to be used for extracting the estimated principal components.  (Input) 
For IMETH = 0, maximum likelihood estimation is used. For IMETH = 1, least-squares estimation is 
used.
Default: IMETH = 0.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDEVEC = size (EVEC,1).

more...
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FORTRAN 90 Interface
Generic: CALL KPRIN (COV, ANI, EVEC [, …])
Specific: The specific interface names are S_KPRIN and D_KPRIN.

FORTRAN 77 Interface
Single: CALL KPRIN (NVAR, NMAT, COV, LDCOV, ANI, IMETH, EVEC, LDEVEC)
Double: The double precision name is DKPRIN.

Description

Routine KPRIN is the IMSL version of the F-G diagonalization routine of Flury and Constantine (1985) with 
modifications as discussed by Clarkson (1988a, 1988b). Let k = NMAT. Routine KPRIN computes the common 
principal components of k ≥ 1 covariance (or correlation) matrices using either a least-squares or a maximum 
likelihood criterion. Computing common principal components is equivalent to finding the “eigenvectors” 
that best simultaneously diagonalize k symmetric matrices. (Note that when k = 1, both least-squares and 
maximum likelihood estimation yield the eigenvectors of the input matrix.) See Flury (1988) for applications 
of common principal components. 

The algorithm proceeds by accumulating simple rotations as follows: Initial estimates of the diagonalizing 
principal components are found as the eigenvectors of the summed covariance matrices (unless K3RIN is 
used, see Comment 3). The covariance matrices are then pre- and post-multiplied by the initial estimates to 
obtain approximately diagonal matrices. Let

denote the l-th 2 × 2 matrix obtained from the (i, j), (i, i), and (j, j) elements of Sl, where Sl is the l-th covari-
ance matrix in COV. Then, for each i and j, a Jacobi rotation is found and applied such that the least-squares or 
maximum likelihood criterion is optimized over all k matrices in 

An iteration consists of computing and applying a Jacobi rotation for all p(p - 1)/2 possible off-diagonal ele-
ments (i, j) where p = NVAR. A maximum of 50 iterations are allowed before convergence. Convergence is 
assumed when the maximum change in the any element in the eigenvectors from one iteration to the next is 
less than 0.0001.

Let Γ denote the current estimates of the optimizing principal components. Then, maximizing the multivari-
ate normal likelihood is equivalent to minimizing the criterion
KPRIN         Chapter 9: Covariance Structures and Factor Analysis      1008



where Si is the i-th covariance matrix, ni is its degrees of freedom, and

is the estimate of the covariance matrix under the common principal components model.

During each Jacobi iteration, an optimal orthogonal matrix Tij is found that rotates the two vectors in col-
umns i and j of Γ. When restricted to Tij, the criterion above becomes

Γ is updated as ΓTij. When convergence has been reached (the maximum change in Γ is less than 0.0001), Γ 
contains the optimizing principal components. Initially, Γ is taken as the eigenvectors of the matrix ΣiSi.

In least-squares estimation, the matrices Tij are found such that the sum of the squared off-diagonal elements 
in the resulting “diagonalized” matrices are minimized. That is, Tij is found to minimize

where vij is the vector of length k containing the off-diagonal elements in the matrices

See Flury and Gautschi (1986) for further details on the general algorithm, especially in maximum likelihood 
estimation. See Clarkson (1988b) for details of the least-squares algorithm.

If the “residual” matrices ΓTSiΓ are desired, they may be obtained in the work vector H returned from K2RIN 
or from the matrix COV returned from K3RIN. If the least-squares criterion is needed, it is easily computed as 
the sum of the squared off-diagonal elements in H (or COV). To compute the likelihood ratio criterion, the 
eigenvalues of each matrix in COV first need to be computed. Denote the eigenvalues from the l-th matrix by 
λlj, and let

be the eigenvalues obtained under the common principal component model (and returned as the diagonal 
elements of H or, from K3RIN, COV). Then, the log-likelihood-ratio statistic for testing,

is diagonal, l = 1, …, k, is computed as:
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The distribution of  under H0 is asymptotically X2 with (k - 1)p(p - 1)/2 degrees of freedom (see Flury 1984).

Comments
1. Workspace may be explicitly provided, if desired, by use of K2RIN/DK2RIN. The reference is:

CALL K2RIN (NVAR, NMAT, COV, LDCOV, ANI, IMETH, EVEC, LDEVEC, H, AUX, BOLD, G, T)
The additional arguments are as follows:

H — Work vector of length NVAR2 * NMAT. On return from K2RIN, H may be treated as an array 
dimensioned as H(NVAR, NVAR, NMAT). Each NVAR by NVAR matrix in H is computed as 
(EVEC)T * COV(I) * EVEC, i.e., H contains the “eigenvalues” and the “residuals” for each cova-
riance matrix. Here, COV(I) is the I-th covariance matrix.

AUX — Work vector of length max(3 * NMAT, NVAR2).

BOLD — Work vector of length NVAR2.

G — Work vector of length 2 * NVAR.

T — Work vector of length 4 * NMAT.
2. Informational errors

3. If user specified initial estimates for EVEC are desired (and argument error checking is not needed), 
then the routine K3RIN (DK3RIN) may be used. The calling sequence is

CALL K3RIN (NVAR, NMAT, COV, LDCOV, ANI, IMETH, EVEC, LDEVEC, AUX, BOLD, G, T)
On input, EVEC contains the initial estimates of the common principal components (EVEC must be an 
orthogonal matrix). On output, COV contains the NMAT matrices (EVEC )T * COV (I) * EVEC. The user 
should be wary of stationary points in the likelihood if K3RIN is used.

Example

The following example is taken from Flury and Constantine (1985). It involves two 4 by 4 covariance matri-
ces. The two covariance matrices are given as:

Type Code Description

3 1 Convergence did not occur within 50 iterations. Convergence is assumed.

4 2 An input matrix is singular. Singular input matrices are not allowed in maxi-
mum likelihood estimation.
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      USE KPRIN_INT
      USE WRRRN_INT

      IMPLICIT   NONE
!                                 SPECIFICATIONS FOR PARAMETERS

      INTEGER    LDCOV, LDEVEC, NGROUP, NVAR
      PARAMETER  (LDCOV=4, LDEVEC=4, NGROUP=2, NVAR=4)
!
      REAL       ANI(NGROUP), COV(LDCOV,LDCOV,NGROUP), EVEC(LDEVEC,NVAR)
!
      DATA COV/1.3, -0.3, -0.6, 0, -0.3, 2.1, 0, -0.6, -0.6, 0, 2.9, &  
      -0.3, 0, -0.6, -0.3, 3.7, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, &  
      0, 0, 0, 0, 4/
!
      ANI(1) = 1
      ANI(2) = 1
!
      CALL KPRIN (COV, ANI, EVEC)
!
      CALL WRRRN ('EVEC', EVEC)
!
      END

Output

                EVEC
         1        2        3        4
1   0.9743  -0.1581  -0.1581   0.0257
2   0.1581   0.9743  -0.0257  -0.1581
3   0.1581  -0.0257   0.9743  -0.1581
4   0.0257   0.1581   0.1581   0.9743
KPRIN         Chapter 9: Covariance Structures and Factor Analysis      1011



FACTR

Extracts initial factor loading estimates in factor analysis.

Required Arguments
COV — NVAR by NVAR matrix containing the variance-covariance or correlation matrix.  (Input)
NF — Number of factors in the model.  (Input)
UNIQ — Vector of length NVAR containing the unique variances.  (Input/Output, if 

INIT = 1; output, otherwise) 
If INIT = 1, UNIQ contains the initial estimates of these variances on input. On output, UNIQ contains 
the estimated unique variances. For IMTH = 0, the unique variances are assumed to be known and are 
not changed from the input values when INIT = 1.

A — NVAR by NF matrix of unrotated factor loadings.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (COV,2).
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOV = size (COV,1).

IMTH — Method used to obtain the estimates.  (Input) 
Default: IMTH = 0.

NDF — Number of degrees of freedom in COV.  (Input) 
NDF is not required when IMTH = 0, 1, or 4. NDF defaults to 100 if NDF = 0.
Default: NDF = 0.

INIT — Method used to obtain initial estimates of the unique variances.  (Input)
Default: INIT = 0.

IMTH Method

0 Principal component (principal component model) or principal factor (common factor 
model). If INIT = 1 and UNIQ contains zeros, then this option results in the principal 
component method. Otherwise, the principal factor method is used.

1 Unweighted least squares (common factor model).

2 Generalized least squares (common factor model).

3 Maximum likelihood (common factor model).

4 Image factor analysis (common factor model).

5 Alpha factor analysis (common factor model).

INIT Method

0 Initial estimates are taken as the constant 1 - NF/(2 * NVAR) divided by the diagonal ele-
ments of the inverse of COV.

1 Initial estimates are input in vector UNIQ.
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MAXIT — Maximum number of iterations in the iterative procedure.  (Input) 
Typical for methods 1 to 3 is 30, while 60 is typical for method 5. MAXIT is not referenced when 
IMTH = 0 or 4.
Default: MAXIT = 30.

MAXSTP — Maximum number of step halvings allowed during any one iteration.  (Input) 
Typical is 8. MAXSTP is not referenced when IMTH = 0, 4, or 5.
Default: MAXSTP = 8.

EPS — Convergence criterion used to terminate the iterations.  (Input) 
For methods 1 to 3, convergence is assumed when the relative change in the criterion is less than EPS. 
For method 5, convergence is assumed when the maximum change (relative to the variance) of a 
uniqueness is less than EPS. EPS is not referenced when IMTH = 0 or 4. EPS = 0.0001 is typical.
Default: EPS = 0.0001.

EPSE — Convergence criterion used to switch to exact second derivatives.  (Input) 
When the largest relative change in the unique standard deviation vector is less than EPSE, exact sec-
ond derivative vectors are used. Typical is 0.1. EPSE is not referenced when IMTH = 0, 4, or 5.
Default: EPSE = 0.1.

IPRINT — Printing option.  (Input) 
If IPRINT = 0, then no printing is performed. If IPRINT = 1, then printing of the final results is per-
formed. If IPRINT = 2, then printing of an iteration summary and the final results is performed.
Default: IPRINT = 0.

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDA = size (A,1).

EVAL —  Vector of length NVAR containing the eigenvalues of the matrix from which the factors were 
extracted.  (Output) 
If IMTH = 5, then the first NF positions of EVAL contain the ALPHA coefficients. Note that EVAL does 
not usually contain eigenvalues for matrix COV.

STAT — Vector of length 6 containing some output statistics.  (Output) 
I STAT(I)

1 Value of the function minimum. 
2 Tucker reliability coefficient.
3 Chi-squared test statistic for testing that NF common factors are adequate for the data.

4 Degrees of freedom in chi-squared. This is computed as ((NVAR - NF)2 - NVAR - NF)/2.
5 Probability of a greater chi-squared statistic.
6 Number of iterations. 
STAT is not used when IMTH = 0, 4, or 5.

DER — Vector of length NVAR containing the parameter updates when convergence was reached (or the 
iterations terminated).  (Output)

FORTRAN 90 Interface
Generic: CALL FACTR (COV, NF, UNIQ, A [, …])
Specific: The specific interface names are S_FACTR and D_FACTR.
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FORTRAN 77 Interface
Single: CALL FACTR (NVAR, COV, LDCOV, NF, IMTH, NDF, INIT, MAXIT, MAXSTP, EPS, EPSE, 

IPRINT, UNIQ, A, LDA, EVAL, STAT, DER)
Double: The double precision name is DFACTR.

Description

Routine FACTR computes unrotated factor loadings in exploratory factor analysis models. Models available 
in FACTR are the principal component model for factor analysis and the common factor model with addi-
tions to the common factor model in alpha factor analysis and image analysis. Methods of estimation include 
principal components, principal factor, image analysis, unweighted least squares, generalized least squares, 
and maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as Σ = ΛΛT + Ψ where Σ is the 
p × p population covariance matrix, Λ is the p × k matrix of factor loadings relating the factors ƒ to the 
observed variables x, and Ψ is the p × p matrix of covariances of the unique errors e. Here, p = NVAR and 
k = NF. The relationship between the factors, the unique errors, and the observed variables is given as 
x = Λƒ + e where, in addition, it is assumed that the expected values of e, f, and x are zero. (The sample means 
can be subtracted from x if the expected value of x is not zero.) It is also assumed that each factor has unit 
variance, the factors are independent of each other, and that the factors and the unique errors are mutually 
independent. In the common factor model, the elements of the vector of unique errors e are also assumed to 
be independent of one another so that the matrix Ψ is diagonal. This is not the case in the principal compo-
nent model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is optimized and the amount of 
computer effort required to obtain estimates. Generally speaking, the least-squares and maximum likelihood 
methods, which use iterative algorithms, require the most computer time with the principal factor, principal 
component and the image methods requiring much less time since the algorithms in these methods are not 
iterative. The algorithm in alpha factor analysis is also iterative, but the estimates in this method generally 
require somewhat less computer effort than the least-squares and maximum likelihood estimates. In all algo-
rithms, one eigensystem analysis is required on each iteration.

The Principal Component and Principal Factor Methods

Both the principal component and the principal factor methods compute the factor loading estimates as

where Γ and the diagonal matrix Δ are the eigenvectors and eigenvalues of a matrix. In the principal compo-
nent model, the eigensystem analysis is performed on the sample covariance (correlation) matrix S while in 
the principal factor model the matrix (S - Ψ) is used. If the unique error variances Ψ are not known (i.e., if 
INIT = 0) in the principal factor model, then FACTR obtains estimates for them as discussed in Comment 3. If 
the principal components model is to be used, then the INIT = 1 option should be set, and the vector UNIQ 
should be set so that all elements are zero. If UNIQ is not set, principal factor model estimates are computed.
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The basic idea in the principal component method is to find factors that maximize the variance in the original 
data that is explained by the factors. Because this method allows the unique errors to be correlated, some fac-
tor analysts insist that the principal component method is not a factor analytic method. Usually however, the 
estimates obtained via the principal component model and other models in factor analysis will be quite 
similar.

It should be noted that both the principal component and the principal factor methods give different results 
when the correlation matrix is used in place of the covariance matrix. Indeed, any rescaling of the sample 
covariance matrix can lead to different estimates with either of these methods. A further difficulty with the 
principal factor method is the problem of estimating the unique error variances. Theoretically, these must be 
known in advance and passed to FACTR through UNIQ. In practice, the estimates of these parameters pro-
duced via the INIT = 0 option in FACTR are often used. In either case, the resulting adjusted covariance 
(correlation) matrix

may not yield the NF positive eigenvalues required for NF factors to be obtained. If this occurs, the user must 
either lower the number of factors to be estimated or give new unique error variance values.

The Least-Squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this section is iterative (see 
Joreskog 1977). As with the principal factor model, the user may either initialize UNIQ or allow FACTR to 
compute initial estimates for the unique error variances. Unlike the principal factor method, FACTR then 
optimizes the criterion function with respect to both Ψ and Γ. (In the principal factor method, Ψ is assumed to 
be known. Given Ψ, estimates for Λ may be obtained.)

The major differences between the methods discussed in this section are in the criterion function that is opti-
mized. Let S denote the sample covariance (correlation) matrix, and let Σ denote the covariance matrix that is 
to be estimated by the factor model. In the unweighted least-squares method, also called the iterated princi-
pal factor method or the minres method (see Harman 1976, page 177), the function minimized is the sum of 

the squared differences between S and Σ. This is written as ɸul = .5 trace((S - Σ)2).

Generalized least-squares and maximum likelihood estimates are asymptotically equivalent methods. Maxi-

mum likelihood estimates maximize the (normal theory) likelihood {ɸml = trace(Σ−1S) - log (∣Σ−1S∣)} while 

generalized least squares optimizes the function ɸgs = trace ((ΣS−1 - I)2).

In all three methods, a two-stage optimization procedure is used. This proceeds by first solving the likeli-
hood equations for Λ in terms of Ψ and substituting the solution into the likelihood. This gives a criterion 
ɸ(Ψ,Λ(Ψ)), which is optimized with respect to Ψ. In the second stage, the estimates

are obtained from the estimates for Ψ. 
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The generalized least-squares and the maximum likelihood methods allow for the computation of a statistic 
(STAT(3)) for testing that NF common factors are adequate to fit the model. This is a chi-squared test that all 
remaining parameters associated with additional factors are zero. If the probability of a larger chi-squared is 
small (see STAT(5)) so that the null hypothesis is rejected, then additional factors are needed (although these 
factors may not be of any practical importance). Failure to reject does not legitimize the model. The statistic 
STAT(3) is a likelihood ratio statistic in maximum likelihood estimation. As such, it asymptotically follows a 
chi-squared distribution with degrees of freedom given in STAT(4). 

The Tucker and Lewis (1973) reliability coefficient, ρ, is returned in STAT(2) when the maximum likelihood 
or generalized least-squares methods are used. This coefficient is an estimate of the ratio of explained to the 
total variation in the data. It is computed as follows:

where ∣S∣ is determinant of COV, p = NVAR, k = NF, ɸ is the optimized criterion, and d = NDF.

Image Analysis

The term “image analysis” is used here to denote the noniterative image method of Kaiser (1963). It is not the 
image factor analysis discussed by Harman (1976, page 226). The image method (as well as the alpha factor 
analysis method) begins with the notion that only a finite number from an infinite number of possible vari-
ables have been measured. The image factor pattern is calculated under the assumption that the ratio of the 
number of factors to the number of observed variables is near zero so that a very good estimate for the 
unique error variances (for standardized variables) is given as one minus the squared multiple correlation of 
the variable under consideration with all variables in the covariance matrix. 

First, the matrix D2 = (diag(S−1))−1 is computed where the operator “diag” results in a matrix consisting of 
the diagonal elements of its argument, and S is the sample covariance (correlation) matrix. Then, the eigen-

values Λ and eigenvectors Γ of the matrix D−1S D−1 are computed. Finally, the unrotated image factor 

pattern matrix is computed as A = DΓ[(Λ - I)2Λ−1]1∕2.

Alpha Factor Analysis

The alpha factor analysis method of Kaiser and Caffrey (1965) finds factor-loading estimates to maximize the 
correlation between the factors and the complete universe of variables of interest. The basic idea in this 
method is as follows: only a finite number of variables out of a much larger set of possible variables is 
observed. The population factors are linearly related to this larger set while the observed factors are linearly 
related to the observed variables. Let ƒ denote the factors obtainable from a finite set of observed random 
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variables, and let ξ denote the factors obtainable from the universe of observable variables. Then, the alpha 
method attempts to find factor-loading estimates so as to maximize the correlation between ƒ and ξ. In order 
to obtain these estimates, the iterative algorithm of Kaiser and Caffrey (1965) is used.

Comments
1. FACTR makes no attempt to solve for NF, the number of factors. In general, if NF is not known in 

advance, several different values of NF should be used, and the most reasonable value kept in the final 
solution.

2. The iterative methods are generally thought to be superior from a theoretical point of view but, in 
practice, often lead to solutions which differ little from the noniterative methods. For this reason, it is 
usually suggested that a non-iterative method be used in the initial stages of the factor analysis, and 
that the iterative methods be used when issues such as the number of factors have been resolved.

3. Initial estimates for the unique variances are input when INIT = 1. If the iterative methods fail for 
these values, new initial estimates should be tried. These may be obtained by use of another factoring 
method (use the final estimates from the new method as initial estimates in the old method).
Another alternative is to let FACTR compute initial estimates of the unique error variances. When 
INIT = 0, the initial estimates are taken as a constant

divided by the diagonal elements of the

matrix. When the correlation matrix is factor analyzed, this is a constant times one minus the squared 
multiple correlation coefficient.

4. Workspace may be explicitly provided, if desired, by use of F2CTR/DF2CTR. The reference is:

CALL F2CTR (NVAR, COV, LDCOV, NF, IMTH, NDF, INIT, MAXIT, MAXSTP, EPS, EPSE, IPRINT, 
UNIQ, A, LDA, EVAL, STAT, DER, IS, COVI, WK, OLD, EVEC, HESS)

The additional arguments are as follows:

IS — Integer work vector of length equal to NVAR.

COVI — Real work vector of length equal to NVAR2.

WK — Real work vector of length equal to NVAR.

OLD — Real work vector of length equal to NVAR.

EVEC — Real work vector of length equal to NVAR2.

HESS — Real work vector of length equal to NVAR2.
5. Informational errors

Type Code Description

3 1 Too many iterations. Convergence is assumed.
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Example

The following data were originally analyzed by Emmett (1949). There are 211 observations on 9 variables. 
Following Lawley and Maxwell (1971), three factors will be obtained by the method of maximum likelihood.

      USE FACTR_INT

      IMPLICIT   NONE
      INTEGER    IMTH,IPRINT, LDA, LDCOV, MAXSTP, NDF, NF, NVAR
      REAL       EPS, EPSE
      PARAMETER  (EPS=0.000001, EPSE=0.01, IMTH=3, IPRINT=1, &
                  LDA=9, LDCOV=9, MAXSTP=10, NDF=210, NF=3, NVAR=9)
!
      REAL       A(LDA,NF), COV(LDCOV,NVAR), DER(NVAR), EVAL(NVAR), &
           STAT(6), UNIQ(NVAR)
!
      DATA COV/ &
       1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, &
       0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, &
       0.395, 0.479, 1.000, 0.355, 0.270, 0.254, 0.452, 0.219, 0.504, &
       0.471, 0.506, 0.355, 1.000, 0.691, 0.791, 0.443, 0.285, 0.505, &
       0.346, 0.418, 0.270, 0.691, 1.000, 0.679, 0.383, 0.149, 0.409, &
       0.426, 0.462, 0.254, 0.791, 0.679, 1.000, 0.372, 0.314, 0.472, &
       0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, &
       0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470, &
       0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, 1.000/ 
!
      CALL FACTR (COV, NF, UNIQ, A, IMTH=IMTH, MAXSTP=MAXSTP, EPS=EPS,&
                  EPSE=EPSE, IPRINT=IPRINT, NDF=NDF, EVAL=EVAL, &
                  STAT=STAT, DER=DER)
      END

Output

                        Unique Error Variances
     1        2        3        4        5        6        7        8
0.4505   0.4271   0.6166   0.2123   0.3805   0.1769   0.3995   0.4615

     9
0.2309

     Unrotated Loadings
         1        2        3
1   0.6642  -0.3209   0.0735
2   0.6888  -0.2471  -0.1933
3   0.4926  -0.3022  -0.2224
4   0.8372   0.2924  -0.0354
5   0.7050   0.3148  -0.1528

3 2 Too many step halvings. Convergence is assumed.

3 4 There are no degrees of freedom for the significance testing.

Type Code Description
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6   0.8187   0.3767   0.1045
7   0.6615  -0.3960  -0.0777
8   0.4579  -0.2955   0.4913
9   0.7657  -0.4274  -0.0117

                             Eigenvalues
    1       2       3       4       5       6       7       8       9
0.063   0.229   0.541   0.865   0.894   0.974   1.080   1.117   1.140

                             STAT
     1             2             3             4             5
0.0350        1.0000        7.1494       12.0000        0.8476

     6
5.0000

                      Final Parameter Updates
          1             2             3             4             5
2.02042E-07   2.95010E-07   1.80908E-07   6.38808E-08   2.00809E-07

          6             7             8             9
1.48762E-07   1.73797E-08   3.95484E-07   1.42415E-07
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FROTA

Computes an orthogonal rotation of a factor loading matrix using a generalized orthomax criterion, includ-
ing quartimax, varimax, and equamax rotations.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
W — Nonnegative constant used to define the rotation.  (Input) 

W = 0.0 results in quartimax rotations, W = 1.0 results in varimax rotations, and W = NF/2.0 results in 
equamax rotations. Other nonnegative values of W may also be used, but the best values for W are in the 
range (0.0, 5 * NF).

B — NVAR by NF matrix of rotated factor loadings.  (Output) 
If A is not needed, A and B may share the same storage locations.

T — NF by NF matrix containing the rotation transformation matrix.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,1).
NF — Number of factors.  (Input)

Default: NF = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

NRM — Row normalization option.  (Input)
If NRM = 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row normalization is not per-
formed.
Default: NRM = 1.

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 30 is typical. MAXIT ≤ 30 defaults to 30 iterations.
Default: MAXIT = 30.

EPS — Convergence constant.  (Input) 
When the relative change in the criterion function is less than EPS from one iteration to the next, con-
vergence is assumed. EPS = 0.0001 is typical. EPS ≤ 0.0 defaults to 0.0001.
Default: EPS = 0.0001.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).
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FORTRAN 90 Interface
Generic: CALL FROTA (A, W, B, T [, …])
Specific: The specific interface names are S_FROTA and D_FROTA.

FORTRAN 77 Interface
Single: CALL FROTA (NVAR, NF, A, LDA, NRM, MAXIT, W, EPS, B, LDB, T, LDT)
Double: The double precision name is DFROTA.

Description

Routine FROTA performs an orthogonal rotation according to an orthomax criterion. In this analytic method 
of rotation, the criterion function

is minimized by finding an orthogonal rotation matrix T such that (λij) = Λ = AT where A is the matrix of 
unrotated factor loadings. Here, γ ≥ 0 is a user-specified constant (W) yielding a family of rotations, and p is 
the number of variables. 

Kaiser (row) normalization can be performed on the factor loadings prior to rotation via the option parame-
ter NRM. In Kaiser normalization, the rows of A are first “normalized” by dividing each row by the square root 
of the sum of its squared elements (Harman 1976). After the rotation is complete, each row of B is “denormal-
ized” by multiplication by its initial normalizing constant. 

The method for optimizing Q proceeds by accumulating simple rotations where a simple rotation is defined 
to be one in which Q is optimized for two columns in Λ and for which the requirement that T be orthogonal 
is satisfied. A single iteration is defined to be such that each of the NF(NF - 1)/2 possible simple rotations is 
performed where NF is the number of factors. When the relative change in Q from one iteration to the next is 
less than EPS (the user-specified convergence criterion), the algorithm stops. EPS = 0.0001 is usually suffi-
cient. Alternatively, the algorithm stops when the user-specified maximum number of iterations, MAXIT, is 
reached. MAXIT = 30 is usually sufficient. 

The parameter in the rotation, γ, is used to provide a family of rotations. When γ = 0.0, a direct quartimax 
rotation results. Other values of γ yield other rotations.

Comments

Workspace may be explicitly provided, if desired, by use of F2OTA/DF2OTA. The reference is

CALL F2OTA (NVAR, NF, A, LDA, NRM, MAXIT, W, EPS, B, LDB, T, LDT, WORK)

The additional argument is:

WORK — Real work vector of length equal to NVAR.
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Example

The example is taken from Emmett (1949) and involves factors derived from nine variables. In this example, 
the varimax method is chosen with row normalization by using W = 1.0 and NRM = 1, respectively. The results 
correspond to those given by Lawley and Maxwell (1971, page 84).

      USE FROTA_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDA, LDB, LDT, NF, NVAR
      REAL       W
      PARAMETER  (LDA=9, LDB=9, LDT=3, NF=3, NVAR=9, W=1.0)
!
      REAL       A(LDA,NF), B(LDB,NF), T(LDT,NF)
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960, -.2955, &
      -.4274, .0735, -.1933, -.2224, -.0354, -.1528, .1045, -.0778, &
      .4914, -.0117/
!
      CALL FROTA (A, W, B, T)
!
      CALL WRRRN ('B', B)
      CALL WRRRN ('T', T)
      END

Output

              B
         1        2        3
1   0.2638  -0.5734   0.3888
2   0.3423  -0.6610   0.1370
3   0.1625  -0.5943   0.0622
4   0.8124  -0.3197   0.1594
5   0.7356  -0.2800   0.0036
6   0.8510  -0.1890   0.2513
7   0.2164  -0.6906   0.2768
8   0.1144  -0.2431   0.6828
9   0.2687  -0.7431   0.3804

              T
         1        2        3
1   0.7307  -0.5939   0.3367
2   0.6816   0.6623  -0.3112
3  -0.0382   0.4569   0.8887
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FOPCS 

Computes an orthogonal Procrustes rotation of a factor-loading matrix using a target matrix.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
X — NVAR by NF target matrix of the rotation.  (Input)
B — NVAR by NF matrix of rotated factor loadings.  (Output)
T — NF by NF factor rotation matrix.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,1).
NF — Number of factors.  (Input)

Default: NF = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

FORTRAN 90 Interface
Generic: CALL FOPCS (A, X, B, T [, …])
Specific: The specific interface names are S_FOPCS and D_FOPCS.

FORTRAN 77 Interface
Single: CALL FOPCS (NVAR, NF, A, LDA, X, LDX, B, LDB, T, LDT )

more...
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Double: The double precision name is DFOPCS.

Description

Routine FOPCS performs orthogonal Procrustes rotation according to a method proposed by Schöneman 
(1966). Let k = NF denote the number of factors, p = NVAR denote the number of variables, A denote the p × k 
matrix of unrotated factor loadings, T denote the k × k orthogonal rotation matrix (orthogonality requires that 

TT T be a k × k identity matrix), and let X denote the target matrix. The basic idea in orthogonal Procrustes 
rotation is to find an orthogonal rotation matrix T such that B = AT and T provides a least-squares fit between 
the target matrix X and the rotated loading matrix B. Schöneman’s algorithm proceeds by finding the singu-

lar value decomposition of the matrix AT X = UΣVT. The rotation matrix is computed as T = UVT.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2PCS/DF2PCS. The reference is:

CALL F2PCS (NVAR, NF, A, LDA, X, LDX, B, LDB, T, LDT, WK, S)
The additional arguments are as follows:

WK — Work vector of length NF * (2 * NF + 3) - 1.

S — Work vector of length NF * (NF + 1).
2. Informational errors

3. The target matrix is a hypothesized rotated factor loading matrix with loadings chosen (based on prior 
knowledge) to enhance interpretability. A simple structure solution will have most of the elements in X 
near zero or one (for correlation matrix loadings).

4. This routine may also be used to refine a solution obtained by analytic rotation in routine FROTA. 
Choose the target matrix so that it closely resembles the analytic solution but modified to have a sim-
ple structure.

Example

The following example is taken from Harman (1976, page 355). It involves the orthogonal Procrustes rotation 
of an 8 × 2 unrotated factor loading matrix. The original variables are measures of physical features (“lanki-
ness” and “stockiness”). The target matrix X is also printed. Note that because different methods are used, 
Harman (1976) gets slightly different results.

      USE FOPCS_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDA, LDB, LDT, LDX, NF, NVAR
      PARAMETER  (LDA=8, LDB=8, LDT=2, LDX=8, NF=2, NVAR=8)
!

Type Code Description

4 1 NF = 1. No rotation is possible.

4 2 The rank of AT * X is less than NF.
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      REAL       A(LDA,NF), B(LDB,NF), T(LDT,NF), X(LDX,NF)
!
      DATA A/0.856, 0.848, 0.808, 0.831, 0.750, 0.631, 0.569, 0.607, &
      -0.324, -0.412, -0.409, -0.342, 0.571, 0.492, 0.510, 0.351/
      DATA X/0.9, 0.9, 0.9, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, &
       0.9, 0.9, 0.9, 0.9/
!
      CALL FOPCS (A, X, B, T)
!
      CALL WRRRN ('A', A)
      CALL WRRRN ('X', X)
      CALL WRRRN ('B', B)
      CALL WRRRN ('T', T)
      END

Output

         A
         1        2
1   0.8560  -0.3240
2   0.8480  -0.4120
3   0.8080  -0.4090
4   0.8310  -0.3420
5   0.7500   0.5710
6   0.6310   0.4920
7   0.5690   0.5100
8   0.6070   0.3510
         X
         1        2
1   0.9000   0.0000
2   0.9000   0.0000
3   0.9000   0.0000
4   0.9000   0.0000
5   0.0000   0.9000
6   0.0000   0.9000
7   0.0000   0.9000
8   0.0000   0.9000

         B
1        2
1   0.8763   0.2643
2   0.9235   0.1896
3   0.8900   0.1677
4   0.8674   0.2348
5   0.2471   0.9096
6   0.2009   0.7745
7   0.1407   0.7510
8   0.2677   0.6481

         T
         1        2
1   0.7932   0.6090
2  -0.6090   0.7932
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FDOBL

Computes a direct oblimin rotation of a factor loading matrix.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
W — Nonpositive constant used to define the rotation.  (Input)
B — NVAR by NF matrix of rotated factor loadings.  (Output) 

If A is not needed, A and B may share the same storage locations.
T — NF by NF matrix containing the rotation transformation matrix.  (Output)
FCOR — NF by NF matrix of factor correlations.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,1).
NF — Number of factors.  (Input)

Default: NF = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

NRM — Row normalization option.  (Input) 
If NRM = 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row normalization is not per-
formed.
Default: NRM = 1.

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 30 is typical. MAXIT = 0 defaults to 30 iterations.
Default: MAXIT = 30.

EPS — Convergence constant.  (Input) 
When the relative change in the criterion function is less than EPS from one iteration to the next, con-
vergence is assumed. EPS = 0.0001 is typical. EPS = 0 defaults to 0.0001.
Default: EPS = 0.0.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

more...
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LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDFCOR = size (FCOR,1).

FORTRAN 90 Interface
Generic: CALL FDOBL (A, W, B, T, FCOR [, …])
Specific: The specific interface names are S_FDOBL and D_FDOBL.

FORTRAN 77 Interface
Single: CALL FDOBL (NVAR, NF, A, LDA, NRM, W, MAXIT, EPS, B, LDB, T, LDT, FCOR, LDFCOR)
Double: The double precision name is DFDOBL.

Description

Routine FDOBL performs direct oblimin rotation. In this analytic method of rotation, the criterion function

is minimized by finding a rotation matrix T such that (λir) = Λ = AT and (TT T )−1 is a correlation matrix. 
Here, γ ≤ 0 is a user-specified constant (W) yielding a family of rotations, and p is the number of variables. 
The rotation is said to be direct because it minimizes Q with respect to the factor loadings directly, ignoring 
the reference structure.

Kaiser normalization can be performed on the factor loadings prior to rotation via the option parameter NRM. 
In Kaiser normalization (see Harman 1976), the rows of A are first “normalized” by dividing each row by the 
square root of the sum of its squared elements. After the rotation is complete, each row of B is “denormal-
ized” by multiplication by its initial normalizing constant.

The method for optimizing Q is essentially the method first proposed by Jennrich and Sampson (1966). It 
proceeds by accumulating simple rotations where a simple rotation is defined to be one in which Q is opti-

mized for a given factor in the plane of a second factor, and for which the requirement that (TTT)−1 be a 
correlation matrix is satisfied. An iteration is defined to be such that each of the NF(NF - 1) possible simple 
rotations is performed, where NF is the number of factors. When the relative change in Q from one iteration 
to the next is less than EPS (the user-specified convergence criterion), the algorithm stops. EPS = .0001 is usu-
ally sufficient. Alternatively, the algorithm stops when the user-specified maximum number of iterations, 
MAXIT, is reached. MAXIT = 30 is usually sufficient.

The parameter in the rotation, γ, is used to provide a family of rotations. Harman (1976) recommends that γ 
be strictly less than or equal to zero. When γ = 0.0, a direct quartimin rotation results. Other values of γ yield 
other rotations. Harman (1976) suggests that the direct quartimin rotations yield the most highly correlated 
factors while more orthogonal factors result as γ approaches -∞.
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Comments
1. Workspace may be explicitly provided, if desired, by use of F2OBL/DF2OBL. The reference is:

CALL F2OBL (NVAR, NF, A, LDA, NRM, W, MAXIT, EPS, B, LDB, T, LDT, FCOR, LDFCOR, WK1, WK2, 
WK3)

The additional arguments are as follows:

WK1 — Real work vector of length equal to NVAR.

WK2 — Real work vector of length equal to NF.

WK3 — Real work vector of length equal to NVAR.
2 Informational errors

3. The parameter W determines the type of direct OBLIMIN rotation to be performed. In general, W must 
be negative. W = 0.0 yields direct quartimin rotation. As W approaches negative infinity, the orthogonal-
ity among the factors will increase.

Example

The example is a continuation of the example given in routine FACTR. It involves factors derived from nine 
variables and uses γ = - 1.

      USE FDOBL_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDA, LDB, LDFCOR, LDT, NF, NVAR
      REAL EPS, W
      PARAMETER  (EPS=0.00001, LDA=9, LDB=9, LDFCOR=3, LDT=3,NF=3, NVAR=9, &
      W=-1.0)
!
      REAL A(LDA,NF), B(LDB,NF), FCOR(LDFCOR,NF), T(LDT,NF)
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960, -.2955, &
      -.4274, .0735, -.1933, -.2224, -.0354, -.1528, .1045, -.0778, .4914, &
      -.0117/
!
      CALL FDOBL (A, W, B, T, FCOR, EPS=EPS)
!
      CALL WRRRN ('B', B)
      CALL WRRRN ('T', T)
      CALL WRRRN ('FCOR', FCOR)
      END

Type Code Description

3 1 The algorithm did not converge within MAXIT iterations.

4 1 NF = 1. No rotation is possible.
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Output

              B
         1        2        3
1   0.1127  -0.5145   0.2917
2   0.1847  -0.6602  -0.0019
3   0.0128  -0.6354  -0.0585
4   0.7797  -0.1751   0.0598
5   0.7147  -0.1813  -0.0959
6   0.8520   0.0038   0.1820
7   0.0355  -0.6845   0.1509
8   0.0276  -0.0941   0.6824
9   0.0729  -0.7100   0.2493

        T
        1       2       3
1   0.611  -0.462   0.203
2   0.923   0.813  -0.249
3   0.042   0.728   1.050

          FCOR
        1       2       3
1   1.000  -0.427   0.217
2  -0.427   1.000  -0.411
3   0.217  -0.411   1.000
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FPRMX

Computes an oblique Promax or Procrustes rotation of a factor loading matrix using a target matrix, includ-
ing pivot and power vector options.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
W — Constant used to define the orthomax orthogonal rotation.  (Input) 

Values for W are discussed in the Comments. W must be nonnegative. Not used if IMTH = 3.
F — Vector of length NF containing the power vector or the pivot constants depending upon whether 

IMTH = 1 or IMTH = 2, respectively.  (Input) 
Not used if IMTH = 3.

X — NVAR by NF target matrix for the rotation.  (Output, if IMTH = 1 or 2; input, if IMTH = 3)
For IMTH = 1 or 2, X is the target matrix derived from the orthomax rotation. For IMTH = 3, X is input.

B — NVAR by NF matrix of rotated factor loadings.  (Output)
T — NF by NF factor rotation matrix.  (Output)
FCOR — NF by NF matrix of factor correlations.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input) 

NVAR must be greater than or equal to 2.
Default: NVAR = size (A,1).

NF — Number of factors.  (Input) 
NF must be greater than or equal to 2.
Default: Nf = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDA = size (A,1).

IMTH — Method used for rotation.  (Input)
Default: IMTH = 1.

more...

IMTH Method

1 The Promax method.

2 The pivotal Promax method.

3 Oblique Procrustes method.
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NRM — Normalization option parameter.  (Input) 
NRM = 0 indicates that no row (Kaiser) normalization is to be performed in the orthomax orthogonal 
rotation. Otherwise, row normalization is performed. Not used when IMTH = 3.
Default: NRM = 1.

MAXIT — Maximum number of iterations.  (Input) 
Thirty is typical. Not used if IMTH = 3.
Default: MAXIT = 30. 

EPS — Convergence constant for the orthogonal rotation.  (Input) 
When the relative change in the orthomax criterion function is less than EPS from one iteration to the 
next, convergence is assumed. EPS = 0.0001 is typical. EPS nonpositive defaults to EPS = 0.0001.
Default: EPS = 0.0001.

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDFCOR = size (FCOR,1).

FORTRAN 90 Interface
Generic: CALL FPRMX (A, W, F, X, B, T, FCOR [, …])
Specific: The specific interface names are S_FPRMX and D_FPRMX.

FORTRAN 77 Interface
Single: CALL FPRMX (NVAR, NF, A, LDA, IMTH, NRM, W, MAXIT, EPS, F, X, LDX, B, LDB, T, LDT, 

FCOR, LDFCOR)
Double: The double precision name is DFPRMX.

Description

Routine FPRMX performs oblique rotations via the Promax, the pivotal Promax, or the oblique Procrustes 
methods. In all of these methods, a target matrix X is first either computed or specified by the user. The dif-
ferences in the methods relate to how the target matrix is first obtained.

Given a p x k target matrix, X, and a p x k orthogonal matrix of unrotated factor loadings, A, compute the 
rotation matrix T as follows: First regress each column of A on X yielding a k x k matrix β. Then, let 

γ = diag(βT β) where diag denotes the diagonal matrix obtained from the diagonal of the square matrix. Stan-

dardize β to obtain T = γ−1∕2 β. The rotated loadings are computed as B = AT while the factor correlations 

can be computed as the inverse of the T TT matrix.
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In the Promax method, the unrotated factor loadings are first rotated according to an orthomax criterion via 
routine FROTA. The target matrix X is taken as the elements of the B raised to a power greater than one but 
retaining the same sign as the original loadings. In FPRMX, column i of the rotated matrix B is raised to the 
power F(i). A power of four is commonly used. Generally, the larger the power, the more oblique the 
solution.

In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax orthogonal solution as in 
the Promax case. Then, rather than raising the i-th column in B to the power F(i), the elements xij of X are 
obtained from the elements bij of B by raising the ij element of B to the power F(i)/bij. This has the effects of 
greatly increasing in X those elements in B that are greater in magnitude than the pivot elements F(i), and of 
greatly decreasing those elements that are less than F(i).

In the oblique Procrustes method, the elements of X are specified by the user as input to the FPRMX routine. 
No orthogonal rotation is performed in the oblique Procrustes method.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2RMX/DF2RMX. The reference is:

CALL F2RMX (NVAR, NF, A, LDA, IMTH, NRM, W, MAXIT, EPS, F, X, LDX, B, LDB, T, LDT, FCOR, 
LDFCOR, QR, QRAUX, IPVT, WORK)

The additional arguments are as follows:

QR — Work vector of length NVAR * NF.

QRAUX — Work vector of length NF.

IPVT — Work vector of length NF.

WORK — Work vector of length 2 * NF.
2. Arguments W, EPS, and NRM are input arguments to routine FROTA when IMTH = 1 or 2. (They are not 

used when IMTH = 3.) See FROTA for common values of W. Generally, W can be any positive real num-
ber, but the best values lie in the range (1.0, 5.0 * NF). Generally, the variances accounted for by the 
factors approach the same value as W increases.

3. For IMTH = 1, all F(j) should be greater than 1.0, typically 4.0. Generally, the larger the values of F(j), 
the more oblique the solution will be. For IMTH = 2, F(j) should be in the interval (0.0, 1.0).

4. When IMTH = 3, the target matrix, X, is a hypothesized rotated factor loading matrix based upon prior 
knowledge with loadings chosen to enhance interpretability. A simple structure solution will have 
most of the weights X(i, j) either zero or large in magnitude. Note that the two options IMTH = 1 or 2 
attempt to achieve this simple structure based upon an initial orthogonal rotation.

Example

The following example is a continuation of the example in the FROTA procedure. It involves nine variables 
and three factors. The pivotal Promax method is illustrated.

      USE FPRMX_INT
      USE WRRRN_INT
      IMPLICIT NONE

      INTEGER    IMTH, LDA, LDB, LDFCOR, LDT, LDX, NF, NVAR
      REAL       W
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      PARAMETER  (IMTH=2, LDA=9, LDB=9, LDFCOR=3, LDT=3, LDX=9, NF=3, &
                   NVAR=9, W=1.0)
!
      REAL       A(LDA,NF), B(LDB,NF), F(NF), FCOR(LDFCOR,NF), &
             T(LDT,NF), X(LDX,NF)
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960, &
      -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528, &     
      .1045, -.0778, .4914, -.0117/
!
      DATA F/0.5, 0.5, 0.5/
!
      CALL FPRMX (A, W, F, X, B, T, FCOR, IMTH=IMTH)
!
      CALL WRRRN ('X', X)
      CALL WRRRN ('B', B)
      CALL WRRRN ('T', T)
      CALL WRRRN ('FCOR', FCOR)
      END

Output

               X
         1        2        3
1   0.0800  -0.6157   0.2967
2   0.2089  -0.7311   0.0007
3   0.0037  -0.6454   0.0000
4   0.8800  -0.1681   0.0032
5   0.8116  -0.1030   0.0000
6   0.9096  -0.0122   0.0640
7   0.0291  -0.7649   0.0982
8   0.0001  -0.0546   0.7563
9   0.0866  -0.8189   0.2807

             B
         1        2        3
1   0.0997  -0.5089   0.3038
2   0.1900  -0.6463   0.0077
3   0.0163  -0.6270  -0.0421
4   0.7991  -0.1469   0.0285
5   0.7408  -0.1531  -0.1256
6   0.8668   0.0308   0.1436
7   0.0280  -0.6777   0.1699
8  -0.0094  -0.1017   0.6911
9   0.0611  -0.7031   0.2683

            T
        1       2       3
1   0.617  -0.439   0.189
2   0.963   0.839  -0.318
3  -0.015   0.707   1.039
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           FCOR
        1       2       3
1   1.000  -0.464   0.316
2  -0.464   1.000  -0.395
3   0.316  -0.395   1.000
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FHARR

Computes an oblique rotation of an unrotated factor loading matrix using the Harris-Kaiser method.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
W — Constant used to define the rotation.  (Input) 

The value of W must be nonnegative. See Comments.
C — Constant between zero and one used to define the rotation.  (Input) 

See Comments.
B — NVAR by NF matrix containing the rotated factor loadings.  (Output)
T — NF by NF factor rotation matrix.  (Output)
FCOR — NF by NF matrix containing the factor correlations.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,1).
NF — Number of factors.  (Input)

Default: NF = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

NRM — Row normalization option.  (Input) 
If NRM = 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row normalization is not per-
formed.
Default: NRM = 1.

MAXIT — Maximum number of iterations.  (Input) 
A typical value is 30.
Default: MAXIT = 30.

EPS — Convergence constant for the rotation angle.  (Input) 
EPS = 0.0001 is typical. If EPS is less that or equal to 0.0, then EPS = 0.0001 is used.
Default: EPS = 0.0.

SCALE — Vector of length NVAR containing a scaling vector.  (Input) 
All elements in SCALE should be set to one if principal components or unweighted least squares was 
used to obtain the unrotated factor loadings. The elements of SCALE should be set to the unique error 
variances (vector UNIQ in subroutine FACTR) if the principal factor, generalized least squares, maxi-
mum likelihood, or the image method was used. Finally, in alpha factor analysis, the elements of 
SCALE should be set to the communalities (one minus the uniquenesses in standardized data).
Default: SCALE = 1.0.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).
FHARR         Chapter 9: Covariance Structures and Factor Analysis      1035



LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDFCOR = size (FCOR,1).

FORTRAN 90 Interface
Generic: CALL FHARR (A, W, C, B, T, FCOR [, …])
Specific: The specific interface names are S_FHARR and D_FHARR.

FORTRAN 77 Interface
Single: CALL FHARR (NVAR, NF, A, LDA, NRM, MAXIT, W, C, EPS, SCALE, B, LDB, T, LDT, FCOR, 

LDFCOR)
Double: The double precision name is DFHARR.

Description

Routine FHARR performs an oblique analytic rotation of unrotated factor loadings via a method proposed by 
Harris and Kaiser (1964). In this method of rotation, the eigenvectors obtained from the factor extraction are 

weighted by a factor Δc∕2 where Δ is the diagonal matrix of eigenvalues obtained in the factor extraction and 
c is a specified constant. These transformed eigenvectors are then rotated according to an orthomax criterion. 

The transformation used to obtain the weighted eigenvectors, Γ*, from the unrotated loadings, A, is given as 

Γ* = Ψ−1∕2 AΔ(c−1)∕ 2 where Ψ is the matrix of unique error variances output by routine FACTR. The matrix 
should be set to an identity matrix if the principal component, unweighted least squares, or alpha factor anal-
ysis method is used in routine FACTR to obtain the unrotated factor loadings (IMTH = 0,1, or 5). This is 
required because in these methods of factor analysis, the eigenvectors are not premultiplied by a diagonal 
matrix when obtaining the unrotated factor loadings. 

After Γ* has been computed, it is rotated according to a user-selected orthomax criterion. The member of the 
orthomax family to be used is selected via a constant W. (See the description of routine FROTA.) Because Γ* is 
used in place of A (the unrotated factor loadings in routine FROTA), the matrix resulting from the rotation is 

(after standardizing by pre and postmultiplication by the diagonal matrices U−1 and Δ1−c) a matrix of 
obliquely rotated loadings. 

Note that the effect of W is less pronounced than the effect of C. Using c = 1.0 yields an orthogonal orthomax 
rotation while c = 0.0 yields the most oblique factors. A common choice for c is given by c = 0.5. One good 
choice for W is 1.0. W = 1.0 yields a varimax rotation on the weighted eigenvectors.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2ARR/DF2ARR. The reference is:

CALL F2ARR (NVAR, NF, A, LDA, NRM, MAXIT, W, C, EPS, SCALE, B, LDB, T, LDT, FCOR, LDFCOR, 
RWK1, RWK2)
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The additional arguments are as follows:

RWK1 — Real work vector of length equal to 2 * NF.

RWK2 — Real work vector of length equal to NVAR.
2. Argument C must be between 0.0 and 1.0. The larger C is, the more orthogonal the rotated factors are. 

Rarely, should C be greater than 0.5.
3. Arguments W, EPS, and NRM are arguments to routine FROTA. See FROTA for common values of W in 

orthogonal rotations. For FHARR, the best values of W are in the range (0.0, 5.0 * NF). Generally, the 
variances of the factors converge to the same value as W increases.

Example

The example is a continuation of the example in routine FROTA. It involves 9 variables. A rotation with row 
normalization and 3 factors is performed.

      USE FHARR_INT
      USE WRRRN_INT
      IMPLICIT NONE

      INTEGER    LDA, LDB, LDFCOR, LDT, NF, NVAR
      REAL       C, W
      PARAMETER  (C=0.5, LDA=9, LDB=9, LDFCOR=3, LDT=3, NF=3, &
                  NVAR=9, W=1.0)
!
      REAL A(LDA,NF), B(LDB,NF), FCOR(LDFCOR,NF), SCALE(NVAR), &
           T(LDT,NF)
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,  &  
      -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528, &     
      .1045, -.0778, .4914, -.0117/
!
      DATA SCALE/.4505, .4271, .6165, .2123, .3805, .1769, .3995, &
      .4616, .2309/
!
      CALL FHARR (A, W, C, B, T, FCOR, SCALE=SCALE)
!
      CALL WRRRN ('B', B)
      CALL WRRRN ('T', T)
      CALL WRRRN ('FCOR', FCOR)
      END

Output

              B
         1        2        3
1   0.1542  -0.5103   0.2749
2   0.2470  -0.6477  -0.0233
3   0.0744  -0.6185  -0.0750
4   0.7934  -0.1897   0.0363
5   0.7329  -0.1909  -0.1175
6   0.8456  -0.0194   0.1610
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7   0.0966  -0.6713   0.1320
8   0.0198  -0.1067   0.6773
9   0.1340  -0.6991   0.2285

            T
        1       2       3
1   0.649  -0.469   0.175
2   0.850   0.777  -0.249
3  -0.053   0.687   1.065

          FCOR
        1       2       3
1   1.000  -0.335   0.250
2  -0.335   1.000  -0.413
3   0.250  -0.413   1.000
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FGCRF

Computes direct oblique rotation according to a generalized fourth-degree polynomial criterion.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
W — Vector of length 4 containing the constants ω1, ω2, ω3, ω4 necessary to define the rotation.  (Input) 

Some common rotations are 

where K1, K2, and γ are constants (determined by the user).

B — NVAR by NF matrix of rotated factor loadings.  (Output) 
If A is not needed, A and B can share the same storage locations.

T — NF by NF matrix containing the rotation transformation matrix.  (Output)
FCOR — NF by NF matrix of factor correlations.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,1).
NF — Number of factors.  (Input)

Default: NF = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

NRM — Row normalization option.  (Input) 
If NRM = 1, then row (i.e., Kaiser) normalization is performed. If NRM = 0, row normalization is not per-
formed.
Default: NRM = 1.

more...

Rotation W(1) W(2) W(3) W(4)

Quartimin 0 1 0 -1

Covarimin -1/NVAR 1 1/NVAR -1

Oblimin -γ/NVAR 1 γ/NVAR -1

Crawford-Ferguson 0 K1 K2 -K1 - K2
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MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 30 is typical. MAXIT ≤ 30 defaults to 30 iterations.
Default: MAXIT = 30.

EPS — Convergence constant.  (Input) 
When the relative change in the criterion function is less than EPS from one iteration to the next, con-
vergence is assumed. EPS = 0.0001 is typical. EPS ≤ 0.0 defaults to 0.0001.
Default: EPS = 0.0.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDB = size (B,1).

LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDFCOR = size (FCOR,1).

FORTRAN 90 Interface
Generic: CALL FGCRF (A, W, B, T, FCOR [, …])
Specific: The specific interface names are S_FGCRF and D_FGCRF.

FORTRAN 77 Interface
Single: CALL FGCRF (NVAR, NF, A, LDA, NRM, W, MAXIT, EPS, B, LDB, T, LDT, FCOR, LDFCOR)
Double: The double precision name is DFGCRF.

Description

Routine FGCRF performs direct oblique factor rotation for an arbitrary fourth-degree polynomial criterion 
function. Let p = NVAR denote the number of variables, and let k = NF denote the number of factors. Then, the 
criterion function

is minimized by finding a rotation matrix T such that (λij) = Λ = AT and T−1 (T−1)T is a correlation matrix. 
Here, ωi = W(i), i = 1, …, 4 are user specified constants. The rotation is said to be direct because it minimizes 
Q with respect to the factor loadings directly, ignoring the reference structure (see, e.g., Harman, 1976). 

Kaiser normalization (Harman, 1976) is specified when option parameter NRM = 1. When Kaiser normaliza-
tion is performed, the rows of A are first “normalized” by dividing each row by the square root of the sum of 
its squared elements. The rotation is then performed. The rows of B are then “denormalized” by multiplying 
each row by the initial row normalizing constant. 
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The criterion function Q was first proposed by Jennrich (1973). It generalizes the oblimin criterion function 
and the criterion function proposed by Crawford and Ferguson (1970) to an arbitrary fourth degree criterion. 
Q is optimized by accumulating simple rotations where a simple rotation is defined to be an optimal factor 

rotation (with respect to Q) for two columns of Λ, and for which the requirement that T −1 (T −1)T be a cor-
relation matrix is satisfied. FGCRF determines the optimal simple rotation by finding the roots of a cubic 
polynomial equation. The details are contained in Clarkson and Jennrich (1988).

An iteration is complete after all possible k(k - 1) simple rotations have been performed. When the relative 
change in Q from one iteration to the next is less than EPS, the algorithm stops. EPS = .0001 is usually suffi-
cient. Alternatively, the algorithm stops when the user specified maximum number of iterations, MAXIT, is 
reached. MAXIT = 30 is typical.

Notes

The parameters in the rotation, ω1, provide for a two-dimensional family of rotations. When ω1 = -γ/p, 
ω2 = 1, ω3 = γ/p, and ω4 = -1, then a direct oblimin rotation with parameter γ is performed. Direct oblimin 
rotations are also performed by routine FDOBL, which is somewhat faster. For ω1 = 0, ω2 = K1, ω3 = K2, and 
ω4 = - (K1 + K2) direct Crawford-Ferguson rotation with parameters K1 and K2 results (see Crawford and 
Ferguson 1970, or Clarkson and Jennrich 1988). Other values of ω yield other rotations. Common values for 
ω are as in Table 9.1.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2CRF/DF2CRF. The reference is:

CALL F2CRF (NVAR, NF, A, LDA, NRM, W, MAXIT, EPS, B, LDB, T, LDT, FCOR, LDFCOR, RWK1, RWK2, 
RWK3)

The additional arguments are as follows:

RWK1 — Work vector of length NVAR.

RWK2 — Work vector of length NVAR * (NF + 1).

RWK3 — Work vector of length NF2.

Table 9.1 — Specific Criteria in the General Symmetric Family

Criterion ω1 ω2 ω3 ω4

Quartimin 0 1 0 -1

Covarimin -1/p 1 1/p -1

Oblimin -γ/p 1 γ/p -1

Crawford-Ferguson 0 K1 K2 -K1 - K2
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2. Informational Error

Example

The example is a continuation of the example in routine FACTR. It involves nine variables. A Crawford-Fergu-
son rotation with row normalization and 3 factors is performed.

      USE FGCRF_INT
      USE WRRRN_INT
      INTEGER    LDA, LDB, LDFCOR, LDT, NF, NVAR
      PARAMETER  (LDA=9, LDB=9, LDFCOR=3, LDT=3, NF=3, NVAR=9)
!
      REAL       A(LDA,NF), B(LDB,NF), FCOR(LDFCOR,NF), T(LDT,NF), W(4)
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960, -.2955, &
      -.4274, .0735, -.1933, -.2224, -.0354, -.1528, .1045, -.0778, .4914, &
      -.0117/
      DATA W/0.0, 7.0, 1.0, -8.0/
!
      CALL FGCRF (A, W, B, T, FCOR)
!
      CALL WRRRN ('B', B)
      CALL WRRRN ('T', T)
      CALL WRRRN ('FCOR', FCOR)
      END

Output
              B
         1        2        3
1   0.1156  -0.3875   0.3992
2   0.2161  -0.5831   0.0924
3   0.0422  -0.5859   0.0264
4   0.8051  -0.0906   0.0886
5   0.7495  -0.1373  -0.0839
6   0.8639   0.1045   0.1987
7   0.0527  -0.5792   0.2671
8  -0.0162   0.0779   0.7748
9   0.0852  -0.5765   0.3803
            T
        1       2       3
1   0.632  -0.327   0.290
2   0.935   0.737  -0.399
3  -0.060   0.907   1.066

          FCOR
        1       2       3
1   1.000  -0.434   0.365
2  -0.434   1.000  -0.498
3   0.365  -0.498   1.000

Type Code Description

3 1 The algorithm did not converge within MAXIT iterations.
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FIMAG

Computes the image transformation matrix.

Required Arguments
T — NF by NF transformation matrix.  (Input)
TI — NF by NF image transformation matrix.  (Output)

Optional Arguments
NF — Number of factors.  (Input)

Default: NF = size (T,2).
LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDT = size (T,1).

LDTI — Leading dimension of TI exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDTI = size (TI,1).

FORTRAN 90 Interface
Generic: CALL FIMAG (T, TI [, …])
Specific: The specific interface names are S_FIMAG and D_FIMAG.

FORTRAN 77 Interface
Single: CALL FIMAG (NF, T, LDT, TI, LDTI)
Double: The double precision name is DFIMAG.

Description

Routine FIMAG computes the image transformation matrix TI from the factor rotation matrix (T). The image 
transformation matrix takes the unrotated factor loadings into the factor structure matrix when the unrotated 
loadings are computed from a correlation matrix. It is computed as the inverse of the transpose of the factor 

rotation matrix T. When orthogonal rotations are used, (TT)−1 = T so there is no reason to compute the image 
transformation matrix.

more...
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Comments
1. Workspace may be explicitly provided, if desired, by use of F2MAG/DF2MAG. The reference is:

CALL F2MAG (NF, T, LDT, TI, LDTI, RWK, IWK)
The additional arguments are as follows:

RWK — Real work vector of length NF + NF(NF - 1)/2.

IWK — Integer work vector of length NF.
2. Informational Error

Example

This example is a continuation of the example contained in the manual document for routine FROTA. The 
image transformation matrix is obtained from the orthogonal rotation matrix. Some small differences 
between the matrix TI when compared with the matrix T computed via routine FROTA can be seen. These 
differences are because of roundoff error since for orthogonal rotations, the image transformation matrix is 
the same as the rotation matrix.

      USE FIMAG_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDT, LDTI, NF
      PARAMETER  (LDT=3, LDTI=3, NF=3)
!
      REAL       T(LDT,NF), TI(LDTI,NF)
!
      DATA T/.7307, .6816, -.0382, -.5939, .6623, .4569, .3367, -.3112, &
      .8887/
!
      CALL FIMAG (T, TI)
!
      CALL WRRRN ('TI', TI)
      END

Output

              TI
         1        2        3
1   0.7307  -0.5938   0.3367
2   0.6816   0.6622  -0.3112
3  -0.0382   0.4569   0.8887

Type Code Description

3 1 T is ill-conditioned. The solution may not be accurate.
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FRVAR

Computes the factor structure and the variance explained by each factor.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
T — NF by NF factor rotation matrix.  (Input)
VAR — Vector of length NVAR containing the variances of the original variables.  (Input) 

If standardized variables were used (i.e., the loadings are from a correlation matrix), then set VAR(1) to 
any negative number. In this case, VAR may be dimensioned of length one.

S — NVAR by NF factor structure matrix.  (Output)
FVAR — Vector of length NF containing the variance accounted for by each of the NF rotated factors.  

(Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,1).
NF — Number of factors.  (Input)

Default: NF = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

LDS — Leading dimension of S exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDS = size (S,1).

FORTRAN 90 Interface
Generic: CALL FRVAR (A, T, VAR, S, FVAR [, …])
Specific: The specific interface names are S_FRVAR and D_FRVAR.

more...
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FORTRAN 77 Interface
Single: CALL FRVAR (NVAR, NF, A, LDA, T, LDT, VAR, S, LDS, FVAR)
Double: The double precision name is DFRVAR.

Description

Routine FRVAR computes the factor structure matrix (the matrix of correlations between the observed vari-
ables and the hypothesized factors) and the variance explained by each of the factors (for orthogonal 
rotations). For oblique rotations, FRVAR computes a measure of the importance of the factors, the sum of the 
squared elements in each column. 

Let Δ denote the diagonal matrix containing the elements of the vector VAR along its diagonal. The estimated 
factor structure matrix S is computed as

while the elements of FVAR are computed as the diagonal elements of

If the factors were obtained from a correlation matrix (or the factor variances for standardized variables are 
desired), then the elements of the vector VAR should either all be 1.0, or the first element of VAR should be set 
to any negative number. In either case, variances of 1.0 are used. 

The user should be careful to input the unrotated loadings. When obliquely rotated loadings are input, the 
output vector FVAR contains a measure of each factors importance, but it does not contain the variance of 
each factor.

Comments
Workspace may be explicitly provided, if desired, by use of F2VAR/DF2VAR. The reference is

CALL F2VAR (NVAR, NF, A, LDA, T, LDT, VAR, S, LDS, FVAR, TINV, WK, IWK)
The additional arguments are as follows:

TINV — Work vector of length NF2.

WK — Work vector of NF * (1 + NVAR).

IWK — Work vector of length NF.

Example

The following example illustrates the use of routine FRVAR when the structure and an index of factor impor-
tance for obliquely rotated loadings (obtained from routine FDOBL) are desired. Note in this example that the 
elements of FVAR are not variances since the rotation is oblique.

      USE FRVAR_INT
      USE WRRRN_INT
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      IMPLICIT   NONE
      INTEGER    LDA, LDS, LDT, NF, NVAR
      PARAMETER  (LDA=9, LDS=9, LDT=3, NF=3, NVAR=9)
!
      REAL       A(LDA,NF), FVAR(NF), S(LDS,NF), T(LDT,NF), VAR(NVAR)
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960, &
      -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528, .1045, &
      -.0778, .4914, -.0117/
!
      DATA T/0.611, 0.923, 0.042, -0.462, 0.813, 0.728, 0.203, -0.249, &
      1.050/
!
      DATA VAR/9*1.0/
!
      CALL FRVAR (A, T, VAR, S, FVAR)
!
      CALL WRRRN ('S', S)
      CALL WRRRN ('FVAR', FVAR, 1, NF, 1)
      END

Output

               S
         1        2        3
1   0.3958  -0.6825   0.5274
2   0.4662  -0.7385   0.3093
3   0.2715  -0.6171   0.2052
4   0.8673  -0.5328   0.3010
5   0.7712  -0.4473   0.1338
6   0.8897  -0.4348   0.3654
7   0.3606  -0.7618   0.4397
8   0.2160  -0.3860   0.7270
9   0.4303  -0.8437   0.5566

        FVAR
    1       2       3
2.170   2.559   0.915
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FCOEF

Computes a matrix of factor score coefficients for input to the routine FSCOR.

Required Arguments
A — NVAR by NF matrix of unrotated factor loadings.  (Input)
COV — The variance-covariance or correlation matrix of order NVAR from which the factor loadings were 

obtained.  (Input) 
COV is not used and may be dimensioned of length 1 if IMTH = 2 or 5.

T — NF by NF factor rotation matrix or transformation matrix.  (Input) 
If the image method is being used, then routine FIMAG needs to be called after the rotation routine to 
obtain the image transformation matrix. TI is then input for T in FCOEF. If factor score coefficients for 
the unrotated loadings are desired, T should be set to the identity matrix prior to calling FCOEF.

SCOEF — NVAR by NF factor score coefficient matrix.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,1).
NF — Number of factors.  (Input)

Default: NF = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

IMTH — Method to be used to obtain the factor scores.  (Input)
Default: IMTH = 1.

See the Comments for a table of the methods that are appropriate for a given type of factor extraction 
and rotation.

more...

IMTH Method

1 Regression method

2 Least squares method

3 Bartlett method

4 Anderson and Rubin method

5 Image score for image analysis
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LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

LDT — Leading dimension of T exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDT = size (T,1).

LDSCOE — Leading dimension of SCOEF exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDSCOE = size (SCOEF,1).

FORTRAN 90 Interface
Generic: CALL FCOEF (A, COV, T, SCOEF [, …])
Specific: The specific interface names are S_FCOEF and D_FCOEF.

FORTRAN 77 Interface
Single: CALL FCOEF (NVAR, NF, A, LDA, IMTH, COV, LDCOV, T, LDT, 

SCOEF, LDSCOE)
Double: The double precision name is DFCOEF.

Description

Routine FCOEF computes factor score coefficients that may subsequently be used in computing the factor 
scores in routine FIMAG. Five options for computing the coefficients are available according to the input 
parameter IMTH. The method that should be used depends upon the method used in extracting the factor 
loadings. See the Comments section for values to use for IMTH when various methods of factor extraction are 
used.

Let S denote the covariance (or correlation) matrix from which the factors were obtained, let β denote the fac-

tor score coefficients, let U2 = diag(S - AAT) denote the unique error variances, and let B = AT denote the 
rotated factor loadings (if coefficients for the unrotated loadings are desired, then B = A). The various meth-
ods for computing the factor score coefficients are discussed in detail in Harman (1976, Chapter 16) and are 
given as follows:

1. The regression method may be used with any method of factor extraction and rotation (but not with 
image analysis). The coefficients are computed as follows:

2. The least-squares method may also be used with any method of factor extraction and rotation (but not 
in image analysis). The factor score coefficients are computed as
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Note that estimated coefficients in the least-squares method yield different factor scores depending 
upon the scale of the observed variables. In particular, factor scores computed from standardized data 
(i.e., for the correlation matrix) will be different from factor scores computed from the raw data (i.e., 
from a covariance matrix). Generally, the differences will not be great. These differences are not 
observed in any of the other methods.

3. The Bartlett (1937) method may be used with common factor models only. The coefficients are com-
puted as

4. The Anderson and Rubin (1956) method may also be used with common factor models only. It is a 
modification of the Bartlett method where the modification is used to insure that the factors obtained 
are orthogonal. The factor score coefficients are computed as 

5. The image method is appropriate for image analysis. In this method, the coefficients are computed as

where BI is the image score coefficient matrix, and TI is the image transformation matrix (the matrix TI 
in routine FIMAG).
Harman (1976, pages 385-387) discusses choosing a method for computing factor score coefficients. 
According to Harman, the most desirable properties of any of the methods can be summarized as 
follows.

 Validity—The estimated factor scores should have high correlation with the population 
factor scores.

 Orthogonality—The estimated factor scores should not correlate highly with one another.

 Univocal—The estimated factor scores should correlate only with the corresponding true 
factor scores.

With these criteria in mind, Harman states that:
1. The regression method yields factor scores which usually have the highest correlation with the 

true factor scores.
2. The Bartlett and least-squares methods are univocal but not orthogonal.
3. The Anderson and Rubin method is orthogonal but not univocal.
4. Univocality is of more significance than orthogonality.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2OEF/DF2OEF. The reference is:

CALL F2OEF (NVAR, NF, A, LDA, IMTH, COV, LDCOV, T, LDT, SCOEF, LDSCOE, B, RWK1, S, UNIQ, 
RWK2)

The additional arguments are as follows:

B — Real work vector of length 2 * NVAR * NF if IMTH = 4, and of length NVAR * NF otherwise.
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RWK1 — Real work vector of length NVAR2 if IMTH = 1 or 4, and of length NF2 if IMTH = 2 or 3. 
Otherwise, RWK1 is of length 1.

S — Real work vector of length NF2 if IMTH = 4. Otherwise, S is dimensioned of length 1.

UNIQ — Real work vector of length NVAR if IMTH = 2, 3, or 4. Otherwise, UNIQ is dimensioned of 
length 1.

RWK2 — Real work vector of length NF if IMTH is not 5. If IMTH = 5, then RWK2 is of length 1.
2. The method used for computing the factor score coefficients depends both upon the method used to 

extract the factor loadings in routine FACTR and whether the factor loadings were orthogonally or 
obliquely rotated. In the following table, the numbers in parentheses refer to IMTH in routine FACTR 
and the numbers in the cells refer to IMTH in FCOEF. 

Example

In the following example, the regression method is used to obtain estimated factor score coefficients for a 
9-variable problem with 3 factors. An oblique rotation method was used with the maximum likelihood com-
mon factor model to obtain the factor loadings. Routine FDOBL was used to obtain the oblique factor 
loadings.

      USE FCOEF_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    IMTH, LDA, LDCOV, LDSCOE, LDT, NF, NVAR
      PARAMETER  (IMTH=1, LDA=9, LDCOV=9, LDSCOE=9, LDT=3, NF=3, NVAR=9)
!
      REAL A(LDA,NF), COV(LDCOV,NVAR), SCOEF(LDSCOE,NF), T(LDT,NF)
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960, &
      -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528, &
      .1045, -.0778, .4914, -.0117/
!
      DATA T/0.611, 0.923, 0.042, -0.462, 0.813, 0.728, 0.203, &
      -0.249, 1.050/
!
      DATA COV/1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434,&

FACTR 
Method (IMTH) 

No 
Rotation

Orthogonal 
Rotation

Oblique 
Rotation 

Component (0) 1, 2 1, 2 1, 2 

Image (4) 5 5 5 

Common Factor 

ULS (1) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 

GLS (2) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 

ML (3) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 

Alpha (5) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 
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      0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, &
      0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254, 0.452, 0.219, &
      0.504, 0.471, 0.506, 0.355, 1.000, 0.691, 0.791, 0.443, 0.285, &
      0.505, 0.346, 0.418, 0.270, 0.691, 1.000, 0.679, 0.383, 0.149, &
      0.409, 0.426, 0.462, 0.254, 0.791, 0.679, 1.000, 0.372, 0.314, &
      0.472, 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, &
      0.680, 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, &
      0.470, 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, &
      1.000/
!
      CALL FCOEF (A, COV, T, SCOEF)
!
      CALL WRRRN ('SCOEF', SCOEF)
      END

Output

            SCOEF
         1        2        3
1  -0.0102  -0.1350   0.1781
2   0.0269  -0.2191  -0.0825
3  -0.0080  -0.1536  -0.0791
4   0.3788  -0.0597  -0.0596
5   0.2067  -0.0554  -0.1768
6   0.4885   0.1103   0.2084
7  -0.0258  -0.2317   0.0612
8  -0.0474   0.0345   0.5269
9  -0.0431  -0.3967   0.2507
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FSCOR

Computes a set of factor scores given the factor score coefficient matrix.

Required Arguments
SCOEF — NVAR by NF matrix containing the factor score coefficients as output from routine FCOEF.  

(Input)
X — NOBS by NVAR data matrix for which factor scores are to be computed.  (Input)
XBAR — Vector of length NVAR containing the means of the NVAR variables.  (Input)
STD — Vector of length NVAR containing the standard deviations of the NVAR variables.  (Input) 

If STD(1) is not positive, then it is assumed that the factor score coefficients are from a covariance 
matrix and the observed variables are not standardized to unit variance.

SCOR — NOBS by NF matrix containing the factor scores.  (Output) 
If X is not needed, X and SCOR can share the same memory locations.

Optional Arguments
NVAR — Number of variables.  (Input)

Default: NVAR = size (SCOEF,1).
NF — Number of factors.  (Input)

Default: NF = size (SCOEF,2).
LDSCOE — Leading dimension of SCOEF exactly as specified in the dimension statement in the calling 

program.  (Input) 
Default: LDSCOE = size (SCOEF,1).

NOBS — Number of observations for which factor scores are to be computed.  (Input)
Default: NOBS = size (X,1).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X, 1).

LDSCOR — Leading dimension of SCOR exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSCOR = size (SCOR,1).

FORTRAN 90 Interface
Generic: CALL FSCOR (SCOEF, X, XBAR, STD, SCOR [, …])
Specific: The specific interface names are S_FSCOR and D_FSCOR.

FORTRAN 77 Interface
Single: CALL FSCOR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR, STD, SCOR, LDSCOR)
Double: The double precision name is DFSCOR.
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Description

Routine FSCOR computes the factor scores from the factor score coefficient matrix. In FSCOR, the data are 
input as originally observed, and standardization is performed as required according to the value of STD(1). 
When the factor loadings are computed from the correlation matrix, the observed data must be standardized 
to a mean of zero and a variance of one prior to computing the factor scores. This requires that STD contain 
the observed standard deviations of the observed data and that XBAR contain the means. On the other hand, 
if the factor loadings are computed from the covariance matrix, then the observed data must be standardized 
to a mean of zero, but the variance must be left unchanged in computing the factor scores. In this case, STD(1) 
must be negative or zero. 

After standardizing the observed data, the factor scores are computed as the product of the factor score coef-
ficient matrix times the standardized data. If factor scores are computed from the same data from which the 
covariance matrix was computed, then the sample variance (using weights and frequencies as required) of 
the resulting factor scores will be 1.0.

Comments
Workspace may be explicitly provided, if desired, by use of F2COR/DF2COR. The reference is

CALL F2COR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR, STD, SCOR, LDSCOR, WK)
The additional argument is

WK — Work vector of length NVAR.

Example

The following example is a continuation of the example given in the manual document for routine FACTR. 
The rotated loadings are those obtained from the manual document for routine FROTA, and the factor score 
coefficients are as described in the manual document for routine FCOEF.

      USE FSCOR_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDSCOE, LDSCOR, LDX, NF, NOBS, NVAR
      PARAMETER  (LDSCOE=2, LDSCOR=5, LDX=5, NF=1, NOBS=5, NVAR=2)
!
      REAL       SCOEF(NVAR,NF), SCOR(LDSCOR,NF), STD(NVAR), X(LDX,NVAR),&
      XBAR(NVAR)
!
      DATA X/40.0, 60.0, 30.0, 15.0, 45.0, 3.0, 9.0, 2.0, 0.0, 4.0/
      DATA SCOEF/0.33563, 0.33562/
      DATA XBAR/38.0, 3.6/, STD/16.80774, 3.361547/
!
      CALL FSCOR (SCOEF, X, XBAR, STD, SCOR)
!
      CALL WRRRN ('Factor Scores', SCOR)
      END
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Output

Factor Scores
1  -0.0200
2   0.9785
3  -0.3195
4  -0.8187
5   0.1797
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FRESI

Computes communalities and the standardized factor residual correlation matrix.

Required Arguments
COV — NVAR by NVAR matrix containing the variance-covariance or correlation matrix.  (Input) 

Only the upper triangular part of COV is referenced.
A — NVAR by NF orthogonal factor-loading matrix.  (Input)
Y — Vector of length NVAR containing the communalities.  (Output)
RESID — NVAR by NVAR matrix containing the normalized residual variance-covariance or correlation 

matrix.  (Output)

Optional Arguments
NVAR — Number of variables.  (Input) 

Default: NVAR = size (COV,1).
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOV = size (COV,1).

NF — Number of factors.  (Input)
Default: NF = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDA = size (A,1).

LDRESI — Leading dimension of RESID exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDRESI = size (RESID,1).

FORTRAN 90 Interface
Generic: CALL FRESI (COV, A, Y, RESID [, …])
Specific: The specific interface names are S_FRESI and D_FRESI.

FORTRAN 77 Interface
Single: CALL FRESI (NVAR, COV, LDCOV, NF, A, LDA, Y, RESID, LDRESI)
Double: The double precision name is DFRESI.

Description

Routine FRESI computes the communalities and a standardized residual covariance/correlation matrix for 
input covariance/correlation matrix COV. The user must also input the orthogonal (unrotated) factor load-
ings, A, obtained from the matrix COV. Let ai denote the i-th row of matrix A. Then, the communalities are 
given as
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where yi is the i-th communality. The residual covariance/correlation matrix is given by

where sij denotes an element of the covariance/correlation matrix and R = (rij) denotes the residual matrix. 
Standardization is performed by dividing the rij by 

where ui= sii -yi is the unique error variance for the i-th variable. If ui is zero (or slightly less than zero due to 
roundoff error), ui = 1.0 is assumed and division by zero is avoided.

Example

The following example computes the residual correlation matrix with communalities in a 9-factor problem. 
The resulting residual correlations do not seem to exhibit any pattern.

      USE FRESI_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDA, LDCOV, LDRESI, NF, NVAR
      PARAMETER  (LDA=9, LDCOV=9, LDRESI=9, NF=3, NVAR=9)
!
      REAL       A(9,3), COV(9,9), RESID(9,9), Y(9)
!
      DATA COV/1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, &
      0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, &
      0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254, &
      0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, 0.691, &
      0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691, &
      1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254, &
      0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547, &
      0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434, &
      0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470, &
      0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, &
      1.000/
!
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579, &
      .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960, &
      -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528, .1045, &
      -.0778, .4914, -.0117/
!
      CALL FRESI (COV, A, Y, RESID)
!
      CALL WRRRN ('Communalities', Y, 1, NVAR, 1)
      CALL WRRRN ('Residuals', RESID)
      END
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Output

                            Communalities
     1        2        3        4        5        6        7        8
0.5495   0.5729   0.3834   0.7877   0.6195   0.8231   0.6005   0.5385

     9
0.7691

                                Residuals
        1       2       3       4       5       6       7       8       9
1   1.000   0.001  -0.024   0.037  -0.024  -0.016   0.036  -0.002  -0.018
2   0.001   1.000   0.043  -0.017  -0.048   0.041  -0.052  -0.023   0.031
3  -0.024   0.043   1.000   0.064  -0.033  -0.037  -0.022   0.025  -0.013
4   0.037  -0.017   0.064   1.000   0.012  -0.004   0.008   0.017  -0.052
5  -0.024  -0.048  -0.033   0.012   1.000  -0.003   0.075  -0.014   0.007
6  -0.016   0.041  -0.037  -0.004  -0.003   1.000  -0.046  -0.003   0.036
7   0.036  -0.052  -0.022   0.008   0.075  -0.046   1.000   0.008   0.011
8  -0.002  -0.023   0.025   0.017  -0.014  -0.003   0.008   1.000  -0.004
9  -0.018   0.031  -0.013  -0.052   0.007   0.036   0.011  -0.004   1.000
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MVIND

Computes a test for the independence of k sets of multivariate normal variables.

Required Arguments
NDF — Number of degrees of freedom in COV.  (Input)
COV — NVAR by NVAR variance-covariance matrix.  (Input)
NVSET — Index vector of length NGROUP.  (Input)

NVSET(i) gives the number of variables in the i-th set of variables. The first NVSET(1) variables in COV 
define the first set of covariates, the next NVSET(2) variables define the second set of covariates, etc.

STAT — Vector of length 4 containing the output statistics.  (Output) 

Optional Arguments
NVAR — Number of variables in the covariance matrix.  (Input)

Default: NVAR = size (COV,2).
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOV = size (COV,1).

NGROUP — Number of sets of variables to be tested for independence.  (Input)
Default: NGROUP = size (NVSET,1).

FORTRAN 90 Interface
Generic: CALL MVIND (NDF, COV, NVSET, STAT [, …])
Specific: The specific interface names are S_MVIND and D_MVIND.

FORTRAN 77 Interface
Single: CALL MVIND (NDF, NVAR, COV, LDCOV, NGROUP, NVSET, STAT)

more...

I STAT(I)

1 Statistic V for testing the hypothesis of independence of the NGROUP sets of 
variables.

2 Chi-squared statistic associated with V.

3 Degrees of freedom for STAT(2).

4 Probability of exceeding STAT(2) under the null hypothesis of independence.
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Double: The double precision name is DMVIND.

Description

Routine MVIND computes a likelihood ratio test statistic proposed by Wilks (1935) for testing the indepen-
dence of NGROUP sets of multivariate normal variates. The likelihood ratio statistic is computed as the ratio of 
the determinant ∣S∣ of the sample covariance matrix to the product of the determinants ∣S1∣…∣SK∣ of the 
covariance matrices of each of the k = NGROUP sets of variates. An asymptotic chi-squared statistic obtained 
from the likelihood ratio, along with corresponding p-value, is computed according to formulas given by 
Morrison (1976, pages 258-259). The chi-squared statistic is computed as:

where n = NDF,

where ∣Sii∣ is the determinant of the i-th covariance matrix, k = NGROUP, and pi = NVSET(i), and ∣S∣ is the 
determinant of COV. 

Because determinants appear in both the numerator and denominator of the likelihood ratio, the test statistic 
is unchanged when correlation matrices are substituted for covariance matrices as input to MVIND. 

In using MVIND, the covariance matrix must first be computed (possibly via routine CORVC, see Chapter 3, 
“Correlation”). The covariance matrix may then need to be rearranged (possible via routine RORDM) so that the 
NVSET(1) variables in the first set correspond to the first NVSET(1) columns (and rows) of the covariance 
matrix, with the next NVSET(2) columns and rows containing the variables for the second set of variables, etc. 
With this special arrangement of the covariance matrix, routine MVIND may then be called.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2IND/DM2IND. The reference is:

CALL M2IND (NDF, NVAR, COV, LD COV, NGROUP, NVSET, STAT, FACT, WK, IPVT)
The additional arguments are as follows:

FACT — Work vector of length NVAR2.

WK — Work vector of length NVAR.

IPVT — Work vector of length NVAR.
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2. Informational errors 

Example

The example is taken from Morrison (1976, page 258). It involves two sets of covariates, with each set having 
two covariates. The null hypothesis of no relationship is rejected.

      USE MVIND_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LDCOV, NDF, NGROUP, NVAR
      PARAMETER  (NDF=932, NGROUP=2, NVAR=4, LDCOV=NVAR)
!
      INTEGER    NOUT, NVSET(NGROUP)
      REAL       COV(NVAR,NVAR), STAT(4)
!
      DATA COV/1.00, 0.45, -0.19, 0.43, 0.45, 1.00, -0.02, 0.62, & 
     -0.19, -0.02, 1.00, -0.29, 0.43, 0.62, -0.29, 1.00/
!
      DATA NVSET/2, 2/
!
      CALL MVIND (NDF, COV, NVSET, STAT)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (' Likelihood ratio ........... ', F12.4, /, ' ', &
       'Chi-squared ................ ', F9.1, /, ' Degrees of '& 
      , 'freedom ......... ', F9.1, /, ' p-value ', & 
         '.................... ', F12.4)
      END

Output

Likelihood ratio ...........       0.5497
Chi-squared ................     556.2
Degrees of freedom .........       4.0
p-value ....................       0.0000

Type Code Description

4 1 A covariance matrix for a subset of the variables is singular.

4 2 The covariance matrix for all variables is singular.
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CANCR

Performs canonical correlation analysis from a data matrix.

Required Arguments
X — NOBS by NVAR1 + NVAR2 + m data matrix where m is 0, 1, or 2 depending on whether any columns of 

X correspond to frequencies or weights.  (Input) 
Each row of X contains an observation of the NVAR1 + NVAR2 variables for which canonical correla-
tions are desired (plus a weight and/or a frequency variable if IFRQ and/or IWT(see below) are not 
zero). If both IWT and IFRQ are zero, m is 0; 1, if one of IFRQ or IWT is positive; and 2, otherwise. X 
may not have any missing values (NaN, not a number).

IND1 — Vector of length NVAR1 containing the column numbers in X of the group 1 variables.  (Input)
IND2 — Vector of length NVAR2 containing the column numbers in X of the group 2 variables.  (Input)
XX — NOBS by NVAR1 + NVAR2 + m matrix containing the canonical scores.  (Output) 

m is defined in the description for X. X and XX may occupy the same storage locations. Canonical 
scores are returned in the first NVAR1 + NVAR2 columns of XX. Scores for the NVAR1 variables come 
first. If one of IFRQ or IWT are not zero, then the last column of XX contains the weight or frequency. If 
both IFRQ and IWT are not zero, then the frequencies and weights are in the second to last and last col-
umn of XX, respectively.

CORR — NV by 6 matrix of output statistics.  (Output) 
NV is the minimum of NVAR1 and NVAR2. CORR has the following statistics.

If an F statistic is negative, then CORR(i, 6) is set to one. If either CORR(i, 4) or CORR(i, 5) is not 
positive, then CORR(i, 6) is set to the missing value code (NaN).

COEF1 — NVAR1 by NVAR1 matrix containing the group 1 canonical coefficients.  (Output) 
The columns of COEF1 contain the vectors of canonical coefficients for group 1.

more...

Col. Statistic

1 Canonical correlations sorted from the largest to the smallest.

2 Wilks’ lambda for testing that the current and all smaller canonical correla-
tions are zero.

3 Rao’s F corresponding to Wilks’ lambda. If the canonical correlation is greater 
than 0.99999, then F is set to 9999.99.

4 Numerator degrees of freedom for F.

5 Denominator degrees of freedom for F.

6 Probability of a larger F statistic.
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COEF2 — NVAR2 by NVAR2 matrix containing the group 2 canonical coefficients.  (Output) 
The columns of COEF2 contain the vectors of canonical coefficients for group 2.

COEFR1 — NVAR1 by NV matrix containing the correlations between the group 1 variables and the group 
1 canonical scores.  (Output) 
NV is the minimum of NVAR1 and NVAR2.

COEFR2 — NVAR2 by NV matrix containing the correlations between the group 2 variables and the group 
2 canonical scores.  (Output) 
NV is the minimum of NVAR1 and NVAR2.

STAT — 15 by NVAR1 + NVAR2 matrix containing statistics on all of the variables.  (Output) 
The first NVAR1 columns of STAT correspond to the group one variables with the last NVAR2 columns 
corresponding to the group two variables. 

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NVAR1 — Number of variables in group 1.  (Input)

Default: NVAR1 = size (IND1,1).
NVAR2 — Number of variables in group 2.  (Input)

Default: NVAR2 = size (IND2,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size(X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

Row Statistic

1 Means

2 Variances

3 Standard deviations

4 Coeffici ents of skewness

5 Coefficients of excess (kurtosis)

6 Minima

7 Maxima

8 Ranges

9 Coefficients of variation, when defined, 0.0 otherwise

10 Numbers of nonmissing observations

11 Lower endpoints of 95% confidence interval for the means

12 Upper endpoints of 95% confidence interval for the means

13 Lower endpoints of 95% confidence interval for the variances

14 Upper endpoints of 95% confidence interval for the variances

15 Sums of the weights if IWT greater than zero, 0.0 otherwise
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IFRQ — Frequency option.  (Input) 
If IFRQ = 0, then all frequencies are 1. If IFRQ is positive, then column number IFRQ of X contains the 
nonnegative frequencies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
If IWT = 0, then there is no weighting, i.e., all weights are 1. If IWT is positive, then column number 
IWT of X contains the nonnegative weights.
Default: IWT = 0.

TOL — Constant used for determining linear dependence.  (Input) 
If the squared multiple correlation coefficient of a variable with its predecessors in IND1 (or IND2) is 
greater than 1 - TOL, then the variable is considered to be linearly dependent upon the previous vari-
ables; it is excluded from the analysis. TOL = .001 is a typical value. TOL must be in the exclusive range 
of 0.0 to 1.0.
Default: TOL = .001.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

LDXX — Leading dimension of XX exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDXX = size (XX,1).

LDCORR — Leading dimension of CORR exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCORR = size (CORR,1).

LDCOF1 — Leading dimension of COEF1 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCOF1 = size (COEF1,1).

LDCOF2 — Leading dimension of COEF2 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCOF2 = size (COEF2,1).

LDCFR1 — Leading dimension of COEFR1 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCFR1 = size (COEFR1,1).

LDCFR2 — Leading dimension of COEFR2 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCFR2 = size (COEFR2,1).

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSTAT = size(STAT,1).

FORTRAN 90 Interface
Generic: CALL CANCR (X, IND1, IND2, XX, CORR, COEF1, COEF2, COEFR1, COEFR2, STAT [, …])

IPRINT Action

0 No printing.

1 Print CORR, COEF1, COEF2, COEFR1, COEFR2, and STAT.

2 Print all output.
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Specific: The specific interface names are S_CANCR and D_CANCR.

FORTRAN 77 Interface
Single: CALL CANCR (NOBS, NVAR1, NVAR2, NCOL, X, LDX, IFRQ, IWT, IND1, IND2, TOL, IPRINT, 

XX, LDXX, CORR, LDCORR, COEF1, LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1, COEFR2, 
LDCFR2, STAT, LDSTAT)

Double: The double precision name is DCANCR.

Description

Routine CANCR computes the canonical correlations, the canonical coefficients, the canonical scores, Wilks’ 
lambda for testing the independence of two sets of variates, and a series of Bartlett’s tests of the hypothesis 
that the k-th largest and all larger canonical correlations are simultaneously zero. A matrix of observations is 
used in these computations. 

Let xij denote the j-th variable on the i-th observation, wi denote the observation weight, fi denote the obser-

vation frequency, Γ11 denote the upper triangular Cholesky (RT R) factorization of the sample covariance 

matrix of the group 1 variables, Γ22 denote the upper triangular Cholesky (RT R) factorization of the group 2 
variables sample covariance matrix, and

where

is the sample estimate of the matrix of covariances between the group 1 and the group 2 variables. Then, the 
computational procedure in obtaining the canonical correlations is as follows:

1. The weighted mean of each variable is computed via the standard formula (see UVSTA, Chapter 1, 
“Basic Statistics”). The means are then subtracted from the observations. 

2. Each element in the i-th row of X is multiplied by

3. Gram-Schmidt orthogonalization is used on X to obtain Y1 and Y2, where Y1 and Y2 are the results of 
the Gram-Schmidt orthogonalization of the group 1 and the group 2 variables, respectively. The matri-
ces Γ11and Γ22 are obtained as a by-product of the orthogonalization. Compute

4. The canonical correlations are obtained as the singular values of the matrix Γ12. Denote the left and 
right orthogonal matrices obtained as a by-product of this decomposition by L and R, respectively.

5. The canonical coefficients are obtained from L and R by multiplying L and R by the inverses of Γ11and 
Γ22, respectively (see Golub 1969).
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6. The correlations of the original variables with the canonical variables are obtained by multiplying L 
and R by Γ11and Γ22, respectively.

7. The canonical scores are obtained by multiplying the matrices Y1 and Y2 by the matrices L and R, 
respectively, and then dividing each row of Y1 and Y2 by

8. Wilks’ lambda, the Bartlett’s tests, Rao’s F corresponding to these tests, the numerator and denomina-
tor degrees of freedom of F, and the significance level of F are computed as in Rao (1973, page 556). 
Bartlett’s tests are computed as

where q = NVAR2 is the number of canonical correlations, the canonical correlations are ordered from 
largest to smallest, and ρj denotes the j-th largest canonical correlation. Wilks’ lambda is given as Λ1. 
The degrees of freedom in the numerator of the corresponding Rao’s F statistic is given as

d1 = pu
where p = v1 - i + 1, u = v2 - i + 1, v1 = NVAR2, and v2 = NVAR1. Let

where t is the degrees of freedom in COV(Σi fi - 1), and let

if p2 + u2 - 5 ≠ 0, and let s = 2 otherwise. Then, Rao’s F corresponding to Bartlett’s test is computed as

Rao’s F has numerator degrees of freedom d2 = ms - pu/2 + 1. The significance level of F is obtained 
from the standard F distribution.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2NCR/DC2NCR. The reference is:

CALL C2NCR (NOBS, NVAR1, NVAR2, NCOL, X, LDX, IFRQ, IWT, IND1, IND2, TOL, IPRINT, XX, 
LDXX, CORR, LDCORR, COEF1, LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1, COEFR2, LDCFR2, 
STAT, LDSTAT, R, S, IND, WORK, WKA, WK)

The additional arguments are as follows:
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R — Work vector of length NVAR12.

S — Work vector of length NVAR22.

IND — Work vector of length NVAR1 + NVAR2 + 2.

WORK — Work vector of length max(NOBS, 2 * (NVAR1 + NVAR2))

WKA — Work vector of length (max (NVAR1, NVAR2))2.

WK — Work vector of length 3 * max(NVAR1, NVAR2) - 1.
2. Informational errors 

Examples

Example 1

The following example is taken from Levin and Marascuilo (1983), pages 191–197. It is examining the rela-
tionship between the performance of individuals in a sociology course and predictor variables. The measures 
of performance in the sociology course are two midterms examinations, a final examination, and a course 
evaluation, the predictor variables are social class, sex, grade point average, college board test score, whether 
the student has previously taken a course in sociology, and the student’s score on a pretest.

      USE WRRRL_INT
      USE CANCR_INT
      IMPLICIT NONE

      INTEGER    IPRINT, LDCFR1, LDCFR2, LDCOF1, LDCOF2, LDCORR, LDSTAT,&
           LDX, LDXX, NCOL, NOBS, NV, NVAR1, NVAR2, I
      REAL       TOL
      PARAMETER  (IPRINT=1, LDSTAT=15, NCOL=10, NOBS=40, NVAR1=6, & 
                  NVAR2=4, TOL=0.0001, LDCFR1=NVAR1, LDCFR2=NVAR2, &
                  LDCOF1=NVAR1, LDCOF2=NVAR2, LDX=NOBS, LDXX=NOBS, &
                  NV=NVAR2, LDCORR=NV)
!
      INTEGER    IND1(NVAR1), IND2(NVAR2)
      REAL       COEF1(LDCOF1,NVAR1), COEF2(LDCOF2,NVAR2), &
           COEFR1(LDCFR1,NV), COEFR2(LDCFR2,NV), &
           CORR(LDCORR,6),STAT(LDSTAT,NVAR1+NVAR2), &
           X(LDX,NCOL), XX(LDXX,NCOL)
      CHARACTER  FMT*35, NUMBER(1)*6, XLAB(11)*25
!

Type Code Description

3 1 The standardized cross covariance matrix is not of full rank or is very ill-con-
ditioned. Small canonical correlations may not be accurate.

3 2 One or more variables is linearly dependent upon the proceeding variables 
in its group.

4 3 The sum of the frequencies is equal to zero. The sum of the frequencies must 
be positive.

4 4 The sum of the weights is equal to zero. The sum of the weights must be 
positive.
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      DATA IND1/1, 2, 3, 4, 5, 6/, IND2/7, 8, 9, 10/
      DATA (X(I,1),I=1,NOBS)/3*2.0, 3.0, 2.0, 3.0, 1.0, 2.0, 3.0, &
      2*2.0, 3.0, 1.0, 4*2.0, 3.0, 3*2.0, 1.0, 3*2.0, 1.0, 2.0, &
      1.0, 2.0, 3.0, 2*2.0, 2*1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0/
      DATA (X(I,2),I=1,NOBS)/6*1.0, 0.0, 2*1.0, 3*0.0, 3*1.0, 3*0.0, &
      1.0, 0.0, 3*1.0, 3*0.0, 4*1.0, 0.0, 8*1.0, 0.0/
      DATA (X(I,3),I=1,NOBS)/3.55, 2.70, 3.50, 2.91, 3.10, 3.49, 3.17, &
      3.57, 3.76, 3.81, 3.60, 3.10, 3.08, 3.50, 3.43, 3.39, 3.76, &
      3.71, 3.00, 3.47, 3.69, 3.24, 3.46, 3.39, 3.90, 2.76, 2.70, &
      3.77, 4.00, 3.40, 3.09, 3.80, 3.28, 3.70, 3.42, 3.09, 3.70, &
      2.69, 3.40, 2.95/
      DATA (X(I,4),I=1,NOBS)/410.0, 390.0, 510.0, 430.0, 600.0, &
          2*610.0, 560.0, 700.0, 460.0, 590.0, 500.0, 410.0, 470.0, &  
      210.0, 610.0, 510.0, 600.0, 470.0, 460.0, 800.0, 610.0, &
      490.0, 470.0, 610.0, 580.0, 410.0, 630.0, 790.0, 490.0, &     
      400.0, 2*610.0, 500.0, 430.0, 540.0, 610.0, 400.0, 390.0, & 
      490.0/
      DATA (X(I,5),I=1,NOBS)/8*0.0, 4*1.0, 0.0, 2*1.0, 0.0, 1.0, 0.0, &
      1.0, 0.0, 1.0, 3*0.0, 1.0, 2*0.0, 2*1.0, 2*0.0, 4*1.0, &
      5*0.0/
      DATA (X(I,6),I=1,NOBS)/17.0, 20.0, 22.0, 13.0, 16.0, 28.0, 14.0, &
      10.0, 28.0, 30.0, 28.0, 15.0, 24.0, 15.0, 26.0, 16.0, 25.0, &
      3.0, 5.0, 16.0, 28.0, 13.0, 9.0, 13.0, 30.0, 10.0, 13.0, &
      8.0, 29.0, 17.0, 15.0, 16.0, 13.0, 30.0, 2*17.0, 25.0, &
      10.0, 23.0, 18.0/
      DATA (X(I,7),I=1,NOBS)/43.0, 50.0, 47.0, 24.0, 47.0, 57.0, &
      2*42.0, 69.0, 48.0, 59.0, 21.0, 52.0, 2*35.0, 59.0, 68.0, & 
      38.0, 45.0, 37.0, 54.0, 45.0, 31.0, 39.0, 67.0, 30.0, 19.0, &
      71.0, 80.0, 47.0, 46.0, 59.0, 48.0, 68.0, 43.0, 31.0, 64.0, &
      19.0, 43.0, 20.0/
      DATA (X(I,8),I=1,NOBS)/61.0, 47.0, 79.0, 40.0, 60.0, 59.0, 61.0, &
      79.0, 83.0, 67.0, 74.0, 40.0, 71.0, 40.0, 57.0, 58.0, 66.0, & 
      58.0, 24.0, 48.0, 100.0, 83.0, 70.0, 48.0, 85.0, 14.0, &
      55.0, 100.0, 94.0, 45.0, 58.0, 90.0, 84.0, 81.0, 49.0, &
      54.0, 87.0, 36.0, 51.0, 59.0/
      DATA (X(I,9),I=1,NOBS)/129.0, 60.0, 119.0, 100.0, 79.0, 99.0, &
      92.0, 107.0, 156.0, 110.0, 116.0, 49.0, 107.0, 125.0, 64.0, &
      100.0, 138.0, 63.0, 82.0, 73.0, 132.0, 87.0, 89.0, 99.0, &
      119.0, 100.0, 84.0, 166.0, 111.0, 110.0, 93.0, 141.0, 99.0, &
      114.0, 96.0, 39.0, 149.0, 53.0, 39.0, 91.0/
      DATA (X(I,10),I=1,NOBS)/3.0, 3*1.0, 2.0, 1.0, 3.0, 2.0, 4*1.0, &
      5.0, 1.0, 5.0, 1.0, 2.0, 1.0, 2*3.0, 3*2.0, 1.0, 2.0, 1.0, & 
      2.0, 3.0, 2.0, 2*1.0, 2*2.0, 5.0, 2*1.0, 4.0, 3.0, 2*1.0/
!
      DATA XLAB/' ','Social%/Class', '%/Sex', '%/GPA', &
      'College%/Boards', 'H.S.%/Soc.', 'Pretest%/Score', &
      '%/Exam 1', '%/Exam 2', 'Final%/Exam', 'Course%/Eval.'/
      DATA NUMBER/'NUMBER'/, FMT/'(2W3.1,W5.3,W4.1,W3.1,4W5.1,W3.1)'/
!
      CALL WRRRL ('First 10 Observations', X, NUMBER, XLAB, &
                  10, NCOL, LDX, FMT=FMT)
!
      CALL CANCR (X, IND1, IND2, XX, CORR, COEF1, &
      COEF2, COEFR1, COEFR2, STAT, TOL=TOL, IPRINT=IPRINT)
!
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      END

Output

                            First 10 Observations
    Social              College  H.S.  Pretest                 Final Course
     Class   Sex   GPA   Boards  Soc.    Score  Exam 1  Exam 2  Exam   Eval
 1       2    1   3.55      410    0      17      43      61    129      3
 2       2    1   2.70      390    0      20      50      47     60      1
 3       2    1   3.50      510    0      22      47      79    119      1
 4       3    1   2.91      430    0      13      24      40    100      1
 5       2    1   3.10      600    0      16      47      60     79      2
 6       3    1   3.49      610    0      28      57      59     99      1
 7       1    0   3.17      610    0      14      42      61     92      3
 8       2    1   3.57      560    0      10      42      79    107      2
 9       3    1   3.76      700    1      28      69      83    156      1
10       2    0   3.81      460    1      30      48      67    110      1

               *** Canonical Correlations Statistics ***
      Canonical                                               Prob. of
   Correlations  Wilks Lambda      Raos F  Num. df  Denom. df  Larger F
1        0.9242        0.0612       5.412       24      105.9    0.0000
2        0.7184        0.4201       2.116       15       86.0    0.0162
3        0.2893        0.8683       0.586        8       64.0    0.7861
4        0.2290        0.9476       0.609        3       33.0    0.6142

        Group One Canonical Coefficients
        1       2       3       4       5       6
1  -0.622   1.158  -0.285  -0.179   0.601  -0.423
2   0.558  -0.739   0.231  -1.278   1.391  -0.024
3   1.796  -0.432   0.765   0.185  -0.643  -3.314
4   0.002   0.006   0.004  -0.002   0.000   0.006
5  -0.059  -0.043  -0.456   1.671   1.463   0.774
6   0.031   0.018  -0.121  -0.058  -0.042   0.056

  Group Two Canonical Coefficients
         1        2        3        4
1   0.0233  -0.0365   0.0845  -0.0176
2   0.0257  -0.0057  -0.0352   0.0555
3   0.0073   0.0110  -0.0259  -0.0341
4   0.1034   0.8089   0.2828   0.0260

Correlations Between the Group One Variables
and the Group One Canonical Scores
         1        2        3        4
1  -0.3685   0.6795  -0.2291  -0.1854
2   0.2157  -0.3252   0.0521  -0.5985
3   0.8153   0.2770  -0.0692   0.2123
4   0.6144   0.5681   0.4151  -0.0050
5   0.4661   0.0603  -0.3034   0.6530
6   0.5461   0.1768  -0.7915  -0.1375

Correlations Between the Group Two Variables
and the Group Two Canonical Scores
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         1        2        3        4
1   0.8713  -0.2406   0.3864  -0.1835
2   0.9174  -0.0557  -0.2068   0.3355
3   0.7707   0.0293  -0.3146  -0.5533
4   0.3490   0.8765   0.3077   0.1240

               *** Statistics for Group One Variables ***
                    Univariate Statistics from UVSTA

Variable          Mean      Variance     Std. Dev.      Skewness   Kurtosis
    1           1.9750        0.4353        0.6597       0.02476    -0.6452
    2           0.6750        0.2250        0.4743      -0.74726    -1.4416
    3           3.3758        0.1247        0.3532      -0.37911    -0.7521
    4         524.2499    13148.1377      114.6653       0.09897     0.6494
    5           0.4000        0.2462        0.4961       0.40825    -1.8333
    6          18.1250       55.1378        7.4255       0.10633    -0.9358

Variable       Minimum       Maximum         Range    Coef. Var.      Count
    1           1.0000        3.0000        2.0000        0.3340    40.0000
    2           0.0000        1.0000        1.0000        0.7027    40.0000
    3           2.6900        4.0000        1.3100        0.1046    40.0000
    4         210.0000      800.0000      590.0000        0.2187    40.0000
    5           0.0000        1.0000        1.0000        1.2403    40.0000
    6           3.0000       30.0000       27.0000        0.4097    40.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1           1.7640        2.1860       0.29207        0.7176
    2           0.5233        0.8267       0.15098        0.3710
    3           3.2628        3.4887       0.08369        0.2056
    4         487.5782      560.9217    8822.72168    21677.9590
    5           0.2413        0.5587       0.16518        0.4058
    6          15.7502       20.4998      36.99883       90.9083

                 *** Statistics for Group Two Variables ***
                      Univariate Statistics from UVSTA

Variable       Mean      Variance     Std. Dev.      Skewness      Kurtosis
    1       46.0500      237.0231       15.3956       0.08762       -0.5505
    2       62.8750      403.4967       20.0872      -0.10762       -0.3642
    3       99.4750      919.4864       30.3230      -0.03483       -0.2533
    4        1.9500        1.4333        1.1972       1.27704        0.8407

Variable    Minimum       Maximum         Range    Coef. Var.         Count
    1       19.0000       80.0000       61.0000        0.3343       40.0000
    2       14.0000      100.0000       86.0000        0.3195       40.0000
    3       39.0000      166.0000      127.0000        0.3048       40.0000
    4        1.0000        5.0000        4.0000        0.6140       40.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1          41.1263       50.9737      159.0483      390.7912
    2          56.4508       69.2992      270.7562      665.2642
    3          89.7772      109.1728      616.9979     1516.0009
    4           1.5671        2.3329        0.9618        2.3632
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Example 2

Correspondence analysis is an interesting application of canonical correlation in the analysis of contingency 
tables. The example is taken from Kendall and Stuart (1979, pages 595–599) and involves finding the optimal 
scores for the values of two categorical variables to maximize the correlation between the two variables. The 
contingency table is given below, along with the more traditional matrix X of “observations” for which 
canonical correlations are desired.

The data matrix X is given as:

For this table, the optimal correlation turns out to be 0.70 when scores of 2.67, 1.34, 0.62, and 0.00 (see Col-
umn 1 of COEF1) are assigned to the variable 1 categories, and scores of 2.72, 1.37, 0.68, and 0.00 are assigned 
to the variable 2 categories. These scores are obtained as the canonical scores when canonical correlations are 
computed between the the row and column variable indicator variables (variables 1-4 and variables 5-8 in X, 
respectively). The warning error appears in the output because the covariance matrix is not of full rank 
(indeed, neither the group 1 or the group 2 covariance matrices are of full rank).

Group 1 Var. Group 2 Var. Frequencies

1 0 0 0 1 0 0 0 821

1 0 0 0 0 1 0 0 112

1 0 0 0 0 0 1 0 85

1 0 0 0 0 0 0 1 35

0 1 0 0 1 0 0 0 116

0 1 0 0 0 1 0 0 494

0 1 0 0 0 0 1 0 145

0 1 0 0 0 0 0 1 27

0 0 1 0 1 0 0 0 72

0 0 1 0 0 1 0 0 151

0 0 1 0 0 0 1 0 583

0 0 1 0 0 0 0 1 87

0 0 0 1 1 0 0 0 43

0 0 0 1 0 1 0 0 34

0 0 0 1 0 0 1 0 106

0 0 0 1 0 0 0 1 331
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      USE CANCR_INT

      IMPLICIT   NONE
      INTEGER    IFRQ, IPRINT, LDCFR1, LDCFR2, LDCOF1, LDCOF2, &
                 LDCORR, LDSTAT, LDX, LDXX, NCOL, NOBS, NV, NVAR1, &
                 NVAR2
      REAL       TOL
      PARAMETER  (IFRQ=9, IPRINT=2, LDCFR1=4, LDCFR2=4, &
                 LDCOF1=4, LDCOF2=4, LDCORR=4, LDSTAT=15, LDX=16, &
                 LDXX=16, NCOL=9, NOBS=16, NV=4, NVAR1=4, NVAR2=4, &
                 TOL=0.0001)
!
      INTEGER    IND1(NVAR1), IND2(NVAR2)
      REAL       COEF1(LDCOF1,NVAR1), COEF2(LDCOF2,NVAR2), &
                 COEFR1(LDCFR1,NV), COEFR2(LDCFR2,NV), CORR(LDCORR,6), &
                 STAT(LDSTAT,8), X(LDX,NCOL), XX(LDXX,NCOL)
!
      DATA IND1/1, 2, 3, 4/, IND2/5, 6, 7, 8/
      DATA X/4*1.0, 16*0.0, 4*1.0, 16*0.0, 4*1.0, 16*0.0, 5*1.0, &
          3*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0, &
          3*0.0, 1.0, 3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, &
          3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, &
          821.0, 112.0, 85.0, 35.0, 116.0, 494.0, 145.0, 27.0, 72.0, &
          151.0, 583.0, 87.0, 43.0, 34.0, 106.0, 331.0/
!
      CALL CANCR (X, IND1, IND2, XX, CORR, COEF1, &
                 COEF2, COEFR1, COEFR2, STAT, IFRQ=IFRQ, &
                 TOL=TOL, IPRINT=IPRINT)
!
      END

Output

*** WARNING  ERROR 2 from C2NCR.  One or more Group 1 variables is linearly
***          dependent on the proceeding variables in Group 1.
Here is a traceback of subprogram calls in reverse order:
Routine name                    Error type  Error code
------------                    ----------  ----------
C2NCR                               6           2    (Called internally)
CANCR                               0           0
USER                                0           0
*** WARNING  ERROR 3 from C2NCR.  One or more Group 2 variables is linearly
***          dependent on the proceeding variables in Group 2.
Here is a traceback of subprogram calls in reverse order:
Routine name                    Error type  Error code
------------                    ----------  ----------
C2NCR                               6           3    (Called internally)
CANCR                               0           0
USER                                0           0
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          *** Canonical Correlations Statistics ***
      Canonical                                                Prob. of
   Correlations  Wilks Lambda      Raos F  Num. df  Denom. df  Larger F
1        0.6965        0.2734     615.925        9     7875.7    0.0000
2        0.5883        0.5310     602.598        4     6474.0    0.0000
3        0.4336        0.8120     749.823        1     3238.0    0.0000
4        0.0000        0.0000       0.000        0        0.0    0.0000

Group One Canonical Coefficients
        1       2       3       4
1   2.670   1.100   1.023   0.000
2   1.341   2.905  -0.460   0.000
3   0.624   2.222   2.147   0.000
4   0.000   0.000   0.000   0.000

Group Two Canonical Coefficients
        1       2       3       4
1   2.715   1.164   1.053   0.000
2   1.366   2.972  -0.393   0.000
3   0.676   2.250   2.182   0.000
4   0.000   0.000   0.000   0.000

Correlations Between the Group One Variables
     and the Group One Canonical Scores
         1        2        3        4
1   0.9068  -0.3954   0.1459   0.0000
2  -0.0121   0.6965  -0.7175   0.0000
3  -0.4555   0.3404   0.8226   0.0000
4   0.0000   0.0000   0.0000   0.0000

Correlations Between the Group Two Variables
     and the Group Two Canonical Scores
         1        2        3        4
1   0.9072  -0.3997   0.1310   0.0000
2  -0.0227   0.6995  -0.7143   0.0000
3  -0.4590   0.3205   0.8287   0.0000
4   0.0000   0.0000   0.0000   0.0000

                  *** Statistics for Group One Variables ***
                      Univariate Statistics from UVSTA

Variable          Mean      Variance    Std. Dev.     Skewness     Kurtosis
    1           0.3248        0.2194       0.4684       0.7482      -1.4401
    2           0.2412        0.1831       0.4279       1.2098      -0.5363
    3           0.2754        0.1996       0.4468       1.0053      -0.9894
    4           0.1585        0.0000       0.0000       1.8697       1.4958
Variable       Minimum       Maximum        Range   Coef. Var.        Count
    1           0.0000        1.0000       1.0000       1.4420    3242.0000
    2           0.0000        1.0000       1.0000       1.7739    3242.0000
    3           0.0000        1.0000       1.0000       1.6221    3242.0000
    4           0.0000        1.0000       1.0000       2.3041    3242.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1           0.3087        0.3409        0.2091        0.2305
    2           0.2265        0.2559        0.1745        0.1923
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    3           0.2601        0.2908        0.1903        0.2097
    4           0.1460        0.1711        0.1272        0.1402

Canonical Scores for Group One
         1       2       3       4
 1   1.307  -0.570   0.210   0.000
 2   1.307  -0.570   0.210   0.000
 3   1.307  -0.570   0.210   0.000
 4   1.307  -0.570   0.210   0.000
 5  -0.021   1.235  -1.272   0.000
 6  -0.021   1.235  -1.272   0.000
 7  -0.021   1.235  -1.272   0.000
 8  -0.021   1.235  -1.272   0.000
 9  -0.739   0.552   1.334   0.000
10  -0.739   0.552   1.334   0.000
11  -0.739   0.552   1.334   0.000
12  -0.739   0.552   1.334   0.000
13  -1.362  -1.670  -0.813   0.000
14  -1.362  -1.670  -0.813   0.000
15  -1.362  -1.670  -0.813   0.000
16  -1.362  -1.670  -0.813   0.000

                 *** Statistics for Group Two Variables ***
                      Univariate Statistics from UVSTA

Variable        Mean      Variance     Std. Dev.      Skewness     Kurtosis
    1         0.3245        0.2193        0.4683        0.7497      -1.4379
    2         0.2440        0.1845        0.4296        1.1922      -0.5787
    3         0.2835        0.2032        0.4508        0.9609      -1.0766
    4         0.1481        0.0000        0.0000        1.9819       1.9280

Variable     Minimum       Maximum         Range    Coef. Var.        Count
    1         0.0000        1.0000        1.0000        1.4430    3242.0000
    2         0.0000        1.0000        1.0000        1.7606    3242.0000
    3         0.0000        1.0000        1.0000        1.5901    3242.0000
    4         0.0000        1.0000        1.0000        2.3992    3242.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1           0.3084        0.3406        0.2090        0.2303
    2           0.2292        0.2588        0.1758        0.1938
    3           0.2679        0.2990        0.1936        0.2134
    4           0.1358        0.1603        0.1203        0.1326

  Canonical Scores for Group Two
         1       2       3       4
 1   1.309  -0.577   0.189   0.000
 2  -0.040   1.231  -1.257   0.000
 3  -0.730   0.509   1.317   0.000
 4  -1.406  -1.740  -0.864   0.000
 5   1.309  -0.577   0.189   0.000
 6  -0.040   1.231  -1.257   0.000
 7  -0.730   0.509   1.317   0.000
 8  -1.406  -1.740  -0.864   0.000
 9   1.309  -0.577   0.189   0.000
10  -0.040   1.231  -1.257   0.000
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11  -0.730   0.509   1.317   0.000
12  -1.406  -1.740  -0.864   0.000
13   1.309  -0.577   0.189   0.000
14  -0.040   1.231  -1.257   0.000
15  -0.730   0.509   1.317   0.000
16  -1.406  -1.740  -0.864   0.000

*** WARNING  ERROR 1 from CANCR.  The standardized cross covariance matrix
***          is not of full rank or is very ill-conditioned.  Small
***          canonical correlations may not be accurate.
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CANVC

Performs canonical correlation analysis from a variance-covariance matrix or a correlation matrix.

Required Arguments
NDF — Number of degrees of freedom in the covariance or correlation matrix.  (Input) 

If NDF is unknown, an estimate of NDF = 100 is suggested in which case the last four columns of CORR 
are meaningless.

COV — NVAR1 + NVAR2 by NVAR1 + NVAR2 matrix containing the covariance or correlation matrix.  
(Input) 
Routines COVPL, RBCOV, or CORVC (see Chapter 3, “Correlation”) may be used to calculate COV from a 
data matrix. COV must be nonnegative definite within a tolerance of 100.0 * AMACH(4). Only the upper 
triangle of COV is referenced.

IND1 — Vector of length NVAR1 containing the column and row numbers in COV for the group 1 variables.  
(Input)

IND2 — Vector of length NVAR2 containing the column and row numbers in COV for the group 2 variables.  
(Input)

CORR — NV by 6 matrix containing the output statistics.  (Output)
NV is the minimum of NVAR1 and NVAR2.

If an F statistic is negative, then CORR(i, 6) is set to one. If either CORR(i, 4) or CORR(i, 5) is not 
positive, then CORR(i, 6) is set to the missing value code (NaN).

COEF1 — NVAR1 by NVAR1 matrix containing the group 1 canonical coefficients.  (Output) 
The columns of COEF1 contain the vectors of canonical coefficients for group 1.

COEF2 — NVAR2 by NVAR2 matrix containing the group 2 canonical coefficients.  (Output) 
The columns of COEF2 contain the vectors of canonical coefficients for group 2.

more...

Col Statistic

1 Canonical correlations sorted from the largest to the smallest.

2 Wilks’ lambda for testing that the current and all smaller canonical correla-
tions are zero. 

3 Rao’s F corresponding to Wilks’ lambda. If the canonical correlation is greater 
than 0.99999, F is set to 9999.99.

4 Numerator degrees of freedom for the F.

5 Denominator degrees of freedom for the F.

6 Probability of a larger F statistic.
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COEFR1 — NVAR1 by NV matrix containing the correlations between the group 1 variables and the group 
1 canonical scores.  (Output) 
NV is the minimum of NVAR1 and NVAR2.

COEFR2 — NVAR2 by NV matrix containing the correlations between the group 2 variables and the group 
2 canonical scores.  (Output) 
NV is the minimum of NVAR1 and NVAR2.

Optional Arguments
NVAR1 — Number of variables in group 1.  (Input)

Default: NVAR1 = size (IND1,1).
NVAR2 — Number of variables in group 2.  (Input)

Default: NVAR2 = size (IND2,1).
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOV = size (COV,1).

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

LDCORR — Leading dimension of CORR exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCORR = size (CORR,1).

LDCOF1 — Leading dimension of COEF1 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCOF1 = size (COEF1,1).

LDCOF2 — Leading dimension of COEF2 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCOF2 = size (COEF2,1).

LDCFR1 — Leading dimension of COEFR1 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCFR1 = size (COEFR1,1).

LDCFR2 — Leading dimension of COEFR2 exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCFR2 = size (COEFR2,1).

FORTRAN 90 Interface
Generic: CALL CANVC (NDF, COV, IND1, IND2, CORR, COEF1, COEF2, COEFR1, 

COEFR2 [, …])
Specific: The specific interface names are S_CANVC and D_CANVC.

IPRINT Action

0 No printing.

1 Printing of CORR, COEF1, COEF2, COEFR1, and COEFR2 is performed.
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FORTRAN 77 Interface
Single: CALL CANVC (NDF, NVAR1, NVAR2, COV, LDCOV, IND1, IND2, IPRINT, CORR, LDCORR, 

COEF1, LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1, COEFR2, LDCFR2)
Double: The double precision name is DCANVC.

Description

Routine CANVC computes the canonical correlations, the canonical coefficients, Wilks’ lambda (for testing the 
independence of two sets of variates), and a series of tests due to Bartlett for testing that all canonical correla-
tions greater than or equal to the k-th largest are simultaneously zero. The covariance matrix is used in these 
computations.

The group 1 variables covariance matrix is first extracted from COV and placed in the matrix S11. Similarly, 
the group 2 variables covariance matrix is placed in S22. The “standardized” cross covariance matrix is then 
computed as:

where S12 is the NVAR1 × NVAR2 matrix of covariances between the group 1 and group 2 variables, and 

S1∕2denotes the upper triangular Cholesky (RT R) factorization of S. In the computation of C and in the fol-
lowing, it is assumed that NVAR1 is greater than NVAR2. The group 1 and group 2 variables should be 
interchanged in the following if this is not the case.

The canonical correlations are computed as the singular values of the matrix C. The canonical coefficients are 
obtained from the left and right orthogonal matrices resulting from the singular value decomposition of C. In 
particular, for Γ1 = COEF1.

where L is the left orthogonal matrix from the singular value decomposition.

Similarly, the correlations between the original variables and the canonical variables, R1 = COEFR1, are 
obtained for the group 1 variables as:

where Δ11 is a diagonal matrix containing the diagonal of S11 along its diagonal.

Wilks’ lambda, the Bartlett’s tests, Rao’s F corresponding to these tests, the numerator and denominator 
degrees of freedom of F , and the significance level of F are computed as in Rao (1973, page 556). Bartlett’s 
tests are computed as
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where q = NVAR2 is the number of canonical correlations, the canonical correlations are ordered from largest 
to smallest, and ρj denotes the j-th largest canonical correlation. Wilks’ lambda is given as Λ1. The degrees of 
freedom in the numerator of the corresponding Rao’s F statistic is given as 

d1 = pu

where p = v1 - i + 1, u = v2 - i + 1, v1 = NVAR2, and v2 = NVAR1. Let

where t is the degrees of freedom in COV, and let

if p2 + u2 - 5 ≠ 0, and let s = 2 otherwise. Then, Rao’s F corresponding to Bartlett’s test is computed as

Rao’s F has numerator degrees of freedom d2 = ms - pu/2 + 1. The significance level of F is obtained from the 
standard F distribution

Comments
1. Workspace may be explicitly provided, if desired, by use of C2NVC/DC2NVC. The reference is:

CALL C2NVC (NDF, NVAR1, NVAR2, COV, LDCOV, IND1, IND2, IPRINT, CORR, LDCORR, COEF1, 
LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1, COEFR2, LDCFR2, R, S, STD1, STD2, WKA, WK)

The additional arguments are as follows:

R — Work vector of length NVAR12.

S — Work vector of length NVAR22.

STD1 — Work vector of length NVAR1.

STD2 — Work vector of length NVAR2.

WKA — Work vector of length (NVAR1 + NVAR2)2.

WK — Work vector of length 3 * max(NVAR1, NVAR2).
2. Informational errors
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Example

The following example is taken from Van de Geer (1971). There are six group 1 variables and two group 2 
variables. The maximum correlation turns out to be 0.609.

      USE CANVC_INT

      IMPLICIT   NONE
      INTEGER    IPRINT, LDCFR1, LDCFR2, LDCOF1, LDCOF2, LDCORR, &
                 LDCOV, NDF, NV, NVAR1, NVAR2
      PARAMETER  (IPRINT=1, LDCFR1=6, LDCFR2=2, LDCOF1=6, LDCOF2=2, &
                 LDCORR=2, LDCOV=8, NDF=100, NV=2, NVAR1=6, NVAR2=2)
!
      INTEGER    IND1(NVAR1), IND2(NVAR2)
      REAL       COEF1(NVAR1,NVAR1), COEF2(NVAR2,NVAR2), &
                 COEFR1(NVAR1,NVAR2), COEFR2(NVAR2,NVAR2), &
                 CORR(NVAR2,NVAR1), COV(LDCOV,NVAR1+NVAR2)
!
      DATA COV/1.0000, 0.1839, 0.0489, 0.0186, 0.0782, 0.1147, 0.2137, &
          0.2742, 0.1839, 1.0000, 0.2220, 0.1861, 0.3355, 0.1021, &
          0.4105, 0.4043, 0.0489, 0.2220, 1.0000, 0.2707, 0.2302, &
          0.0931, 0.3240, 0.4047, 0.0186, 0.1861, 0.2707, 1.0000, &
          0.2950, -0.0438, 0.2930, 0.2407, 0.0782, 0.3355, 0.2302, &
          0.2950, 1.0000, 0.2087, 0.2995, 0.2863, 0.1147, 0.1021, &
          0.0931, -0.0438, 0.2087, 1.0000, 0.0760, 0.0702, 0.2137, &
          0.4105, 0.3240, 0.2930, 0.2995, 0.0760, 1.0000, 0.6247, &
          0.2742, 0.4043, 0.4047, 0.2407, 0.2863, 0.0702, 0.6247, &
          1.0000/
!
      DATA IND1/1, 2, 3, 4, 5, 6/, IND2/7, 8/
!
      CALL CANVC (NDF, COV, IND1, IND2, CORR, &
                 COEF1, COEF2, COEFR1, COEFR2, IPRINT=IPRINT)
!
!
      END

Output

                *** Canonical Correlations Statistics ***
      Canonical                                               Prob. of
   Correlations  Wilks Lambda      Raos F  Num. df  Denom. df  Larger F
1        0.6093        0.6159       4.250       12        186    0.0000
2        0.1431        0.9795       0.393        5         94    0.8524

        Group One Canonical Coefficients

Type Code Description

3 1 The standardized cross covariance matrix is not of full rank or is very ill-con-
ditioned. Small canonical correlations may not be accurate.

4 2 COV is not nonnegative definite.
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        1       2       3       4       5       6
1   0.326   0.411  -0.799   0.358  -0.032   0.053
2   0.481  -0.340  -0.083  -0.766  -0.484  -0.139
3   0.456   0.718   0.625   0.134  -0.056   0.038
4   0.202  -0.689   0.060   0.732  -0.335   0.080
5   0.184  -0.125  -0.064  -0.045   1.079  -0.225
6  -0.027  -0.174   0.054  -0.086  -0.021   1.017

Group Two Canonical Coefficients
        1       2
1   0.464   1.194
2   0.642  -1.108

Correlations Between the Group One Variables
     and the Group One Canonical Scores
                      1        2
             1   0.4517   0.3408
             2   0.7388  -0.2932
             3   0.6733   0.4313
             4   0.4769  -0.5799
             5   0.5299  -0.2811
             6   0.1319  -0.0903

Correlations Between the Group Two Variables
     and the Group Two Canonical Scores
                      1        2
             1   0.8653   0.5013
             2   0.9320  -0.3625
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Chapter 10: Discriminant Analysis
Routines

10.1. Parametric Discrimination

Linear and quadratic discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSCRM     1085

Fisher discriminant scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DMSCR     1103

10.2. Nonparametric Discrimination

Nearest neighbor discrimination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NNBRD     1108
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Usage Notes

The routine DSCRM allows linear or quadratic discrimination and the use of either reclassification, split sam-
ple, or the leaving-out-one methods in order to evaluate the rule. Moreover, DSCRM can be executed in an 
online mode, that is, one or more observations can be added to the rule during each invocation of DSCRM. 

The mean vectors for each group of observations and an estimate of the common covariance matrix for all 
groups are input to DMSCR. These estimates can be computed via routine DSCRM. Output from DMSCR are lin-
ear combinations of the observations, which at most separate the groups. These linear combinations may 
subsequently be used for discriminating between the groups. Their use in graphically displaying differences 
between the groups is possibly more important, however. 

Nearest neighbor discrimination is performed in routine NNBRD. In this routine, the user can set the number 
of nearest neighbors to be used in the discrimination and the threshold for classification. Split samples can 
also be used.
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DSCRM

Performs a linear or a quadratic discriminant function analysis among several known groups.

Required Arguments
NROW — The absolute value of NROW is the number of rows of X that contain an observation.  (Input) 

If NROW is negative, the observations are deleted from the discriminant statistics. If NROW is positive, 
they are added.

NVAR — Number of variables to be used in the discrimination.  (Input)
X — ∣NROW∣ by NVAR + m matrix containing the data to be used on this call. (Input, if ∣NROW∣ > 0; X is not 

referenced otherwise) 
m is 1, 2, or 3 depending upon whether any columns in X contain frequencies or weights. One column 
in X must contain the group number for each observation. Group numbers must be 
1.0, 2. 0, …, NGROUP. If present, IFRQ gives the column containing the frequencies, while IWT gives 
the column in X containing the weights.

NGROUP — Number of groups in the data.  (Input)
COV — NVAR by NVAR by g matrix of covariances.  (Output, for IDO = 0 or 1; input/output, for IDO = 2, 3, 

or 5; input, for IDO = 4; not referenced if IDO = 6) 
g = NGROUP + 1 when IMTH = 1, 2, 4, or 5, and g = 1 otherwise. When IMTH = 3 or 6, the within-group 
covariance matrices are not computed. Regardless of the value of IMTH, the pooled covariance matrix 
is always computed and saved as the g-th covariance matrix in COV.

COEF — NGROUP by NVAR + 1 matrix containing the linear discriminant function coefficients.  (Output, if 
IDO = 0 or 3; input, if IDO = 4; not referenced if IDO = 1, 2, 5, or 6) 
The first column of COEF contains the constant term, and the remaining columns contain the variable 
coefficients. Row i of COEF corresponds to group i, for i = 1,…,NGROUP. Matrix COEF is always com-
puted as the linear discriminant function coefficients even when quadratic discrimination is specified. 

Specifically, given the linear discriminant function , the inter-

cept  is assigned to COEF(i,1) and the coefficient vector  is assigned to 

COEF(i,2:NVAR+1)for i = 1,…,NGROUP. Matrix COEF is updated if IDO is equal to 0 or 3.
ICLASS — Vector of length ∣NROW∣ containing the group to which the observation was classified.  (Output, 

if IDO = 0 or 4; not referenced otherwise) 
If an observation has an invalid group number, frequency, or weight when the leaving-out-one 
method has been specified, then the observation is not classified and the corresponding elements of 
ICLASS and PROB are set to zero.

PROB — ∣NROW∣ by NGROUP matrix containing the posterior probabilities for each observation.  (Output, 
if IDO = 0 or 4; not referenced otherwise)

CLASS — NGROUP by NGROUP matrix containing the classification table.  (Output, if 
IDO = 0 or 1, input/output, if IDO = 4; not referenced otherwise) 
Each observation that is classified and has a group number equal to 1.0, 2.0, …, NGROUP is entered into 
the table. The rows of the table correspond to the known group membership. The columns refer to the 
group to which the observation was classified. Classification results accumulate with each call to 
DSCRM with IDO = 4. For example, if 2 calls with IDO = 4 are made, then the elements in CLASS sum to 
the total number of valid observations in the 2 calls.

D2 — NGROUP by NGROUP matrix containing the Mahalanobis distances
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between the group means.  (Output, when IDO= 0 or 3; not referenced otherwise) 
For linear discrimination, the Mahalanobis distance is computed using the pooled covariance matrix. 
Otherwise, the Mahalanobis distance

between group means i and j is computed using the within covariance matrix for group i in place of 
the pooled covariance matrix.

STAT — Vector of length 4 + 2 * (NGROUP + 1) containing statistics of interest.  (Input/ Output, if IDO = 3 
or 5; output, if IDO = 0 or 1; not referenced otherwise) 
The first element of STAT is the sum of the degrees of freedom for the within-covariance matrices. The 
second, third and fourth elements of STAT correspond to the chi-squared statistic, its degrees of free-
dom, and the probability of a greater chi-squared, respectively, of a test of the homogeneity of the 
within-covariance matrices (not computed if IMTH = 3 or 6). The 5-th through 5 + NGROUP elements of 
STAT contain the log of the determinants of each group’s covariance matrix (not computed if IMTH = 3 
or 6) and of the pooled covariance matrix (element 5 + NGROUP). Finally, the last NGROUP + 1 elements 
of STAT contain the sum of the weights within each group and, in the last position, the sum of the 
weights in all groups.

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

See Comments 5 and 6 for further information.
NCOL — Number of columns in matrix X.  (Input)

Default: NCOL = size (X,2).

IDO Action

0 This is the only invocation of DSCRM; all the data are input at once.

1 This is the first invocation of DSCRM with this data, additional calls will be 
made. Initialization and updating for the NROW observations are performed.

2 This is an intermediate invocation of DSCRM; updating for the NROW observa-
tions is performed.

3 All statistics are updated for the NROW observations. The discriminant func-
tions and other statistics are computed.

4 The discriminant functions are used to classify each of the NROW observations 
in X.

5 The covariance matrices are computed, and workspace is released. No fur-
ther calls to DSCRM with IDO greater than 1 should be made without first 
calling DSCRM with IDO = 1.

6 Workspace is released. No further calls to DSCRM with IDO greater than 1 
should be made without first calling DSCRM with IDO = 1. This option is not 
required if a call has been made with IDO = 5 or if workspace is explicitly pro-
vided by use of D2CRM.
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LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IND — Vector of length NVAR containing the column numbers in X to be used in the discrimination.  
(Input) 
By default, IND(I)=I.

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column number IFRQ of X 
contains the frequencies. All frequencies should be integer values. If this is not the case, the NINT 
(nearest integer) function is used to obtain integer frequencies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input) 
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X contains the weights. 
Negative weights are not allowed.
Default: IWT = 0.

IGRP — Column number in X containing the group numbers.  (Input) 
The group numbers must be 1.0, 2,0, …, NGROUP for an observation to be used in the discriminant 
functions. An observation will be classified regardless of its group number when the reclassification 
method is specified.
Default: IGRP = NVAR + 1.

IMTH — Option parameter giving the method of discrimination.  (Input) 
IMTH determines whether linear or quadratic discrimination is used whether the group covariance 
matrices are computed (the pooled covariance matrix is always computed) and whether the leav-
ing-out-one or the reclassification method is used to classify each observation. 
Default: IMTH = 1.

In the leaving-out-one method of classification, the posterior probabilities are adjusted so as to elimi-
nate the effect of the observation from the sample statistics prior to its classification. In the 
reclassification method, the effect of the observation is not eliminated from the classification function. 
Calls to DSCRM with IMTH = 1, 2, 4, or 5 can be intermixed, as can calls to DSCRM with IMTH = 3 or 6. 
Calls to DSCRM with IMTH = 1, 2, 4, or 5 cannot be intermixed with calls to DSCRM with IMTH = 3 or 6 
without first calling DSCRM with IDO = 1 (or 0).

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.
For the given combination of IDO and IPRINT, the following arrays are printed.

IMTH Discrim. Coveriance Classification

1 Linear All Reclassification

2 Quadratic All Reclassification

3 Linear Pooled only Reclassification

4 Linear All Leaving-out-one

5 Quadratic All Leaving-out-one

6 Linear Pooled only Leaving-out-one
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Note that the only change from IPRINT = 1 to IPRINT = 2 is the printing when IDO = 4. Also, note 
that PRIOR is printed even though it may be input only.

PRIOR — Vector of length NGROUP containing the prior probabilities for each group.  (Input, if PRIOR(1) 
is not -1.0 and IDO is 0, 3 or 4; input/output, if PRIOR(1) is -1.0 and IDO is 0 or 3; not referenced if 
IDO is 1, 2, 5 or 6)
If PRIOR(1) is not -1.0, then the elements of PRIOR should sum to 1.0. Proportional priors can be 
selected by setting PRIOR(1) = -1.0. In this case, the prior probabilities will be proportional to the sam-
ple size in each group, and the elements of PRIOR will contain the proportional prior probabilities 
after the first call with IDO = 0 or 3. Use of this optional argument is mandatory if IDO = 4.
Default: PRIOR(1) = -1.0.

NI — Vector of length NGROUP.  (Input, for IDO = 4 or 5; input/output, for IDO = 1, 2 or 3; output, for 
IDO = 0; not referenced if IDO = 6) 
The i-th element of NI contains the number of observations in group i.
Use of this optional argument is mandatory if IDO = 1, 2, 3, 4, 5.

XMEAN — NGROUP by NVAR matrix.  (Input, for IDO = 3, 4; input/output, for IDO = 2, 5; output, for IDO = 
0 or 1; not referenced if IDO = 6)  
The i-th row of XMEAN contains the group i variable means.
Note that for IDO = 1, 2, 3 ,4 the input and/or output values are just the weighted sums of the observa-
tions in each group, i.e. the group i variable means  is calculated as

where Mi denotes the number of elements in group i and xik is the k-th observation in group i with 
associated weight wik and frequency fik.

For IDO = 0 or 5, the means are output and group-wise calculated as weighted arithmetic means,

Use of this optional argument is mandatory if IDO = 1,2,3,4,5.

IPRINT IDO Printing

0 Any None

1 or 2 0 PRIOR, NI, XMEAN, COV, COEF, ICLASS, PROB, CLASS, D2, 
STAT, NRMISS

1 or 2 1 or 2 None

1 or 2 3 PRIOR, NI, XMEAN, COEF, D2, STAT, NRMISS

1 4 None

2 4 ICLASS, PROB

1 or 2 5 COV, CLASS

1 or 2 6 None
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LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDXMEA = size(XMEAN,1).

LDCOV — Leading and second dimensions of COV exactly as specified in the dimension statement of the 
calling program.  (Input) 
The first two dimensions of COV must be equal.
Default: LDCOV = size (COV,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDPROB — Leading dimension of PROB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDPROB = size (PROB,1).

LDCLAS — Leading dimension of CLASS exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCLAS = size (CLASS,1).

LDD2 — Leading dimension of D2 exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDD2 = size (D2,1).

NRMISS — Number of rows of data encountered in calls to DSCRM containing missing values (NaN) for 
the classification, group, weight, and/or frequency variables.  (Output, if IDO = 0 or 1; input/output, 
if IDO = 2 or 3, not referenced otherwise) 
If a row of data contains a missing value (NaN) for any of these variables, that row is excluded from 
the computations.

FORTRAN 90 Interface
Generic: CALL DSCRM (NROW, NVAR, X, NGROUP, COV, COEF, ICLASS, PROB, CLASS, D2, STAT 

[, …])
Specific: The specific interface names are S_DSCRM and D_DSCRM.

FORTRAN 77 Interface
Single: CALL DSCRM (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, IGRP, NGROUP, IMTH, 

IPRINT, PRIOR, NI, XMEAN, LDXMEA, COV, LDCOV, COEF, LDCOEF, ICLASS, PROB, 
LDPROB, CLASS, LDCLAS, D2, LDD2, STAT, NRMISS)

Double: The double precision name is DDSCRM.

Description

Routine DSCRM performs discriminant function analysis using either linear or quadratic discrimination. The 
output from DSCRM includes a measure of distance between the groups, a table summarizing the classifica-
tion results, a matrix containing the posterior probabilities of group membership for each observation, and 
the within-sample means and covariance matrices. The linear discriminant function coefficients are also 
computed.
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All observations can be input during one call to DSCRM, a method of operation that has the advantage of sim-
plicity. Alternatively, one or more rows of observations can be input during separate calls. This method does 
not require that all observations be memory resident, a significant advantage with large data sets. Note, how-
ever, that DSCRM requires two passes of the data. During the first pass the discriminant functions are 
computed while in the second pass, the observations are classified. Thus, with the second method of opera-
tion, the data will usually need to be input into DSCRM twice.

Because both methods result in the same operations being performed, the algorithm for DSCRM is discussed 
as if only a few observations are input during each call. The operations performed during each call to DSCRM 
depend upon the IDO parameter. IDO = 0 should be used if all observations are to be input at one time.

The IDO = 1 step is the initialization step. The variables XMEAN, CLASS, and COV are initialized to zero, and 
other program parameters are set. After this call, all subroutine arguments except IDO, NROW, X, LDX and 
IMTH should not be changed by the user except via another call to DSCRM with IDO = 0 or IDO = 1. IMTH can 
be changed from one call to the next within the two sets {1, 2, 4, 5} or {3, 6} but not between these sets when 
IDO > 1. That is, do not call DSCRM with IMTH = 1 in one call and IMTH = 3 in another call without first calling 
DSCRM with IDO = 1.

After initialization has been performed in the IDO = 1 step, the within-group means are updated for all valid 
observations in X. Observations with invalid group numbers are ignored, as are observations with missing 
values. The LU factorization of the covariance matrices are updated by adding (or deleting) observations via 
Givens rotations.

The IDO = 2 step is used solely for adding or deleting observations from the model as in the above 
paragraph.

The IDO = 3 step begins by adding all observations in X to the means and the factorizations of the covariance 
matrices. It continues by computing some statistics of interest: the linear discriminant functions, the prior 
probabilities (if PRIOR(1) = -1.0), the log of the determinant of each of the covariance matrices, a test statistic 
for testing that all of the within-group covariance matrices are equal, and a matrix of Mahalanobis distances 
between the groups. The matrix of Mahalanobis distances is computed via the pooled covariance matrix 
when linear discrimination is specified, the row covariance matrix is used when the discrimination is 
quadratic.

Covariance matrices are defined as follows. Let Ni denote the sum of the frequencies of the observations in 
group i, and let Mi denote the number of observations in group i. Then, if Si denotes the within-group i cova-
riance matrix,

where wj is the weight of the j-th observation in group i, fj is its frequency, xj is the j-th observation column 
vector (in group i), and  denotes the mean vector of the observations in group i. The mean vectors are com-
puted as
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where

Given the means and the covariance matrices, the linear discriminant function for group i is computed as:

where ln(pi) is the natural log of the prior probability for the i-th group, x is the observation to be classified, 
and Sp denotes the pooled covariance matrix.

Let S denote either the pooled covariance matrix or one of the within-group covariance matrices Si. (S will be 
the pooled covariance matrix in linear discrimination, and Si otherwise.) The Mahalanobis distance between 
group i and group j is computed as:

Finally, the asymptotic chi-squared test for the equality of covariance matrices is computed as follows 
(Morrison 1976, page 252):

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is the number of groups, 
and

where p is the number of variables.

When IDO = 4, the estimated posterior probability of each observation x belonging to group i is computed 
using the prior probabilities and the sample mean vectors and estimated covariance matrices under a multi-
variate normal assumption. Under quadratic discrimination, the within-group covariance matrices are used 
to compute the estimated posterior probabilities. The estimated posterior probability of an observation x 
belonging to group i is 
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where 

For the leaving-out-one method of classification (IMTH = 4, 5, and 6), the sample mean vector and sample 
covariance matrices in the formula for 

are adjusted so as to remove the observation x from their computation. For linear discrimination (IMTH = 1, 2, 
4, and 6), the linear discriminant function coefficients are actually used to compute the same posterior 
probabilities.

Using the posterior probabilities, each observations in X is classified into a group; the result is tabulated in 
the matrix CLASS and saved in the vector ICLASS. CLASS is not altered at this stage if X(i, IGRP) contains a 
group number that is out of range. If the reclassification method is specified, then all observations with no 
missing values in the NVAR classification variables are classified. When the leaving-out-one method is used, 
observations with invalid group numbers, weights, frequencies or classification variables are not classified. 
Regardless of the frequency, a 1 is added (or subtracted) from CLASS for each row of X that is classified and 
contains a valid group number.

When IMTH > 3, adjustment is made to the posterior probabilities to remove the effect of the observation in 
the classification rule. In this adjustment, each observation is presumed to have a weight of X(i, IWT), if 
IWT > 0 and a frequency of 1.0. See Lachenbruch (1975, page 36) for the required adjustment.

Note that the X data in an IDO = 3 call do not have to be identical with the X data used in a subsequent 
IDO = 4 call if the reclassification method (IMTH=1,2,3) is used: The observations in the IDO = 3 call serve as a 
training sample to determine the discriminant functions that can be used in the following IDO = 4 call to clas-
sify new X data. Since the reclassification method classifies each observation regardless of its group number, 
it can also be used for the classification of new observations whose actual group assignment is not known 
(i.e. group column (IGRP) of X is not used when IDO = 4). See Example 3.

Finally, when IDO = 5, the covariance matrices are computed from their LU factorizations, and the mean val-
ues (XMEAN) are scaled.

Comments
1. Workspace may be explicitly provided, if desired, by use of D2CRM/DD2CRM. The reference is:

CALL D2CRM (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, IGRP, NGROUP, IMTH, IPRINT, 
RIOR, NI, XMEAN, LDXMEA, COV, LDCOV, COEF, LDCOEF, ICLASS, PROB, LDPROB, CLASS, 
LDCLAS, D2, LDD2, STAT, NRMISS, D, OB, OB1)
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The additional arguments are as follows:

D — Work vector of length equal to (NGROUP + 1) * NVAR if IMTH is not 3 or 6, and of length NVAR 
otherwise.

OB — Work vector of length equal to NVAR.

OB1 — Work vector of length equal to NVAR.
2. Informational errors

3. Common choices for the Bayesian prior probabilities are given by: 
PRIOR(i) = 1.0/NGROUP (equal prior probabilities) 
PRIOR(i) = NI(i)/NOBS (proportional prior probabilities) 
PRIOR(i) = Past history or subjective judgement 
In all cases, the prior probabilities should sum to 1.0.

4. Two passes of the data are made. In the first pass, the statistics required to compute the discriminant 
functions are obtained (IDO = 1, 2, and 3). In the second pass, the discriminant functions are used to 
classify the observations. When IDO = 0, all of the data are memory resident, and both passes are made 
in one call to DSCRM. When IDO > 0 and workspace is not explicitly provided by use of D2CRM, a third 
call to DSCRM involving no data is required with IDO = 5 or 6.

5. Here are a few rules and guidelines for the correct value of IDO in a series of calls.

Type Code Description

3 1 A row of the data matrix X has an invalid group number.

4 2 The variance-covariance matrix for a group is singular.

4 3 The pooled variance-covariance matrix is singular.

3 4 The variance-covariance matrix for a group is singular. STAT(2) cannot be 
computed. STAT(2) and STAT(4) are set to the missing value code (NaN).

3 5 An element of PRIOR is less than or equal to 10−20.

3 6 The leaving-out-one method is specified, but this observation does not have 
a valid weight, or it does not have a valid frequency. This observation is 
ignored.

3 7 The leaving-out-one method is specified, but this observation does not have 
a valid group number. This observation is ignored.

 (1) Calls with IDO = 0 or 1 may be made at any time. These calls destroy all statis-
tics from previous calls.

(2) IDO may not be 2, 3, 4, 5, or 6
(a) immediately after a call where IDO was 0,
(b) before a call with IDO = 1 has been made, or
(c) immediately after a call with IDO = 5 or 6 has been made.

(3) IDO may not be 4 or 5 before a call with IDO = 3 has been made.

(4) Each series of calls to DSCRM which begins with IDO = 1 should end with 
IDO = 5 or 6 to ensure the proper release of workspace.This is a valid sequence 
of IDOs:
0, 1, 2, 3, 4, 5, 1, 3, 4, 3, 5, 1, 6, 1, 2, 6, 0, 0, 1, 3, 5.
DSCRM         Chapter 10: Discriminant Analysis      1093



6. Unlike many routines using the parameter IDO, because of the workspace allocation and saved vari-
ables, neither DSCRM or D2CRM can be called with IDO greater than 1 in consecutive invocations with 
more than one dataset.

Examples

Example 1

The following example uses linear discrimination with equal prior probabilities on Fisher’s (1936) iris data. 
This example illustrates the execution of DSCRM when one call is made.

      USE GDATA_INT
      USE DSCRM_INT

      IMPLICIT  NONE
      INTEGER   IGRP, IMTH, IPRINT, LDCLAS, LDCOEF, LDCOV, LDD2, &
                LDPROB, LDX, LDXMEA, NCOL, NGROUP, NROW, NVAR
      PARAMETER  (IGRP=1, IMTH=3, IPRINT=1, LDCOV=4, NCOL=5, &
                  NGROUP=3, NROW=150, NVAR=4, LDCLAS=NGROUP, &
                  LDCOEF=NGROUP, LDD2=NGROUP, LDPROB=NROW, &
                  LDX=NROW, LDXMEA=NGROUP)
!
      INTEGER    ICLASS(NROW), IND(4), NI(NGROUP), NOBS, NRMISS, NV
      REAL       CLASS(LDCLAS,NGROUP), COEF(LDCOEF,NVAR+1), &
                 COV(LDCOV,LDCOV,1), D2(LDD2,NGROUP), PRIOR(3), &
                 PROB(LDPROB,NGROUP), STAT(6+2*NGROUP), X(LDX,5), &
                 XMEAN(LDXMEA,NVAR)
!
      DATA IND/2, 3, 4, 5/, PRIOR/0.3333333, 0.3333333, 0.3333333/
!
      CALL GDATA (3, X, NOBS, NV)
!
      CALL DSCRM (NROW, NVAR, X, NGROUP, COV, COEF, ICLASS, PROB, &
                 CLASS, D2, STAT, IND=IND, IGRP=IGRP, IMTH=IMTH, &
                 IPRINT=IPRINT, PRIOR=PRIOR, NI=NI, XMEAN=XMEAN, &
                 NRMISS=NRMISS)
!
      END

Output

PRIOR, the prior probabilities
     1        2        3
0.3333   0.3333   0.3333

NI, the number in each group
 1    2    3
50   50   50

     XMEAN, the group means
        1       2       3       4
1   5.006   3.428   1.462   0.246
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2   5.936   2.770   4.260   1.326
3   6.588   2.974   5.552   2.026

The pooled within-groups covariance matrix
         1        2        3        4
1   0.2650   0.0927   0.1675   0.0384
2   0.0927   0.1154   0.0552   0.0327
3   0.1675   0.0552   0.1852   0.0427
4   0.0384   0.0327   0.0427   0.0419

COEF, the discriminant function coefficients
        1       2       3       4       5
1   -86.3    23.5    23.6   -16.4   -17.4
2   -72.9    15.7     7.1     5.2     6.4
3  -104.4    12.4     3.7    12.8    21.1

ICLASS, the classifications

 Obs.  Class
  1     1
  2     1
  3     1
  4     1
  5     1
  6     1

     .
     .
     .
145     3
146     3
147     3
148     3
149     3
150     3

PROB, the posterior probabilities
          1       2       3
  1   1.000   0.000   0.000
  2   1.000   0.000   0.000
  3   1.000   0.000   0.000
  4   1.000   0.000   0.000
  5   1.000   0.000   0.000
  6   1.000   0.000   0.000
          .
          .
          .
145   0.000   0.000   1.000
146   0.000   0.000   1.000
147   0.000   0.006   0.994
148   0.000   0.003   0.997
149   0.000   0.000   1.000
150   0.000   0.018   0.982

CLASS, the classification table
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          1       2       3
  1   50.00    0.00    0.00
  2    0.00   48.00    2.00
  3    0.00    1.00   49.00

D2, the distances between group means
          1       2       3
  1     0.0    89.9   179.4
  2    89.9     0.0    17.2
  3   179.4    17.2     0.0

                                       STAT
    1      2      3       4       5       6       7       8       9      10
147.0    NaN    NaN     NaN     NaN     NaN     NaN   -10.0    50.0    50.0

11      12
50.0   150.0

NRMISS, number of missing observations =   0

Example 2

Continuing with Fisher’s iris data, the following example computes the quadratic discriminant functions 
using values of IDO > 0. In the first loop, all observations are added to the functions, two observations at a 
time. In the second loop, each of three observations is classified, one by one, using the leaving-out-one 
method. Output for statistics that are identical to those reported in the first example are not printed here.

      USE GDATA_INT
      USE DSCRM_INT

      IMPLICIT   NONE
      INTEGER    IGRP, IMTH, LDCLAS, LDCOEF, LDCOV, LDD2, LDPROB, &
                 LDX, LDXMEA, NCOL, NGROUP, NROW, NVAR
      PARAMETER  (IGRP=1, IMTH=2, LDPROB=10, LDX=150, &
                NCOL=5, NGROUP=3, NROW=1, NVAR=4, LDCLAS=NGROUP, &
                LDCOEF=NGROUP, LDCOV=NVAR, LDD2=NGROUP, LDXMEA=NGROUP)
!
      INTEGER    I, ICLASS(LDPROB), IDO, IND(4), IPRINT, NI(NGROUP), &
                 NOBS, NRMISS, NV
      REAL       CLASS(LDCLAS,NGROUP), COEF(LDCOEF,NVAR+1), &
                COV(LDCOV,LDCOV,NGROUP+1), D2(LDD2,NGROUP), PRIOR(3), &
                PROB(LDPROB,NGROUP), STAT(6+2*NGROUP), X(LDX,5), &
                XMEAN(LDXMEA,NVAR)
!
      DATA IND/2, 3, 4, 5/, PRIOR/0.3333333, 0.3333333, 0.3333333/
!
      CALL GDATA (3, X, NOBS, NV)
!
      IPRINT = 0
      IDO    = 1
      CALL DSCRM (0, NVAR, X, NGROUP, COV, COEF, ICLASS, &
                 PROB, CLASS, D2, STAT, IDO=IDO, IND=IND, IGRP=IGRP, &
                 IMTH=IMTH, IPRINT=IPRINT, PRIOR=PRIOR, NI=NI, &
                 XMEAN=XMEAN, NRMISS=NRMISS)
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!                                 Add the observations
      IDO = 2
      DO 10  I=1, NOBS
      CALL DSCRM (NROW, NVAR, X(I:,1:), NGROUP, COV, COEF, ICLASS, &
                  PROB, CLASS, D2, STAT, IDO=IDO, IND=IND, IGRP=IGRP, &
                  IMTH=IMTH, IPRINT=IPRINT, PRIOR=PRIOR, NI=NI, &
                  XMEAN=XMEAN, NRMISS=NRMISS)
   10 CONTINUE
!                                 Summarize the statistics
      IDO = 3
      CALL DSCRM (0, NVAR, X, NGROUP, COV, COEF, ICLASS, &
                 PROB, CLASS, D2, STAT, IDO=IDO, IND=IND, IGRP=IGRP, &
                 IMTH=IMTH, IPRINT=IPRINT, PRIOR=PRIOR, NI=NI, &
                 XMEAN=XMEAN, NRMISS=NRMISS)
!                                 Classify the first three observations
      IPRINT = 2
      IDO    = 4
      DO 20  I=1, 3
      CALL DSCRM (NROW, NVAR, X(I:,1:), NGROUP, COV, COEF, ICLASS(I:),&
      PROB(I:,1:), CLASS, D2, STAT, IDO=IDO, IND=IND, &
      IGRP=IGRP, IMTH=IMTH, IPRINT=IPRINT, PRIOR=PRIOR, &
      NI=NI, XMEAN=XMEAN, NRMISS=NRMISS)
   20 CONTINUE
!                                 Release Workspace
      IDO = 6
      CALL DSCRM (0, NVAR, X, NGROUP, COV, &
                 COEF, ICLASS, PROB, CLASS, D2, STAT, IDO=IDO, IND=IND, &
                 IGRP=IGRP, IMTH=IMTH, IPRINT=IPRINT, PRIOR=PRIOR, NI=NI, &
                 XMEAN=XMEAN, NRMISS=NRMISS)
!
      END

Output

ICLASS, the classifications

Obs.  Class
1     1

PROB, the posterior probabilities
    1       2       3
1.000   0.000   0.000

ICLASS, the classifications

Obs.  Class
1     1

PROB, the posterior probabilities
    1       2       3
1.000   0.000   0.000

ICLASS, the classifications
Obs.  Class
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1     1

PROB, the posterior probabilities
    1       2       3
1.000   0.000   0.000

Example 3

Fisher's iris data consists of 50 samples from each of three species of the Iris flower. The first 50 data sets 
belong to species 1, the second 50 data sets to species 2 and the last 50 data sets to species 3. In this example, 
30 data sets from each of the 3 species are used to train the quadratic discrimination functions. In a second 
step, the computed discriminant functions are used to classify the remaining data sets. The classification 
results show that two data sets are misclassified by the discriminant functions: One data set belonging to spe-
cies 2 is erroneously assigned to species 3 and one data set belonging to species 3 is erroneously assigned to 
species 2.

   ?USE GDATA_INT
   USE DSCRM_INT
!  
   IMPLICIT NONE
   INTEGER, PARAMETER :: IGRP = 1, IMTH = 2, NGROUP = 3, NVAR = 4,&
                         NTRAIN = 90, NCLASS = 60, NTOTAL = 150
   INTEGER :: IDO, NROW, NOBS, NV
   INTEGER :: NI(NGROUP), IND(NVAR), ICLASS(NCLASS)
   REAL :: RPRIOR(NGROUP), STAT(6+2*(NGROUP)), X(NTOTAL,NVAR+1),&
           COEF(NGROUP,NVAR+1), COV(NVAR,NVAR,NGROUP+1),&
           PROB(NCLASS,NGROUP), CLASS(NGROUP,NGROUP),&
           D2(NGROUP,NGROUP), XMEAN(NGROUP,NVAR),&
           TRAINDATA(NTRAIN,NVAR+1), CLASSDATA(NCLASS,NVAR+1)
!          
   IND = (/ 2, 3, 4, 5 /)
!
! Read Fisher's Iris data into array x
!
   CALL GDATA (3, X, NOBS, NV)
!
! Prepare training data.
! Use 90 data sets of Fisher's Iris data for training the
! discriminant functions. Fisher's Iris data consist of 50
! samples from each of three species of Iris. The first 50
! sets belong to species 1, the second 50 sets belong to
! species 2, and the last 50 sets belong to species 3. Add
! the first 30 data sets of each species to the training
! data.
!
   TRAINDATA(1:30,1:5) = X(1:30,1:5)
   TRAINDATA(31:60,1:5) = X(51:80,1:5)
   TRAINDATA(61:90,1:5) = X(101:130,1:5)
!      
! Prepare classification data, the last 20 data of each
! species of Fisher's Iris data.
!
   CLASSDATA(1:20,1:5) = X(31:50,1:5)
   CLASSDATA(21:40,1:5) = X(81:100,1:5)
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   CLASSDATA(41:60,1:5) = X(131:150,1:5) 
!
! Initialize and add the training data
!
   NROW = 90
   RPRIOR(1) = -1.0e0
   CALL DSCRM (NROW, NVAR, TRAINDATA, NGROUP, COV, COEF, ICLASS,&
               PROB, CLASS, D2, STAT, IDO=1, IND=IND, IGRP=IGRP,&
               IMTH=IMTH, PRIOR=RPRIOR, NI=NI, XMEAN=XMEAN)
!  
! Compute quadratic discriminant functions (IMTH=2) using the
! training data
!
   CALL DSCRM (0, NVAR, TRAINDATA, NGROUP, COV, COEF, ICLASS,& 
               PROB, CLASS, D2, STAT, IDO=3, IND=IND, IGRP=IGRP,&
               IMTH=IMTH, PRIOR=RPRIOR, NI=NI, XMEAN=XMEAN)
!
! Apply discriminant functions to the remaining data sets of
! Fishers's Iris data for group classification and print ICLASS
! and PROB.
!
   NROW = 60
   CALL DSCRM (NROW, NVAR, CLASSDATA, NGROUP, COV, COEF, ICLASS,&
               PROB, CLASS, D2, STAT, IDO=4, IND=IND, IGRP=IGRP,&
               IMTH=IMTH, PRIOR=RPRIOR, NI=NI, XMEAN=XMEAN,&
               IPRINT=2)
!
! Compute and print posterior probabilities, covariance matrices and
! classification table. Release Workspace.
! The entries in ICLASS and the classification table show that two
! sets in the classification data - one from species 2 and one from
! species 3 - are misclassified by the discriminant functions.
!
   CALL DSCRM (NROW, NVAR, CLASSDATA, NGROUP, COV, COEF, ICLASS,&
               PROB, CLASS, D2, STAT, IDO=5, IND=IND, IGRP=IGRP,&
               IMTH=IMTH, PRIOR=RPRIOR, NI=NI, XMEAN=XMEAN,&
               IPRINT=2)
!
   END

Output
  
 ICLASS, the classifications
  
   Obs.  Class
  
     1     1
     2     1
     3     1
     4     1
     5     1
     6     1
     7     1
     8     1
     9     1
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    10     1
    11     1
    12     1
    13     1
    14     1
    15     1
    16     1
    17     1
    18     1
    19     1
    20     1
    21     2
    22     2
    23     2
    24     3
    25     2
    26     2
    27     2
    28     2
    29     2
    30     2
    31     2
    32     2
    33     2
    34     2
    35     2
    36     2
    37     2
    38     2
    39     2
    40     2
    41     3
    42     3
    43     3
    44     2
    45     3
    46     3
    47     3
    48     3
    49     3
    50     3
    51     3
    52     3
    53     3
    54     3
    55     3
    56     3
    57     3
    58     3
    59     3
    60     3
  
 PROB, the posterior probabilities
             1       2       3
     1   1.000   0.000   0.000
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     2   1.000   0.000   0.000
     3   1.000   0.000   0.000
     4   1.000   0.000   0.000
     5   1.000   0.000   0.000
     6   1.000   0.000   0.000
     7   1.000   0.000   0.000
     8   1.000   0.000   0.000
     9   1.000   0.000   0.000
    10   1.000   0.000   0.000
    11   1.000   0.000   0.000
    12   1.000   0.000   0.000
    13   1.000   0.000   0.000
    14   1.000   0.000   0.000
    15   1.000   0.000   0.000
    16   1.000   0.000   0.000
    17   1.000   0.000   0.000
    18   1.000   0.000   0.000
    19   1.000   0.000   0.000
    20   1.000   0.000   0.000
    21   0.000   1.000   0.000
    22   0.000   1.000   0.000
    23   0.000   1.000   0.000
    24   0.000   0.131   0.869
    25   0.000   0.943   0.057
    26   0.000   0.993   0.007
    27   0.000   1.000   0.000
    28   0.000   0.999   0.001
    29   0.000   0.999   0.001
    30   0.000   0.997   0.003
    31   0.000   0.979   0.021
    32   0.000   0.994   0.006
    33   0.000   1.000   0.000
    34   0.000   1.000   0.000
    35   0.000   0.997   0.003
    36   0.000   0.999   0.001
    37   0.000   0.999   0.001
    38   0.000   1.000   0.000
    39   0.000   1.000   0.000
    40   0.000   0.999   0.001
    41   0.000   0.000   1.000
    42   0.000   0.007   0.993
    43   0.000   0.000   1.000
    44   0.000   0.506   0.494
    45   0.000   0.001   0.999
    46   0.000   0.000   1.000
    47   0.000   0.000   1.000
    48   0.000   0.040   0.960
    49   0.000   0.254   0.746
    50   0.000   0.007   0.993
    51   0.000   0.000   1.000
    52   0.000   0.000   1.000
    53   0.000   0.002   0.998
    54   0.000   0.000   1.000
    55   0.000   0.000   1.000
    56   0.000   0.000   1.000
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    57   0.000   0.004   0.996
    58   0.000   0.010   0.990
    59   0.000   0.000   1.000
    60   0.000   0.086   0.914
  
     The group 1 covariance matrix
          1        2        3        4
 1   0.1386   0.1010   0.0180   0.0160
 2   0.1010   0.1226   0.0017   0.0193
 3   0.0180   0.0017   0.0344   0.0058
 4   0.0160   0.0193   0.0058   0.0102
  
     The group 2 covariance matrix
          1        2        3        4
 1   0.2980   0.1021   0.1931   0.0572
 2   0.1021   0.1078   0.0852   0.0443
 3   0.1931   0.0852   0.2113   0.0730
 4   0.0572   0.0443   0.0730   0.0446
  
     The group 3 covariance matrix
          1        2        3        4
 1   0.4745   0.1092   0.3925   0.0436
 2   0.1092   0.1120   0.0878   0.0470
 3   0.3925   0.0878   0.3927   0.0620
 4   0.0436   0.0470   0.0620   0.0655
  
 The pooled within-groups covariance matrix
             1        2        3        4
    1   0.3037   0.1041   0.2012   0.0389
    2   0.1041   0.1141   0.0582   0.0369
    3   0.2012   0.0582   0.2128   0.0469
    4   0.0389   0.0369   0.0469   0.0401
  
 CLASS, the classification table
            1       2       3
    1   20.00    0.00    0.00
    2    0.00   19.00    1.00
    3    0.00    1.00   19.00
DSCRM         Chapter 10: Discriminant Analysis      1102



DMSCR

Uses Fisher’s linear discriminant analysis method to reduce the number of variables.

Required Arguments
XMEAN — NGROUP by NVAR matrix containing the means of the variables in each group.  (Input)
SUMWT — Vector of length NGROUP containing the sum of the weights of the observations in each group.  

(Input)
COV — NVAR by NVAR matrix containing the pooled within-groups variance-covariance matrix Sp.  (Input)

NNV — Number of eigenvectors extracted from 

the standardized between-groups variance-covariance matrix.  (Output) 
Sp is the pooled within-groups variance-covariance matrix, and Sb is the between-groups vari-
ance-covariance matrix. NNV is usually the minimum of NVAR and NGROUP -1, but it may be smaller if 
any row of XMEAN or COV is a linear combination of the other rows.

EVAL — Vector of length NNV containing the eigenvalues extracted from the standardized between-means 
variancecovariance matrix, in descending order.  (Output) 
NNV is less than or equal to the minimum of NVAR and (NGROUP -1).

COEF — NVAR by NNV matrix of eigenvectors from the standardized between-means variance-covariance 
matrix.  (Output) 
The eigenvector coefficients have been standardized such that the canonical scores can be obtained 
directly by multiplication of the original data by COEF.

CMEAN — NGROUP by NNV matrix of group means of the canonical variables.  (Output)

Optional Arguments
NGROUP — Number of groups.  (Input)

Default: NGROUP = size (XMEAN,1).
NVAR — Number of variables.  (Input)

Default: NVAR = size (XMEAN,2).
LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension statement in the calling 

program.  (Input)
Default: LDXMEA = size (XMEAN,1).

more...
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LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCMEA — Leading dimension of CMEAN exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCMEA = size (CMEAN,1).

FORTRAN 90 Interface
Generic: CALL DMSCR (XMEAN, SUMWT, COV, NNV, EVAL, COEF, CMEAN [, …])
Specific: The specific interface names are S_DMSCR and D_DMSCR.

FORTRAN 77 Interface
Single: CALL DMSCR (NGROUP, NVAR, XMEAN, LDXMEA, SUMWT, COV, LDCOV, NNV, EVAL, COEF, 

LDCOEF, CMEAN, LDCMEA)
Double: The double precision name is DDMSCR.

Description

Routine DMSCR is a natural generalization of R.A. Fisher’s linear discrimination procedure for two groups. 
This method of discrimination obtains those linear combinations of the observed random variables that max-
imize the between-groups variation relative to the within groups variation. Denote the first of these linear 
combinations by 

where β1 is a column vector of coefficients of length NVAR and x is an observation to be classified. On the 
basis of one linear combination, the discriminant rule assigns the observation, z, to a group (characterized by 
the group mean) by minimizing the Euclidean distance between z and the group mean. 

To obtain β1 (see, e.g., Tatsuoka 1971, page 158), let Sp denote the pooled within-groups covariance matrix (Sp 
is defined and can be computed via routine DSCRM) and let Sb denote the between-groups covariance matrix 
defined by

where g is the number of groups, 
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is the mean vector for the i-th group of observations,  denotes the vector of means over all observations, wi is 
the sum of the weights times the frequencies as input in SUMWT and as used in the computation of 

and N is the total number of observations used in computing COV. Then, β1, such that 

can be computed as the maximum of

This yields β1 as the eigenvector associated with the largest eigenvalue from 

Generally, 

has rank m, where m = min(g - 1, p) and p = NVAR. 

has m such eigenvectors, and the matrix COEF is obtained as (β1, β2, …., βm), where each βi is an eigenvector.

The matrix CMEAN is taken as the within-group means vector of the linear combinations zi defined by the β’s. 
For each observation x, scores 

can be computed, because of the restriction on βi, the sample variance of the zi is 1.0. The observation is clas-
sified into the group (as specified by the group mean of the zi’s) to which, on the basis of the zi, the Euclidean 
distance is the least.

Note that the linear combinations zi have meaning even when discrimination is not desired. The linear com-
bination of the observed variables that most separates the g groups is z1; z2, giving the second highest such 
separation orthogonal to the first, and so on. Thus, a plot of the mean vectors of the first two variables gives a 
good two-dimensional summarization of the relationships between the groups.

Comments
1. Workspace may be explicitly provided, if desired, by use of D2SCR/DD2SCR. The reference is:

CALL D2SCR (NGROUP, NVAR, XMEAN, LDXMEA, SUMWT, COV, LDCOV, NNV, EVAL, COEF, LDCOEF, 
CMEAN, LDCMEA, BCOV, EVAL2, EVEC, WKR, WK)

The additional arguments are as follows:
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BCOV — Work array of length NVAR * NVAR.

EVAL2 — Work array of length NVAR.

EVEC — Work array of length NVAR * NVAR.

WKR — Work array of length NVAR * NVAR.

WK — Work array of length 2 * NVAR.
2. IMSL routine DSCRM may be used to calculate the input arrays for this routine from the original data.

Example

The following example illustrates a typical sequence. Fisher’s iris data is used. (See routine GDATA, Chapter 
19, “Utilities”). Routine DSCRM is first used to perform a discriminant analysis based on all the variables. COV, 
XMEAN, and NI are obtained from DSCRM. Function DMSCR, which uses these arrays, is then called.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IGRP, IMTH, IPRINT, LDCLAS, LDCMEA, LDCO, LDCOEF, &
                 LDCOV, LDD2, LDPROB, LDX, LDXMEA, NCOL, &
                 NGROUP, NROW, NVAR
      PARAMETER  (IGRP=1, IMTH=3, IPRINT=0, LDCOV=4, NCOL=5, NGROUP=3, &
                  NROW=150, NVAR=4, LDCLAS=NGROUP, LDCMEA=NGROUP, &
                  LDCO=NGROUP, LDCOEF=NVAR, LDD2=NGROUP, LDPROB=NROW, &
                  LDX=NROW, LDXMEA=NGROUP)
!
      INTEGER    ICLASS(NROW), IND(4), NI(NGROUP), NNV, NOBS, NOUT, & 
                NRMISS, NV
      REAL       CLASS(LDCLAS,NGROUP), CMEAN(LDCMEA,NGROUP-1), &
                 CO(LDCO,NVAR+1), COEF(LDCOEF,NGROUP-1), &
                 COV(LDCOV,LDCOV,1), D2(LDD2,NGROUP), EVAL(NGROUP-1), &
                 PRIOR(3), PROB(LDPROB,NGROUP), REAL, &
                 STAT(6+2*NGROUP), SUMWT(NGROUP), X(LDX,5), &
                 XMEAN(LDXMEA,NVAR)
      INTRINSIC  REAL
!
      DATA IND/2, 3, 4, 5/, PRIOR/0.3333333, 0.3333333, 0.3333333/
!
      CALL GDATA (3, X, NOBS, NV)
!
      CALL DSCRM (NROW, NVAR, X, NGROUP, COV(1:,1:,1), CO, ICLASS, &
                  PROB, CLASS, D2, STAT, IND=IND, IGRP=IGRP, IMTH=IMTH, &
                  PRIOR=PRIOR, XMEAN=XMEAN)
!
      SUMWT(1) = STAT(6+NGROUP)
      SUMWT(2) = STAT(7+NGROUP)
      SUMWT(3) = STAT(8+NGROUP)
!
      CALL DMSCR (XMEAN, SUMWT, COV(1:,1:,1), NNV, EVAL, COEF, CMEAN)

      CALL UMACH (2, NOUT)
      WRITE (NOUT,'('' NNV = '',I1)') NNV
      CALL WRRRN ('EVAL', EVAL, 1, NNV, 1)
      CALL WRRRN ('COEF', COEF)
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      CALL WRRRN ('CMEAN', CMEAN)
      END

Output

NNV = 2

     EVAL
    1       2
32.19    0.29

        COEF
        1       2
1  -0.829   0.024
2  -1.534   2.165
3   2.201  -0.932
4   2.810   2.839

       CMEAN
        1       2
1  -5.502   6.877
2   3.930   5.934
3   7.888   7.174
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NNBRD

Performs k nearest neighbor discrimination.

Required Arguments
X — NROW by NVAR + 1 matrix containing the data to be used on this call.  (Input/Output) 

One column in X must contain the group number for each observation. On output, X is sorted into a k-d 
tree. The first NRULE + NCLASS rows of X must not contain missing values in the columns specified by 
IND and IGRP.

K — Number of nearest neighbors to be used in the discriminant rule.  (Input)
NGROUP — Number of groups in the data.  (Input)
NRULE — Number of observations in X to be used in the discriminant rule.  (Input) 

The first ∣NRULE∣ observations in X are used as the set defining the rule. If NRULE is positive, then the 
NRULE observations defining the rule are classified. If NRULE is negative, the NRULE observations 
defining the rule are not classified.

NCLASS — Number of observations in X to classify.  (Input) 
NCLASS is the number of observations in a second sample that may be used to test the rule formed 
from the first NRULE observations. If present, this sample is in rows 
NRULE + 1 through NRULE + NCLASS of X.

THRESH — Threshold for the posterior probabilities.  (Input) 
If the maximum posterior probability is less than THRESH, the observation is classified into group 
NGROUP + 1 (the group “other”).

PART — Vector of length NRULE containing the values to be used in the partition of X for the k-d tree.  
(Output)

IDISCR — Vector of length NRULE containing the element number in IND that points to the column of X to 
be used as the discriminator in the k-d tree.  (Output)
IDISCR(i) = 0 if the observation is a terminal node. IND(IDISCR(i)) is the column number in X to be 
used as the discriminator.

NI — Vector of length NGROUP containing the number of observations in each group.  (Output)
ICLASS — Vector of length m containing the group to which the observation was classified.  (Output) 

If NRULE > 0, m = NRULE + NCLASS; otherwise, m = NCLASS. The i-th element in ICLASS corresponds 
to to i-th row in the sorted matrix X.

PROB — m by NGROUP matrix containing the posterior probabilities for each observation.  (Output) 
The i-th row in PROB corresponds to the i-th row in the in the sorted matrix X.

CLASS — NGROUP by NGROUP + 1 matrix containing the classification table.  (Output)
Each observation that is classified and has a group number equal to 1.0, 2.0, …, NGROUP is entered into 
the table. The rows of the table correspond to the known group membership. The columns refer to the 
group to which the observation was classified. Column NGROUP + 1 refers to the column “other” (see 
THRESH).

Optional Arguments
NROW — Number of rows of X that contain an observation.  (Input)

Default: NROW = size (X,1).
NNBRD         Chapter 10: Discriminant Analysis      1108



NVAR — Number of variables to be used in the discrimination.  (Input)
Default: NVAR = size (X,2) – 1.

NCOL — Number of columns in matrix X.  (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

IND — Vector of length NVAR containing the column numbers in X to be used in the discrimination.  
(Input) 
By default,  IND(I)=1.

IGRP — Column number in X containing the group numbers.  (Input) 
The group numbers must be 1.0, 2.0, …, NGROUP for an observation to be used in the discriminant 
functions. (Note, however, that the nearest integer (NINT) function is used to obtain the group num-
bers.)
Default: IGRP = NVAR + 1.

METRIC — Metric to be used in computing the k nearest neighbors.  (Input) 
Default: METRIC = 0.

PRIOR — Vector of length NGROUP containing the prior probabilities for each group.  (Input, if PRIOR(1) 
is not -1.0; input/output, if PRIOR(1) is -1.0)
If PRIOR(1) is not -1.0, then the elements of PRIOR should sum to 1.0. Proportional priors can be 
selected by setting PRIOR(1) = -1.0. In this case, the prior probabilities will be proportional to the sam-
ple size in each group based upon the first NRULE observations, and the elements of PRIOR will 
contain the proportional prior probabilities on return from NNBRD.
Default: PRIOR(1) = -1.0.

LDPROB — Leading dimension of PROB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDPROB = size (PROB,1).

LDCLAS — Leading dimension of CLASS exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDCLAS = size (CLASS,1).

FORTRAN 90 Interface
Generic: CALL NNBRD (X, K, NGROUP, NRULE, NCLASS, THRESH, PART, IDISCR, NI, ICLASS, PROB, 

CLASS [, …])
Specific: The specific interface names are S_NNBRD and D_NNBRD.

FORTRAN 77 Interface
Single: CALL NNBRD (NROW, NVAR, NCOL, X, LDX, K, IND, IGRP, NGROUP, NRULE, NCLASS, 

METRIC, PRIOR, THRESH, PART, IDISCR, NI, ICLASS, PROB, LDPROB, CLASS, LDCLAS)

METRIC Metric used

0 Euclidean distance

1 L1 norm

2 L∞ norm
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Double: The double precision name is DNNBRD.

Description

Routine NNBRD performs k-th nearest neighbor discriminant function analysis. The k-d tree algorithm of 
Friedman, Bentley, and Finkel (1977) is used to find the nearest neighbors. Consult this reference for a discus-
sion of k-d trees and how one goes about finding nearest neighbors in them. 

In NNBRD, the k nearest neighbors of any observation used in forming the rule (i.e., one of the first NRULE 
observations in X), do not include the observation. Let ki(i = 1, …, NGROUP) denote the number of nearest 
neighbors found from each of the groups for a given observation (Σiki = k); let pi = PRIOR(i)( Σipi = 1); and let 

denote the estimated posterior probability of membership in group i. Compute

where g = NGROUP. (If nj = 0 for some j, the associated term in the denominator is excluded and

is set to 0.0.) 

Let m denote the index of the maximum

and ɸ = THRESH. Then if

the observation is classified into group m. If

or if the maximum  is not unique, then the observation is not classified into any group and ICLASS is set to 
zero. 

Three metrics are available in NNBRD for finding the nearest neighbors. These are Euclidean (L2) distance, 

L1 norm, and L∞ norm. In order to use Mahalanobis distance, xTΣ−1 x, a transformation y = Σ−1∕2 x is first 
needed so that Var(y) = I. These transformations can be accomplished by use of the mathematical routines. 
The L2 norm would then be used with y as input to obtain the Mahalanobis metric.
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Comments
Workspace may be explicitly provided, if desired, by use of N2BRD/DN2BRD. The reference is:

CALL N2BRD (NROW, NVAR, NCOL, X, LDX, K, IND, IGRP, NGROUP, NRULE, NCLASS, METRIC, 
PRIOR, THRESH, PART, IDISCR, NI, ICLASS, PROB, LDPROB, CLASS, LDCLAS, WK, IWK, ILOW, 
IHIGH, ISIDE, BNDL, BNDH, XKEY, IPQR, PQD)

The additional arguments are as follows:

WK — Work vector of length NROW.

IWK — Work vector of length NROW.

ILOW — Work vector of length log2(NROW) + 3.

IHIGH — Work vector of length log2(NROW) + 3.

ISIDE — Work vector of length log2(NROW) + 3.

BNDL — Work vector of length NVAR * (log2(NROW) + 3).

BNDH — Work vector of length NVAR * (log2(NROW) + 3).

XKEY — Work vector of length NVAR.

IPQR — Work vector of length K + 1.

PQD — Work vector of length K + 1.

Example

Fisher’s iris data are used to illustrate routine NNBRD. The data consist of three types of iris. NNBRD is called 
with k = 5 and Euclidean distance as the metric. The results show a clear separation of the groups.

      USE GDATA_INT
      USE NNBRD_INT
      USE WRRRN_INT
      USE WRIRN_INT

      IMPLICIT   NONE
      INTEGER    IGRP, K, LDCLAS, LDPROB, LDX, NCLASS, NCOL, &
                 NGROUP, NROW, NRULE, NVAR
      REAL       THRESH
      PARAMETER  (IGRP=1, K=5, LDCLAS=3, LDPROB=150, LDX=150, &
                 NCLASS=0, NCOL=5, NGROUP=3, NROW=150, &
                 NRULE=150, NVAR=4, THRESH=0.10)
!
      INTEGER    ICLASS(NROW), IDISCR(NROW), IND(NVAR), NI(NGROUP), &
                 NRA, NRB
      REAL       CLASS(LDCLAS,NGROUP+1), PART(NRULE), PRIOR(NGROUP), &
                 PROB(LDPROB,NGROUP), X(LDX,NCOL) 
!
      DATA IND/2, 3, 4, 5/
!
      CALL GDATA (3, X, NRA, NRB)
!
      PRIOR(1) = -1.0
      CALL NNBRD (X, K, NGROUP, NRULE, NCLASS, THRESH, PART, IDISCR, &
                 NI, ICLASS, PROB, CLASS, IND=IND, IGRP=IGRP, PRIOR=PRIOR)
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      CALL WRRRN ('The first 10 rows of X', X, 10, NCOL, LDX)
      CALL WRRRN ('PRIOR', PRIOR, 1, NGROUP, 1)
      CALL WRRRN ('The first 10 elements of PART', PART, 1, 10, 1)
      CALL WRIRN ('The first 10 elements of IDISCR', IDISCR, 1, 10, 1)
      CALL WRIRN ('NI', NI, 1, NGROUP, 1)
      CALL WRIRN ('The first 10 elements of ICLASS', ICLASS, 1, 10, 1)
      CALL WRRRN ('The first 10 rows of PROB', PROB, 10, NGROUP, LDPROB)
      CALL WRRRN ('CLASS', CLASS, NGROUP, NGROUP, LDCLAS)
!
      END

Output

          The first 10 rows of X
         1       2       3       4       5
 1   1.000   4.500   2.300   1.300   0.300
 2   1.000   4.400   2.900   1.400   0.200
 3   1.000   4.800   3.000   1.400   0.300
 4   1.000   4.400   3.000   1.300   0.200
 5   1.000   4.800   3.000   1.400   0.100
 6   1.000   4.300   3.000   1.100   0.100
 7   1.000   4.600   3.100   1.500   0.200
 8   1.000   4.900   3.100   1.500   0.100
 9   1.000   4.900   3.000   1.400   0.200
10   1.000   4.900   3.100   1.500   0.200

          PRIOR
     1        2        3
0.3333   0.3333   0.3333

                      The first 10 elements of PART
    1      2      3       4       5       6       7       8       9      10
0.000  0.000  3.000   0.000   3.000   0.000   0.000   4.900   0.000   3.100

    The first 10 elements of IDISCR
1   2   3   4   5   6   7   8   9  10
0   0   2   0   2   0   0   1   0   2

     NI
 1    2    3
50   50   50

    The first 10 elements of ICLASS
1   2   3   4   5   6   7   8   9  10
1   1   1   1   1   1   1   1   1   1

The first 10 rows of PROB
         1       2       3
 1   1.000   0.000   0.000
 2   1.000   0.000   0.000
 3   1.000   0.000   0.000
 4   1.000   0.000   0.000
 5   1.000   0.000   0.000
 6   1.000   0.000   0.000
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 7   1.000   0.000   0.000
 8   1.000   0.000   0.000
 9   1.000   0.000   0.000
10   1.000   0.000   0.000

           CLASS
        1       2       3
1   50.00    0.00    0.00
2    0.00   47.00    3.00
3    0.00    2.00   48.00
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Usage Notes

The routines described in this chapter perform various forms of hierarchical or K-means cluster analysis. By 
appropriate manipulation of the input data, either variables or cases may be clustered. Additionally, for hier-
archical clustering, similarity or dissimilarity (distance) matrices created by routines not included in this 
chapter can be clustered. Hartigan (1975) and Anderberg (1973) are general references that may be used in 
this chapter. 

The first step in agglomerative hierarchical cluster analysis is to compute the distance between each observa-
tion (or variable). Initially, each observation (variable) is treated as a cluster. The two clusters that are closest 
to one another in distance are merged, and the distance of the new cluster from all other clusters is com-
puted. This process continues until only one cluster remains. No attempt at finding an optimal clustering (in 
the sense of minimizing some criterion) is made. 

The usual steps in a hierarchical cluster analysis might proceed as follows:

1. Routine CDIST is used to compute a distance (or possibly a similarity) matrix from the input data 
matrix. A scaled matrix of Euclidean distances is a common choice for a distance matrix, while a cor-
relation matrix is a common choice for a similarity matrix. If a correlation matrix is to be used, many of 
the routines described in Chapter 3, “Correlation”, may also be used to compute the correlation mea-
sures for the matrix. In particular, routine CORVC (see Chapter 3, “Correlation”) from this chapter may 
be used.

2. Once the distance matrix has been computed, routine CLINK is used to perform the agglomerative 
hierarchical cluster analysis using either single, complete, average, or Ward’s linkage.

3. The results obtained from CLINK are examined, and if desired, the number of clusters is selected. Rou-
tine TREEP in Chapter 16, “Line Printer Graphics” may be used to print the cluster tree. This tree may aid 
in selecting the number of clusters, assuming that such a number is desired. Based upon the number of 
clusters selected, routine CNUMB is used to obtain the cluster number of each of the clustered observa-
tions (or variables).

4. Routines described in Chapter 1, “Basic Statistics” and other chapters in the IMSL STAT/LIBRARY are 
used to obtain descriptive and other statistics to evaluate the clustering.

Because routine CDIST produces similarity and distance matrices for either rows or columns, it is easy to 
cluster either observations or variables. Optionally, the user may wish to cluster a correlation matrix obtained 
from one of the routines in the correlation chapter or to input a matrix of similarities (or dissimilarities) 
obtained via experimentation. The objects within such matrices may be clustered directly in routine CLINK.

Basic K-means clustering attempts to find a clustering that minimizes the within-cluster sums of squares. In 
this method of clustering the data, matrix X is grouped so that each observation (row in X) is assigned to one 
of a fixed number, K, of clusters. The sum of the squared difference of each observation about its assigned 
clusters mean is used as the criterion for assignment. In the basic algorithm, observations are transferred 
from one cluster to another when doing so decreases the within-cluster sums of squared differences. When, 
in a pass through the entire data set, no transfer occurs, the algorithm stops. Routine KMEAN is one imple-
mentation of the basic algorithm.

The usual course of events in K-means cluster analysis might be to use routine KMEAN to obtain the optimal 
clustering. The clustering is then evaluated via routines described in  Chapter 1, “Basic Statistics” and/or other 
chapters in the IMSL STAT/LIBRARY. Often, K-means clustering with more than one value for K is per-
formed, and the value of K that best fits the data is used.
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Clustering can be performed either on observations or on variables. The discussion of the routine KMEAN 
assumes the clustering is to be performed on the observations, which correspond to the rows of the input 
data matrix. If variables, rather than observations, are to be clustered using KMEAN, the data matrix should 
first be transposed (possibly using routine TRNRR (IMSL MATH/LIBRARY)). In the documentation for 
KMEAN, the words “observation” and “variable” would then be exchanged.
Usage Notes         Chapter 11: Cluster Analysis      1117



CDIST

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.

Required Arguments
X — NROW by NCOL matrix containing the data.  (Input)
DIST — m by m matrix containing the computed dissimilarities or similarities, where 

m = NROW if IROW = 1 and m = NCOL otherwise.  (Output)

Optional Arguments
NROW — Number of rows in the matrix.  (Input)

Default: NROW = size (X,1).
NCOL — Number of columns in the matrix.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

NDSTM — Number of rows (columns, if IROW = 1) to be used in computing the distance measure between 
the columns (rows).  (Input)
Default: NDSTM = size (IND,1) if IND is present. Otherwise, a default value of 2 is used.

IND — Vector of length NDSTM containing the indices of the rows (columns, if IROW = 1) to be used in com-
puting the distance measure.  (Input)
If IND(1) = 0; the first NDSTM rows (columns) are used.
By default, the first NDSTM rows (columns) are used.

IMETH — Method to be used in computing the dissimilarities or similarities.  (Input) 
Default: IMETH = 0.

The algorithm section of the manual document has a more detailed description of each measure.

IMETH Method

0 Euclidean distance (L2 norm)

1 Sum of the absolute differences (L1 norm)

2 Maximum difference (L∞ norm)

3 Mahalanobis distance

4 Absolute value of the cosine of the angle between the vectors

5 Angle in radians (0, π) between the lines through the origin defined by the 
vectors

6 Correlation coefficient

7 Absolute value of the correlation coefficient

8 Number of exact matches 
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IROW — Row or columns option.  (Input) 
If IROW = 1, distances are computed between the NROW rows of X. Otherwise, distances between the 
NCOL columns of X are computed.
Default: IROW = 1.

ISCALE — Scaling option.  (Input) 
ISCALE is not used for methods 3 through 8. 
Default: ISCALE = 0.

LDDIST — Leading dimension of DIST exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDDIST = size (DIST,1).

FORTRAN 90 Interface
Generic: CALL CDIST (X, DIST [, …])
Specific: The specific interface names are S_CDIST and D_CDIST.

FORTRAN 77 Interface
Single: CALL CDIST (NROW, NCOL, X, LDX, NDSTM, IND, IMETH, IROW, ISCALE, DIST, LDDIST)
Double: The double precision name is DCDIST.

Description

Routine CDIST computes an upper triangular matrix (excluding the diagonal) of dissimilarities (or similari-
ties) between the columns or rows of a matrix. Nine different distance measures can be computed. For the 
first three measures, three different scaling options can be employed. Output from CDIST is generally used 
as input to clustering or multidimensional scaling routines.

The following discussion assumes that the distance measure is being computed between the columns of the 
matrix, i.e., that IROW is not 1. If distances between the rows of the matrix are desired, set IROW to 1.

For IMETH = 0 to 2, each row of X is first scaled according to the value of ISCALE. The scaling parameters are 
obtained from the values in the row scaled as either the standard deviation of the row or the row range; the 
standard deviation is computed from the unbiased estimate of the variance. If ISCALE is 0, no scaling is per-
formed, and the parameters in the following discussion are all 1.0. Once the scaling value (if any) has been 
computed, the distance between column i and column j is computed via the difference vector 
zk = (xk - yk)/sk, i = 1, …, NDSTM, where xk denotes the k-th element in the i-th column, and yk denotes the cor-
responding element in the j-th column. For given zi, the metrics 0 to 2 are defined as:

ISCALE Scaling Performed

0 No scaling is performed.

1 Scale each column (row, if IROW = 1) by the standard deviation of the column (row).

2 Scale each column (row, if IROW = 1) by the range of the column (row).
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Distance measures corresponding to IMETH = 3 to 8 do not allow for scaling. These measures are defined via 
the column vectors X = (xi), Y = (yi), and Z = (xi - yi) as follows:

For the Mahalanobis distance, any variable used in computing the distance measure that is (numerically) lin-
early dependent upon the previous variables in the IND vector is omitted from the distance measure.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2IST/DC2IST. The reference is:

CALL C2IST (NROW, NCOL, X, LDX, NDSTM, IND, IMETH, IROW, ISCALE, DIST, LDDIST, X1, X2, 
SCALE, WK, IND1)

The additional arguments are as follows:

X1 — Work vector of length NDSTM. Not used if IMETH = 8.

X2 — Work vector of length NDSTM. Not used if IMETH = 8.

SCALE — Work vector of length NDSTM if IMETH is less than 4; of length NCOL or NROW when 
IROW is 0 or 1, respectively, and IMETH is 4 or 5; and of length 
2 * NCOL or 2 * NROW when IROW is 0 or 1 and IMETH is 6 or 7. SCALE is not used when IMETH 
is 8.

WK — Work vector of length NDSTM * NDSTM when IMETH is 3, or of length NDSTM when 
IMETH = 6 or 7. Not used otherwise.

IND1 — Integer work vector of length NDSTM.

IMETH Metric

0   

Euclidean distance

1   
 

2   

IMETH Metric

3  Mahalanobis distance, where  is the usual unbiased sample 
estimate of the covariance matrix of the rows.

4
 the dot product of X and Y divided 

by the length of X times the length of Y .

5 θ, where θ is defined in 4.

6 ρ = the usual (centered) estimate of the correlation between X and Y.

7 The absolute value of ρ (where ρ is defined in 6).

8 The number of times xi = yi, where xi and yi are elements of X and Y.
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2. Informational error

Example

The following example illustrates the use of CDIST for computing the Euclidean distance between the rows 
of a matrix.

      USE WRRRN_INT
      USE CDIST_INT

      IMPLICIT   NONE
      INTEGER    IROW, LDDIST, LDX, NCOL, NDSTM, NROW, IMETH
      PARAMETER  (IMETH=0, IROW=1, NCOL=2, NROW=4, LDDIST=NROW, LDX=NROW)
!
      REAL       DIST(LDDIST,NROW), X(NROW,NCOL), IND
!
      DATA IND/0/
      DATA X/1, 1, 1, 1, 1, 0, -1, 2/
      DATA DIST/16*0.0/
!                                 Print input matrix
      CALL WRRRN ('X', X)
!
      CALL CDIST (X, DIST)
!                                 Print distance matrix
      CALL WRRRN ('DIST', DIST)
!
      END

Output

         X
        1       2
1   1.000   1.000
2   1.000   0.000
3   1.000  -1.000
4   1.000   2.000

              DIST
        1       2       3       4
1   0.000   1.000   2.000   1.000
2   0.000   0.000   1.000   2.000
3   0.000   0.000   0.000   3.000
4   0.000   0.000   0.000   0.000

Type Code Description

3 3 A variable is numerically linearly dependent on the previous variables when 
IMETH is 3. The variable detected as being linearly dependent is omitted 
from the distance measure.
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CLINK

Performs a hierarchical cluster analysis given a distance matrix.

Required Arguments
DIST — NPT by NPT matrix containing the distance (or similarity) matrix.(Input/Output)

DIST is a symmetric matrix. On input, only the upper triangular part needs to be present. The routine 
CLINK saves the upper triangular part of DIST in the lower triangle. On return from CLINK, the upper 
triangular part of DIST is restored, and the matrix has been made symmetric.

CLEVEL — Vector of length NPT - 1 containing the level at which the clusters are joined.  (Output) 
CLEVEL(k) contains the distance (or similarity) level at which cluster NPT + k was formed. If the origi-
nal data in DIST was transformed via the option parameter IDIST, the inverse transformation is 
applied to the values in CLEVEL prior to exit from CLINK.

ICLSON — Vector of length NPT - 1 containing the left sons of each merged cluster.  (Output) 
Cluster NPT + k is formed by merging clusters ICLSON(k) and ICRSON(k).

ICRSON — Vector of length NPT - 1 containing the right sons of each merged cluster.  (Output)
Cluster NPT + k is formed by merging clusters ICLSON(k) and ICRSON(k).

Optional Arguments
NPT — Number of data points to be clustered.  (Input)

Default: NPT = size (DIST,2).
IMETH — Option giving the method to be used for clustering.  (Input) 

Default: IMETH = 0.

IDIST — Option giving the type of transformation to be applied to the measures in DIST.  (Input)
Default: IDIST = 0.

IMETH Method

0 Single linkage (minimum distance)

1 Complete linkage (maximum distance)

2 Average distance within (average distance between objects 
within the merged cluster)

3 Average distance between (average distance between objects in 
the two clusters)

4 Ward’s method (minimize the within-cluster sums of squares). 
For Ward’s method, the elements of DIST are assumed to be 
Euclidean distances.

IDIST Transformation

0 No transformation is required. The elements of DIST are 
distances.

1 Convert similarities to distances by multiplication by -1.0.

2 Convert similarities (usually correlations) to distances by taking 
the reciprocal of the absolute value.
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LDDIST — Leading dimension of DIST exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDDIST = size (DIST,1).

FORTRAN 90 Interface
Generic: CALL CLINK (DIST, CLEVEL, ICLSON, ICRSON [, …])
Specific: The specific interface names are S_CLINK and D_CLINK.

FORTRAN 77 Interface
Single: CALL CLINK (NPT, IMETH, IDIST, DIST, LDDIST, CLEVEL, ICLSON, ICRSON)
Double: The double precision name is DCLINK.

Description

Routine CLINK performs hierarchical cluster analysis based upon a distance matrix, or by appropriate use of 
the IDIST option, based upon a similarity matrix. Only the upper triangular part of the matrix needs to be 
input to CLINK. 

Hierarchical clustering in CLINK proceeds as follows. Initially, each data point is considered to be a cluster, 
numbered 1 to n = NPT.

1. If the data matrix contains similarities, they are converted to distances by the method specified in 
IDIST. Set k = 1.

2. A search is made of the distance matrix to find the two closest clusters. These clusters are merged to 
form a new cluster, numbered n + k. The cluster numbers of the two clusters joined at this stage are 
saved in ICRSON and ICLSON, and the distance measure between the two clusters is stored in 
CLEVEL.

3. Based upon the method of clustering, updating of the distance measure in the row and column of 
DIST corresponding to the new cluster is performed.

4. Set k = k + 1. If k < n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two clusters have been joined. 
The IMETH option parameter specifies how the distance of the cluster just merged with each of the remaining 
clusters will be updated. Routine CLINK allows five methods of computing the distances. To understand 
these measures, suppose in the following discussion that clusters “A” and “B” have just been joined to form 
cluster “Z”, and interest is in computing the distance of Z with another cluster called “C”.
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In general, single linkage will yield long thin clusters while complete linkage will yield clusters that are more 
spherical. Average linkage and Ward’s linkage tend to yield clusters that are similar to those obtained with 
complete linkage.

Routine CLINK produces a unique representation of the binary cluster tree via the following three conven-
tions; the fact that the tree is unique should aid in interpreting the clusters. First, when two clusters are joined 
and each cluster contains two or more data points, the cluster that was initially formed with the smallest 
level (in CLEVEL) becomes the left son. Second, when a cluster containing more than one data point is joined 
with a cluster containing a single data point, the cluster with the single data point becomes the right son. 
Finally, when two clusters containing only one object are joined, the cluster with the smallest cluster number 
becomes the right son.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2INK/DC2INK. The reference is:

CALL C2INK (NPT, IMETH, IDIST, DIST, LDDIST, CLEVEL, ICLSON, ICRSON, IPTR, ICLUS, CWT, 
CSUM)

The additional arguments are as follows:

IPTR — Integer work vector of length NPT.

ICLUS — Integer work vector of length NPT.

CWT — Work vector of length NPT. Not used if IMETH = 0 or 1.

CSUM — Work vector of length NPT. Not used if IMETH = 0 or 1.
2. The clusters corresponding to the original data points are numbered from 1 to NPT. The NPT - 1 clus-

ters formed by merging clusters are numbered NPT + 1 to NPT + (NPT - 1).
3. Raw correlations, if used as similarities, should be made positive and transformed to a distance mea-

sure. One such transformation can be performed by specifying IDIST = 2 in CLINK.
4. The user may cluster either variables or observations in CLINK since a dissimilarity matrix, not the 

original data, is used. Routine CDIST may be used to compute the matrix DIST.

IMETH Method

0 This is the single linkage method. The distance from Z to C is the minimum of the dis-
tances (A to C, B to C).

1 This is the complete linkage method. The distance from Z to C is the maximum of the 
distances (A to C, B to C).

2 This is the average-distance-within-clusters method. The distance from Z to C is the 
average distance of all objects that would be within the cluster formed by merging 
clusters Z and C. This average may be computed according to formulas given by 
Anderberg (1973, page 139).

3 This is the average-distance-between-clusters method. The distance from Z to C is the 
average distance of objects within cluster Z to objects within cluster C. This average 
may be computed according to methods given by Anderberg (1973, page 140).

4 This is Ward’s method. Clusters are formed so as to minimize the increase in the 
within-cluster sums of squares. The distance between two clusters is the increase in 
these sums of squares if the two clusters were merged. A method for computing this 
distance from a squared Euclidean distance matrix is given by Anderberg (1973, 
pages 142-145).
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Routine TREEP (see Chapter 16, “Line Printer Graphics”) in the graphics chapter can be used to obtain a 
line printer plot of the clustering tree. Routine CNUMB can be used to obtain the cluster number 
assigned to each of the original clusters when a specified number of clusters is desired.

Example

In the following example, the average distance within clusters method is used to perform a hierarchical clus-
ter analysis of the Fisher iris data. Routine GDATA (see Chapter 19, “Utilities”) first used to obtain the Fisher 
iris data. The example is typical in that after the program obtains the data, routine CDIST computes the dis-
tance matrix (DIST) prior to calling CLINK.

      USE GDATA_INT
      USE CDIST_INT
      USE CLINK_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IDATA, IMETH, IPRINT, IROW, ISCALE, LDDIST, LDX,&
                 NCOL, NPT, NROW, NVAR
      PARAMETER  (IDATA=3, IMETH=2, IPRINT=0, IROW=1, ISCALE=1, &
                NCOL=5, NROW=150, NVAR=4, LDX=NROW, &
                NPT=NROW, LDDIST=LDX)
!
      INTEGER    I, ICLSON(NROW-1), ICRSON(NROW-1), IND(4), NOUT, &
                NXCOL, NXROW
      REAL       CLEVEL(NROW-1), DIST(LDDIST,LDDIST), X(LDX,NCOL)
!
      DATA IND/2, 3, 4, 5/
!
      CALL GDATA (IDATA, X, NXROW, NXCOL)
!                                 Compute the distances
      CALL CDIST (X, DIST, IND=IND, ISCALE=ISCALE)
!                                 Clustering
      CALL CLINK (DIST, CLEVEL, ICLSON, ICRSON, IMETH=IMETH)
!                                 Print some results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99996) (I,I=1,149,15)
      WRITE (NOUT,99997) (CLEVEL(I),I=1,149,15)
      WRITE (NOUT,99998) (ICLSON(I),I=1,149,15)
      WRITE (NOUT,99999) (ICRSON(I),I=1,149,15)
!
99996 FORMAT (' OBS # ', 10I6)
99997 FORMAT (' CLEVEL', 10F6.2)
99998 FORMAT (' ICLSON', 10I6)
99999 FORMAT (' ICRSON', 10I6)
!
      END

Output

OBS #      1    16    31    46    61    76    91   106   121   136
CLEVEL  0.00  0.17  0.23  0.27  0.31  0.37  0.41  0.48  0.60  0.78
ICLSON   143   153    17   140    53   198   186   218   261   249
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ICRSON   102    29     6   113    51    91   212   243   266   262
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CNUMB

Computes cluster membership for a hierarchical cluster tree.

Required Arguments
NODE — Number of data points clustered.  (Input)
ICLSON — Vector of length NODE - 1 containing the left son cluster numbers.  (Input) 

Cluster NODE + I is formed by merging clusters ICLSON(I) and ICRSON(I).
ICRSON — Vector of length NODE - 1 containing the right son cluster numbers.  (Input) 

Cluster NODE + I is formed by merging clusters ICLSON(I) and ICRSON(I).
K — Desired number of clusters.  (Input)
ICLUS — Vector of length NODE containing the cluster membership of each observation.  (Output) 

Observation I is in cluster ICLUS(I) when K clusters are specified.
NCLUS — Vector of length K containing the number of observations in each cluster.  (Output)

FORTRAN 90 Interface
Generic: CALL CNUMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS)
Specific: The specific interface name is CNUMB.

FORTRAN 77 Interface
Single: CALL CNUMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS)

Description

Given a fixed number of clusters (K) and the cluster tree (vectors ICRSON and ICLSON) produced by the hier-
archical clustering algorithm (see routine CLINK), routine CNUMB determines the cluster membership of each 
observation. The routine CNUMB first determines the root nodes for the K distinct subtrees forming the K clus-
ters and then traverses each subtree to determine the cluster membership of each observation. The routine 
CNUMB also returns the number of observations found in each cluster.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2UMB. The reference is:

CALL C2UMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS, IPT)
The additional argument is:

IPT — Work vector of length 2 * NODE.
2. Informational errors
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Examples

Example 1

In the following example, cluster membership for K = 2 clusters is found for the displayed cluster tree. The 
output vector ICLUS contains the cluster numbers for each observation.

      USE CNUMB_INT
      USE WRIRN_INT

      IMPLICIT   NONE
      INTEGER    K, NODE
      PARAMETER  (K=2, NODE=5)
!
      INTEGER    ICLSON(NODE-1), ICLUS(NODE), ICRSON(NODE-1), NCLUS(K)
!
      DATA ICLSON/5, 6, 4, 7/
      DATA ICRSON/3, 1, 2, 8/
!                                 Compute cluster membership
      CALL CNUMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS)
!                                 Print output
      CALL WRIRN ('ICLUS', ICLUS, 1, NODE, 1)
      CALL WRIRN ('NCLUS', NCLUS, 1, K, 1)
!
      END

Output

      ICLUS
1   2   3   4   5
1   2   1   2   1

      NCLUS

Type Code Description

4 1 The tree structure specified by ICLSON and ICRSON is invalid because an 
attempt to assign an observation to more than one cluster is being made.

4 2 The tree structure specified by ICLSON and ICRSON is incorrect because an 
observation is not assigned to a cluster.
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1   2
3   2

Example 2

This example illustrates the typical usage of CNUMB. The Fisher iris data (see routine GDATA,  Chapter 19, 
“Utilities”, is clustered. First the distance between the irises are computed using routine CDIST. The resulting 
distance matrix is then clustered using routine CLINK. The cluster membership for 5 clusters is then obtained 
via routine CNUMB using the output from CLINK. The need for 5 clusters can be obtained either by theoretical 
means or by examining a cluster tree. Because the cluster tree is too large to be included in this example, the 
call to routine TREEP (see Chapter 16, “Line Printer Graphics”) that would ordinarily print the cluster tree has 
been commented in the example code. The cluster membership for each of the iris observations is printed.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IDATA, IPRINT, IROW, K, &
                 LDDIST, LDX, NCOL, NODE, NODEX, NROW, NVAR
      PARAMETER  (IDATA=3, IPRINT=0, IROW=1, K=5, LDDIST=150, &
                  LDX=150, NCOL=5, NODE=150, NODEX=5, NROW=150, NVAR=4)
!
      INTEGER    I, ICLSON(NROW-1), ICLUS(NODE), ICRSON(NROW-1), &
                 IND(4), J, NCLUS(K), NSCALE, NXCOL, NXROW
      REAL       AMAX1, CLEVEL(NROW-1), DIST(LDDIST,LDDIST), RN, &
                SCALE(2), X(LDX,NCOL)
      CHARACTER  NODENM(NODE)*7
      INTRINSIC  AMAX1
!
      DATA IND/2, 3, 4, 5/
      DATA NSCALE/1/
      DATA SCALE/0.0, 3.5/
!                                 Get IRIS data.
      CALL GDATA (IDATA, X, NXROW, NXCOL)
!                                 Compute the dissimilarities.
      CALL CDIST (X, DIST, IND=IND)
!                                 Make sure each distance is unique,
!                                 then copy the upper triangle matrix
!                                 to the lower triangle matrix.
      CALL RNSET (4)
      DO 20  I=1, NODE
         DO 10  J=I + 1, NODE
            RN = RNUNF()
            DIST(I,J) = AMAX1(0.0,DIST(I,J)+(0.001*RN))
   10    CONTINUE
         DIST(I,I) = 0.0
         CALL SCOPY (I-1, DIST(1:,I), 1, DIST(I:,1), LDDIST)
   20 CONTINUE
!                                 The initial clustering
      CALL CLINK (DIST, CLEVEL, ICLSON, ICRSON)
!                                 Print the tree.
      NODENM(1) = 'DEFAULT'
!     CALL TREEP (ICLSON, ICRSON, CLEVEL, NSCALE, SCALE, NODENM)
!                                 Compute membership for 5 clusters
      CALL CNUMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS)
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!                                 Print output
      CALL WRIRN ('ICLUS', ICLUS, 1, NODE, 1)
      CALL WRIRN ('NCLUS', NCLUS, 1, K, 1)
!
      END

Output

                                   ICLUS
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
5  5  5  5  5  5  5  5  5   5   5   5   5   5   5   5   5   5   5   5

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 5  5  5  5   5   5   5   5   5   5   5   5   5   5   5   5   5   5   5   5

41 42 43 44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
 5  5  5  5   5   5   5   5   5   5   2   2   2   2   2   2   2   1   2   2

61 62 63 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80
 1  2  2  2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2

81 82 83 84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99
 2  2  2  2   2   2   2   2   2   2   2   2   2   1   2   2   2   2   1

100 101 102 103  104  105  106  107  108  109  110  111  112  113  114  115
  2   2   2   2    2    2    2    3    2    2    2    2    2    2    2    2

116 117 118 119  120  121  122  123  124  125  126  127  128  129  130  131
  2   2   4   2    2    2    2    2    2    2    2    2    2    2    2    2

132 133 134 135  136  137  138  139  140  141  142  143  144  145  146  147
  4   2   2   2    2    2    2    2    2    2    2    2    2    2    2    2

148  149  150
  2    2    2

         NCLUS
1    2    3    4    5
4   93    1    2   50
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KMEAN

Performs a K-means (centroid) cluster analysis.

Required Arguments
X — NOBS by NCOL matrix containing the observations to be clustered.  (Input) 

The only columns of X used are those indicated by IND and possibly IFRQ and/or IWT.
CM — K by NVAR matrix containing, on input, the cluster seeds, i.e., estimates for the cluster centers, and 

the cluster means on output. (Input/Output) 
The cluster seeds must be unique.

SWT — K by NVAR matrix containing the sum of the weights used to compute each cluster mean.  (Output) 
Missing observations are excluded from SWT.

IC — Vector of length NOBS containing the cluster membership for each observation.  (Output)
NC — Vector of length K containing the number of observations in each cluster.  (Output)
WSS — Vector of length K containing the within sum of squares for each cluster.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
NVAR — Number of variables to be used in computing the metric.  (Input)

Default: NVAR = size (CM,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means all frequencies are 1. For positive IFRQ, column number IFRQ of X contains the non-
negative frequencies.
Default: IFRQ = 0.

IWT — Weighting option.  (Input)
IWT = 0 means all weights are 1. For positive IWT, column number IWT contains the nonnegative 
weights.
Default: IWT = 0.

IND — Vector of length NVAR containing the columns of X to be used in computing the metric.  (Input) 
In the usual case in which X is the data matrix, no observation has multiple frequency, and unequal 
weighting is not desired, IND = (1, 2, 3, …, NVAR).
By default, IND(I) = (I)

K — Number of clusters.  (Input)
Default: K = size (CM,1).

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 30 is usually sufficient.
Default: MAXIT = 30.
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LDCM — Leading dimension of CM exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDCM = size (CM,1).

LDSWT — Leading dimension of SWT exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSWT = size (SWT,1).

FORTRAN 90 Interface
Generic: CALL KMEAN (X, CM, SWT, IC, NC, WSS [, …])
Specific: The specific interface names are S_KMEAN and D_KMEAN.

FORTRAN 77 Interface
Single: CALL KMEAN (NOBS, NCOL, NVAR, X, LDX, IFRQ, IWT, IND, K, MAXIT, CM, LDCM, SWT, 

LDSWT, IC, NC, WSS)
Double: The double precision name is DKMEAN.

Description

Routine KMEAN is an implementation of Algorithm AS 136 by Hartigan and Wong (1979). It computes 
K-means (centroid) Euclidean metric clusters for an input matrix starting with initial estimates of the K clus-
ter means. Routine KMEAN allows for missing values (coded as NaN, “not a number”) and for weights and 
frequencies. 

Let p = NVAR denote the number of variables to be used in computing the Euclidean distance between obser-
vations. The idea in K-means cluster analysis is to find a clustering (or grouping) of the observations so as to 
minimize the total within-cluster sums of squares. In this case, the total sums of squares within each cluster is 
computed as the sum of the centered sum of squares over all nonmissing values of each variable. That is,

where νim denotes the row index of the m-th observation in the i-th cluster in the matrix X; ni is the number of 
rows of X assigned to group i; f denotes the frequency of the observation; w denotes its weight; δ is zero if the 
j-th variable on observation νim is missing, otherwise δ is one; and 

is the average of the nonmissing observations for variable j in group i. This method sequentially processes 
each observation and reassigns it to another cluster if doing so results in a decrease in the total within-cluster 
sums of squares. The user in referred to Hartigan and Wong (1979) or Hartigan (1975) for the details.

Comments
1. Workspace may be explicitly provided, if desired, by use of K2EAN/DK2EAN. The reference is:
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CALL K2EAN (NOBS, NCOL, NVAR, X, LDX, IFRQ, IWT, IND, K, MAXIT, CM, LDCM, SWT, LDSWT, IC, 
NC, WSS, IC2, NCP, D, ITRAN, LIVE)

The additional arguments are as follows:

IC2 — Work vector of length NOBS.

NCP — Work vector of length K.

D — Work vector of length NOBS.

ITRAN — Work vector of length K.

LIVE — Work vector of length K.
2. Informational Error

Example

This example performs K-means cluster analysis on Fisher’s iris data, which is first obtained via routine 
GDATA (see Chapter 19, “Utilities”). The initial cluster seed for each iris type is an observation known to be in 
the iris type.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    IPRINT, K, LDCM, LDSWT, LDX, NCOL, NOBS, NV, NVAR
      PARAMETER  (IPRINT=0, K=3, NCOL=5, NOBS=150, NV=5, NVAR=4, &
                  LDCM=K, LDSWT=K, LDX=NOBS)
!
      INTEGER    IC(NOBS), IND(NVAR), NC(K), NXCOL, NXROW
      REAL       CM(K,NVAR), SWT(K,NVAR), WSS(K), X(NOBS,NV)
!
      DATA IND/2, 3, 4, 5/
!
      CALL GDATA (3, X, NXROW, NXCOL)
!                                 Copy the cluster seeds into CM
      CALL SCOPY (NVAR, X(1:,2), LDX, CM(1:,1), LDCM)
      CALL SCOPY (NVAR, X(51:,2), LDX, CM(2:,1), LDCM)
      CALL SCOPY (NVAR, X(101:,2), LDX, CM(3:,1), LDCM)
!
      CALL KMEAN (X, CM, SWT, IC, NC, WSS, IND=IND)
!
      CALL WRRRN ('CM', CM)
      CALL WRRRN ('SWT', SWT)
      CALL WRIRN ('IC', IC, 1, NOBS, 1)
      CALL WRIRN ('NC', NC, 1, K, 1)
      CALL WRRRN ('WSS', WSS, 1, K, 1)
      END

Output

               CM
        1       2       3       4

Type Code Description

3 1 Convergence did not occur within MAXIT iterations.
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1   5.006   3.428   1.462   0.246
2   5.902   2.748   4.394   1.434
3   6.850   3.074   5.742   2.071

               SWT
        1       2       3       4
1   50.00   50.00   50.00   50.00
2   62.00   62.00   62.00   62.00
3   38.00   38.00   38.00   38.00

                                     IC
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
1  1  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 1  1  1  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

41 42 43 44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
 1  1  1  1   1   1   1   1   1   1   2   2   3   2   2   2   2   2   2   2

61 62 63 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80
 2  2  2  2   2   2   2   2   2   2   2   2   2   2   2   2   2   3   2   2

81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99
 2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2

100 101 102 103  104  105  106  107  108  109  110  111  112  113  114  115
  2   3   2   3    3    3    3    2    3    3    3    3    3    3    2    2

116 117 118 119  120  121  122  123  124  125  126  127  128  129  130  131
  3   3   3   3    2    3    2    3    2    3    3    2    2    3    3    3
132 133 134 135  136  137  138  139  140  141  142  143  144  145  146  147
  3   3   2   3    3    3    3    2    3    3    3    2    3    3    3    2

148  149  150
  3    3    2

     NC
 1    2    3
50   62   38

          WSS
    1       2       3
15.15   39.82   23.88
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Chapter 12: Sampling
Routines

12.1 Sampling Routines

Proportions, simple random sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMPPR     1138

Proportions, stratified random sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SMPPS     1141

Ratio or regression estimates, simple random sample  . . . . . . . . . . . . . . . SMPRR     1144

Ratio or regression estimates, stratified random sample . . . . . . . . . . . . . .  SMPRS     1151

Single-stage cluster sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMPSC     1157

Simple random sample  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMPSR     1161

Stratified random sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SMPSS     1165

Two-stage sample with equisized primary units. . . . . . . . . . . . . . . . . . . . . .SMPST     1169
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Usage Notes

The routines for inferences regarding proportions require only counts as the input data. The other routines 
described in this chapter require the actual data. Since the amount of data may be quite large, these routines 
allow for the data to be input in small quantities (or even to be deleted after it has already been passed to the 
subroutine). This is accomplished by means of the processing option parameter, IDO, and an indicator of the 
number of observations being passed in, NROW. IDO has the following meaning:

NROW can be positive or negative or zero. Its absolute value is the number of sample values being input. If 
NROW is negative, it is assumed that the observations being input have already been input once and now it is 
desired to delete them from the analysis. When IDO is 3, NROW can be set to 0. In this case, only postprocess-
ing is performed; no accumulation of statistics is done. This allows input of summary statistics rather than 
the actual data. See Example 2 in the documentation for the routine SMPSR. 

There are other variables used by several routines in this chapter that have a common meaning in all 
routines:

Y — The variable of interest.

X — The auxiliary variable.

NSAMP — The sample size.

NPOP — The population size.

CONPER — Confidence level.

STAT — Output statistics.

For stratified sampling, the following variables are often used:

NSTRAT — Number of strata.

NROWS — Vector with elements like NROW for strata.

NSAMPS — The strata sample sizes.

NPOPS — The population sizes for strata.

YBARS — The strata sample means.

IDO Action

0 This is the only invocation of the subroutine for this data set, and all the data are input 
at once.

1 This is the first invocation, and additional calls to the subroutine will be made. Initial-
ization and updating for the data are performed.

2 This is an intermediate invocation of the subroutine, and updating for the data is 
performed.

3 This is the final invocation of the routine. Updating for the data and any wrap-up 
computations are performed.
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YVARS — The strata sample variances.
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SMPPR

Computes statistics for inferences regarding the population proportion and total given proportion data from 
a simple random sample.

Required Arguments
NINT — Number of sample units in the class of interest, for the population (or subpopulation) of interest.  

(Input)
NSAMP — Number of units in the entire random sample.  (Input)
NPOP — Number of units in the population.  (Input)
CONPER — Confidence level for two-sided interval estimates, in percent.  (Input) 

A CONPER percent confidence interval is computed; hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).

STAT — Vector of length 10 containing the resulting statistics.  (Output) 
These are: 

FORTRAN 90 Interface
Generic: CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)
Specific: The specific interface names are S_SMPPR and D_SMPPR.

FORTRAN 77 Interface
Single: CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)
Double: The double precision name is DSMPPR.

I STAT(I)

1 Estimate of the proportion.

2 Estimate of the total.

3 Variance estimate of the proportion estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the proportion.

6 Upper confidence limit for the proportion.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate (expressed as a percentage) of the coefficient or variation of the total esti-
mate. Not defined if NINT = 0.

10 Indicator of the distribution used to approximate the hypergeometric distribution for 
the confidence interval calculations. If STAT(10) = 0, then the normal is used. If 
STAT(10) = 1, then the Poisson is used. If STAT(10) = 2, then the binomial is used.
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Description

The routine SMPPR computes point and interval estimates for the population proportion and total from a 
simple random sample. The simplest and most common case for which this routine is appropriate is one in 
which the population sampled contains two or more classes, and it is desired to estimate the proportion of 
the population falling into a particular class (“class of interest”). The data required by SMPPR consist of 
counts of the number of sample items in the class of interest, the sample size, and the population size. If there 
are more than two classes in the population, some of the classes may not be of interest.

Since the hypergeometric distribution is the appropriate probability model for the sampling for proportions 
in a finite population without replacement, exact confidence limits could be computed using that distribu-
tion. For populations with sizes that occur in practice (more than a hundred, often in the thousands or even 
millions), the confidence limits can be approximated very well by use of the normal, the binomial, or the 
Poisson distribution. Routine SMPPR uses one of these distributions in setting confidence limits, following 
the guidelines in the table on page 58 of Cochran (1977).

Examples

Example 1

The first example is from Cochran (1977, page 52). A simple random sample of size 200 was drawn from a list 
of 3042 names and addresses. Verification of the addresses in the sample showed 38 to be wrong. The objec-
tive is to estimate the total number of incorrect addresses.

      USE UMACH_INT
      USE SMPPR_INT
      INTEGER    NINT, NOUT, NPOP, NSAMP
      REAL       CONPER, SQRT, STAT(10), STDP, STDT
      INTRINSIC  SQRT
!
      CALL UMACH (2, NOUT)
      NINT   = 38
      NSAMP  = 200
      NPOP   = 3042
      CONPER = 0.0
      CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)
      STDP = SQRT(STAT(3))
      STDT = SQRT(STAT(4))
      WRITE (NOUT,99999) STAT(1), STAT(2), STDP, STDT, STAT(9)
99999 FORMAT (' Estimate of proportion bad:              ', F5.3, /,&
            ' Estimate of total bad:                   ', F5.0, /, &
            ' Standard deviation estimate, proportion: ', F5.3, /, &
            ' Standard deviation estimate, total:      ', F5.1, /, &
            ' Coefficient of variation:                ', F5.1,'%')
      END

Output

Estimate of proportion bad:              0.190
Estimate of total bad:                    578.
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Standard deviation estimate, proportion: 0.027
Standard deviation estimate, total:       81.8
Coefficient of variation:                 14.1%

Example 2

The next example is also from Cochran (1977, page 68). A simple random sample of size 200 from 2000 col-
leges showed 120 colleges to be in favor of a certain proposal, 57 to be opposed, and 23 to have no opinion. 
We wish to estimate the number of colleges, out of the 2000, that favor the proposal.

      USE UMACH_INT
      USE SMPPR_INT

      IMPLICIT   NONE
      INTEGER    NINT, NOUT, NPOP, NSAMP
      REAL       CONPER, STAT(10)
!
      CALL UMACH (2, NOUT)
      NINT   = 120
      NSAMP  = 200
      NPOP   = 2000
      CONPER = 95.0
      CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)
      WRITE (NOUT,99999) STAT(2), STAT(7), STAT(8)
99999 FORMAT (' Estimate of number in favor:   ', F5.0, /, ' 95% ', &
            'confidence interval: (', F5.0, ',', F5.0, ')')
      END

Output

Estimate of number in favor:   1200.
95% confidence interval: (1066.,1334.)
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SMPPS

Computes statistics for inferences regarding the population proportion and total given proportion data from 
a stratified random sample.

Required Arguments
NINTS — Vector of length NSTRAT containing the observed number of units in each stratum from the class 

of interest.  (Input)
NSAMPS — Vector of length NSTRAT containing the sample size in each stratum.  (Input)
NPOPS — Vector of length NSTRAT containing the population in the strata.  (Input) 

If the population strata sizes are not known, estimates must be entered in their place.
PROPOR — Vector of length NSTRAT containing the within-strata proportion estimates.  (Output)
STAT — Vector of length 10 containing the resulting statistics.  (Output) 

These are:

Optional Arguments
NSTRAT — Number of strata into which the sample is divided.  (Input) 

In the vectors of length NSTRAT, the elements are all ordered in the same way.
Default: NSTRAT = size (NINTS,1).

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 
A CONPER percent confidence interval is computed; hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface
Generic: CALL SMPPS (NINTS, NSAMPS, NPOPS, PROPOR, STAT [, …])

I STAT(I)

1 Estimate of the proportion.

2 Estimate of the total.

3 Variance estimate of the proportion estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the proportion.

6 Upper confidence limit for the proportion.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate (expressed as a percentage) of the coefficient of variation 
of the total estimate.

10 Variance estimate of the proportion estimate assuming that sam-
pling was simple random instead of stratified random.
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Specific: The specific interface names are S_SMPPS and D_SMPPS.

FORTRAN 77 Interface
Single: CALL SMPPS (NSTRAT, NINTS, NSAMPS, NPOPS, CONPER, PROPOR, STAT)
Double: The double precision name is DSMPPS.

Description

Routine SMPPS computes point and interval estimates for the population proportion and total from a strati-
fied random sample. If the strata are formed so that the proportions differ greatly from one stratum to the 
next, considerable gain in statistical efficiency can be realized by use of stratified sampling (see Cochran 
1977, page 107). 

Let Nh be the number in the population in the h-th stratum, let nh be the number in the sample from the h-th 
stratum, let ah be the number of the class of interest in the sample from the h-th stratum, let N be the popula-
tion size (Σ Nh), let ph be the proportion in the h-th stratum, ah/nh, and let L be the number of strata. Then, the 
estimate of the proportion is 

and the estimate of the variance is

The confidence intervals are computed using a normal approximation.

Example

This example is an artificial modification of an example used in routine SMPPR, which is from Cochran (1977, 
page 52). A list of 3042 names and addresses was built by an experienced secretary and a part-time student 
worker. The secretary entered 1838 names and addresses, and the student entered the remainder. Samples of 
size 100 were taken from the names entered by each. Verification of the addresses in the sample from the sec-
retary’s work showed 12 to be wrong, and verification of the student’s sample showed 26 to be wrong. The 
objective is to estimate the total number of incorrect addresses.

      USE UMACH_INT
      USE SMPPS_INT

      IMPLICIT   NONE
      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
!
      INTEGER    NINTS(NSTRAT), NOUT, NPOPS(NSTRAT), NSAMPS(NSTRAT)
      REAL       CONPER, PROPOR(NSTRAT), SQRT, STAT(10), STDP, STDSRS, &
                STDT
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      INTRINSIC  SQRT
!
      CALL UMACH (2, NOUT)
      NINTS(1)  = 12
      NINTS(2)  = 26
      NSAMPS(1) = 100
      NSAMPS(2) = 100
      NPOPS(1)  = 1838
      NPOPS(2)  = 1204
      CONPER    = 0.0
!
      CALL SMPPS (NINTS, NSAMPS, NPOPS, PROPOR, STAT, CONPER=CONPER)
!
      STDP   = SQRT(STAT(3))
      STDT   = SQRT(STAT(4))
      STDSRS = SQRT(STAT(10))
!
      WRITE (NOUT,99999) STAT(1), STAT(2), STDP, STDT, STAT(9), STDSRS
99999 FORMAT (' Estimate of proportion bad:              ', F7.3, /, &
            ' Estimate of total bad:                   ', F4.0, /, &
            ' Standard deviation estimate, proportion: ', F7.3, /, &
            ' Standard deviation estimate, total:      ', F5.1, /, &
            ' Coefficient of variation:                ', F5.1, &
            '%', /, ' Std. dev. under simple random sampling:  ', &
            F7.3)
      END

Output

Estimate of proportion bad:                0.175
Estimate of total bad:                   534.
Standard deviation estimate, proportion:   0.025
Standard deviation estimate, total:       77.4
Coefficient of variation:                 14.5%
Std. dev. under simple random sampling:    0.027
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SMPRR

Computes statistics for inferences regarding the population mean and total using ratio or regression estima-
tion, or inferences regarding the population ratio given a simple random sample.

Required Arguments
NROW — The absolute value of NROW is the number of observations currently input in X and Y.  (Input) 

NROW may be positive, zero, or negative. Negative -NROW means delete the NROW rows of data from the 
analysis.

X — Vector of length ∣NROW∣ containing the data for the auxiliary variable in the random sample.  (Input)
Y — Vector of length ∣NROW∣ containing the data for the variable of interest in the random sample.  (Input) 

The value of Y(I) corresponds to that of X(I).
NPOP — Size of the population (number of pairs of elements in the sampled population).  (Input)
XMEAN — Population mean of the auxiliary variable.  (Input) 

XMEAN is not used if IOPT = 1.
STAT — Vector of length 20 containing the resulting statistics.  (Output, if IDO = 0 or 1; input/output, if 

IDO = 2 or 3)

I STAT(I)

1 Estimate of the mean.

2 Estimate of the total.

3 Variance estimate of the mean estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the mean.

6 Upper confidence limit for the mean.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate of the ratio.

10 Variance estimate of the estimate of the ratio. The population mean 
of the auxiliary variable is used in STAT(10) if the mean is known; 
otherwise, the sample estimate of the population mean is used.

11 Lower confidence limit for the ratio.

12 Upper confidence limit for the ratio.

13 Estimate (expressed as a percentage) of the coefficient of variation 
of the mean, total, and ratio and regression coefficient estimates that 
are defined, as controlled by IOPT. The standard deviation in the 
numerator of this quantity has been divided by the square root of 
the sample size. The coefficients of variation in STAT(14) and 
STAT(15) use the sample standard deviations without that divisor.

14 Estimate (expressed as a percentage) of the coefficient of variation 
of the auxiliary variable.
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STAT(1) through STAT(8) and STAT(13) are undefined when IOPT = 1. STAT(9) through STAT(12) are 
undefined when IOPT = 2 or 3. STAT(18) is defined only when IOPT = 3. The elements of STAT that 
are undefined due to IOPT or an error are set to NaN (not a number).

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

IOPT — Estimation option.  (Input) 
Default: IOPT = 0.

COEF — Reassigned regression coefficient.  (Input) 
COEF is used only when IOPT = 2.
Default: COEF = 1.0.

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input)
A CONPER percent confidence interval is computed, hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

15 Estimate (expressed as a percentage) of the coefficient of variation 
of the variable of interest.

16 Sample mean of the auxiliary variable.

17 Sample mean of the variable of interest.

18 Estimate of the regression coefficient.

19 Sample size.

20 Number of pairs in the sample with one or both values missing.

IDO Action

0 This is the only invocation of SMPRR for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to SMPRR will be made. Initialization 
and updating for the data in X and Y are performed.

2 This is an intermediate invocation of SMPRR and updating for the data in X and Y is 
performed.

3 This is the final invocation of this routine. Updating for the data in X and Y, and 
wrap-up computations are performed.

IOPT Action

0 Ratio estimation is used for inference about the population mean, total, and ratio.

1 The population mean of the auxiliary variable is not used, and only inference about 
the population ratio is desired.

2 Regression estimation with preassigned regression coefficient (in COEF) is used for 
inference about the population mean and total.

3 Regression estimation with estimated regression coefficient (returned in STAT(18)) is 
used for inference about the population mean and total.
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FORTRAN 90 Interface
Generic: CALL SMPRR (NROW, X, Y, NPOP, XMEAN, STAT [, …])
Specific: The specific interface names are S_SMPRR and D_SMPRR.

FORTRAN 77 Interface
Single: CALL SMPRR (IDO, NROW, X, Y, NPOP, IOPT, XMEAN, COEF, CONPER, STAT)
Double: The double precision name is DSMPRR.

Description

Routine SMPRR computes point and interval estimates for the population mean, total, and (optionally) ratio 
or regression coefficient, using a simple random sample of a variable of interest and an auxiliary variable. 
Routine SMPRR allows various options for the estimation techniques, which are discussed in Chapters 3, 6, 
and 7 of Cochran (1977). Let

be the sample means of the auxiliary variable and the variable of interest, respectively. Let

be the population mean of the auxiliary variable. Then, the ratio estimate of the population mean is

The linear regression estimate of the population mean is

where b is the regression coefficient, which can be either preassigned, based on previous knowledge, or esti-
mated from the data using least squares. The least-squares estimate of b is 

The confidence limits for the mean and for the total are computed using the normal approximation. If the 
coefficient of variation of either variable exceeds 10%, then this approximation may not be very accurate.

The parameters IDO and NROW allow either all or part of the data to be brought in.

Examples

The data for these examples come from Cochran (1977, Table 6.1, page 152). The variable of interest is the 
population of large U.S. cities in 1930; the auxiliary variable is the 1920 population of the same cities. There 
are 196 (NPOP) cities that are sampled (that is, that are in the population of interest). (Note that the word 
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“population” is being used in two ways in this discussion.) The total 1920 population of these cities is 22,919 
(XMEAN = 116.934). There are 49 cities in the sample. The data can be seen in the DATA statements in the pro-
grams below (actual values are 1000 times greater). There are no “missing data”; therefore, the sample size, 
STAT(19), is 49. Because the coefficient of variation is larger than 10%, SMPRR produces an informational 
“warning error” message in each example. When the coefficient of variation is larger than 10% (generally 
speaking), the confidence limits computed using the normal approximation are likely to be shorter than the 
actual limits at the same confidence level.

Example 1

In this example, ratio estimation is used, as on page 151 of Cochran (1977).

      USE SMPRR_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NROW
      PARAMETER  (NROW=49)
!
      INTEGER    I, NOUT, NPOP
      REAL       COEF, CONPER, STAT(20), X(NROW), XMEAN, Y(NROW)
!
      DATA X/76., 138., 67., 29., 381., 23., 37., 120., 61., 387., &
          93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50., &
          44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46., &
          243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36., &
          161., 74., 45., 36., 50., 48./
      DATA Y/80., 143., 67., 50., 464., 48., 63., 115., 69., 459., &
          104., 183., 106., 86., 57., 65., 50., 634., 260., 113., &
          64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130., &
          53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317., &
          46., 232., 93., 53., 54., 58., 75./
      DATA NPOP/196/, XMEAN/116.934/
!                                 All data are input at once.
!                                 Ratio estimation.
      CALL SMPRR (NROW, X, Y, NPOP, XMEAN, STAT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,17), STAT(19), STAT(20)
99999 FORMAT (/, '                    RATIO ESTIMATION', /, &
            ' Mean estimate = ', F8.1, '      Total estimate = ', &
            F8.1, /, ' Vhat of mean  = ', F8.1, '      Vhat of total ' &
            , ' = ', F8.1, /, ' Confidence limits for mean  ', F8.1, &
            ',', F8.1, /, ' Confidence limits for total ', F8.1, &
            ',', F8.1, /, ' Ratio estimate = ', F8.3, '      Vhat of ' &
            , 'ratio = ', F8.4, /, ' Confidence limits for ratio ', &
            F8.3, ',', F8.3, /, ' Coefficient of variation of mean ', &
            'estimate = ', F8.1, /, ' CV of X =   ', F8.1, &
            '               CV of Y = ', F8.1, /, ' Mean of X = ', &
            F8.1, '            Mean of Y = ', F8.1, /, ' Sample size ' &
            , '= ', F8.1, '      Number missing = ', F8.1)
      END
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Output

*** WARNING  ERROR 7 from SMPRR.  The coefficient of variation of one or
***          both of the variables exceeds 10%.  The confidence limits,
***          which are computed using a normal approximation, may not be
***          very accurate.

                   RATIO ESTIMATION
Mean estimate =    144.9      Total estimate =  28397.1
Vhat of mean  =      9.5      Vhat of total  = 364860.1
Confidence limits for mean     138.8,   150.9
Confidence limits for total  27213.3, 29581.0
Ratio estimate =    1.239      Vhat of ratio =   0.0007
Confidence limits for ratio    1.187,   1.291
Coefficient of variation of mean estimate =      2.1
CV of X =       89.3               CV of Y =     96.3
Mean of X =    103.1            Mean of Y =    127.8
Sample size =     49.0      Number missing =      0.0

Example 2

In this example, regression estimation with an estimated coefficient is used, as in Exercise 7.3 of Cochran 
(1977).

      USE SMPRR_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NROW
      PARAMETER  (NROW=49)
!
      INTEGER    I, IOPT, NOUT, NPOP
      REAL       CONPER, STAT(20), X(NROW), XMEAN, Y(NROW)
!
      DATA X/76., 138., 67., 29., 381., 23., 37., 120., 61., 387., &
          93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50., &
          44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46., &
          243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36., &
          161., 74., 45., 36., 50., 48./
      DATA Y/80., 143., 67., 50., 464., 48., 63., 115., 69., 459., &
          104., 183., 106., 86., 57., 65., 50., 634., 260., 113., &
          64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130., &
          53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317., &
          46., 232., 93., 53., 54., 58., 75./
      DATA NPOP/196/, XMEAN/116.934/
!                                 All data are input at once.
!                                 Regression estimation, with estimated
!                                 coefficient (Cochran, Exercise 7.3)
      IOPT = 3
      CALL SMPRR (NROW, X, Y, NPOP, XMEAN, STAT, IOPT=IOPT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,8), (STAT(I),I=13,20)
99999 FORMAT (/, '                    REGRESSION ESTIMATION', /, &
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            ' Mean estimate = ', F8.1, '      Total estimate = ', &
            F8.1, /, ' Vhat of mean  = ', F8.1, '      Vhat of total ' &
            , ' = ', F8.1, /, ' Confidence limits for mean  ', F8.1, &
            ',', F8.1, /, ' Confidence limits for total ', F8.1, &
            ',', F8.1, /, ' Coefficient of variation of mean ', &
            'estimate = ', F8.1, /, ' CV of X =   ', F8.1, &
            '               CV of Y = ', F8.1, /, ' Mean of X = ', &
            F8.1, '            Mean of Y = ', F8.1, /, ' Estimated ', &
            'regression coefficient = ', F8.1, /, ' Sample size = ', &
            F8.1, '      Number missing = ', F8.1)
      END

Output

*** WARNING  ERROR 7 from SMPRR.  The coefficient of variation of one or
***          both of the variables exceeds 10%.  The confidence limits,
***          which are computed using a normal approximation, may not be
***          very accurate.

                      REGRESSION ESTIMATION
Mean estimate =    143.8      Total estimate =  28177.4
Vhat of mean  =      8.6      Vhat of total  = 329372.3
Confidence limits for mean     138.0,   149.5
Confidence limits for total  27052.6, 29302.3
Coefficient of variation of mean estimate =      2.0
CV of X =       89.3               CV of Y =     96.3
Mean of X =    103.1            Mean of Y =    127.8
Estimated regression coefficient =      1.2
Sample size =     49.0      Number missing =      0.0

Example 3

In this example, regression estimation with a preassigned coefficient is used, as in Exercise 7.4 of Cochran 
(1977).

      USE SMPRR_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NROW
      PARAMETER  (NROW=49)
!
      INTEGER    I, IOPT, NOUT, NPOP
      REAL       COEF, STAT(20), X(NROW), XMEAN, Y(NROW)
!
      DATA X/76., 138., 67., 29., 381., 23., 37., 120., 61., 387., &
          93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50., &
          44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46., &
          243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36., &
          161., 74., 45., 36., 50., 48./
      DATA Y/80., 143., 67., 50., 464., 48., 63., 115., 69., 459., &
          104., 183., 106., 86., 57., 65., 50., 634., 260., 113., &
          64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130., &
          53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317., &
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          46., 232., 93., 53., 54., 58., 75./
      DATA NPOP/196/, XMEAN/116.934/
!                                 All data are input at once.
!                                 Regression estimation, with assigned
!                                 coefficient (Cochran, Exercise 7.4)
      IOPT = 2
      COEF = 1.0
      CALL SMPRR (NROW, X, Y, NPOP, XMEAN, STAT, IOPT=IOPT, COEF=COEF)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,8), (STAT(I),I=13,17), STAT(19), &
                       STAT(20)
99999 FORMAT (/, '                    REGRESSION ESTIMATION, FIXED ', &
            'COEF', /, ' Mean estimate = ', F8.1, '      Total ', &
            'estimate = ', F8.1, /, ' Vhat of mean  = ', F8.1, &
            '      Vhat of total  = ', F8.1, /, ' Confidence limits ' &
            , 'for mean  ', F8.1, ',', F8.1, /, ' Confidence limits ' &
            , 'for total ', F8.1, ',', F8.1, /, ' Coefficient of ', &
            'variation of mean estimate = ', F8.1, /, ' CV of X =   ' &
            , F8.1, '               CV of Y = ', F8.1, /, ' Mean of ' &
            , 'X = ', F8.1, '            Mean of Y = ', F8.1, /, &
            ' Sample size = ', F8.1, '      Number missing = ', F8.1)
      END

Output

*** WARNING  ERROR 7 from SMPRR.  The coefficient of variation of one or
***          both of the variables exceeds 10%.  The confidence limits,
***          which are computed using a normal approximation, may not be
***          very accurate.

       REGRESSION ESTIMATION, FIXED COEF
Mean estimate =    141.6      Total estimate =  27751.1
Vhat of mean  =     12.5      Vhat of total  = 481977.4
Confidence limits for mean     134.6,   148.5
Confidence limits for total  26390.4, 29111.8
Coefficient of variation of mean estimate =      2.5
CV of X =       89.3               CV of Y =     96.3
Mean of X =    103.1            Mean of Y =    127.8
Sample size =     49.0      Number missing =      0.0
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SMPRS

Computes statistics for inferences regarding the population mean and total using ratio or regression estima-
tion given continuous data from a stratified random sample.

Required Arguments
NROWS — Vector of length NSTRAT in which ∣NROWS(I)∣ is the number of items from the I-th stratum 

currently input in X and Y.  (Input) 
Each element of NROWS may be positive, zero, or negative. A negative value for NROWS(I) means 
delete the -NROWS(I) elements of the I-th stratum in X and Y from the analysis.

X — Vector containing the data for the auxiliary variable in the stratified random sample.  (Input) 
The observations within any one stratum must appear contiguously in X. The first ∣NROWS(1)∣ ele-
ments of X are from the first stratum, and so on.

Y — Vector containing the data for the variable of interest in the stratified random sample.  (Input) 
The observations within any one stratum must appear contiguously in Y. The first ∣NROWS(1)∣ ele-
ments of Y are from the first stratum, and so on. The value of Y(I) corresponds to that of X(I).

NPOPS — Vector of length NSTRAT containing the sizes of the population in the strata.  (Input) 
The entries in NSTRAT must be ordered in correspondence with the ordering of strata in the other vec-
tors. If the population strata sizes are not known, estimates must be entered in their place.

XMEANS — Vector of length NSTRAT containing, for each stratum, the population mean of the auxiliary 
variate, provided ITOPT = 0.  (Input)
If ITOPT = 1, only XMEANS(1) is defined and it must contain the population mean of the auxiliary 
variate.

COEFS — Vector of length NSTRAT containing the ratio estimates or the regression coefficients.  (Input, if 
IOPT = 1; Output, if IOPT = 0 or 2 and IDO = 0 or 1; Input/Output, if IOPT = 0 or 2 and IDO = 2 or 3) 
If IOPT = 0, COEFS contains ratio estimates. When ITOPT = 0, COEFS contains the estimate of the ratio 
for each stratum. When ITOPT = 1, only COEFS(1) is defined and contains the combined estimate of 
the ratio. If IOPT = 1, COEFS contains preassigned regression coefficients. When ITOPT = 0, COEFS 
contains the preassigned regression coefficient for each stratum. When ITOPT = 1, only COEFS(1) is 
defined and contains the preassigned regression coefficient common to all strata. If IOPT = 2, COEFS 
contains estimated regression coefficients. When ITOPT = 0, COEFS contains the estimated regression 
coefficient for each stratum. When ITOPT = 1, only COEFS(1) is defined and contains the estimated 
regression coefficient common to all strata.

XBARS — Vector of length NSTRAT containing the strata means for the auxiliary variable.  (Output, if 
IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

XVARS — Vector of length NSTRAT containing the within-strata variances of the auxiliary variable.  (Out-
put, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

XCVS — Vector of length NSTRAT containing the within-strata coefficients of variation for the auxiliary 
variable.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

YBARS — Vector of length NSTRAT containing the strata means for the variable of interest.  (Output, if 
IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

YVARS — Vector of length NSTRAT containing the within-strata variances of the variable of interest.  (Out-
put, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

YCVS — Vector of length NSTRAT containing the within-strata coefficients of variation for the variable of 
interest. (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)
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XYCOVS — Vector of length NSTRAT containing the within-strata covariances of the auxiliary variable and 
the variable of interest.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

NSAMPS — Vector of length NSTRAT containing the number of nonmissing observations from each stra-
tum.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

STAT — Vector of length 12 containing the resulting statistics.  (Output) 
These are:

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NSTRAT — Number of strata into which the population is divided.  (Input) 
In the vectors of length NSTRAT, the elements are all ordered in the same way. That is, the first stratum 
is always the first, the second is always the second, and so on.
Default: NSTRAT = size (NROWS,1).

IOPT — Estimation option.  (Input) 
Default: IOPT = 0.

I STAT(I)

1 Estimate of the mean.

2 Estimate of the total.

3 Variance estimate of the mean estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the mean.

6 Upper confidence limit for the mean.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate of the coefficient of variation for the mean and total 
estimate.

10 Unstratified mean of the auxiliary variate.

11 Unstratified mean of the variable of interest.

12 The number of pairs in the sample that had one or both values 
missing.

IDO Action

0 This is the only invocation of SMPRS for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to SMPRS will be made. Initialization 
and updating for the data in X and Y are performed.

2 This is an intermediate invocation of SMPRS, and updating for the data in X and Y is 
performed.

3 This is the final invocation of this routine. Updating for the data in X and Y and 
wrap-up computations are performed.
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ITOPT — Estimation technique option.  (Input)
Default: ITOPT = 0.

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 
A CONPER percent confidence interval is computed; hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface
Generic: CALL SMPRS (NROWS, X, Y, NPOPS, XMEANS, COEFS, XBARS, XVARS, XCVS, YBARS, YVARS, 

YCVS, XYCOVS, NSAMPS, STAT [, …])
Specific: The specific interface names are S_SMPRS and D_SMPRS.

FORTRAN 77 Interface
Single: CALL SMPRS (IDO, NSTRAT, NROWS, X, Y, NPOPS, IOPT, ITOPT, XMEANS, CONPER, COEFS, 

XBARS, XVARS, XCVS, YBARS, YVARS, YCVS, XYCOVS, NSAMPS, STAT)
Double: The double precision name is DSMPRS.

Description

Routine SMPRS computes point and interval estimates for the population mean and total from a stratified 
random sample of a variable of interest and an auxiliary variable. Routine SMPRS allows for either ratio esti-
mation, regression estimation with preassigned coefficients, or regression estimation with estimated 
coefficients. 

This routine follows the standard methods discussed in Chapters 6 and 7 of Cochran (1977). The statistics are 
similar to those discussed in the documentation for routine SMPRR, except that they are computed from strat-
ified data. The option parameter IOPT allows selection of either ratio or regression estimation, and the 
parameter ITOPT allows selection of separate or combined estimators. “Separate” estimators means that 
each stratum is allowed to have different ratios or regression coefficients, while “combined” means these are 
assumed to be the same over all strata.

The confidence limits for the mean and for the total are computed using the normal approximation. If the 
coefficient of variation of either variable exceeds 10%, then this approximation may not be very accurate.

IOPT Action

0 Ratio estimation used for inference about the population mean and total.

1 Regression estimation used with the preassigned regression coefficient(s) contained in 
COEFS.

2 Regression estimation used with the regression coefficient(s) estimated from the data.

ITOPT Action

0 Separate ratio or regression estimation.

1 Combined ratio or regression estimation.
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The parameters IDO and NROW allow either all or part of the data to be brought in at one time.

Examples

Example 1

In the following example, we use a stratified sample from the data in Table 5.1 of Cochran (1977), which con-
sists of the 1920 and the 1930 population (in 1000’s) of 64 cities in the United States. The objective is to 
estimate the mean and total 1930 population of the 64 cities, using a sample of size 24 of the 1920 and 1930 
populations. There are two strata: the largest 16 cities and the remaining cities. We use stratified sampling 
with equal sample sizes. The same example is also used to illustrate routine SMPSS, except here we have an 
auxiliary variable.

In this example, separate ratio estimation is used.

      USE SMPRS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
!
      INTEGER    I, NOUT, NPOPS(NSTRAT), NROWS(NSTRAT), NSAMPS(NSTRAT)
      REAL       COEFS(NSTRAT), STAT(12), X(24), &
                XBARS(NSTRAT), XCVS(NSTRAT), XMEANS(NSTRAT), &
                XVARS(NSTRAT), XYCOVS(NSTRAT), Y(24), YBARS(NSTRAT), &
                YCVS(NSTRAT), YVARS(NSTRAT)
!
      DATA X/773., 748., 734., 577., 507., 438., 415., 401., 387., &
          381., 324., 315., 258., 237., 235., 216., 201., 179., 136., &
          132., 118., 118., 106., 104./
      DATA Y/822., 781., 805., 1238., 634., 487., 442., 451., 459., &
          464., 400., 366., 302., 291., 272., 284., 270., 260., 139., &
          170., 154., 140., 163., 116./
!
      NPOPS(1) = 16
      NPOPS(2) = 48
!                                 All data are input at once.
      NROWS(1) = 12
      NROWS(2) = 12
!                                 Use separate ratio estimation.
      XMEANS(1) = 521.8
      XMEANS(2) = 165.4
!
      CALL SMPRS (NROWS, X, Y, NPOPS, XMEANS, COEFS, XBARS, XVARS, &
                 XCVS, YBARS, YVARS, YCVS, XYCOVS, NSAMPS, STAT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,9), STAT(12), COEFS
99999 FORMAT (' Mean estimate = ', F8.3, '      Total estimate = ', &
            F8.1, /, ' Vhat of mean  = ', F8.5, '      Vhat of total ' &
            , ' = ', F8.1, /, ' Confidence limits for mean  ', F8.3, &
            ',', F8.3, /, ' Confidence limits for total ', F8.1, &
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            ',', F8.1, /, ' C. V.       = ', F8.2, '      Number ', &
            'missing = ', F8.1, /, ' Estimated ratios = ', 2F10.3)
      END

Output

Mean estimate =  315.511      Total estimate =  20192.7
Vhat of mean  = 55.56254      Vhat of total  = 227584.2
Confidence limits for mean   300.901, 330.120
Confidence limits for total  19257.7, 21127.7
C. V.       =     2.36      Number missing =      0.0
Estimated ratios =      1.225     1.255

Example 2

In the following example, we use a stratified sample from the data in Table 5.1 of Cochran (1977), which con-
sists of the 1920 and the 1930 population (in 1000’s) of 64 cities in the United States. The objective is to 
estimate the mean and total 1930 population of the 64 cities, using a sample of size 24 of the 1920 and 1930 
populations. There are two strata: the largest 16 cities and the remaining cities. We use stratified sampling 
with equal sample sizes. The same example is also used to illustrate routine SMPSS, except here we have an 
auxiliary variable.

In this example, regression estimation is used, and it is assumed that the regression equation is the same in 
the two strata.

      USE SMPRS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
!
      INTEGER    I, IDO, IOPT, ITOPT, NOUT, NPOPS(NSTRAT), &
                NROWS(NSTRAT), NSAMPS(NSTRAT)
      REAL       COEFS(NSTRAT), STAT(12), X(24), &
                XBARS(NSTRAT), XCVS(NSTRAT), XMEANS(1), &
                XVARS(NSTRAT), XYCOVS(NSTRAT), Y(24), YBARS(NSTRAT), &
                YCVS(NSTRAT), YVARS(NSTRAT)
!
      DATA X/773., 748., 734., 577., 507., 438., 415., 401., 387., &
          381., 324., 315., 258., 237., 235., 216., 201., 179., 136., &
          132., 118., 118., 106., 104./
      DATA Y/822., 781., 805., 1238., 634., 487., 442., 451., 459., &
          464., 400., 366., 302., 291., 272., 284., 270., 260., 139., &
          170., 154., 140., 163., 116./
!
      NPOPS(1) = 16
      NPOPS(2) = 48
!                                 All data are input at once.
      NROWS(1) = 12
      NROWS(2) = 12
!                                 Use combined regression estimation.
      IOPT      = 2
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      ITOPT     = 1
      XMEANS(1) = 254.5
!
      CALL SMPRS (NROWS, X, Y, NPOPS, XMEANS, COEFS, XBARS, XVARS, &
                 XCVS, YBARS, YVARS, YCVS, XYCOVS, NSAMPS, STAT, &
                 IOPT=IOPT, ITOPT=ITOPT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,9), STAT(12), COEFS(1)
99999 FORMAT (' Mean estimate = ', F8.3, '      Total estimate = ', &
            F8.1, /, ' Vhat of mean  = ', F8.5, '      Vhat of total ' &
            , ' = ', F8.1, /, ' Confidence limits for mean  ', F8.3, &
            ',', F8.3, /, ' Confidence limits for total ', F8.1, &
            ',', F8.1, /, ' C. V.       = ', F8.1, '      Number ', &
            'missing = ', F8.1, /, ' Estimated combined regression ', &
            'coefficient = ', F8.3)
      END

Output

Mean estimate =  315.517      Total estimate =  20193.1
Vhat of mean  = 54.84098      Vhat of total  = 224628.6
Confidence limits for mean   301.003, 330.031
Confidence limits for total  19264.2, 21122.0
C. V.       =      2.3      Number missing =      0.0
Estimated combined regression coefficient =    1.175
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SMPSC

Computes statistics for inferences regarding the population mean and total using single stage cluster sam-
pling with continuous data.

Required Arguments
NROWS — Vector of length NCLSTR in which ∣NROWS(I)∣ is the number of items from the I-th cluster cur-

rently input in Y.  (Input) 
Each element of NROWS may be positive, zero, or negative. A negative value for NROWS(I) means 
delete the -NROWS(I) elements of the I-th cluster in Y from the analysis.

Y — Vector containing the cluster sample.  (Input) 
The observations within any one cluster must appear contiguously in Y. The first ∣NROWS(1)∣ elements 
of Y are from the first cluster, and so on.

NCLPOP — Number of clusters in the sampled population.  (Input)
NPOP — Number of elements in the population (sum of all the cluster sizes in the population).  (Input) 

NPOP is not required when IOPT = 3.
CLMEAN — Vector of length NCLSTR containing the cluster means.  (Output, if IDO = 0 or 1; Input/Out-

put, if IDO = 2 or 3.)
CLVAR — Vector of length NCLSTR containing the within-cluster variances.  (Output, if IDO = 0 or 1; 

Input/Output, if IDO = 2 or 3.)
NSAMPS — Vector of length NCLSTR containing the number of nonmissing observations from each clus-

ter.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)
STAT — Vector of length 11 containing the resulting statistics. (Output, if IDO = 0 or 1; Input/Output, if 

IDO = 2 or 3.) 
These are: 

I STAT(I)

1 Estimate of the mean.

2 Estimate of the total.

3 Variance estimate of the mean estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the mean.

6 Upper confidence limit for the mean.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate (expressed as a percentage) of the coefficient of variation of the mean and 
total estimate.

10 The total sample size.

11 The number of missing values.
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Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NCLSTR — Number of clusters into which the sample is divided.  (Input) 
In the vectors of length NCLSTR, the elements are all ordered in the same way. That is, the first cluster 
is always the first, the second always the second, and so on.
Default: NCLSTR = size (NROWS,1).

IOPT — Estimation option.  (Input) 
Default: IOPT = 0.

SIZE — If IOPT = 3, vector of length NCLSTR containing a measure of cluster size for each cluster in the 
sample.  (Input) 
The sampled cluster size measures must be ordered in correspondence with the ordering of clusters in 
Y. SIZE is required only when IOPT = 3.

TSIZE — If IOPT = 3, measure of total size of all clusters in the population.  (Input) 
TSIZE is required only when IOPT = 3.
Default: TSIZE = 1.0.

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 
A CONPER percent confidence interval is computed; hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface
Generic: CALL SMPSC (NROWS, Y, NCLPOP, NPOP, CLMEAN, CLVAR, NSAMPS, STAT [, …])
Specific: The specific interface names are S_SMPSC and D_SMPSC.

IDO Action

0 This is the only invocation of SMPSC for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to SMPSC will be made. Initialization 
and updating for the data in Y are performed.

2 This is an intermediate invocation of SMPSC and updating for the data in Y is 
performed.

3 This is the final invocation of this routine. Updating for the data in Y and wrap-up 
computations are performed.

IOPT Action

0 Ratio-to-size estimation is used.

1 Unbiased estimation is used.

2 Probability-proportional-to-size estimation is used and all clusters in population are 
of known size.

3 Probability-proportional-to-size estimation is used and the cluster sizes are known 
only approximately or a measure of cluster size other than the number of elements per 
cluster is to be used.
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FORTRAN 77 Interface
Single: CALL SMPSC (IDO, NCLSTR, NROWS, Y, IOPT, NCLPOP, NPOP, SIZE, TSIZE, CONPER, 

CLMEAN, CLVAR, NSAMPS, STAT)
Double: The double precision name is DSMPSC.

Description

Routine SMPSC computes point and interval estimates for the population mean and total from a single-stage 
cluster sample. The routine uses the standard methods discussed in Chapters 9 and 9A of Cochran (1977). 
The sample means for the individual clusters are accumulated in CLMEAN, and the corrected sums of squares 
are accumulated in CLVAR. In the postprocessing phase, the quantities in STAT are computed using the clus-
ter statistics in CLMEAN, CLVAR, and NSAMPS. The parameters IDO and NROWS allow either all or part of the 
data to be brought in at one time.

Following the notation of Cochran (1977), let N be the number of clusters in the population, let Mi be the 
number of elements in the i-th cluster unit, let M0 be the total number of elements in the population, let yij be 
the j-th element in the i-th cluster, and let n be the number of clusters in the sample. Any of three different 
estimators of the population total may be useful. An unbiased estimate of the total is

The ratio-to-size estimate is 

The probability-proportional-to-size estimate is

The confidence limits for the mean and total are computed using the normal approximation.

Example

In this example, we have a sample of two clusters from a population that contains 20 clusters. The sizes of the 
clusters in the sample are four and six, and there is a total of 100 elements in the population.

      USE SMPSC_INT
      USE UMACH_INT

      IMPLICIT   NONE
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      INTEGER    NCLSTR
      PARAMETER  (NCLSTR=2)
!
      INTEGER    NCLPOP, NOUT, NPOP, NROWS(NCLSTR), NSAMPS(NCLSTR)
      REAL       CLMEAN(NCLSTR), CLVAR(NCLSTR), SIZE(NCLSTR), &
                 STAT(11), TSIZE, Y(10)
!
      DATA Y/2.7, 5.1, 4.3, 2.8, 1.9, 6.2, 4.8, 5.1, 7.2, 6.5/
!
      NCLPOP = 20
      NPOP   = 100
!                                 All data are input at once.
      NROWS(1) = 4
      NROWS(2) = 6
      CALL SMPSC (NROWS, Y, NCLPOP, NPOP, CLMEAN, CLVAR, NSAMPS, STAT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (' Mean estimate = ', F8.3, '      Total estimate = ', &
            F8.1, /, ' Vhat of mean  = ', F8.3, '      Vhat of total ' &
            , ' = ', F8.1, /, ' Confidence limits for mean  ', F8.3, &
            ',', F8.3, /, ' Confidence limits for total ', F8.1, &
            ',', F8.1, /, ' C. V.       = ', F8.1, '%', /, &
            ' Sample size =   ', F8.0, '      Number missing = ', &
            F8.0)
      END

Output

Mean estimate =    4.660      Total estimate =    466.0
Vhat of mean  =    0.504      Vhat of total  =   5035.5
Confidence limits for mean     3.269,   6.051
Confidence limits for total    326.9,   605.1
C. V.       =     15.2%
Sample size =        10.      Number missing =       0.
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SMPSR

Computes statistics for inferences regarding the population mean and total, given data from a simple ran-
dom sample.

Required Arguments
NROW — The absolute value of NROW is the number of rows of data currently input in Y.  (Input) 

NROW may be positive, zero, or negative. Negative -NROW means delete the NROW rows of data from the 
analysis.

Y — Vector of length ∣NROW∣ containing the sample data.  (Input)
NPOP — Size of the (full) population.  (Input)
STAT — Vector of length 11 containing the resulting statistics.  (Output, if IDO = 0 or 1; input/output, if 

IDO = 2 or 3.) 
These are: 

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

I STAT(I)

1 Estimate of the mean.

2 Estimate of the total.

3 Within-sample variance estimate.

4 Variance estimate of the mean estimate.

5 Variance estimate of the total estimate.

6 Lower confidence limit for the mean.

7 Upper confidence limit for the mean.

8 Lower confidence limit for the total.

9 Upper confidence limit for the total.

10 The sample size.

11 The number of missing values.

IDO Action

0 This is the only invocation of SMPSR for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to SMPSR will be made. Initialization 
and updating for the data in Y are performed.

2 This is an intermediate invocation of SMPSR, and updating for the data in Y is 
performed.

3 This is the final invocation of this routine. Updating for the data in Y and wrap-up 
computations are performed.
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IOPT — Subpopulation option.  (Input) 
If IOPT = 0, no subpopulation is assumed. If IOPT = 1, the input data come from a subpopulation 
(“domain of study”) of unknown size.
Default: IOPT = 0.

NSAMPO — Size of the sample from the full population, if a subpopulation is sampled (that is, if 
IOPT = 1).  (Input)
Default: NSAMPO = ABS (NROW).

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 
A CONPER percent confidence interval is computed; hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface
Generic: CALL SMPSR (NROW, Y, NPOP, STAT [, …])
Specific: The specific interface names are S_SMPSR and D_SMPSR.

FORTRAN 77 Interface
Single: CALL SMPSR (IDO, NROW, Y, NPOP, IOPT, NSAMPO, CONPER, STAT)
Double: The double precision name is DSMPSR.

Description

Routine SMPSR computes point and interval estimates for the population mean and total from a simple ran-
dom sample of one variable. The routine uses the standard methods discussed in Chapter 2 of Cochran 
(1977). The sample mean is accumulated in STAT(1) and the corrected sum of squares is accumulated in 
STAT(3). In the postprocessing phase, STAT(3) is divided by the sample size minus one, and then the other 
quantities in STAT are computed. The parameters IDO and NROW allow either all or part of the data to be 
brought in at one time.

By use of IOPT and NSAMPO, SMPSR can also be used to analyze data from a subpopulation or “domain of 
study”. (See Cochran 1977, pages 34-38.) In the case of a subpopulation, only the estimates relating to the 
subpopulation total differ from the corresponding estimates when no subpopulation is assumed. Of course, 
if a subpopulation is of known size, it should be considered the full population.

Examples

Example 1

This example uses artificial data to illustrate a simple use of SMPSR to compute point and interval estimates 
of the population mean and total. The sample size is 15, from a population of size 150.

      USE SMPSR_INT
      USE UMACH_INT

      IMPLICIT   NONE
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      INTEGER    NROW
      PARAMETER  (NROW=15)
!
      INTEGER    NOUT, NPOP, NSAMPO
      REAL       STAT(11), Y(NROW)
!
      DATA Y/21., 14., 17., 22., 19., 21., 20., 15., 24., 28., 20., &
          17., 16., 22., 19./
!
      NPOP   = 150
!                                 All data are input at once.
!                                 No subpopulation is assumed.
      CALL SMPSR (NROW, Y, NPOP, STAT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (' Mean estimate = ', F8.3, '      Total estimate = ', &
            F8.1, /, ' Within-sample variance estimate = ', F8.3, /, &
            ' VHAT of mean  = ', F8.5, '      VHAT of total  = ', &
            F8.1, /, ' Confidence limits for mean  ', F8.3, &
            ',', F8.3, /, ' Confidence limits for total ', F8.1, &
            ',', F8.1, /, ' Sample size = ', F8.1, '      Number ', &
            'missing = ', F8.0)
      END

Output

Mean estimate =   19.667      Total estimate =   2950.0
Within-sample variance estimate =   13.238
VHAT of mean  =  0.79429      VHAT of total  =  17871.4
Confidence limits for mean    17.755,  21.578
Confidence limits for total   2663.3,  3236.7
Sample size =     15.0      Number missing =       0.

Example 2

This example is a problem of estimation in a subpopulation described on page 37 of Cochran (1977). The 
example illustrates how the IDO and NROW parameters can be used to allow input other than the actual data. 
Cochran gives only the sample total and uncorrected sum of squares, so these values are transformed to the 
mean and corrected sum of squares prior to input as STAT(1) and STAT(3).

      USE SMPSR_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IDO, IOPT, NOUT, NPOP, NROW, NSAMPO
      REAL       SQRT, STAT(11), Y(1)
      INTRINSIC  SQRT
!
      NPOP   = 2422
!                                 There are 180 items in the complete
!                                 sample, but only a subpopulation is
!                                 of interest.
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      IOPT   = 1
      NSAMPO = 180
!                                 For this example, STAT is
!                                 initialized as if the data
!                                 have been already processed and only
!                                 the postprocessing computations are
!                                 to be done.  There are 152 items of
!                                 interest in the sample.  The sample
!                                 total is 343.5 and the uncorrected
!                                 sum of squares is 1491.38.
!                                 STAT(1) is initialized to the sample
!                                 mean by dividing the total by the
!                                 sample size, and STAT(3) is
!                                 initialized to the corrected sum of
!                                 squares.
      STAT(1)  = 343.5/152.0
      STAT(3)  = 1491.38 - 152.0*STAT(1)**2
      STAT(10) = 152.0
      STAT(11) = 0.0
      IDO      = 3
      NROW     = 0
      CALL SMPSR (NROW, Y, NPOP, STAT, IDO=IDO, IOPT=IOPT, NSAMPO=NSAMPO)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT(2), SQRT(STAT(5))
99999 FORMAT ('      Total estimate = ', F8.1, /, '      Standard ', &
            'deviation of the estimate = ', F8.1)
      END

Output

Total estimate =   4622.0
Standard deviation of the estimate =    375.3
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SMPSS

Computes statistics for inferences regarding the population mean and total, given data from a stratified ran-
dom sample.

Required Arguments
NROWS — Vector of length NSTRAT in which ∣NROWS(I)∣ is the number of items from the I-th stratum 

currently input in Y.  (Input) 
Each element of NROWS may be positive, zero, or negative. A negative value for NROWS(I) means 
delete the -NROWS(I) elements of the I-th stratum in Y from the analysis.

Y — Vector containing the stratified random sample.  (Input) 
The observations within any one stratum must appear contiguously in Y. The first ∣NROWS(1)∣ ele-
ments of Y are from the first stratum, and so on.

NPOPS — Vector of length NSTRAT containing the sizes of the population in the strata.  (Input) 
The entries must be ordered in correspondence with the ordering of strata in the other vectors. If the 
population strata sizes are not known, estimates must be entered in their place.

YBARS — Vector of length NSTRAT containing the strata means.  (Output, if IDO = 0 or 1; Input/Output, if 
IDO = 2 or 3.)

YVARS — Vector of length NSTRAT containing the within-strata variances.  (Output, if IDO = 0 or 1; 
Input/Output, if IDO = 2 or 3.)

NSAMPS — Vector of length NSTRAT containing the number of nonmissing observations from each stra-
tum.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3.)

STAT — Vector of length 13 containing the resulting statistics.  (Output, if IDO = 0 or 1; input/output, if 
IDO = 2 or 3.) 
These are: 

I STAT(I)

1 Estimate of the mean.

2 Estimate of the total.

3 Variance estimate of the mean estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the mean.

6 Upper confidence limit for the mean.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate of the coefficient of variation of the mean and total 
estimates.

10 Number of degrees of freedom associated with the variance esti-
mates of the mean and total estimates. When IVOPT = 1, STAT(10) 
contains an effective number of degrees of freedom determined 
according to the Satterthwaite approximation.
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Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

NSTRAT — Number of strata into which the population is divided.  (Input) 
In the vectors of length NSTRAT, the elements are all ordered in the same way. That is, the first stratum 
is always the first, the second always the second, and so on.
Default: NSTRAT = size (NROWS,1).

IVOPT — Within-stratum variance assumption indicator.  (Input)
If IVOPT = 0, the true within-stratum variance is assumed constant, and a pooled estimate of that vari-
ance is returned in STAT(12). If IVOPT = 1, separate within-strata variance estimates are assumed.
Default: IVOPT = 0.

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 
A CONPER percent confidence interval is computed; hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface
Generic: CALL SMPSS (NROWS, Y, NPOPS, YBARS, YVARS, NSAMPS, STAT[, …])
Specific: The specific interface names are S_SMPSS and D_SMPSS.

FORTRAN 77 Interface
Single: CALL SMPSS (IDO, NSTRAT, NROWS, Y, NPOPS, IVOPT, CONPER, YBARS, YVARS, NSAMPS, 

STAT)
Double: The double precision name is DSMPSS.

11 Variance estimate of the mean estimate assuming that sampling was 
simple random instead of stratified random.

12 Pooled estimate of the common variance, when IVOPT = 0. If 
IVOPT = 1, STAT(12) is not defined.

13 The number of missing values.

IDO Action

0 This is the only invocation of SMPSS for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to SMPSS will be made. Initialization 
and updating for the data in Y are performed.

2 This is an intermediate invocation of SMPSS, and updating for the data in Y is 
performed.

3 This is the final invocation of this routine. Updating for the data in Y and wrap-up 
computations are performed.
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Description

Routine SMPSS computes point and interval estimates for the population mean and total from a stratified 
random sample of one variable. The routine uses the standard methods discussed in Chapters 5 and 5A of 
Cochran (1977). The sample means for the individual strata are accumulated in YBARS, and the corrected 
sums of squares are accumulated in YVARS. In the postprocessing phase, the quantities in STAT are com-
puted using the strata statistics in YBARS, YVARS, and NSAMPS. The parameters IDO and NROWS allow either 
all or part of the data to be brought in at one time.

Comments
Information Error

Example

In this example, we use a stratified sample from the data in Table 5.1 of Cochran (1977): the 1930 population 
(in 1000’s) of 64 cities in the United States. The 64 cities are the “population”, and our objective is to estimate 
the mean and total number of inhabitants in these 64 cities. There are two strata: the largest 16 cities and the 
remaining cities. We use stratified sampling with equal sample sizes. To choose the random sample, we use 
routine RNSRI (see Chapter 18, “Random Number Generation”), as follows:

       USE RNSET_INT
       USE RNSRI_INT

       IMPLICIT    NONE
       INTEGER     ISEED, NSAMP, NPOP, INDEX(12)
       NSAMP = 12
       NPOP = 16
       ISEED = 123457
       CALL RNSET(ISEED)
       CALL RNSRI(NPOP, INDEX)
       WRITE(*, *) INDEX
       NPOP = 48
       CALL RNSRI(NPOP, INDEX)
       WRITE(*, *) INDEX
       END

This yields the population indices {2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16} for the first stratum and {4, 8, 
10, 11, 13, 16, 29, 30, 36, 37, 45, 46} for the second stratum. The corresponding values from Table 5.1 are 
encoded in the program below.

      USE SMPSS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
!

Type Code Description

4 1 The population size for each stratum is equal to one.
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      INTEGER    I, IVOPT, NOUT, NPOPS(NSTRAT), NROWS(NSTRAT), &
                 NSAMPS(NSTRAT)
      REAL       STAT(13), Y(24), YBARS(NSTRAT), YVARS(NSTRAT)
!
      DATA Y/822., 781., 805., 1238., 634., 487., 442., 451., 459., &
          464., 400., 366., 302., 291., 272., 284., 270., 260., 139., &
          170., 154., 140., 163., 116./
!
      NPOPS(1) = 16
      NPOPS(2) = 48
      IVOPT    = 1
!                                 All data are input at once.
      NROWS(1) = 12
      NROWS(2) = 12
      CALL SMPSS (NROWS, Y, NPOPS, YBARS, YVARS, NSAMPS, STAT, IVOPT=IVOPT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,11), STAT(13)
99999 FORMAT (' Mean estimate = ', F8.3, '      Total estimate = ', &
            F9.1, /, ' Vhat of mean  = ', F8.3, '      Vhat of total ' &
            , ' = ', F9.1, /, ' Confidence limits for mean  ', F8.3, &
            ',', F8.3, /, ' Confidence limits for total ', F8.1, &
            ',', F8.1, /, ' C. V.       = ', F8.1, '        Degrees ' &
            , 'of freedom = ', F8.1, /, ' SRS var. estimate = ', &
            F8.3, '  Number missing = ', F8.0)
      END

Output

Mean estimate =  313.167      Total estimate =   20042.7
Vhat of mean  =  264.703      Vhat of total  = 1084224.6
Confidence limits for mean   279.180, 347.153
Confidence limits for total  17867.5, 22217.8
C. V.       =      5.2        Degrees of freedom =     19.6
SRS var. estimate = 1288.075  Number missing =       0.
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SMPST

Computes statistics for inferences regarding the population mean and total given continuous data from a 
two-stage sample with equisized primary units.

Required Arguments
NUNSAM — Number of primary units into which the sample is divided.  (Input)
NELSAM — Number of elements in the sample in each sampled primary unit.  (Input)
Y — Vector of length NOBS containing the elements of the two-stage sample.  (Input) 

The elements from each primary unit must occur contiguously within Y. Since there must be an equal 
number from each primary unit, Y must contain no missing values.

NUNPOP — Number of primary units in the sampled population.  (Input)
NELPOP — Number of elements in each primary unit in the population.  (Input)
PUMEAN — Vector of length NUNSAM containing the means of the primary units in the sample.  (Output, 

if IDO = 0 or 1; Input/Output, if IDO = 2 or 3) 
The estimates are ordered in correspondence with the ordering of primary units in Y.

PUVAR — Vector of length NUNSAM containing the sample variances of the primary units in the sample.  
(Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3)
The estimates are ordered in correspondence with the ordering of primary units in Y.

STAT — Vector of length 9 containing the resulting statistics. (Output, if IDO = 0 or 1; Input/Output, if 
IDO = 2 or 3) 

Optional Arguments
IDO — Processing option.  (Input) 

Default: IDO = 0.

I STAT(I)

1 Estimate of the mean.

2 Estimate of the total.

3 Variance of the mean estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the mean.

6 Upper confidence limit for the mean.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate (expressed as a percentage) of the coefficient of variation of the mean and 
total estimates.
SMPST         Chapter 12: Sampling      1169



NOBS — The number of observations currently input in Y.  (Input) 
NOBS may be positive or zero. If NOBS = 0, IDO must equal 3, and only wrap-up computations are per-
formed.
Default: NOBS = size (Y,1).

CONPER — Confidence level for two-sided interval estimate, in percent.  (Input) 
A CONPER percent confidence interval is computed; hence, CONPER must be greater than or equal to 
0.0 and less than 100.0. CONPER is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level ONECL, set CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface
Generic: CALL SMPST (NUNSAM, NELSAM, Y, NUNPOP, NELPOP, PUMEAN, PUVAR, STAT [, …])
Specific: The specific interface names are S_SMPST and D_SMPST.

FORTRAN 77 Interface
Single: CALL SMPST (IDO, NUNSAM, NELSAM, NOBS, Y, NUNPOP, NELPOP, CONPER, PUMEAN, 

PUVAR, STAT)
Double: The double precision name is DSMPST.

Description

Routine SMPST computes point and interval estimates for the population mean and total from a two-stage 
sample with primary units that are all equal in size. A two-stage sample might be taken if each unit (“pri-
mary unit”) in the population can be divided into smaller units. Primary units are selected first, and then 
those selected are subsampled. The routine uses the standard methods discussed in Chapter 10 of Cochran 
(1977). The sample means for the individual primary units are accumulated in PUMEAN, and the corrected 
sums of squares are accumulated in PUVAR. In the postprocessing phase, the quantities in STAT are com-
puted using the primary unit statistics. The parameters IDO and NOBS allow either all or part of the data to 
be brought in at one time. 

Following the notation of Cochran (1977), let n (NUMSAM) be the number of primary units in the sample, let m 
(NELSAM) be the number of elements (subunits) subsampled from each primary unit, let N (NUMPOP) be the 
total number of primary units in the population, let M (NELPOP) be the total number of elements in each pri-
mary unit (in the population), and let yij be the j-th element in the i-th primary unit. The sample mean per 
subunit in the i-th primary unit is 

IDO Action

0 This is the only invocation of SMPST for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to SMPST will be made. Initialization 
and updating for the data in Y are performed.

2 This is an intermediate invocation of SMPST, and updating for the data in Y is 
performed.

3 This is the final invocation of this routine. Updating for the data in Y and wrap-up 
computations are performed.
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The estimate of the population mean is

The estimate of the variance of

Example

In this example, we have a sample of two primary units, with five subunits from each. The population con-
sists of 10 primary units with 15 elements each.

      USE SMPST_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NELPOP, NELSAM, NOBS, NOUT, NUNPOP, NUNSAM
      REAL       PUMEAN(2), PUVAR(2), STAT(9), Y(10)
!
      DATA Y/2.7, 5.1, 4.3, 2.8, 1.9, 6.2, 4.8, 5.1, 7.2, 6.5/
!
      NUNSAM = 2
      NELSAM = 5
      NOBS   = 10
      NUNPOP = 10
      NELPOP = 15
!                                 All data are input at once.
      CALL SMPST (NUNSAM, NELSAM, Y, NUNPOP, NELPOP, &
                 PUMEAN, PUVAR, STAT)
!                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (' Mean estimate = ', F8.3, '      Total estimate = ', &
            F8.1, /, ' Vhat of mean  = ', F8.3, '      Vhat of total ' &
            , ' = ', F8.1, /, ' Confidence limits for mean  ', F8.3, &
            ',', F8.3, /, ' Confidence limits for total ', F8.1, &
            ',', F8.1, /, ' C. V.       = ', F8.1, '%')
      END

Output

Mean estimate =    4.660      Total estimate =    699.0
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Vhat of mean  =    1.370      Vhat of total  =  30823.7
Confidence limits for mean     2.366,   6.954
Confidence limits for total    354.9,  1043.1
C. V.       =     25.1%
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Chapter 13: Survival Analysis, Life 
Testing, and Reliability
Routines

13.1 Survival Analysis

Kaplan-Meier estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KAPMR     1175
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Usage Notes

The routines described in this chapter have primary application in the areas of reliability and life testing, but 
they may find application in any situation in which time is a variable of interest. Kalbfleisch and Prentice 
(1980), Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and Chiang 
(1968) are general references for discussing the models and methods used here.

Kaplan-Meier (product-limit) estimates of the survival distribution in a single population is available 
through routine KAPMR, and these can be printed using KTBLE. Routine TRNBL computes generalized 
Kaplan-Meier estimates. Routine PHGLM computes the parameter estimates in a proportional hazards model. 
Routine SVGLM fits any of several generalized linear models, and STBLE computes estimates of survival 
probabilities based on the same models. Routine ACTBL computes and (optionally) prints an actuarial table 
based either upon a cohort followed over time or a cross-section of a population.
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KAPMR

Computes Kaplan-Meier estimates of survival probabilities in stratified samples.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IRT — Column number in X containing the response variable.  (Input)

For the i-th right-censored observation, X(i, IRT) contains the right-censoring time. Otherwise, 
X(i, IRT) contains the failure time. (See ICEN.)

SPROB — NOBS by 2 matrix.  (Output) 
SPROB(i, 1) contains the estimated survival probability at time X(i, IRT) in the i-th observation’s stra-
tum, while SPROB(i, 2) contains Greenwood’s estimate of the standard deviation of this estimated 
probability. If the i-th observation contains censor codes out of range or if a variable is missing, then 
the corresponding elements of SPROB are set to missing (NaN, not a number). Similarly, if an element 
in SPROB is not defined, then it is set to missing.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Column number in X containing the frequency of response for this observation.  (Input) 
If IFRQ = 0, a response frequency of 1 for each observation is assumed.
Default: IFRQ = 0.

ICEN — Column number in X containing the censoring code for this observation.  (Input) 
Default: ICEN = 0.
If ICEN = 0, a censoring code of 0 is assumed. Valid censoring codes are: 

If X(i, ICEN) is not 0 or 1, then the i-th observation is omitted from the analysis.
IGRP — Column number in X containing the stratum number for this observation.  (Input) 

If IGRP = 0, the data is assumed to be from one stratum. Otherwise, column IGRP of X contains a 
unique value for each stratum in the data. Kaplan-Meier estimates are computed within each stratum.
Default: IGRP = 0.

ISRT — Sorting option.  (Input) 
If ISRT = 1, column IRT of X is assumed to be sorted in ascending order within each stratum. Other-
wise, a detached sort will be performed by KAPMR. If sorting is performed by KAPMR, all censored 
individuals are assumed to follow tied failures.
Default: ISRT = 0.

Code Meaning

0 Exact failure at X(i, IRT).

1 Right censored. The response is greater than X(i, IRT).
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LDSPRO — Leading dimension of SPROB exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDSPRO = size (SPROB,1).

NRMISS — Number of rows of data in X that contain any missing values.  (Output)

FORTRAN 90 Interface
Generic: CALL KAPMR (X, IRT, SPROB [, …])
Specific: The specific interface names are S_KAPMR and D_KAPMR.

FORTRAN 77 Interface
Single: CALL KAPMR (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT, SPROB, LDSPRO, 

NRMISS)
Double: The double precision name is DKAPMR.

Description

Routine KAPMR computes Kaplan-Meier (or product-limit) estimates of survival probabilities for a sample of 
failure times that possibly contain right censoring. A survival probability S(t) is defined as 1 - F(t), where F(t) 
is the cumulative distribution function of the failure times (t). Greenwood’s estimate of the standard errors of 
the survival probability estimates are also computed. (See Kalbfleisch and Prentice, 1980, pages 13 and 14.) 

Let (ti, δi), for i = 1, …, n denote the failure/censoring times and the censoring codes for the n observations in 
a single sample. Here, ti = X(i, IRT) is a failure time if δi is 0, where δi = X(i, ICEN). Also, ti is a censoring time 
if δi is 1. Rows in X containing values other than 0 or 1 for δi are ignored. Let the number of observations in 
the sample that have not failed by time s(i) be denoted by n(i), where s(i) is an ordered (from smallest to larg-
est) listing of the distinct failure times (censoring times are omitted). Then the Kaplan-Meier estimate of the 
survival probabilities is a step function, which in the interval from s(i) to s(i+1) (including the lower endpoint) 
is given by

where d(j) denotes the number of failures occurring at time s(j). Note that one row of X may correspond to 
more than one failed (or censored) observation when the frequency option is in effect (IFRQ is not zero). The 
Kaplan-Meier estimate of the survival probability prior to time s(1) is 1.0, while the Kaplan-Meier estimate of 
the survival probability after the last failure time is not defined. 

Greenwood’s estimate of the variance of
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in the interval from s(i) to s(i+1) is given as 

Routine KAPMR computes the single sample estimates of the survival probabilities for all samples of data 
included in X during a single call. This is accomplished through the IGRP column of X, which if present, 
must contain a distinct code for each sample of observations. If IGRP = 0, there is no grouping column, and 
all observations are assumed to be from the same sample. 

When failures and right-censored observations are tied and the data are to be sorted by KAPMR (ISRT is not 
1), KAPMR assumes that the time of censoring for the tied-censored observations is immediately after the tied 
failure (within the same sample). When the ISRT = 1 option is in effect, the data are assumed to be sorted 
from smallest to largest according to column IRT of X within each stratum. Furthermore, a small increment 
of time is assumed (theoretically) to elapse between the failed and censored observations that are tied (in the 
same sample). Thus, when the ISRT = 1 option is in effect, the user must sort all of the data in X from small-
est to largest according to column IRT (and column IGRP, if present). By appropriate sorting of the 
observations, the user can handle censored and failed observations that are tied in any manner desired.

Comments
1. Workspace may be explicitly provided, if desired, by use of K2PMR/DK2PMR. The reference is:

CALL K2PMR (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT, SPROB, LDSPRO, NRMISS, IGP, 
IPERM, INDDR, IWK, WK, IPER)

The additional arguments are as follows:

IGP — Work vector of length NOBS.

IPERM — Work vector of length NOBS + NCOL.

INDDR — Work vector of length NOBS.

IWK — Work vector of length max(NOBS, NCOL).

WK — Work vector of length 2 * max(NOBS, NCOL).

IPER — Work vector of length NOBS.
2. Missing values may occur in any of the columns of X. Any row of X that contains missing values in the 

IRT, ICEN, or IFRQ columns (when the ICEN and IFRQ columns are present) is omitted from the anal-
ysis. Missing values in the IGRP column, if present, are classified into an additional “missing” group.

Example

The following example is taken from Kalbfleisch and Prentice (1980, page 1). The first column in X contains 
the death/censoring times for rats suffering from vaginal cancer. The second column contains information as 
to which of two forms of treatment were provided, while the third column contains the censoring code. 
Finally, the fourth column contains the frequency of each observation. The product-limit estimates of the sur-
vival probabilities are computed for both groups with one call to KAPMR. In this example, the output in 
SPROB has been equivalenced with columns 5 and 6 of X so that the input and output matrices could be 
printed together. Routine KAPMR could have been called with the ISRT = 1 option in effect if the censored 
observations had been sorted with respect to the failure time variable.
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      USE KAPMR_INT
      USE WRRRL_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    ICEN, IFRQ, IGRP, IRT, ISRT, LDSPRO, LDX, NCOL, NOBS
      PARAMETER  (ICEN=3, IFRQ=4, IGRP=2, IRT=1, ISRT=0, LDSPRO=33, &
                 LDX=33, NCOL=6, NOBS=33)
!
      INTEGER    NOUT, NRMISS
      REAL       SPROB(LDSPRO,2), X(LDX,NCOL)
      CHARACTER  XLABEL(7)*6, YLABEL(1)*6
!
      EQUIVALENCE (X(1,5), SPROB)
!
      DATA XLABEL/'OBS', 'TIME', 'GROUP', 'CENSOR', 'FREQ', 'S-HAT', &
          'SE'/
      DATA YLABEL/'NUMBER'/
      DATA X/143, 164, 188, 190, 192, 206, 209, 213, 216, 220, 227, &
          230, 234, 246, 265, 304, 216, 244, 142, 156, 163, 198, 205, &
          232, 233, 239, 240, 261, 280, 296, 323, 204, 344, 18*5, &
          15*7, 16*0, 2*1, 13*0, 4*1, 2, 20*1, 2, 4, 3*1, 2*2, 3*1, &
          66*0/
!
      CALL KAPMR (X, IRT, SPROB, IFRQ=IFRQ, ICEN=ICEN, IGRP=IGRP, &
                  NRMISS=NRMISS)
!
      CALL WRRRL ('X/SPROB', X, YLABEL, XLABEL, FMT='(W10.6)')
      CALL UMACH (2, NOUT)
      WRITE (NOUT,'(//'' NRMISS = '', I5)') NRMISS
      END

Output

                                 X/SPROB
 OBS     TIME       GROUP      CENSOR        FREQ       S-HAT          SE
 1    143.000       5.000       0.000       1.000       0.947       0.051
 2    164.000       5.000       0.000       1.000       0.895       0.070
 3    188.000       5.000       0.000       2.000       0.789       0.094
 4    190.000       5.000       0.000       1.000       0.737       0.101
 5    192.000       5.000       0.000       1.000       0.684       0.107
 6    206.000       5.000       0.000       1.000       0.632       0.111
 7    209.000       5.000       0.000       1.000       0.579       0.113
 8    213.000       5.000       0.000       1.000       0.526       0.115
 9    216.000       5.000       0.000       1.000       0.474       0.115
10    220.000       5.000       0.000       1.000       0.414       0.115
11    227.000       5.000       0.000       1.000       0.355       0.112
12    230.000       5.000       0.000       1.000       0.296       0.108
13    234.000       5.000       0.000       1.000       0.237       0.101
14    246.000       5.000       0.000       1.000       0.158       0.093
15    265.000       5.000       0.000       1.000       0.079       0.073
16    304.000       5.000       0.000       1.000       0.000         NaN
17    216.000       5.000       1.000       1.000       0.474       0.115
18    244.000       5.000       1.000       1.000       0.237       0.101
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19    142.000       7.000       0.000       1.000       0.952       0.046
20    156.000       7.000       0.000       1.000       0.905       0.064
21    163.000       7.000       0.000       1.000       0.857       0.076
22    198.000       7.000       0.000       1.000       0.810       0.086
23    205.000       7.000       0.000       1.000       0.759       0.094
24    232.000       7.000       0.000       2.000       0.658       0.105
25    233.000       7.000       0.000       4.000       0.455       0.111
26    239.000       7.000       0.000       1.000       0.405       0.110
27    240.000       7.000       0.000       1.000       0.354       0.107
28    261.000       7.000       0.000       1.000       0.304       0.103
29    280.000       7.000       0.000       2.000       0.202       0.090
30    296.000       7.000       0.000       2.000       0.101       0.068
31    323.000       7.000       0.000       1.000       0.051       0.049
32    204.000       7.000       1.000       1.000       0.810       0.086
33    344.000       7.000       1.000       1.000         NaN         NaN

NRMISS =     0
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KTBLE

Prints Kaplan-Meier estimates of survival probabilities in stratified samples.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
IRT — Column number of X containing the response variable.  (Input) 

For the i-th right-censored observation, X(i, IRT) contains the right-censoring time. Otherwise, 
X(i, IRT) contains the failure time. See argument ICEN.

SPROB — NOBS by 2 matrix.  (Input) 
SPROB (i, 1) contains the estimated survival probability at time X(i, IRT) in the i-th observation’s stra-
tum, while SPROB(i, 2) contains Greenwood’s estimate of the standard deviation of this estimated 
probability. SPROB will usually be computed by routine KAPMR. It may contain missing values after 
the last failed observation in each group.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the 
frequencies.
Default: IFRQ = 0.

ICEN — Column number of X containing the censoring code for this observation.  (Input) 
Default: ICEN = 0.
If ICEN = 0, a censoring code of 0 is assumed. Valid censoring codes are: 

If X(i, ICEN) is not zero or one, then the i-th observation is omitted from the analysis.
IGRP — Column number of X containing the stratum number for this observation.  (Input) 

If IGRP = 0, the data are assumed to be from one stratum. Otherwise, column IGRP of X contains a 
unique value for each stratum in the data. Kaplan-Meier estimates are computed within each stratum.
Default: IGRP = 0.

ISRT — Sorting option.  (Input) 
If ISRT = 1, column IRT of X is assumed to be sorted in ascending order within each stratum. Other-
wise, a detached sort will be performed by KTBLE. If sorting is performed by KTBLE, all censored 
observations are assumed to follow failing observations with the same response time in X (i, IRT).
Default: ISRT = 0.

Code Meaning

0 Exact failure at X(i, IRT).

1 Right censored. The response is greater than X(i, IRT).
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LDSPRO — Leading dimension of SPROB exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDSPRO = size (SPROB,1).

FORTRAN 90 Interface
Generic: CALL KTBLE (X, IRT, SPROB [, …])
Specific: The specific interface names are S_KTBLE and D_KTBLE.

FORTRAN 77 Interface
Single: CALL KTBLE (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT, SPROB, LDSPRO)
Double: The double precision name is DKTBLE.

Description

Routine KTBLE prints life tables based upon the Kaplan-Meier estimates of the survival probabilities (see 
routine KAPMR). One table for each stratum is printed. In addition to the survival probabilities at each failure 
point, the following is also printed: the number of individuals remaining at risk, Greenwood’s estimate of the 
standard errors for the survival probabilities, and the Kaplan-Meier log-likelihood. The Kaplan-Meier 
log-likelihood is computed as:

where the sum is with respect to the distinct failure times s(j), d(j) is the number of failures occurring at time 
s(j), and n(j) is the number of observations that had not yet failed immediately prior to s(j). Note that sorting 
is performed by both KAPMR, and by routine KTBLE. The user may sort the data to be increasing in failure 
time and then use the ISRT = 1 option to avoid this double sorting.

Comments
1. Workspace may be explicitly provided, if desired, by use of K2BLE/DK2BLE. The reference is:

CALL K2BLE (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT, SPROB, LDSPRO, ALGL, IPERM, 
INDDR, WK, WK1, IWK)

The additional arguments are as follows:

ALGL — Work vector of length NOBS that contains the log likelihoods of the Kaplan-Meier esti-
mates. If the number of groups is known to be m or less, then ALGL can be of length m.

IPERM — Work vector of length NOBS.

INDDR — Work vector of length NOBS.

WK — Work vector of length NOBS.

WK1 — Work vector of length 2 * max(NOBS, NCOL).

IWK — Work vector of length max(NOBS, NCOL).
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2. Informational errors 

3. Missing values may occur in any of the columns of X. Any row of X that contains missing values in the 
IRT, ICEN, or IFRQ columns (when the ICEN and IFRQ columns are present) is omitted from the anal-
ysis. Missing values in the IGRP column, if present, are classified into an additional “missing” group.

Example

This example illustrates the typical use of KTBLE. First, routine KAPMR is used to compute the survival prob-
abilities. This is followed by a call to KTBLE that performs the printing. The input data is given as:

143, 164, 188(2), 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 265, 304, 216*, 244*, 
142, 156, 163, 198, 205, 232(2), 233(4), 239, 240, 261, 280(2), 296(2), 323, 204*, 344*

where items marked with an * are right censored, and the frequency of each failure time, if different from 1, 
is given in parenthesis.

      USE KAPMR_INT
      USE KTBLE_INT

      IMPLICIT   NONE
      INTEGER    ICEN, IFRQ, IGRP, IRT, ISRT, LDSPRO, LDX, NCOL, NOBS
      PARAMETER  (ICEN=3, IFRQ=4, IGRP=2, IRT=1, ISRT=0, LDSPRO=33, &
                LDX=33, NCOL=4, NOBS=33)
!
      INTEGER    NRMISS
      REAL       SPROB(LDSPRO,2), X(LDX,NCOL)
!
      DATA X/143, 164, 188, 190, 192, 206, 209, 213, 216, 220, 227, &
          230, 234, 246, 265, 304, 216, 244, 142, 156, 163, 198, 205, &
          232, 233, 239, 240, 261, 280, 296, 323, 204, 344, 18*5, &
          15*7, 16*0, 2*1, 13*0, 4*1, 2, 20*1, 2, 4, 3*1, 2*2, 3*1/
!
      CALL KAPMR (X, IRT, SPROB, IFRQ=IFRQ, ICEN=ICEN, IGRP=IGRP)
!
      CALL KTBLE (X, IRT, SPROB, IFRQ=IFRQ, ICEN=ICEN, IGRP=IGRP)
      END

Output

             Kaplan Meier Survival Probabilities
               For Group Value =      5.00000

Type Code Description

4 1 An invalid value for SPROB has been detected. The estimated survival proba-
bility must be between zero and one, inclusive, and nonincreasing with 
failure time within each group.

4 2 A negative frequency has been detected.

4 3 A missing value for SPROB has been detected but later failures occur. Missing 
values are not allowed prior to the last failed observation.
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Number      Number                 Survival     Estimated
at risk     Failing        Time  Probability    Std. Error
     19           1         143      0.94737       0.05123
     18           1         164      0.89474       0.07041
     17           2         188      0.78947       0.09353
     15           1         190      0.73684       0.10102
     14           1         192      0.68421       0.10664
     13           1         206      0.63158       0.11066
     12           1         209      0.57895       0.11327
     11           1         213      0.52632       0.11455
     10           1         216      0.47368       0.11455
      8           1         220      0.41447       0.11452
      7           1         227      0.35526       0.11243
      6           1         230      0.29605       0.10816
      5           1         234      0.23684       0.10145
      3           1         246      0.15789       0.09343
      2           1         265      0.07895       0.07279
      1           1         304      0.00000           NaN

Total number in group    =       19
Total number failing     =       17
Product Limit Likelihood =      -49.1692

               Kaplan Meier Survival Probabilities
                  For Group Value =      7.00000
Number      Number                 Survival     Estimated
at risk     Failing        Time  Probability    Std. Error
     21           1         142      0.95238       0.04647
     20           1         156      0.90476       0.06406
     19           1         163      0.85714       0.07636
     18           1         198      0.80952       0.08569
     16           1         205      0.75893       0.09409
     15           2         232      0.65774       0.10529
     13           4         233      0.45536       0.11137
      9           1         239      0.40476       0.10989
      8           1         240      0.35417       0.10717
      7           1         261      0.30357       0.10311
      6           2         280      0.20238       0.09021
      4           2         296      0.10119       0.06778
      2           1         323      0.05060       0.04928

Total number in group    =       21
Total number failing     =       19
Product Limit Likelihood =      -50.4277
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TRNBL

Computes Turnbull’s generalized Kaplan-Meier estimates of survival probabilities in samples with interval 
censoring.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
ILT — For interval-censored and left-censored observations, the column number in X that contains the 

upper endpoint of the failure interval.  (Input) 
See argument ICEN. If ILT = 0, left-censored and interval-censored observations cannot be input.

IRT — For interval-censored and right-censored observations, the column number in X that contains the 
lower endpoint of the failure interval.  (Input) 
See argument ICEN. IRT must not be zero.

NINTVL — Number of failure intervals found.  (Output)
SPROB — NINTVL by 4 matrix.  (Output) 

The estimated survival probability is a constant equal to SPROB(i, 4) from SPROB (i, 2) to 
SPROB(i + 1, 1). The estimated survival probability is 1 prior to SPROB(1, 1). The estimated survival 
probability is undefined in the interval SPROB(i, 1) to SPROB(i, 2). If the NINTVL-th interval is from 
SPROB(NINTVL, 1) to infinity, then SPROB(NINTVL, 2) is set to positive machine infinity.

ALGL — Optimized log-likelihood for the input data.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option.  (Input) 
If IFRQ = 0, a response frequency of 1 for each observation is assumed. For positive IFRQ, column 
number IFRQ contains the frequency of response for each observation.
Default: IFRQ = 0.

Col. Description

1 Lower endpoint of the failure interval

2 Upper endpoint of the failure interval

3 Estimated change in the survival probability density within the 
failure interval

4 Estimate of the survival probability for the interval
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ICEN — Censoring code option.  (Input) 
Default: ICEN = 0.
If ICEN = 0, a censoring code of 0 is assumed. For positive ICEN, column number ICEN contains the 
censoring code for each observation. Valid censoring codes are:

MAXIT — Maximum number of iterations.  (Input)
Default: MAXIT = 30.

EPS — Convergence criterion.  (Input) 
Convergence is assumed when the relative change in the log-likelihood from one iteration to the next 
is less than EPS. EPS = 0.00001 is typical.
Default: EPS = 0.00001.

IPRINT — Printing option.  (Input) 
IPRINT = 0 means that no printing is performed. IPRINT = 1 means that printing is performed.
Default: IPRINT = 0.

LDSPRO — Leading dimension of SPROB exactly as specified in the dimension statement in the calling 
program.  (Input)
If LDSPRO is less than NINTVL, only the first LDSPRO intervals are returned in SPROB.
Default: LDSPRO = size (SPROB,1).

NRMISS — Number of rows of data in X that contain missing values.  (Output) 
Any row of X that contains missing values in the ILT, IRT, ICEN, or IFRQ columns (when the ILT, 
ICEN or IFRQ is positive) is omitted from the analysis.

FORTRAN 90 Interface
Generic: CALL TRNBL (X, ILT, IRT, NINTVL, SPROB, ALGL [, …])
Specific: The specific interface names are S_TRNBL and D_TRNBL.

FORTRAN 77 Interface
Single: CALL TRNBL (NOBS, NCOL, X, LDX, ILT, IRT, IFRQ, ICEN, MAXIT, EPS, IPRINT, NINTVL, 

SPROB, LDSPRO, ALGL, NRMISS)
Double: The double precision name is DTRNBL.

Description

Routine TRNBL computes nonparametric maximum likelihood estimates of a survival distribution based 
upon a random sample of data containing exact failure, right-censored, leftcensored (interval censored with a 
left endpoint of zero), or interval-censored observations. The computational method of Turnbull (1976) is 
used in computing the probability estimates. The model used is also discussed by Peto (1973).

Code Meaning

0 Exact failure at X(i, IRT).

1 Right censored. The response is greater than X(i, IRT).

2 Left censored. The response is less than or equal to 
X(i, ILT).

3 Interval censored. The response is greater than 
X(i, IRT), but less than or equal to X(i, ILT).
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Routine TRNBL begins by finding a set of regions or “failure intervals” (to distinguish them from “observa-
tion failure intervals”) on the positive real axis in which a change in the survival probability occurs. The 
survival probability is constant outside of these regions, and undefined within them. Each region (failure 
interval) is composed of a single left and a single right endpoint obtained from the left and right endpoints of 
the observation failure intervals (for exact failure times, the left and right endpoints are equal). The regions 
are defined by the fact that no observation interval endpoints are allowed within a region, except at its end-
points. Note that the endpoints of the intervals need not correspond to a single observation. Regions defined 
by endpoints from two distinct observations are often obtained.

Let pi, i = 1, …, NINTVL denote the change in the survival probability within the i-th region, and let the 
region be denoted by ci. Let n = NOBS and suppose that the observation failure interval for observation j is 
denoted by Ij. The EM (expectation, maximization) algorithm of Dempster, Laird and Rubin (1977) is used to 
find the optimal

The algorithm is defined as follows:

For given

compute the expected contribution of the j-th observation to the i-th change interval as 

where δij = 1 if ci ⊆ Ij and δij = 0 otherwise, and fj is the observation frequency.

For given expectations

compute the new probability estimate as

Iterate in this manner until convergence. Convergence is assumed when the relative change in the 
log-likelihood

is small (less than EPS). Because the algorithm is slow to converge, 5 expectation-maximization cycles are 
considered to be one iteration of the algorithm. The initial estimate for all the 
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is taken to be one divided by the number of regions (failure intervals).

Comments
1. Workspace may be explicitly provided, if desired, by use of T2NBL/DT2NBL. The reference is:

CALL T2NBL (NOBS, NCOL, X, LDX, ILT, IRT, IFRQ, ICEN, MAXIT, EPS, IPRINT, NINTVL, SPROB, 
LDSPRO, ALGL, NRMISS, WK, IPERM, INDDR, WWK, IWK)

The additional arguments are as follows:

WK — Work vector of length 7 * NOBS.

IPERM — Work vector of length NOBS.

INDDR — Work vector of length NOBS.

WWK — Work vector of length 2 * max(NOBS, 7).

IWK — Work vector of length max(NOBS, 7).
2. Informational errors

Example

The following example contains exact failure, right-, left-, and interval-censored observations. The 20 obser-
vations yield 15 change intervals. The last interval is from 192 to ∞, and corresponds to a right-censored 
observation. When the last interval is infinite, as is the case here, the second column of SPROB contains +∞ in 
the NINTVL-th position. Left-or right-censored observations input in X are arbitrarily assigned the value 0.0 
for the non-specified endpoint.

      USE WRRRN_INT
      USE TRNBL_INT

      IMPLICIT   NONE
      INTEGER    ICEN, IFRQ, ILT, IPRINT, IRT, LDSPRO, LDX, NCOL, NOBS
      PARAMETER  (ICEN=4, IFRQ=3, ILT=1, IPRINT=1, IRT=2, LDSPRO=20, &
                  LDX=20, NCOL=4, NOBS=20)
!
      INTEGER    NINTVL, NRMISS
      REAL       ALGL, SPROB(LDSPRO,4), X(LDX,NCOL)
!
      DATA X/0.9, 1.9, 2.5, 3.5, 6.3, 7.1, 18., 25.1, 25.3, 30.3, 45.9, &
          63.5, 70.1, 73.0, 93.0, 94.4, 96.0, 0.0, 191.4, 0.0, 0.9, &
          0.0, 0.0, 0.0, 6.3, 1.9, 1.8, 25.1, 9.5, 30.3, 45.9, &
          60.7, 70.1, 71.0, 74.0, 94.4, 96.0, 96.0, 191.4, 192.0, &
          17*1.0, 5.0, 1.0, 1.0, 0.0, 2.0, 2.0, 2.0, 0.0, 3.0, 3.0, &
          0.0, 3.0, 0.0, 0.0, 3.0, 0.0, 3.0, 3.0, 0.0, 0.0, 1.0, 0.0, &

Type Code Description

3 3 The maximum number of iterations was exceeded. Convergence is assumed.

4 1 There are no valid observations.

4 2 There are no finite failure intervals present in the data.
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          1.0/
!
      CALL WRRRN ('X', X)
!
      CALL TRNBL (X, ILT, IRT, NINTVL, SPROB, ALGL, IFRQ=IFRQ, &
                  ICEN=ICEN, IPRINT=IPRINT)
!
      END

Output

                 X
         1       2       3       4
 1     0.9     0.9     1.0     0.0
 2     1.9     0.0     1.0     2.0
 3     2.5     0.0     1.0     2.0
 4     3.5     0.0     1.0     2.0
 5     6.3     6.3     1.0     0.0
 6     7.1     1.9     1.0     3.0
 7    18.0     1.8     1.0     3.0
 8    25.1    25.1     1.0     0.0
 9    25.3     9.5     1.0     3.0
10    30.3    30.3     1.0     0.0
11    45.9    45.9     1.0     0.0
12    63.5    60.7     1.0     3.0
13    70.1    70.1     1.0     0.0
14    73.0    71.0     1.0     3.0
15    93.0    74.0     1.0     3.0
16    94.4    94.4     1.0     0.0
17    96.0    96.0     1.0     0.0
18     0.0    96.0     5.0     1.0
19   191.4   191.4     1.0     0.0
20     0.0   192.0     1.0     1.0

      Iteration   Log-Likelihood   Relative convergence
              0     -54.94             ............
              1     -52.14               0.5367E-01
              2     -52.09               0.8407E-03
              3     -52.09               0.1372E-03
              4     -52.09               0.2476E-04
              5     -52.08               0.4614E-05

SPROB
                Lower        Upper     Interval     Survival
Interval     Endpoint     Endpoint  Probability  Probability
       1       0.9000       0.9000       0.0972       0.9028
       2       1.9000       1.9000       0.1215       0.7813
       3       6.3000       6.3000       0.0729       0.7083
       4       9.5000      18.0000       0.0000       0.7083
       5      25.1000      25.1000       0.0833       0.6250
       6      30.3000      30.3000       0.0417       0.5833
       7      45.9000      45.9000       0.0417       0.5417
       8      60.7000      63.5000       0.0417       0.5000
       9      70.1000      70.1000       0.0417       0.4583
      10      71.0000      73.0000       0.0417       0.4167
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      11      74.0000      93.0000       0.0417       0.3750
      12      94.4000      94.4000       0.0417       0.3333
      13      96.0000      96.0000       0.1111       0.2222
      14     191.4000     191.4000       0.1111       0.1111
      15     192.0000          Inf       0.1111       0.0000
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PHGLM

Analyzes time event data via the proportional hazards model.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input) 

When ITIE = 1, the observations in X must be grouped by stratum and sorted from largest to smallest 
failure time within each stratum, with the strata separated.

IRT — Column number in X containing the response variable.  (Input) 
For point observations, X(i, IRT) contains the time of the i-th event. For right-censored observations, 
X(i, IRT) contains the right-censoring time. Note that because PHGLM only uses the order of the events, 
negative “times” are allowed.

NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.  
(Input)

INDEF — Index vector of length NVEF(1) + … + NVEF(NEF) containing the column numbers of X associ-
ated with each effect.  (Input) 
The first NVEF(1) elements of INDEF contain the column numbers of X for the variables in the first 
effect. The next NVEF(2) elements in INDEF contain the column numbers for the second effect, etc.

MAXCL — An upper bound on the sum of the number distinct values taken by the classification variables.  
(Input)

NCOEF — Number of estimated coefficients in the model.  (Output)
COEF — NCOEF by 4 matrix containing the parameter estimates and associated statistics.  (Output, if 

INIT = 0; Input, if INIT = 1 and MAXIT = 0; Input/Output, if INIT = 1 and MAXIT > 0) 

When COEF is input, only column 1 needs to be given.
ALGL — The maximized log-likelihood.  (Output)
COV — NCOEF by NCOEF matrix containing the estimated asymptotic variance-covariance matrix of the 

parameters.  (Output)
For MAXIT = 0, COV is the inverse of the Hessian of the negative of the log-likelihood, computed at the 
estimates input in COEF.

XMEAN — Vector of length NCOEF containing the means of the design variables.  (Output)

Col. Statistic

1
Coefficient estimate 

2 Estimated standard deviation of the estimated coefficient.

3 Asymptotic normal score for testing that the coefficient is 
zero against the two-sided alternative.

4 p-value associated with the normal score in column 3.
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CASE — NOBS by 5 matrix containing the case statistics for each observation.  (Output if MAXIT > 0; used 
as working storage otherwise)

GR — Vector of length NCOEF containing the last parameter updates (excluding step halvings).  (Output) 
For MAXIT = 0, GR contains the inverse of the Hessian times the gradient vector computed at the esti-
mates input in COEF.

IGRP — Vector of length NOBS giving the stratum number used for each observation.  (Output) 
If RATIO is not -1.0, additional “strata” (other than those specified by column ISTRAT of X) may be 
generated. IGRP also contains a record of the generated strata. See the “Description” section for more 
detail.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Column number in X containing the frequency of response for each observation.  (Input) 
If IFRQ = 0, a response frequency of 1 for each observation is assumed.
Default: IFRQ = 0.

IFIX — Column number in X containing a constant to be added to the linear response.  (Input) 
Default: IFIX = 0.

The linear response is taken to be , where wi is the observation constant, zi is the observation 

design row vector, and  is the vector of estimated parameters. The “fixed” constant allows one to test 
hypotheses about parameters via the log-likelihoods. If IFIX = 0, the fixed parameter is assumed to be 
0.

ICEN — Column number in X containing the censoring code for each observation.  (Input) 
Default: ICEN = 0.
If ICEN = 0 a censoring code of 0 is assumed for all observations. 

Col. Statistic

1 Estimated survival probability at the observation time.

2 Estimated observation influence or leverage.

3 A residual estimate.

4 Estimated cumulative baseline hazard rate.

5 Observation proportionality constant.

X(i, ICEN) Censoring

0 Point observation at X(i, IRT).

1 Right censored. The response is greater than X(i, IRT).
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ISTRAT — Column number in X containing the stratification variable.  (Input) 
If ISTRAT = 0, all observations are considered to be in one stratum. Otherwise, column ISTRAT in X 
contains a unique number for each stratum. The risk set for an observation is determined by the its 
stratum.
Default: ISTRAT = 0.

MAXIT — Maximum number of iterations.  (Input) 
MAXIT = 30 will usually be sufficient. Use MAXIT = 0 to compute the Hessian and gradient, stored in 
COV and GR, at the initial estimates. When MAXIT = 0, INIT must be 1.
Default: MAXIT = 30.

EPS — Convergence criterion.  (Input) 
Convergence is assumed when the relative change in ALGL from one iteration to the next is less than 
EPS. If EPS is zero, EPS = 0.0001 is assumed.
Default: EPS = 0.0001.

RATIO — Ratio at which a stratum is split into two strata.  (Input) 
Default: RATIO = 1000.0.
Let

be the observation proportionality constant, where zk is the design row vector for the k-th observation 
and wk is the optional fixed parameter specified by X(k, IFIX). Let rmin be the minimum value rk in a 
stratum, where, for failed observations, the minimum is over all times less than or equal to the time of 
occurrence of the k-th observation. Let rmax be the maximum value of rk for the remaining observations 
in the group. Then, if rmin > RATIO rmax, the observations in the group are divided into two groups at 
k. RATIO = 1000 is usually a good value. Set RATIO = -1.0 if no division into strata is to be made.

NCLVAR — Number of classification variables.  (Input) 
Dummy variables are generated for classification variables using the IDUMMY = 2 option of IMSL rou-
tine GRGLM (see Chapter 2, “Regression”). See also Comment 3.
Default: NCLVAR = 0.

INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification 
variables. (Input, if NCLVAR is positive, not used otherwise) 
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in the calling program.

NEF — Number of effects in the model.  (Input) 
In addition to effects involving classification variables, simple covariates and the product of simple 
covariates are also considered effects.
Default: NEF = size(NVEF,1).

INIT — Initialization option.  (Input) 
If INIT = 1, then the NCOEF elements of column 1 of COEF contain the initial estimates on input to 
PHGLM. For INIT = 0, all initial estimates are taken to be 0.
Default: INIT = 0.
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ITIE — Option parameter containing the method to be used for handling ties.  (Input)
Default: ITIE = 0.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

NCLVAL — Vector of length NCLVAR containing the number of values taken by each classification variable.  
(Output, if NCLVAR is positive, not used otherwise)
NCLVAL(i) is the number of distinct values for the i-th classification variable. If NCLVAR is zero, 
NCLVAL is not used and can be dimensioned of length 1 in the calling program.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the distinct values 
of the classification variables.  (Output, if NCLVAR is positive, not used otherwise)
The first NCLVAL(1) elements of CLVAL contain the values for the first classification variable, the next 
NCLVAL(2) elements contain the values for the second classification variable, etc. If NCLVAR is zero, 
then NCLVAL is not referenced and can be dimensioned of length 1 in the calling program.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input) 
Default: LDCOV = size (COV,1).

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of data in X that contain missing values in one or more columns IRT, IFRQ, 
IFIX, ICEN, ISTRAT, INDCL, or INDEF of X.  (Output)

FORTRAN 90 Interface
Generic: CALL PHGLM (X, IRT, NVEF, INDEF, MAXCL, NCOEF, COEF, ALGL, COV, XMEAN, CASE, GR, 

IGRP [, …])
Specific: The specific interface names are S_PHGLM and D_PHGLM.

ITIE Method

0 Breslow’s approximate method

1 Failures are assumed to occur in the same order as the 
observations input in X. The observations in X must be 
sorted from largest to smallest failure time within each 
stratum, and grouped by stratum. All observations are 
treated as if their failure/censoring times were distinct 
when computing the log-likelihood.

IPRINT Action

0 No printing is performed.

1 Printing is performed, but observational statistics are 
not printed.

2 All output statistics are printed.
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FORTRAN 77 Interface
Single: CALL PHGLM (NOBS, NCOL, X, LDX, IRT, IFRQ, IFIX, ICEN, ISTRAT, MAXIT, EPS, RATIO, 

NCLVAR, INDCL, NEF, NVEF, INDEF, INIT, ITIE, IPRINT, MAXCL, NCLVAL, CLVAL, 
NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE, GR, IGRP, NRMISS)

Double: The double precision name is DPHGLM.

Description

Routine PHGLM computes parameter estimates and other statistics in Proportional Hazards Generalized Lin-
ear Models. These models were first proposed by Cox (1972). Two methods for handling ties are allowed in 
PHGLM. Time-dependent covariates are not allowed. The user is referred to Cox and Oakes (1984), Kalbfleisch 
and Prentice (1980), Elandt-Johnson and Johnson (1980), Lee (1980), or Lawless (1982), among other texts, for 
a thorough discussion of the Cox proportional hazards model.

Let λ(t, zi) represent the hazard rate at time t for observation number i with covariables contained as elements 
of row vector zi. The basic assumption in the proportional hazards model (the proportionality assumption) is 
that the hazard rate can be written as a product of a time varying function λ0(t), which depends only on time, 
and a function ƒ(zi), which depends only on the covariable values. The function ƒ(zi) used in PHGLM is given 
as ƒ(zi) = exp(wi + βzi) where wi is a fixed constant assigned to the observation, and β is a vector of coeffi-
cients to be estimated. With this function one obtains a hazard rate λ(t, zi) = λ0(t) exp(wi + βzi). The form of 
λ0(t) is not important in proportional hazards models.

The constants wi may be known theoretically. For example, the hazard rate may be proportional to a known 
length or area, and the wi can then be determined from this known length or area. Alternatively, the wi may 
be used to fix a subset of the coefficients β (say, β1) at specified values. When wi is used in this way, constants 
wi = β1z1i are used, while the remaining coefficients in β are free to vary in the optimization algorithm. If 
user-specified constants are not desired, the user should set IFIX to 0 so that wi = 0 will be used.

With this definition of λ(t, zi), the usual partial (or marginal, see Kalbfleisch and Prentice (1980)) likelihood 
becomes

where R(ti) denotes the set of indices of observations that have not yet failed at time ti (the risk set), ti denotes 
the time of failure for the i-th observation, nd is the total number of observations that fail. Right-censored 
observations (i.e., observations that are known to have survived to time ti, but for which no time of failure is 
known) are incorporated into the likelihood through the risk set R(ti). Such observations never appear in the 
numerator of the likelihood. When ITIE = 0, all observations that are censored at time ti are not included in 
R(ti), while all observations that fail at time ti are included in R(ti).
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If it can be assumed that the dependence of the hazard rate upon the covariate values remains the same from 
stratum to stratum, while the time-dependent term, λ0(t), may be different in different strata, then PHGLM 
allows the incorporation of strata into the likelihood as follows. Let k index the m = NSTRAT strata. Then, the 
likelihood is given by

In PHGLM, the log of the likelihood is maximized with respect to the coefficients β. A quasi-Newton algorithm 
approximating the Hessian via the matrix of sums of squares and cross products of the first partial deriva-
tives is used in the initial iterations (the “Q-N” method in the output). When the change in the log-likelihood 
from one iteration to the next is less than 100*EPS, Newton-Raphson iteration is used (the “N-R” method). If, 
during any iteration, the initial step does not lead to an increase in the log-likelihood, then step halving is 
employed to find a step that will increase the log-likelihood.

Once the maximum likelihood estimates have been computed, PHGLM computes estimates of a probability 
associated with each failure. Within stratum k, an estimate of the probability that the 
i-th observation fails at time ti given the risk set R(tki) is given by

A diagnostic “influence” or “leverage” statistic is computed for each noncensored observation as:

where Hs is the matrix of second partial derivatives of the log-likelihood, and 

is computed as: 

Influence statistics are not computed for censored observations.

A “residual” is computed for each of the input observations according to methods given in Cox and Oakes 
(1984, page 108). Residuals are computed as
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where dkj is the number of tied failures in group k at time tkj. Assuming that the proportional hazards 
assumption holds, the residuals should approximate a random sample (with censoring) from the unit expo-
nential distribution. By subtracting the expected values, centered residuals can be obtained. (The j-th 
expected order statistic from the unit exponential with censoring is given as

where h is the sample size, and censored observations are not included in the summation.)

An estimate of the cumulative baseline hazard within group k is given as

The observation proportionality constant is computed as 

Comments
1. Workspace may be explicitly provided, if desired, by use of P2GLM/DP2GLM. The reference is:

CALL P2GLM (NOBS, NCOL, X, LDX, IRT, IFRQ, IFIX, ICEN, ISTRAT, MAXIT, EPS, RATIO, 
NCLVAR, INDCL, NEF, NVEF, INDEF, INIT, ITIE, IPRINT, MAXCL, NCLVAL, CLVAL, NCOEF, 
COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE, GR, IGRP, NRMISS, OBS, SMG, SMH, 
IPTR, IDT, IWK)

The additional arguments are as follows:

OBS — Work vector of length NCOEF + 1.

SMG — Work vector of length NCOEF.

SMH — Work vector of length max(NCOEF * NCOEF, 2).

IPTR — Work vector of length NOBS + NCOEF.

IDT — Work vector of length NOBS.

IWK — Work vector of length 3 * max(NOBS, NCOL)
2. Informational errors

Type Code Description

3 1 Too many iterations required. Convergence assumed.

3 2 Too many step halvings. Convergence assumed.
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3. Dummy variables are generated for the classification variables as follows: An ascending list of all dis-
tinct values of the classification variable is obtained and stored in CLVAL. Dummy variables are then 
generated for each but the last of these distinct values. Each dummy variable is zero unless the classifi-
cation variable equals the list value corresponding to the dummy variable, in which case, the dummy 
variable is one. See argument IDUMMY for IDUMMY = 2 in routine GRGLM in Chapter 2, “Regression”.

4. The “product” of a classification variable with a covariate yields dummy variables equal to the prod-
uct of the covariate with each of the dummy variables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in the usual manner. Each 
dummy variable associated with the first classification variable multiplies each dummy variable asso-
ciated with the second classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest.

Programming Notes
1. The covariate vectors zki are computed from each row of the input matrix X via routine GRGLM in 

Chapter 2, “Regression”.). Thus, class variables are easily incorporated into the zki. The reader is referred 
to the document for GRGLM in the regression chapter for a more detailed discussion. Note that PHGLM 
calls GRGLM with the option IDUMMY = 2.

2. The average of each of the explanatory variables is subtracted from the variable prior to computing the 
product zkiβ. Subtraction of the mean values has no effect on the computed log-likelihood or the esti-
mates since the constant term occurs in both the numerator and denominator of the likelihood. 
Subtracting the mean values does help to avoid invalid exponentiation in the algorithm and may also 
speed convergence.

3. Routine PHGLM allows for two methods of handling ties. In the first method (ITIE = 1), the user is 
allowed to break ties in any manner desired. When this method is used, it is assumed that the user has 
sorted the rows in X from largest to smallest with respect to the failure/censoring times X(i, IRT) 
within each stratum (and across strata), with tied observations (failures or censored) broken in the 
manner desired. The same effect can be obtained with ITIE = 0 by adding (or subtracting) a small 
amount from each of the tied observations failure/censoring times ti = X(i, IRT) so as to break the ties 
in the desired manner.

3 3 Additional strata were formed as required because of the detection of infinite 
parameter estimates.

4 4 The number of distinct values of the classification variables exceeds MAXCL.

4 5 The model specified by NEF, NVEF, and INDEF yields no covariates.

4 6 After eliminating observations with missing values, no valid observations 
remain.

4 7 After eliminating observations with missing values, only one covariate vec-
tor remains.

4 8 The number of distinct values for each classification variable must be greater 
than one.

4 9 LDCOEF or LDCOV must be greater or equal to NCOEF.

Type Code Description
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The second method for handling ties (ITIE = 0) uses an approximation for the tied likelihood pro-
posed by Breslow (1974). The likelihood in Breslow’s method is as specified above, with the risk set at 
time ti, including all observations that fail at time ti, while all observations that are censored at time ti 
are not included. (Tied censored observations are assumed to be censored immediately prior to the 
time ti).

4. If INIT = 1, then it is assumed that the user has provided initial estimates for the model coefficients β 
in the first column of the matrix COEF. When initial estimates are provided by the user, care should be 
taken to ensure that the estimates correspond to the generated covariate vector zki. If INIT = 0, then 
initial estimates of zero are used for all of the coefficients. This corresponds to no effect from any of the 
covariate values.

5. If a linear combination of covariates is monotonically increasing or decreasing with increasing failure 
times, then one or more of the estimated coefficients is infinite and extended maximum likelihood esti-
mates must be computed. Such estimates may be written as 

where ρ =∞ at the supremum of the likelihood so that

is the finite part of the solution. In PHGLM, it is assumed that extended maximum likelihood estimates 
must be computed if, within any group k, for any time t,

where ρ = RATIO is specified by the user. Thus, for example, if ρ = 10000, then PHGLM does not com-
pute extended maximum likelihood estimates until the estimated proportionality constant

is 10000 times larger for all observations prior to t than for all observations after t. When this occurs, 
PHGLM computes estimates for 

by splitting the failures in stratum k into two strata at t (see Bryson and Johnson 1981). Censored obser-
vations in stratum k are placed into a stratum based upon the associated value for

The results of the splitting are returned in IGRP.
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The estimates

based upon the stratified likelihood represent the finite part of the extended maximum likelihood 

solution. Routine PHGLM does not compute   explicitly, but an estimate for  may be obtained in some 
circumstances by setting RATIO = -1 and optimizing the log-likelihood without forming additional 
strata. The solution

obtained will be such that

for some finite value of ρ > 0. At this solution, the Newton-Raphson algorithm will not have “con-
verged” because the Newton-Raphson step sizes returned in GR will be large, at least for some 
variables. Convergence will be declared, however, because the relative change in the log-likelihood 
during the final iterations will be small.

Examples

Example 1

The following data are taken from Lawless (1982, page 287) and involve the survival of lung cancer patients 
based upon their initial tumor types and treatment type. In the first example, the likelihood is maximized 
with no strata present in the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The input 
data is printed in the output. The model is given as: 

where αi and γj correspond to dummy variables generated from columns 6 and 7 of X, respectively, x1 corre-
sponds to column 3 of X, x2 corresponds to column 4 of X, and x3 corresponds to column 5 of X.

      USE PHGLM_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    ICEN, IPRINT, IRT, LDCASE, LDCOEF, LDCOV, &
                LDX, MAXCL, NCLVAR, NCOL, NEF, NOBS

      REAL       RATIO, LABEL
      PARAMETER  (ICEN=2, IPRINT=2, IRT=1, LDCOEF=7, LDX=40, &
                 MAXCL=10, NCLVAR=2, NCOL=7, NEF=5, RATIO=10000.0, &
                 LDCASE=LDX, LDCOV=LDCOEF, NOBS=LDX)
      
!
      INTEGER    IGRP(NOBS), INDCL(NCLVAR), INDEF(5), NCLVAL(NCLVAR), &
                 NCOEF, NRMISS, NVEF(NEF)
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      REAL       ALGL, CASE(LDCASE,5), CLVAL(6), COEF(LDCOEF,4), &
                 COV(LDCOV,LDCOV), GR(LDCOV), X(LDX,NCOL), XMEAN(LDCOV)
      CHARACTER  NUMBER(1)*6
      DATA       NUMBER(1)/'NUMBER'/

!
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287, &
          10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201, &
          44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231, &
          5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6, &
          3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7, &
          4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48, &
          48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37, &
          54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68, &
          39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2, &
          25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13, &
          22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3, &
          5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
!
      LABEL = 'NUMBER'
      CALL WRRRL ('The First 10 Rows of the Input Data', &
                  X, NUMBER, NUMBER, 10, NCOL, LDX, FMT='(I7)')
!
      CALL PHGLM (X, IRT, NVEF, INDEF, MAXCL, NCOEF, COEF, ALGL, &
                 COV, XMEAN, CASE, GR, IGRP, ICEN=ICEN, RATIO=RATIO,&
                 NCLVAR=NCLVAR, INDCL=INDCL, NEF=NEF, IPRINT=IPRINT, &
                 NClVAL=NClVAL, CLVAL=CLVAL, NRMISS=NRMISS)
!
      END

Output

               The First 10 Rows of the Input Data
          1        2        3        4        5        6        7
 1      411        0        7       64        5        1        0
 2      126        0        6       63        9        1        0
 3      118        0        7       65       11        1        0
 4       92        0        4       69       10        1        0
 5        8        0        4       63       58        1        0
 6       25        1        7       48        9        1        0
 7       11        0        7       48       11        1        0
 8       54        0        8       63        4        2        0
 9      153        0        6       63       14        2        0
10       16        0        3       53        4        2        0

                      Initial Estimates
      1        2        3        4        5        6        7
 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000

 Method  Iteration  Step size  Maximum scaled     Log
                                coef. update      likelihood
   Q-N        0                                  -102.4
   Q-N        1      1.0000      0.5034           -91.04
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   Q-N        2      1.0000      0.5782           -88.07
   N-R        3      1.0000      0.1131           -87.92
   N-R        4      1.0000      0.6958E-01       -87.89
   N-R        5      1.0000      0.8144E-03       -87.89
  
 Log-likelihood       -87.88779

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         error   z-statistic       p-value
1        -0.585         0.137        -4.272         0.000
2        -0.013         0.021        -0.634         0.526
3         0.001         0.012         0.064         0.949
4        -0.367         0.485        -0.757         0.449
5        -0.008         0.507        -0.015         0.988
6         1.113         0.633         1.758         0.079
7         0.380         0.406         0.936         0.349
                   Asymptotic Coefficient Covariance
              1             2             3             4             5
1    0.1873E-01    0.2530E-03    0.3345E-03    0.5745E-02    0.9750E-02
2                  0.4235E-03   -0.4120E-04   -0.1663E-02   -0.7954E-03
3                                0.1397E-03    0.8111E-03   -0.1831E-02
4                                              0.2350        0.9799E-01
5                                                            0.2568

              6             7
1    0.4264E-02    0.2082E-02
2   -0.3079E-02   -0.2898E-02
3    0.5995E-03    0.1684E-02
4    0.1184        0.3735E-01
5    0.1253       -0.1944E-01
6    0.4008        0.6289E-01
7                  0.1647

                               Case Analysis
        Survival                                Cumulative  Proportionality
     Probability     Influence      Residual        hazard         constant
 1          0.00          0.04          2.05          6.10             0.3
 2          0.30          0.11          0.74          1.21             0.61
 3          0.34          0.12          0.36          1.07             0.33
 4          0.43          0.16          1.53          0.84             1.83
 5          0.96          0.56          0.09          0.05             2.05
 6          0.74           NaN          0.13          0.31             0.42
 7          0.92          0.37          0.03          0.08             0.42
 8          0.59          0.26          0.14          0.53             0.27
 9          0.26          0.12          1.20          1.36             0.88
10          0.85          0.15          0.97          0.17             5.76
11          0.55          0.31          0.21          0.60             0.36
12          0.74          0.21          0.96          0.31             3.12
13          0.03          0.06          3.02          3.53             0.86
14          0.94          0.09          0.17          0.06             2.71
15          0.96          0.16          1.31          0.05            28.89
16          0.89          0.23          0.59          0.12             4.82
17          0.18          0.09          2.62          1.71             1.54
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18          0.89          0.19          0.33          0.12             2.68
19          0.14          0.23          0.72          1.96             0.37
20          0.05          0.09          1.66          2.95             0.56
21          0.39          0.22          1.17          0.94             1.25
22          0.00          0.00          1.73         21.11             0.08
23          0.08           NaN          2.19          2.52             0.87
24          0.00          0.00          2.46          8.89             0.28
25          0.99          0.31          0.05          0.01             4.28
26          0.11          0.17          0.34          2.23             0.15
27          0.66          0.25          0.16          0.41             0.38
28          0.87          0.22          0.15          0.14             1.02
29          0.39           NaN          0.45          0.94             0.48
30          0.98          0.25          0.06          0.02             2.53
31          0.77          0.26          1.03          0.26             3.90
32          0.63          0.35          1.80          0.46             3.88
33          0.82          0.26          1.06          0.19             5.47
34          0.47          0.26          1.65          0.75             2.21
35          0.51          0.32          0.39          0.67             0.58
36          0.22          0.18          0.49          1.53             0.32
37          0.80          0.26          1.08          0.23             4.77
38          0.70          0.16          0.26          0.36             0.73
39          0.01          0.23          0.87          4.66             0.19
40          0.08          0.20          0.81          2.52             0.32

                        Last Coefficient Update
         1           2           3           4           5           6
-1.016E-07   1.918E-09  -1.305E-08  -7.190E-07  -2.854E-07   2.108E-08

         7
-6.947E-08

                  Covariate Means
   1       2       3       4       5       6       7
5.65   56.58   15.65    0.35    0.28    0.12    0.53

Distinct Values For Each Class Variable
Variable  1:     1.0         2.0         3.0         4.0
Variable  2:      0.         1.0

                     Stratum Numbers For Each Observation
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20
1  1  1  1  1  1  1  1  1   1  1  1  1  1  1  1  1  1  1  1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

Number of Missing Values           0
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Example 2

This example illustrates the use of PHGLM when there are strata present in the data. The observations from 
Example 1 are arbitrarily grouped into four strata (the first ten observations form stratum 1, the next 10 for 
stratum 2, etc.). Otherwise, the problem is unchanged. The resulting coefficients are very similar to those 
obtained when there is no stratification variable. The model is the same as in Example 1.

      USE PHGLM_INT

      IMPLICIT   NONE
      INTEGER    LDCASE, LDCOEF, LDCOV, LDX, MAXCL, NCLVAR, NCOL, NEF, &
                 NOBS
      REAL       RATIO
      PARAMETER  (LDCOEF=7, LDX=40, MAXCL=10, NCLVAR=2, NCOL=8, NEF=5, &
                LDCASE=LDX, LDCOV=LDCOEF, NOBS=LDX, RATIO=10000.0)
!                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    ICEn, IPRINT, IRT, ISTRAT
      PARAMETER  (ICEN=2, IPRINT=2, IRT=1, ISTRAT=8)
!                                 SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    IGRP(NOBS), NCLVAL(NCLVAR), NCOEF, NRMISS
      REAL       ALGL, CASE(LDCASE,5), CLVAL(6), COEF(LDCOEF,4), &
                COV(LDCOV,LDCOV), GR(LDCOV), XMEAN(LDCOV)
!                                 SPECIFICATIONS FOR SAVE VARIABLES
      INTEGER    INDCL(NCLVAR), INDEF(NEF), NVEF(NEF)
      REAL       X(LDX,NCOL)
      SAVE       INDCL, INDEF, NVEF, X
!                                 SPECIFICATIONS FOR SUBROUTINES
!
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287, &
          10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201, &
          44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231, &
          5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6, &
          3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7, &
          4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48, &
          48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37, &
          54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68, &
          39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2, &
          25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13, &
          22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3, &
          5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1, 10*1, 10*2, 10*3, 10*4/ 
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
!
     CALL PHGLM (X, IRT, NVEF, INDEF, MAXCL, NCOEF,COEF, ALGL, COV, XMEAN,&
                CASE, GR, IGRP, ICEN=ICEN, ISTRAT=ISTRAT, RATIO=RATIO, &
                NCLVAR=NCLVAR, INDCL=INDCL, IPRINT=IPRINT, NCLVAL=NCLVAL, &
                CLVAL=CLVAL, NRMISS=NRMISS)
!
      END

Output

                     Initial Estimates
     1        2        3        4        5        6        7
0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
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Method  Iteration  Step size  Maximum scaled     Log
                               coef. update      likelihood
   Q-N        0                                   -55.90
   Q-N        1      1.0000      0.6748           -45.79
   Q-N        2      1.0000      0.7105           -42.85
   N-R        3      1.0000      0.2315           -42.59
   N-R        4      1.0000      0.1674           -42.55
   N-R        5      1.0000      0.3372E-02       -42.55

 Log-likelihood       -42.54570

                Coefficient Statistics
                    Standard    Asymptotic    Asymptotic
    Coefficient         error   z-statistic       p-value
1        -0.716         0.170        -4.222         0.000
2        -0.033         0.030        -1.122         0.262
3         0.001         0.015         0.048         0.961
4        -0.100         0.999        -0.100         0.921
5        -0.405         0.729        -0.555         0.579
6         1.136         0.769         1.478         0.139
7        -0.087         1.454        -0.060         0.952

Asymptotic Coefficient Covariance
              1             2             3             4             5
1    0.2877E-01    0.8662E-03    0.3119E-03    0.5057E-02    0.2480E-01
2                  0.8842E-03   -0.8137E-04   -0.7623E-02   -0.6925E-03
3                                0.2158E-03   -0.2567E-02   -0.3738E-02
4                                              0.9975        0.5109
5                                                            0.5319

               6             7
1   -0.7669E-02    0.6405E-02
2   -0.8800E-03    0.4120E-02
3    0.1170E-02   -0.3699E-02
4    0.1944        0.8056
5    0.1802        0.4905
6    0.5909        0.1858
7                   2.114

                               Case Analysis
        Survival                               Cumulative  Proportionality
     Probability     Influence      Residual        hazard         constant
 1          0.00          0.00          2.01          7.83             0.26
 2          0.09          0.06          1.32          2.42             0.55
 3          0.20          0.04          0.40          1.59             0.25
 4          0.40          0.04          1.69          0.91             1.87
 5          0.92          0.47          0.21          0.09             2.36
 6          0.73           NaN          0.14          0.31             0.44
 7          0.82          0.47          0.09          0.20             0.44
 8          0.55          0.67          0.06          0.61             0.10
 9          0.02          0.07          1.59          3.94             0.40
10          0.73          0.10          1.50          0.31             4.79
11          0.39          0.68          0.17          0.93             0.19
12          0.60          0.14          1.12          0.51             2.19
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13          0.00          0.00          2.32          6.32             0.37
14          0.90          0.16          0.15          0.10             1.49
15          0.98          0.04          0.75          0.02            35.42
16          0.75          0.21          1.12          0.29             3.83
17          0.25          0.07          1.55          1.39             1.12
18          0.75          0.21          0.63          0.29             2.14
19          0.10          0.18          0.69          2.31             0.30
20          0.03          0.11          1.48          3.60             0.41
21          0.50          0.61          1.00          0.70             1.44
22          0.00          0.00          1.28         13.59             0.09
23          0.33           NaN          1.92          1.09             1.76
24          0.05          0.00          1.32          2.94             0.45
25          0.95          0.15          0.47          0.05             9.84
26          0.33          0.24          0.23          1.09             0.21
27          0.62          0.40          0.22          0.47             0.47
28          0.76          0.13          0.71          0.27             2.63
29          0.50           NaN          0.37          0.70             0.53
30          0.87          0.23          0.49          0.14             3.53
31          0.88          0.35          0.67          0.13             5.07
32          0.71          0.22          1.56          0.34             4.54
33          0.97          0.52          0.20          0.03             7.00
34          0.44          0.03          2.64          0.83             3.19
35          0.56          0.20          0.29          0.57             0.50
36          0.11          0.00          0.61          2.24             0.27
37          0.94          0.19          0.82          0.07            12.50
38          0.79          0.43          0.24          0.23             1.05
39          0.00          0.00          1.69         11.13             0.15
40          0.01          0.00          1.28          4.54             0.28
                         Last Coefficient Update
          1           2           3           4           5           6
 -7.363E-07   8.762E-09   1.252E-08  -1.697E-06  -1.642E-06   1.075E-06

          7
 -1.772E-06

                   Covariate Means
    1       2       3       4       5       6       7
 5.65   56.58   15.65    0.35    0.28    0.12    0.53

 Distinct Values For Each Class Variable
 Variable  1:     1.0         2.0         3.0         4.0
 Variable  2:      0.         1.0

                     Stratum Numbers For Each Observation
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4  4   4

Number of Missing Values           0
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SVGLM

Analyzes censored survival data using a generalized linear model.

Required Arguments
X — NOBS by NCOL matrix containing the data.  (Input)
 MODEL — Model option parameter.  (Input) 

MODEL specifies the distribution of the response variable and the relationship of the linear model to a 
distribution parameter. 

For further discussion of the models and parameterizations used, see the “Description” section.
ILT — For interval-censored and left-censored observations, the column number in X that contains the 

upper endpoint of the failure interval.  (Input) 
See argument ICEN. If ILT = 0, left-censored and interval-censored observations cannot be input.

IRT — For interval-censored and right-censored observations, the column number in X that contains the 
lower endpoint of the failure interval.  (Input) 
For exact-failure observations, X(i, IRT) contains the exact-failure time. IRT must not be zero. See 
argument ICEN.

MAXCL — An upper bound on the sum of the number of distinct values taken by the classification vari-
ables.  (Input)

NCOEF — Number of estimated coefficients in the model.  (Output, if INIT = 0; Input, if INIT = 1)

MODEL Distribution

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull
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COEF — NCOEF by 4 matrix containing parameter estimates and associated statistics.  (Output, if 
INIT = 0; Input/Output, if INIT = 1; Input, if MAXIT = 0) 

When COEF is input, only column 1 is referenced as input data, and columns 2 to 4 need not be set. 
When present in the model, the initial coefficient in COEF estimates a “nuisance” parameter, and the 
remaining coefficients estimate parameters associated with the “linear” model, beginning with the 
intercept, if present. Nuisance parameters are as follows:

ALGL — Maximized log-likelihood.  (Output)
COV — NCOEF by NCOEF matrix containing the estimated asymptotic covariance matrix of the coeffi-

cients.  (Output)
COV is computed as the inverse of the matrix of second partial derivatives of negative one times the 
log-likelihood. When MAXIT = 0, COV is computed at the initial estimates.

XMEAN — Vector of length NCOEF containing the means of the design variables.  (Output)
CASE — NOBS by 5 vector containing the case analysis.  (Output)

If MAXIT = 0, CASE is a NOBS by 1 vector containing the estimated probability (for censored observa-
tions) or the estimated density (for non censored observations).

GR — Vector of length NCOEF containing the last parameter updates, excluding step halvings.  (Output) 
GR is computed as the inverse of the matrix of second partial derivatives times the vector of first par-
tial derivatives of the log-likelihood. When MAXIT = 0, the derivatives are computed at the initial 
estimates.

Col. Statistic

1 Coefficient estimate.

2 Estimated standard deviation of the estimated coefficient.

3 Asymptotic normal score for testing that the coefficient is zero.

4 p-value associated with the normal score in column 3.

Model Nuisance Parameter

1 Coefficient of the quadratic term in time, θ
2 – 9 Scale parameter, σ
10 Shape parameter, θ

Col. Statistics

1 Estimated predicted value

2 Estimated influence or leverage

3 Residual estimate

4 Estimated cumulative hazard

5 For non-censored observations, the estimated density at the obser-
vation failure time and covariate values. For censored 
observations, the corresponding estimated probability.
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IADDS — Vector of length NOBS indicating which observations have and have not been included in the 
model.  (Output, if MAXIT > 0; Input/Output, if MAXIT = 0) 

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NCOL — Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFRQ — Column number in X containing the frequency of response for each observation.  (Input)
If IFRQ = 0, a response frequency of 1 for each observation is assumed.
Default: IFRQ = 0.

IFIX — Column number in X containing a constant to be added to the linear response.  (Input) 
Default: IFIX = 0.

The estimated linear response is taken to be   where wi is the observation constant, zi is the 

observation design vector,  is the vector of estimated parameters output in the first column of COEF, 
and i indexes the observations. The “fixed” constant allows one to test hypotheses about parameters 
via the log-likelihoods. If IFIX = 0, the fixed parameter is assumed to be 0.

ICEN — Column number in X containing the censoring code for each observation.  (Input) 
Default: ICEN = 0.
If ICEN = 0, a censoring code of 0 is assumed. Valid censoring codes are:

Value Status of Observation

0 Observation i has been included in the model.

1 Observation i has not been included in the model due to missing 
values in the X matrix.

2 Observation i has not been included in the model because of 
infinite estimates in extended maximum likelihood estimation. If 
MAXIT = 0, then the IADDS array must be initialized prior to call-
ing SVGLM.

X(i, ICEN) Censoring

0 Exact failure at X(i, IRT).

1 Right censored. The response is greater than X(i, IRT).

2 Left censored. The response is less than or equal to X(i, ILT).

3 Interval censored. The response is greater  than X(i, IRT), but 
less than or equal to X(i, ILT).
SVGLM         Chapter 13: Survival Analysis, Life Testing, and Reliability      1208



INFIN — Method to be used for handling infinite estimates.  (Input)
Default: INFIN = 0.

See the “Description” section for more discussion.
MAXIT — Maximum number of iterations.  (Input) 

MAXIT = 30 will usually be sufficient. Use MAXIT = 0 to compute the Hessian and score vector at the 
initial estimates.
Default: MAXIT = 30.

EPS — Convergence criterion.  (Input)
Convergence is assumed when the maximum relative change in any coefficient estimate is less than 
EPS from one iteration to the next, or when the relative change in the log-likelihood, ALGL, from one 
iteration to the next is less than EPS/100. If EPS is negative, EPS = 0.001 is assumed.
Default: EPS = 0.001.

INTCEP — Intercept option.  (Input)
Default: INTCEP = 1.

NCLVAR — Number of classification variables.  (Input) 
Dummy or indicator variables are generated for classification variables using the IDUMMY = 2 option 
of routine GRGLM (see Chapter 2, “Regression”). See Comment 3.
Default: NCLVAR = 0.

INDCL — Index vector of length NCLVAR containing the column numbers of X that are classification vari-
ables.  (Input, if NCLVAR is positive, not used otherwise) 
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in the calling program.

NEF — Number of effects in the model.  (Input) 
In addition to effects involving classification variables, simple covariates and the product of simple 
covariates are also considered effects.
Default: NEF = 0.

INFIN Method

0 Remove a right or left-censored observation from the loglikelihood 
whenever the probability of the observation exceeds 0.995. At con-
vergence, use linear programming to check that all removed 
observations actually have infinite linear response

.

Set IADDS(i) for observation i to 2 if the linear response is infinite. If 
not all removed observations have infinite linear response

.

1 Iterate without checking for infinite estimates.

INTCEP Action

0 No intercept is in the model (unless otherwise provided for by the 
user).

1 An intercept is automatically included in the model..
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NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.  
(Input, if NEF is positive; not used otherwise) 
If NEF is zero, NVEF is not used and can be dimensioned of length 1 in the calling program.

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF) containing the column numbers in 
X associated with each effect.  (Input, if NEF is positive; not used otherwise) 
The first NVEF(1) elements of INDEF give the column numbers in X of the variables in the first effect. 
The next NVEF(2) elements of INDEF give the column numbers for the second effect, etc. If NEF is zero, 
INDEF is not used and can be dimensioned of length one in the calling program.

INIT — Initialization option.  (Input) 
Default: INIT = 0.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

NCLVAL — Vector of length NCLVAR containing the number of values taken by each classification variable. 
(Output, if NCLVAR is positive; not used otherwise) 
NCLVAL(i) is the number of distinct values for the i-th classification variable. If NCLVAR is zero, 
NCLVAL is not used and can be dimensioned of length 1 in the calling program.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the distinct values 
of the classification variables in ascending order.  (Output, if NCLVAR is positive; not used otherwise) 
The first NCLVAL(1) elements contain the values for the first classification variables, the next 
NCLVAL(2) elements contain the values for the second classification variable, etc. If NCLVAR is zero, 
then CLVAL is not referenced and can be dimensioned of length 1 in the calling program.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOEF = size (COEF,1).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCOV = size (COV,1).

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of data in X that contain missing values in one or more columns ILT, IRT, 
IFRQ, ICOEF, ICEN, INDCL or INDEF of X.  (Output)

INIT Action

0 Unweighted linear regression is used to obtain initial estimates.

1 The NCOEF elements in the first column of COEF contain initial esti-
mates of the parameters on input to SVGLM (requiring that the user 
know NCOEF prior to calling SVGLM).

IPRINT Action

0 No printing is performed..

1 Printing is performed, but observational statistics are not printed..

2 All output statistics are printed.
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FORTRAN 90 Interface
Generic: CALL SVGLM (X, MODEL, ILT, IRT, MAXCL, NCOEF, COEF, ALGL, COV, XMEAN, CASE, GR, 

IADDS [, …])
Specific: The specific interface names are S_SVGLM and D_SVGLM.

FORTRAN 77 Interface
Single: CALL SVGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX, ICEN, INFIN, MAXIT, 

EPS, INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL, NCLVAL, 
CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE, GR, IADDS, 
NRMISS)

Double: The double precision name is DSVGLM.

Description

Routine SVGLM computes maximum likelihood estimates of parameters and associated statistics in general-
ized linear models commonly found in survival (reliability) analysis. Although the terminology used will be 
from the survival area, the methods discussed have application in many areas of data analysis, including reli-
ability analysis and event history analysis. Indeed, these methods may be used anywhere a random variable 
from one of the discussed distributions is parameterized via one of the models available in SVGLM. Thus, 
while it is not advisable to do so, standard multiple linear regression may be performed by routine SVGLM. 
Estimates for any of ten standard models can be computed. Exact, left-censored, right-censored, or inter-
val-censored observations are allowed. (Note that left censoring is the same as interval censoring with left 
endpoint equal to the left endpoint of the support of the distribution.)

Let η = xTβ be the linear parameterization, where x is a design vector obtained in SVGLM via routine GRGLM 
(see Chapter 2, “Regression”) from a row of X, and β is a vector of parameters associated with the linear model. 
Let T denote the random response variable and S(t) denote the probability that T > t. All models considered 
also allow a fixed parameter wi for observation i (input in column IFIX of X). Use of this parameter is dis-
cussed below. There may also be nuisance parameters θ > 0, or σ > 0 to be estimated (along with β) in the 
various models. Let Φ denote the cumulative normal distribution. The survival models available in SVGLM 
are:

Model Name S(t)

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic
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Note that the log-least-extreme-value model is a reparameterization of the Weibull model. Moreover, models 
0, 1, 2, 4, 6, 8, and 10 require that T > 0, while all of the remaining models allow any value for T,-∞ < T <∞.

Each row in the data matrix can represent a single observation, or, through the use of column IFRQ, it can 
represent several observations. Classification variables and their products are easily incorporated into the 
models via the usual GLM type specifications through the use of variables NCLVAR and INDCL, and the 
model variables NEF, NVEF, and INDEF.

The constant parameter wi  is input in X and may be used for a number of purposes. For example, if the 
parameter in an exponential model is known to depend upon the size of the area tested, volume of a radioac-
tive mass, or population density, etc., then a multiplicative factor of the exponential parameter λ = exp(xβ) 
may be known apriori. This factor can be input in wi (wi is the log of the factor). An alternate use of wi is as 
follows: It may be that λ = exp(x1β1 + x2β2), where β2 is known. Letting wi = x2β2, estimates for β1 can be 
obtained via SVGLM with the known fixed values for β2. Standard methods can then be used to test hypothe-
ses about β2 via computed log-likelihoods.

Computational details

The computations proceed as follows:

1. The input arguments are checked for consistency and validity.
2. Estimates for the means of the explanatory variables x (as generated from the model specification via 

GRGLM (see Chapter 2, “Regression”) are computed. Let ƒi denote the frequency of the observation. 
Means are computed as

3. If INIT = 0, initial estimates of the parameters for all but the exponential models (MODEL = 0, 1) are are 
obtained as follows:

5 Logistic

6 Log least extreme 
value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull

Model Name S(t)
SVGLM         Chapter 13: Survival Analysis, Life Testing, and Reliability      1212



A. Routine KAPMR is used to compute a nonparametric estimate of the survival probability at the 
upper limit of each failure interval. (Because upper limits are used, intervaland left-censored 
data are taken to be exact failures at the upper endpoint of the failure interval.) The 
Kaplan-Meier estimate is computed under the assumption that all failure distributions are iden-
tical (i.e., all β’s but the intercept, if present, are assumed to be zero).

B. If INTCEP = 0, a simple linear regression is performed predicting

where t* is computed at the upper endpoint of each failure interval, t* = t in models 3, 5, 7, and 
9, and t* = ln(t) in models 2, 4, 6, 8, and 10, and wi is the fixed constant, if present. If INTCEP is 
zero, α is fixed at zero, and the model

is fit instead of the model above. In this model, the coefficients β are used in place of the location 

estimate α above. Here,  is estimated from the simple linear regression with α = 0.

C. If the intercept is in the model, then in log-location-scale models (models 1–8),

and the initial estimate of the intercept, if present, is taken to be .

In the Weibull model,

and the intercept, if present, is taken to be .

Initial estimates of all parameters β, other than the intercept, are taken to be zero.

If no intercept is in the model, the scale parameter is estimated as above, and the estimates  
from Step B are used as initial estimates for the β’s.
For exponential models (MODEL = 0, 1), the average total time on test statistic is used to obtain an 
estimate for the intercept. Specifically, let Tt denote the total number of failures divided by the 
total time on test. The initial estimate for the intercept is then ln(Tt). Initial estimates for the 
remaining parameters β are taken as zero, and, if MODEL = 1, the initial estimate for the linear 
hazard parameter θ is taken to be a small positive number. When the intercept is not in the 
model, the initial estimate for the parameter θ is taken as a small positive number, and initial 
estimates of the parameters β are computed via multiple linear regression as above.

4. A quasi-Newton algorithm is used in the initial iterations based upon a Hessian estimate 

where
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is the partial derivative of the i-th term in the log-likelihood with respect to the parameter αj, and αj 
denotes one of the parameters to be estimated.
When the relative change in the log-likelihood from one iteration to the next is 0.1 or less, exact second 
partial derivatives are used for the Hessian so that Newton-Raphson iteration is used.
If the initial step size results in an increase in the log-likelihood, the full step is used. If the log-likeli-
hood decreases for the initial step size, the step size is halved, and a check for an increase in the 
log-likelihood performed. Step-halving is performed (as a simple line search) until an increase in the 
log-likelihood is detected, or until the step size is less that 0.0001 (where the initial step size is 1).

5. Convergence is assumed when the maximum relative change in any coefficient update from one itera-
tion to the next is less than EPS, or when the relative change in the loglikelihood from one iteration to 
the next is less than EPS/100. Convergence is also assumed after MAXIT iterations, or when step halv-
ing leads to a step size of less than .0001, with no increase in the log-likelihood.

6. If requested (INFIN = 0), then the methods of Clarkson and Jennrich (1988) are used to check for the 
existence of infinite estimates in

As an example of a situation in which infinite estimates can occur, suppose that observation j is right 
censored with tj > 15 in a normal distribution model in which we fit the mean as

where xj is the observation design vector. If design vector xj for parameter βm is such that xjm = 1 and 
xim = 0 for all i ≠ j, then the optimal estimate of βm occurs at 

leading to an infinite estimate of both βm and ηj. In SVGLM, such estimates may be “computed.”

In all models fit by SVGLM, infinite estimates can only occur when the optimal estimated probability 
associated with the left- or right-censored observation is 1. If INFIN = 0, left- or right-censored obser-
vations that have estimated probability greater than 0.995 at some point during the iterations are 
excluded from the log-likelihood, and the iterations proceed with a log-likelihood based upon the 
remaining observations. This allows convergence of the algorithm when the maximum relative change 
in the estimated coefficients is small and also allows for a more precise determination of observations 
with infinite 

At convergence, linear programming is used to ensure that the eliminated observations have infinite 
ηi. If some (or all) of the removed observations should not have been removed (because their esti-
mated ηi’s must be finite), then the iterations are restarted with a log-likelihood based upon the finite 
ηi observations. See Clarkson and Jennrich (1988) for more details.
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When INFIN = 1, no observations are eliminated during the iterations. In this case, when infinite esti-

mates occur, some (or all) of the coefficient estimates  will become large, and it is likely that the 
Hessian will become (numerically) singular prior to convergence.

7. The case statistics are computed as follows:
Let 

denote the log-likelihood of the i-th observation evaluated at θi,  denote the vector of derivatives of 

 with respect to all parameters,

denote the derivative of  with respect to η = xTβ, H denote the Hessian, and E denote expectation. 

Then, the columns of CASE are:
A. Predicted values are computed as E(T∣x) according to standard formulas. If MODEL is 4 or 8, and 

if σ ≥ 1, then the expected values cannot be computed because they are infinite.
B. Following Cook and Weisberg (1982), we take the influence (or leverage) of the i-th observation 

to be

This quantity is a one-step approximation to the change in the estimates when the i-th observa-
tion is deleted (ignoring the nuisance parameters).

C. The “residual” is computed as

D. The cumulative hazard is computed at the observation covariate values and, for interval obser-
vations, the upper endpoint of the failure interval. The cumulative hazard can also be used as a 
“residual” estimate. If the model is correct, the cumulative hazards should follow a standard 
exponential distribution. See Cox and Oakes (1984).

E. The density (for exact failures) or the interval probability (for censored observations) is com-
puted for given x.

Programming Notes

Classification variables are specified by parameters NCLVAR and INDCL. Indicator variables are created for 
the classification variables using routine GRGLM (see Chapter 2, “Regression”) with IDUMMY = 2.
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Examples

Example 1

This example is from Lawless (1982, page 287) and involves the mortality of patients suffering from lung can-
cer. (The first ten rows of the input data are printed in the output.) An exponential distribution is fit for 
model

η = μ + β1x3 + β2x4 + β3x5 + αi + γk

where αi is associated with a classification variable with 4 levels, and γk is associated with a classification 
variable with 2 levels. Note that because the computations are performed in single precision, there will be 
some small variation in the estimated coefficients across different machine environments.

      USE SVGLM_INT
      USE WRRRL_INT

      IMPLICIT   NONE
      INTEGER    ICEN, ILT, IPAR, IPRINT, IRT, LDCASE, LDCOEF, &
                 LDCOV, LDX, MAXCL, MODEL, NCLVAR, NCOL, NEF, NOBS
      PARAMETER  (ICEN=2, ILT=0, IPAR=0, IPRINT=2, IRT=1, LDCASE=40, &
                 LDCOEF=8, LDCOV=8, LDX=40, MAXCL=6, MODEL=0, &
                 NCLVAR=2, NCOL=7, NEF=5, NOBS=40)
      CHARACTER  *6 NUMBER(1)
!
      INTEGER    IADDS(NOBS), INDCL(NCLVAR), INDEF(5), NCLVAL(NCLVAR), &
                 NCOEF, NRMISS, NVEF(NEF)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(MAXCL), COEF(LDCOEF,4), &
                COV(LDCOV,LDCOV), GR(LDCOV), X(LDX,NCOL), XMEAN(LDCOV)
!
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287, &
          10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201, &
          44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231, &
          5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6, &
          3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7, &
          4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48, &
          48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37, &
          54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68, &
          39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2, &
          25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13, &
          22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3, &
          5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
      NUMBER(1) = 'NUMBER'
!
      CALL WRRRL ('First 10 rows of the input data.', X, &
                  NUMBER, NUMBER, 10, NCOL, LDX)
!
      CALL SVGLM (X, MODEL, ILT, IRT, MAXCL, NCOEF, COEF, ALGL, COV, &
                  XMEAN, CASE, GR, IADDS, ICEN=ICEN, NCLVAR=NCLVAR, &
                  INDCL=INDCL, NEF=NEF, NVEF=NVEF, INDEF=INDEF, &
                  IPRINT=IPRINT, NCLVAL=NCLVAL, CLVAL=CLVAL, &
                  NRMISS=NRMISS)
!
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      END

Output

          First 10 rows of the input data.
        1      2      3      4      5      6      7
 1  411.0    0.0    7.0   64.0    5.0    1.0    0.0
 2  126.0    0.0    6.0   63.0    9.0    1.0    0.0
 3  118.0    0.0    7.0   65.0   11.0    1.0    0.0
 4   92.0    0.0    4.0   69.0   10.0    1.0    0.0
 5    8.0    0.0    4.0   63.0   58.0    1.0    0.0
 6   25.0    1.0    7.0   48.0    9.0    1.0    0.0
 7   11.0    0.0    7.0   48.0   11.0    1.0    0.0
 8   54.0    0.0    8.0   63.0    4.0    2.0    0.0
 9  153.0    0.0    6.0   63.0   14.0    2.0    0.0
10   16.0    0.0    3.0   53.0    4.0    2.0    0.0

                       Initial Estimates
     1       2       3       4       5       6       7       8
-5.054   0.000   0.000   0.000   0.000   0.000   0.000   0.000

Method  Iteration  Step size  Maximum scaled     Log
                               coef. update      likelihood
   Q-N        0                                   -224.0
   Q-N        1      1.0000      0.9839           -213.4
   N-R        2      1.0000       3.603           -207.3
   N-R        3      1.0000       10.12           -204.3
   N-R        4      1.0000      0.1430           -204.1
   N-R        5      1.0000      0.1174E-01       -204.1

Log-likelihood       -204.1392

                   Coefficient Statistics
                       Standard     Asymptotic     Asymptotic
     Coefficient          error    z-statistic        p-value
1         -1.103          1.314         -0.8939        0.4016
2         -0.540          0.108         -4.995         0.0000
3         -0.009          0.020         -0.459         0.6460
4         -0.003          0.012         -0.291         0.7710
5         -0.363          0.445         -0.816         0.4149
6          0.127          0.486          0.261         0.7939
7          0.869          0.586          1.483         0.1385
8          0.270          0.388          0.695         0.4873

                    Asymptotic Coefficient Covariance
              1              2              3              4              5
1      1.727       -8.1873E-02    -1.9753E-02    -2.2481E-03    -6.5707E-02
2                   1.1690E-02     6.4506E-05     2.8955E-04    -3.8734E-04
3                                  3.8676E-04    -3.9067E-05    -1.2359E-03
4                                                 1.3630E-04     7.5656E-04
5                                                                0.1976

               6              7              8
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1    -0.1038        -0.1554        -4.2370E-05
2     8.5772E-03     1.8120E-02     6.5272E-03
3    -3.2789E-04    -1.6986E-03    -2.7794E-03
4    -1.6742E-03     6.2668E-04     1.5432E-03
5     9.0035E-02     0.1122         4.3157E-02
6     0.2365         0.1142        -1.3527E-02
7                    0.3436         5.1948E-02
8                                  0.1507

                                Case Analysis
                                                  Cumulative     Density or
      Predicted      Influence       Residual         Hazard    Probability
 1        262.7         0.0450         -0.565          1.565         0.0008
 2        153.8         0.0042          0.181          0.819         0.0029
 3        270.5         0.0482          0.564          0.436         0.0024
 4         55.3         0.0844         -0.663          1.663         0.0034
 5         61.7         0.3765          0.870          0.130         0.0142
 6        230.4         0.0025         -0.108          0.108         0.8972
 7        232.0         0.1960          0.953          0.047         0.0041
 8        272.8         0.1677          0.802          0.198         0.0030
 9         95.9         0.0505         -0.596          1.596         0.0021
10         16.8         0.0005          0.045          0.955         0.0230
11        234.0         0.1911          0.761          0.239         0.0034
12         29.1         0.0156          0.278          0.722         0.0167
13        102.2         0.4609         -1.807          2.807         0.0006
14         34.8         0.0686          0.713          0.287         0.0216
15          5.3         0.0838         -0.521          1.521         0.0415
16         25.7         0.0711          0.533          0.467         0.0244
17         65.6         0.4185         -1.698          2.698         0.0010
18         38.4         0.0886          0.688          0.312         0.0191
19        261.0         0.0155          0.234          0.766         0.0018
20        167.2         0.0338         -0.495          1.495         0.0013
21         85.8         0.0082         -0.166          1.166         0.0036
22        947.8         0.0005         -0.054          1.054         0.0004
23        105.9         0.6402         -2.181          2.181         0.1129
24        305.2         0.5757         -2.247          3.247         0.0001
25         24.6         0.3203          0.959          0.041         0.0390
26        572.8         0.0762          0.649          0.351         0.0012
27        217.5         0.1246          0.798          0.202         0.0038
28         96.6         0.1494          0.845          0.155         0.0089
29        173.4         0.1096         -0.594          0.594         0.5522
30         38.7         0.1928          0.948          0.052         0.0245
31         22.5         0.0040          0.112          0.888         0.0183
32         30.7         0.2270         -0.661          1.661         0.0062
33         20.8         0.0058          0.134          0.866         0.0202
34         54.6         0.1094         -0.648          1.648         0.0035
35        168.6         0.0923          0.502          0.498         0.0036
36        256.8         0.0341          0.361          0.639         0.0021
37         21.9         0.0069          0.134          0.866         0.0192
38        124.3         0.0680          0.654          0.346         0.0057
39        417.9         0.0087          0.186          0.814         0.0011
40        257.1         0.0025          0.101          0.899         0.0016

                         Last Coefficient Update
          1           2           3           4           5           6
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 -1.031E-05  -1.437E-06   3.098E-07   4.722E-08  -1.844E-05  -1.671E-06

          7           8
 -2.520E-06   8.139E-06

                   Covariate Means
    1       2       3       4       5       6       7
 5.65   56.58   15.65    0.35    0.28    0.12    0.53

         Distinct Values For Each Class Variable
 Variable  1:     1.0         2.0         3.0         4.0
 Variable  2:      0.         1.0

                          Observation Codes
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

Number of Missing Values           0

Example 2

As a second example, the MAXIT = 0 option is used for the model in Example 1 with the coefficients restricted 
such that μ = -1.25, β1 = -6, and the remaining 6 coefficients are zero. A chi-squared statistic with 8 degrees 
of freedom for testing that the coefficients are specified as above (versus the alternative that they are not as 
specified) may be computed from the output as 

where  is output in COV, and g is output in GR. The resulting test statistic (6.107), based upon no iterations, 
is comparable to the likelihood ratio test statistic that may be computed from the log-likelihood output in 
Example 2 (-206.6835) and the log-likelihood output in Example 1 (-204.1392).

Neither test statistic is significant at the α = 0.05 level.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    ICEN, ILT, INIT, IPAR, IPRINT, IRT, LDCASE, &
                 LDCOEF, LDCOV, LDX, MAXCL, MAXIT, MODEL, NCLVAR, &
                 NCOL, NEF, NOBS
      PARAMETER  (ICEN=2, ILT=0, INIT=1, IPAR=0, IPRINT=2,IRT=1, &
                  LDCASE=40, LDCOEF=8, LDCOV=8, LDX=40, MAXCL=6, &
                  MAXIT=0, MODEL=0, NCLVAR=2, NCOL=7, NEF=5, NOBS=40)
!
      INTEGER    IADDS(NOBS), INDCL(NCLVAR), INDEF(5), IRANK, &
                 NCLVAL(NCLVAR), NCOEF, NRMISS, NVEF(NEF)
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      REAL       ALGL, CASE(LDCASE,5), CHISQ, CLVAL(MAXCL), &
                 COEF(LDCOEF,4), COV(LDCOV,LDCOV), GR(LDCOV), &
                 GRD(LDCOV), X(LDX,NCOL), XMEAN(LDCOV)
!
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287, &
          10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201, &
          44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231, &
          5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6, &
          3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7, &
          4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48, &
          48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37, &
          54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68, &
          39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2, &
          25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13, &
          22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3, &
          5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
!
      NCOEF = 8
      CALL SSET (NCOEF, 0.0, COEF(3:,1), 1)
      CALL ISET (NOBS, 0, IADDS, 1)
      COEF(1,1) = -1.25
      COEF(2,1) = -0.60
      CALL SVGLM (X, MODEL, ILT, IRT, MAXCL, NCOEF, COEF, ALGL, COV, &
                  XMEAN, CASE, GR(1:1), IADDS, ICEN=ICEN, MAXIT=MAXIT, &
                  NCLVAR=NCLVAR, INDCL=INDCL, NEF=NEF, NVEF=NVEF,&
                  INDEF=INDEF, INIT=INIT, IPRINT=IPRINT, &
                  NCLVAL=NCLVAL, CLVAL=CLVAL)
!                                 Compute Chi-squared
      CALL CHFAC (COV, IRANK, COV)
      CALL GIRTS (COV, GR, IRANK, GRD, IPATH=2)
!
      CHISQ = SDOT(NCOEF,GRD(1:1), 1, GRD(1:1), 1)
      WRITE (6,99999) ' Chi-squared statistic with 8 degrees of '// &
                    'freedom ', CHISQ
!
99999 FORMAT (/, A, G12.4)
      END

Output

Log-likelihood       -206.6835

                    Coefficient Statistics
                        Standard     Asymptotic     Asymptotic
      Coefficient          error    z-statistic        p-value
 1          -1.25          1.383         -0.904          0.366
 2          -0.60          0.112         -5.365          0.000
 3           0.00          0.021          0.000          1.000
 4           0.00          0.011          0.000          1.000
 5           0.00          0.429          0.000          1.000
 6           0.00          0.530          0.000          1.000
 7           0.00          0.775          0.000          1.000
 8           0.00          0.405          0.000          1.000
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                                    Hessian
              1              2              3              4              5
 1      1.914      -8.1835E-02    -2.3464E-02    -1.1634E-03    -9.0646E-02
 2                  1.2507E-02     2.0883E-06     3.1320E-04    -5.3147E-04
 3                                 4.6174E-04    -5.5344E-05    -8.1929E-04
 4                                                1.1797E-04     6.0699E-04
 5                                                               0.1839

                6              7              8
 1    -0.1641        -0.1681         7.7768E-02
 2     1.0372E-02     1.9269E-02     5.9762E-03
 3     5.1246E-04    -1.6419E-03    -4.0106E-03
 4    -2.0693E-03     6.9029E-04     1.7020E-03
 5     9.9640E-02     0.1191         3.5786E-02
 6     0.2808         0.1264        -2.2602E-02
 7                    0.6003         4.6015E-02
 8                                   0.1641

 Estimated Probability (censored) or Estimated Density (non-censored)
      1        2        3        4        5        6        7        8
 0.0007   0.0029   0.0026   0.0024   0.0211   0.8982   0.0041   0.0021

      9       10       11       12       13       14       15       16 
 0.0024   0.0222   0.0021   0.0151   0.0008   0.0200   0.0433   0.0120

     17       18       19       20       21       22       23       24
 0.0011   0.0190   0.0015   0.0015   0.0036   0.0004   0.0371   0.0001

     25       26       27       28       29       30       31       32
 0.0792   0.0015   0.0055   0.0115   0.6424   0.0247   0.0184   0.0042

     33       34       35       36       37       38       39       40
 0.0163   0.0039   0.0019   0.0021   0.0193   0.0056   0.0011   0.0016

                      Newton-Raphson Step
     1       2       3       4       5       6       7       8
 0.171   0.062  -0.011  -0.003  -0.336   0.133   1.297   0.298

                   Covariate Means
    1       2       3       4       5       6       7
 5.65   56.58   15.65    0.35    0.28    0.12    0.53

 Distinct Values For Each Class Variable
 Variable  1:     1.0         2.0         3.0         4.0
 Variable  2:      0.         1.0

                               Observation Codes
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

Number of Missing Values           0
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Chi-squared statistic with 8 degrees of freedom    6.107
SVGLM         Chapter 13: Survival Analysis, Life Testing, and Reliability      1222



STBLE

Estimates survival probabilities and hazard rates for various parametric models.

Required Arguments
XPT — NOBS by NCOL matrix, each row of which contains the covariates for a group for which survival 

estimates are desired.  (Input)
MODEL — Model option parameter.  (Input) 

MODEL specifies the distribution of the response variable and the relationship of the linear model to a 
distribution parameter. 

For further discussion of the models, see the “Description” section.
TIME — Beginning of the time grid for which the survival estimates are desired.  (Input) 

Survival probabilities and hazard rates are computed for each covariate vector over the grid of time 
points TIME + i * DELTA for i = 0, 1, …, NPT - 1.

NPT — Number of points on the time grid for which survival probabilities are desired.  (Input)
DELTA — Increment between time points on the time grid.  (Input)
IFIX — Column number in XPT containing a constant to be added to the linear response.  (Input) 

The estimated linear response is w + COEF(1) * z(1) + COEF(2) * z(2) + … + COEF(NCOEF) * z(NCOEF), 
where z is the design vector for the I-th observation obtained from a row of XPT. w = XPT(I, IFIX) if 
IFIX is positive, and w = 0 otherwise.

NCOEF — Number of coefficients in the model.  (Input)
COEF — Vector of length NCOEF containing the model parameter estimates.  (Input)

Usually routine SVGLM is first called to estimate COEF as the first column of matrix COEF in SVGLM. 
When present in the model, the initial coefficient in COEF is a “nuisance” parameter, and the remain-
ing coefficients are parameters associated with the “linear” model, beginning with the intercept, if 
present. Nuisance parameters are as follows:

MODEL Distribution

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull
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There is no nuisance parameter for model 0.
SPROB — NPT by 2 * NOBS + 1 matrix.  (Output) 

SPROB(i, 2) contains the estimated survival probability at time SPROB(i, 1) = TIME + (i - 1) * DELTA 
for observations with covariates given in row 1 of XPT. SPROB(i, 3) contains the estimate for the hazard 
rate at this time point. Columns 4 and 5 contain the estimated survival probabilities and hazard rates 
for observations with covariates given in the second row in XPT, etc., up to columns 2 * NOBS and 
2 * NOBS + 1, which contain these statistics for observations with covariates in the last row of XPT.

XBETA — Vector of length NOBS containing the estimated linear response w + COEF(1) * 
z(1) + … + COEF(NCOEF) * z(NCOEF ) for each row of XPT.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (XPT,1).
NCOL — Number of columns in XPT.  (Input)

Default: NCOL = size (XPT,2).
LDXPT — Leading dimension of XPT exactly as specified in the dimension statement of the calling pro-

gram.  (Input)
Default: LDX = size (XPT,1).

INTCEP — Intercept option.  (Input)
Default: INTCEP = 1. 

NCLVAR — Number of classification variables.  (Input)
Dummy or indicator variables are generated for classification variables using the IDUMMY = 2 option 
of routine GRGLM (see Chapter 2, “Regression”). See also Comment 2.
Default: NCLVAR = 0.

INDCL — Index vector of length NCLVAR containing the column numbers of X that are classification vari-
ables.  (Input, if NCLVAR is positive, not used otherwise) 
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in the calling program.

NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-
able. (Input, if NCLVAR is positive, not referenced otherwise)
NCLVAL(I) is the number of distinct values for the I-th classification variable. NCLVAL is not refer-
enced and can be dimensioned of length 1 in the calling program if NCLVAR is zero.

Model Nuisance Parameter

1 Coefficient of the quadratic term in time, θ
2 – 9 Scale parameter, σ
10 Shape parameter, θ

INTCEP Action

0 No intercept is in the model (unless otherwise provided for by the user).

1 An intercept is automatically included in the model.
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CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR) containing the distinct values 
of the classification variables.  (Input, if NCLVAR is positive; not used otherwise) 
The first NCLVAL(1) elements contain the values for the first classification variables, the next 
NCLVAL(2) elements contain the values for the second classification variable, etc. If NCLVAR is zero, 
then CLVAL is not referenced and can be dimensioned of length 1 in the calling program.

NEF — Number of effects in the model.  (Input) 
In addition to effects involving classification variables, simple covariates and the product of simple 
covariates are also considered effects.
Default: NEF = 0.

NVEF — Vector of length NEF that contains the number of variables associated with each effect.  (Input, if 
NEF is greater than 0; not referenced otherwise) 
NVEF is not referenced and can be dimensioned of length 1 in the calling program if NEF is zero.

INDEF — Vector of length NVEF(1) + … + NVEF(NEF) that contains the column numbers in X associated 
with each effect.  (Input, if NEF is greater than 0; not used otherwise) 
The first NVEF(1) elements of INDEF contain the column numbers in XPT for the variables in the first 
effect. The next NVEF(2) elements in INDEF contain the column numbers for the second effect, etc. If 
NCLVAR is zero, INDEF is not referenced and can be dimensioned of length 1 in the calling program.

IPRINT — Printing option.  (Input) 
Default: IPRINT = 0.

LDSPRO — Leading dimension of SPROB exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDSPRO = size (SPROB,1).

FORTRAN 90 Interface
Generic: CALL STBLE (XPT, MODEL, TIME, NPT, DELTA, IFIX, NCOEF, COEF, SPROB, XBETA [, …])
Specific: The specific interface names are S_STBLE and D_STBLE.

FORTRAN 77 Interface
Single: CALL STBLE (NOBS, NCOL, XPT, LDXPT, MODEL, TIME, NPT, DELTA, IFIX, INTCEP, 

NCLVAR, INDCL, NCLVAL, CLVAL, NEF, NVEF, INDEF, NCOEF, COEF, IPRINT, SPROB, 
LDSPRO, XBETA)

Double: The double precision name is DSTBLE.

Description

Routine STBLE computes estimates of survival probabilities and hazard rates for the parametric sur-
vival/reliability models fit by routine SVGLM for one or more vectors of covariate values. Because estimates 
for the parameters of the model must be given, routine SVGLM is usually invoked to obtain these estimates 
prior to invoking STBLE.

IPRINT Action

0 No printing is performed.

1 Printing is performed.
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Let η = xTβ be the linear parameterization, where x is a design vector obtained in STBLE via routine GRGLM 
(see Chapter 2, “Regression”) from a row of XPT, and β is a vector of parameters associated with the linear 
model. Let T denote the random response variable and S(t) denote the probability that T > t. All models con-
sidered also allow a fixed parameter w (input in column IFIX of XPT). Use of this parameter is discussed in 
the document for routine SVGLM. There may also be nuisance parameters θ > 0, or σ > 0. Let Φ denote the 
cumulative normal distribution. The survival models available in STBLE are 

Let λ(t) denote the hazard rate at time t. Then λ(t) and S(t) are related as

 

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case, we assume λ(s) = 0 for s < 0), while the remain-
ing models allow arbitrary values for T, -∞ < T <∞. The computations proceed in routine STBLE as follows:

1.    The input arguments are checked for consistency and validity.

Model Name S(t)

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull
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2. For each row of XPT, the explanatory variables are generated from the classification and variables and 
the covariates using routine GRGLM with the IDUMMY = 2 option. (When IDUMMY is two, GRGLM  
assigns an indicator variable the value 1.0 when the observation is in the class, assigns the value 0.0 
otherwise, and omits the last indicator variable from the design vector. See the manual documentation 
for GRGLM.) Given the explanatary variables x, η is computed as η = xTβ, where β is input in COEF.

3. For each time point requested in the time grid, the survival probabilities and hazard rates are 
computed.

Comments
1. Workspace may be explicitly provided, if desired, by use of S2BLE/DS2BLE. The reference is:

CALL S2BLE (NOBS, NCOL, XPT, LDXPT, MODEL, TIME, NPT, DELTA, IFIX, INTCEP, NCLVAR, 
INDCL, NCLVAL, CLVAL, NEF, NVEF, INDEF, NCOEF, COEF, IPRINT, SPROB, LDSPRO, XBETA, 
CHWK, Z, RWK)

The additional arguments are as follows:

CHWK — CHARACTER * 10 work vector of length NCOL.

Z — Work vector of length NCOEF.

RWK — Work vector of length MAX(7, NCOL) if IPRINT = 1, or of length 1 if IPRINT = 0.
2. Dummy variables are generated for the classification variables as follows: The list of all distinct values 

of each classification variable is as stored in CLVAL. Dummy variables are generated for each but the 
last of these distinct values. Each dummy variable is zero unless the classification variable equals the 
list value corresponding to the dummy variable, in which case the dummy variable is one. See argu-
ment IDUMMY for IDUMMY = 2 in routine GRGLM (see Chapter 2, “Regression”).

3. Informational errors

Example

The example is a continuation of the first example given for routine SVGLM. Prior to calling STBLE, SVGLM is 
invoked to compute the parameter estimates. The example is taken from Lawless (1982, page 287) and 
involves the mortality of patients suffering from lung cancer.
!
      USE SVGLM_INT
      USE SCOPY_INT
      USE STBLE_INT

      IMPLICIT   NONE

      INTEGER    ICEN, IFIX, ILT, INFIN, IPRINT, IRT, LDCASE, &
                 LDCOEF, LDCOV, LDSPRO, LDX, LDXPT, MAXCL, &
                 MODEL, NCLVAR, NCOL, NEF, NOBS, NPT
      REAL       DELTA, TIME, XPWR

Type Code Description

3 1 Some survival probabilities are less than or equal to zero. The corresponding 
hazard values cannot be computed.

4 2 The specified number of coefficients, NCOEF, is incorrect.

4 3 The model specified is not defined for negative time.
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      PARAMETER  (DELTA=20.0, ICEN=2, IFIX=0, ILT=0, INFIN=0, IPRINT=1, &        
                  IRT=1, LDCASE=40, LDCOEF=9, LDCOV=9, LDX=40, LDXPT=2, &
                  MAXCL=6, MODEL=0, NCLVAR=2, NCOL=7, NEF=5, NOBS=40, &
                  NPT=10, TIME=10.0, XPWR=0.0, LDSPRO=NPT)
!
      INTEGER    IADDS(NOBS), INDCL(NCLVAR), INDEF(5), NCLVAL(NCLVAR), &
                NCOEF, NRMISS, NVEF(NEF)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(MAXCL), COEF(LDCOEF,4), &
                COV(LDCOV,LDCOV), GR(LDCOV), SPROB(LDSPRO,2*NOBS+1), &
                X(LDX,NCOL), XBETA(NOBS), XMEAN(LDCOV), XPT(LDXPT,NCOL)
!
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287, &
          10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201, &
          44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231, &
          5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6, &
          3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7, & 
          4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48, &
          48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37, &
          54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68, &
          39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2, &
          25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13, &
          22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3, &
          5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
!
      CALL SVGLM (X, MODEL, ILT, IRT, MAXCL, NCOEF, COEF, ALGL, &
                 COV, XMEAN, CASE, GR, IADDS, ICEN=ICEN, &
                 NCLVAR=NCLVAR, INDCL=INDCL, NEF=NEF, NVEF=NVEF, &
                 INDEF=INDEF, NCLVAL=NCLVAL, CLVAL=CLVAL)
!
      CALL SCOPY (NCOL, X(1:,1), LDX, XPT(1:,1), LDXPT)
      CALL SCOPY (NCOL, X(2:,1), LDX, XPT(2:,1), LDXPT)
!
      CALL STBLE (XPT, MODEL, TIME, NPT, DELTA, IFIX, & 
                 NCOEF, COEF, SPROB, XBETA, NCLVAR=NCLVAR, INDCL=INDCL,&
                 NCLVAL=NCLVAL, CLVAL=CLVAL, NEF=NEF, NVEF=NVEF,&
                 INDEF=INDEF, IPRINT=IPRINT)
!
      END

Output

                              group   1
                               xpt
  1           2           3           4           5           6
411           0           7          64           5           1

7
0

                     design vector
1           2           3           4           5           6
1           7          64           5           1           0

7           8
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0           1

xbeta =        -5.57097

                        group   2
                          xpt
  1           2           3           4           5           6
126           0           6          63           9           1

7
0

                    design vector
1           2           3           4           5           6
1           6          63           9           1           0

7           8
0           1

xbeta =        -5.03551

             survival and hazard estimates
                        (sprob)
  time            s1            h1            s2            h2
 10.00        0.9626      0.003807        0.9370      0.006503
 30.00        0.8921      0.003807        0.8228      0.006503
 50.00        0.8267      0.003807        0.7224      0.006503
 70.00        0.7661      0.003807        0.6343      0.006503
 90.00        0.7099      0.003807        0.5570      0.006503
110.00        0.6579      0.003807        0.4890      0.006503
130.00        0.6096      0.003807        0.4294      0.006503
150.00        0.5649      0.003807        0.3770      0.006503
170.00        0.5235      0.003807        0.3310      0.006503
190.00        0.4852      0.003807        0.2907      0.006503

Note that in simple exponential models the hazard rate is constant over time.
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ACTBL

Produces population and cohort life tables.

Required Arguments
IMTH — Type of life table.  (Input) 

IMTH = 0 indicates a population (current) table. IMTH = 1 indicates a cohort table.
N — Number of age classes.  (Input)
NPOP — Population size. (Input, if IMTH = 0; not used otherwise) 

For IMTH = 0, the population size at the beginning of the first age interval. The value is somewhat arbi-
trary. NPOP = 10000 is reasonable. Not used if IMTH = 1.

AGE — Vector of length N + 1 containing the lowest age in each age interval, and in AGE(N + 1), the end-
point of the last age interval.  (Input) 
Negative AGE(1) indicates that the age intervals are all of length ∣AGE(1)∣ and that the initial age inter-
val is from 0.0 to ∣AGE(1)∣. In this case, all other elements of AGE need not be specified. AGE(N + 1) need 
not be specified when IMTH = 1.

A — Vector of length N containing the fraction of those dying within each interval who die before the inter-
val midpoint.  (Input) 
A common choice for all A(I) is 0.5. This choice may also be specified by setting A(1) to any negative 
value. In this case, the remaining values of A need not be specified.

IPOP — Vector of length N containing the cohort sizes during each interval.  (Input) 
If IMTH = 0, then IPOP(I) contains the size of the population at the midpoint of interval I. If IMTH = 1, 
then IPOP(I) contains the size of the cohort at the beginning of interval I. When IMTH = 0, the popula-
tion sizes in IPOP may need to be adjusted to correspond to the number of deaths in IDTH . See the 
“Description” section of the KAPMR routine for more information.

IDTH — Vector of length N containing the number of deaths in each age interval.  (Input, if IMTH = 0; not 
used otherwise) 
If IMTH = 1, IDTH is not used and may be dimensioned of length 1.

TABLE — N by 12 matrix containing the life table.  (Output) 
The rows of TABLE correspond to the age intervals.

Col. Description

1 Lowest age in the age interval.

2 Fraction of those dying within the interval who die before the interval midpoint.

3 Number surviving to the beginning of the interval.

4 Number of deaths in the interval.

5 Death rate in the interval. If IMTH = 1, this column is set to NaN (not a number).

6 Death rate in the interval. If IMTH = 1, this column is set to NaN (not a number).

7 Proportion dying in the interval.

8 Standard error of the proportion dying in the interval.

9 Standard error of the proportion of survivors at the beginning of the interval.

10 Expected lifetime at the beginning of the interval.
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Optional Arguments
IPRINT — Printing option.  (Input) 

If IPRINT = 1, the life table is printed. Otherwise, no printing is done.
Default: IPRINT = 0.

LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDTABL = size (TABLE,1).

FORTRAN 90 Interface
Generic: CALL ACTBL (IMTH, N, NPOP, AGE, A, IPOP, IDTH, TABLE [, …])
Specific: The specific interface names are S_ACTBL and D_ACTBL.

FORTRAN 77 Interface
Single: CALL ACTBL (IMTH, N, NPOP, AGE, A, IPOP, IDTH, IPRINT TABLE, LDTABL)
Double: The double precision name is DACTBL.

Description

Routine ACTBL computes population (current) or cohort life tables based upon the observed population sizes 
at the middle (IMTH = 0) or the beginning (IMTH = 1) of some userspecified age intervals. The number of 
deaths in each of these intervals must also be observed.

The probability of dying prior to the middle of the interval, given that death occurs somewhere in the inter-
val, may also be specified. Often, however, this probability is taken to be 0.5. For a discussion of the 
probability models underlying the life table here, see the references.

Let ti, for i = 0, 1, …, tn denote the time grid defining the n age intervals, and note that the length of the age 
intervals may vary. Following Gross and Clark (1975, page 24), let di denote the number of individuals dying 
in age interval i, where age interval i ends at time ti. If IMTH = 0, the death rate at the middle of the interval is 
given by ri = di/(Mihi), where Mi is the number of individuals alive at the middle of the interval, and 
hi = ti - ti-1, t0 = 0. The number of individuals alive at the beginning of the interval may be estimated by 
Pi = Mi + (1 - ai)di where ai is the probability that an individual dying in the interval dies prior to the interval 
midpoint. When IMTH = 1, Pi is input directly while the death rate in the interval, ri, is not needed.

The probability that an individual dies during the age interval from ti−1 to ti is given by qi = di/Pi. It is 
assumed that all individuals alive at the beginning of the last interval die during the last interval. Thus, 
qn = 1.0. The asymptotic variance of qi can be estimated by

11 Standard error of the expected life at the beginning of the interval.

12 Total number of time units lived by all of the population in the interval.

Col. Description
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When IMTH = 0, the number of individuals alive in the middle of the time interval (input in IPOP(I)) must be 
adjusted to correspond to the number of deaths observed in the interval. Routine ACTBL assumes that the 
number of deaths observed in interval hi occur over a time period equal to hi. If di is measured over a period 
ui, where ui ≠ di, then IPOP(I) must be adjusted to correspond to di by multiplication by ui/hi, i.e., the value 
Mi input into ACTBL as IPOP(I) is computed as 

Let Si denote the number of survivors at time ti from a hypothetical (IMTH = 0) or observed (IMTH = 1) popu-
lation. Then, S0 = NPOP when IMTH = 0, and S0 = IPOP(1) for IMTH = 1, and Si is given by Si = Si−1 - δi−1 
where δi = Siqi is the number of individuals who die in the i-th interval. The proportion of survivors in the 
interval is given by Vi = Si/S0 while the asymptotic variance of Vi can be estimated as follows.

The expected lifetime at the beginning of the interval is calculated as the total lifetime remaining for all survi-
vors alive at the beginning of the interval divided by the number of survivors at the beginning of the interval. 
If ei denotes this average expected lifetime, then the variance of ei can be estimated as (see Chiang 1968)

where var(en) = 0.0.

Finally, the total number of time units lived by all survivors in the time interval can be estimated as:

Example

The following example is taken from Chiang (1968). The cohort life table has thirteen equally spaced inter-
vals, so AGE(1) is set to -5.0. Similarly, the probabilities of death prior to the middle of the interval are all 
taken to be 0.5, so A(1) is set to -1.0. Since IPRINT = 1, the life table is printed by ACTBL.

      USE ACTBL_INT

      IMPLICIT   NONE

      INTEGER    IMTH, IPRINT, LDTABL, N, NPOP
      PARAMETER  (IMTH=1, IPRINT=1, N=13, NPOP=10000, LDTABL=N)
!
      INTEGER    IDTH(13), IPOP(13)
      REAL       A(1), AGE(1), TABLE(13,12)
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!
      DATA AGE/-5.0/, A/-1.0/
      DATA IPOP/270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76, &
          34, 13/
!
      CALL ACTBL (IMTH, N, NPOP, AGE, A, IPOP, IDTH, TABLE, &
                  IPRINT=IPRINT)
!
      END

Output

                              Life Table
Age Class         Age      PDHALF       Alive      Deaths  Death Rate
        1           0         0.5         270           2         NaN
        2           5         0.5         268           4         NaN
        3          10         0.5         264           3         NaN
        4          15         0.5         261           7         NaN
        5          20         0.5         254           3         NaN
        6          25         0.5         251           3         NaN
        7          30         0.5         248          16         NaN
        8          35         0.5         232          66         NaN
        9          40         0.5         166          36         NaN
       10          45         0.5         130          54         NaN
       11          50         0.5          76          42         NaN
       12          55         0.5          34          21         NaN
       13          60         0.5          13          13         NaN

Age Class        P(D)   Std(P(D))        P(S)   Std(P(S))    Lifetime
        1       0.007     0.00522       1.000     0.00000       43.19
        2       0.015     0.00741       0.993     0.00522       38.49
        3       0.011     0.00652       0.978     0.00897       34.03
        4       0.027     0.01000       0.967     0.01092       29.40
        5       0.012     0.00678       0.941     0.01437       25.14
        6       0.012     0.00686       0.930     0.01557       20.41
        7       0.065     0.01560       0.919     0.01665       15.62
        8       0.284     0.02962       0.859     0.02116       11.53
        9       0.217     0.03199       0.615     0.02962       10.12
       10       0.415     0.04322       0.481     0.03041        7.23
       11       0.553     0.05704       0.281     0.02737        5.59
       12       0.618     0.08334       0.126     0.02019        4.41
       13       1.000     0.00000       0.048     0.01303        2.50

Age Class   Std(Life)  Time Units
        1      0.6993      1345.0
        2      0.6707      1330.0
        3      0.6230      1312.5
        4      0.5940      1287.5
        5      0.5403      1262.5
        6      0.5237      1247.5
        7      0.5149      1200.0
        8      0.4982       995.0
        9      0.4602       740.0
       10      0.4328       515.0
       11      0.4361       275.0
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       12      0.4167       117.5
       13      0.0000        32.5
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Usage Notes

The routines described in this chapter all involve multidimensional scaling. Routine MSIDV performs com-
putations for the individual differences metric scaling models. The utility routines are useful for associated 
computations as well as for programming other methods of multidimensional scaling.

The following is a brief introduction to multidimensional scaling meant to acquaint the user with the pur-
poses of the routines described in this chapter. Also of interest is the table at the end of this section giving the 
notation used. A more complete description of procedures in multidimensional scaling may be found in the 
references, as well as in the algorithm sections for the routines.

Multidimensional Scaling Data Types

A “dissimilarity” is a subject’s measure of the “distance” between two objects. For example, a subject’s esti-
mate of the distance between two cities is a dissimilarity measure that may, or may not, be the actual distance 
between the cities (depending upon the subjects familiarity with the two cities). Dissimilarities usually have 
less relationship to distance. For example, the subject may estimate, on a given scale, the difference between 
two smells, two tastes, two colors, two shapes, etc. As a concrete example, the subject is asked to compare 
two wines and indicate whether they have very similar tastes (scale value 0), or very different tastes (scale 
value 10), or are somewhere in between. In this case, no objective measure of “distance” is available, yet the 
dissimilarity may be measured. In all cases, however, the larger the difference between the objects, the larger 
the dissimilarity measure.

If instead the measure increases as the objects become more similar, then a “similarity” measure rather than a 
“dissimilarity” measure is obtained. Most routines in this chapter require dissimilarities as input so that sim-
ilarities must be converted to dissimilarities before most routines in this chapter can be used. Routine MSSTN 
provides two common methods for performing these conversions.

In general, dissimilarities between all objects in a set are measured (yielding a matrix of dissimilarities), and 
the multidimensional scaling problem is to locate the objects in a Euclidean (or other) space of known dimen-
sion given the matrix of dissimilarities. The estimates of object locations should yield predicted distances 
between the objects that “closely approximate” the observed dissimilarities. In many multidimensional scal-
ing methods, “closely approximates” means that a predefined measure of the discrepancy (the “stress”) is 
minimized. The simplest stress measure is the sum of the squared differences between the observed dissimi-
larities and the distances predicted by the estimated object locations. This stress measure, as well as all other 
stress measures used in this chapter, is discussed more fully in the manual document for routine MSTRS.

Note that the predicted distances between objects may not be Euclidean distance. Indeed, in one of the more 
popular multidimensional scaling models, the individual differences model, weighted Euclidean distance is 
used. Let λ1k and λ2k, k = 1, …, d, be the location estimates of two objects (stimuli) in a d dimensional space. 
Then, the weighted Euclidean distance used in the individual difference model is given by
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Many other distance models are possible. The models used in this chapter are discussed in the manual docu-
ment for routine MSDST.

A dissimilarity is a subject’s estimate of the difference (“distance”) between two objects. From the observed 
dissimilarities, a predicted distance between the objects is obtained by estimating the location of the objects 
in a Euclidean space of given dimension. In metric scaling, the dissimilarity may be a ratio measure (in which 
case a dissimilarity of zero means that the objects are in the same location) or an interval measure (in which 
case “distance” plus a constant is observed). When an interval measure is observed, the interval constant, c, 
must also be estimated in order to relate the dissimilarity to the predicted distance. For ratio measures, c is 
not required. A couple of methods for estimating c are used by the routines in this chapter. These methods 
are explained in the routines that use them. 

In nonmetric scaling, the dissimilarity is an ordinal (rank) or categorical measure. In this case, the stress func-
tion need only assure that the predicted distances satisfy, as closely as possible, the ordinal or categorical 
relationships observed in the data. Thus, the stress should be zero if the predicted distances maintain the 
observed rankings in the dissimilarities in ordinal data. The meaning of a stress in categorical data is more 
obtuse and is discussed further below. 

In ordinal data, the stress function is computed as follows: First, the dissimilarities are transformed so that 
they correspond as closely as possible to the predicted distances, but such that the observed ordinal relation-
ships are maintained. The transformed dissimilarities are called “disparities”, and the stress function is 
computed from the disparities and the predicted distances. (In ratio and interval data, disparities may be 
taken as the dissimilarities.) Thus, if the predicted distances preserve the observed ordinal relationships, a 
stress of zero will be computed. If the predicted distances do not preserve these relationships, then new esti-
mates for the distances based upon the disparities can be computed. These can be followed by new estimates 
of the disparities. When the new estimates do not lead to a lower stress, convergence of the algorithm is 
assumed. 

In categorical data, all that is observed is a category for the “distance” between the objects, and there are no 
known relationships between the categories. In categorical data, the disparities are such that the categories 
are preserved. A score minimizing the stress is found for each category. As with ordinal data, new distances 
are computed from this score, followed by new scores for the categories, etc., with convergence occurring 
when the stress cannot be lowered further. In categorical data, a stress of zero should be relatively 
uncommon. 

The individual differences model assumes that the squared distance between stimuli i and j for subject l,

is given as
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where d is the number of dimensions (always assumed to be known), λik is the location of the i-th stimulus in 
the k-th dimension, and wlk is the weight given by subject l to the k-th dimension. Let 

denote the average of the squared distances in the i-th row of the dissimilarity matrix for the l-th subject, let

be similarly defined for the j-th column, and let

denote the average of all squared distances for the l-th subject. Then, the product moment (double centering) 
transformation is given by

The advantage of the product-moment transformations is that the “product-moment” (double centered) 
matrices Pl = (pijl) can be expressed as

Pl = Λ[diag(Wl)]ΛT

where Λ = (λik) is the configuration matrix, and where diag(Wl) is a diagonal matrix with the subject weights 
for subject l, wlk, along the diagonal. If one assumes that the dissimilarities are measured without error, then 
the dissimilarities can be used in place of the distances, and the above relationship allows one to compute 
both diag(Wl) and Λ directly from the product-moment matrices so obtained. If error is present but small, 
then very good estimates of Λ and diag(Wl) can still be obtained (see De Leeuw and Pruzansky 1978). Rou-
tine MSDBL computes the product-moment matrices while MSINI computes the above estimates for X and 
diag(Wl).

Data Structures

The data input to a multidimensional scaling routine is, conceptually, one or more dissimilarity (or similar-
ity) matrices where a dissimilarity matrix contains the dissimilarity measure between the 
i-th and j-th stimuli (objects) in position (i, j) of the matrix. In multidimensional scaling, the dissimilarity 
matrix need not be symmetric (asymmetric distances can also be modelled, see routine MSDST) but if it is, 
only elements above the diagonal need to be observed. Moreover, in the multidimensional “unfolding” mod-
els, the distances between all pairs of objects are not observed. Rather, all (or at least many) of the 
dissimilarities between one set of objects and a second set are measured. When these types of input are com-
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bined with the fact that missing values are also allowed in many multidimensional scaling routines, it is easy 
to see that data structures required in multidimensional scaling can be quite complicated. Three types of 
structures are allowed for the routines described in this chapter. These are discussed below.

Let X denote a matrix containing the input dissimilarities. The columns of X correspond to the different sub-
jects, and a subjects dissimilarity matrix is contained within the column. Thus, X is a matrix containing a set 
of dissimilarity matrices, one dissimilarity matrix within each column. For any one problem, the form (struc-
ture) of all dissimilarity matrices input in X must be consistent over all subjects. The form can vary from 
problem to problem, however. In the following, X contains only one column and the index for subject is 
ignored to simplify the notation. The three storage forms used by the routines described in this chapter are

1. Square symmetric: For this form, each column of X contains the upper triangular part of the dissimi-
larity matrix, excluding the diagonal elements (which should be zero anyway). Specifically, X(1) 
contains the (1, 2) element of the dissimilarity matrix, X(2) contains the (1, 3) element, X(3) contains the 
(2, 3) element, etc. Let q denote the number of stimuli in the matrix. All q(q - 1)/2 off-diagonal ele-
ments are stored.

2. Square asymmetric: X contains all elements of each square matrix, including the diagonal elements, 
which are not used. The dissimilarities are stored in X as if X were dimensioned q × q. The diagonal 
elements are ignored.

3. Rectangular: This corresponds to the “unfolding models” in which not all of the dissimilarities in each 
matrix are observed. In this storage mode, the row stimuli do not correspond to the column stimuli. 
Because of the form of the data, no diagonal elements are present, and the data are stored in X as if X 
were dimensioned r × s where r is the number of row stimuli and s is the number of column stimuli.

Missing values are also allowed. They are indicated in X in either of two ways: 1) The standard IMSL missing 
value indicator NaN (not a number) may be used to indicate missing values, or 2) negative elements of X are 
taken to be missing dissimilarities.

Table 14.1 gives some notation commonly used in this chapter. In general, an element of a matrix is denoted 
by the lowercase matrix name with subscripts. The notation is generally consistent, but there are some varia-
tions when variation seems appropriate.

Table 14.1 — Commonly Used Notation

Symbol Fortran Meaning

DIST Distance between objects i and j for subject l.

DISP Disparity for objects i and j for subject l.

X X The input array of dissimilarities.

D NDIM The number of dimensions in the solution.

W W The matrix of subject weights.

diag(Wl) The diagonal matrix of subject weights for subject l.

π WS The matrix of stimulus weights.

Λ CFL The configuration matrix.

αh A The intercept for strata h.

βh B The slope for strata h.
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νh WT The stratum weight for stratum h.

Nh NCOM The number nonmissing dissimilarities in stratum h.

Pl P The product-moment matrix for subject l.

ɸ STRSS The stress criterion (over all strata).

ɸl STRS The stress within stratum l.

P POWER The power to use in the stress criterion.

Q NSTIM The total number of stimuli.

η NSUB The number of matrices input.

Γ Normalized eigenvectors.

IFORM Option giving the form of the dissimilarity input.

ICNVT Option giving the method for converting to dissimilarities.

MODEL Vector giving the parameters in the distance model.

ISTRS Option giving the stress formula to use.

ITRANS Option giving the transformation to use.

IDISP The method to be used in estimating disparities.

EPS Convergence tolerance.

Table 14.1 — Commonly Used Notation

Symbol Fortran Meaning
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MSIDV

Performs individual-differences multidimensional scaling for metric data using alternating least squares.

Required Arguments
NSTIM — Number of stimuli in each similarity/dissimilarity matrix.  (Input)
X — NSUB similarity or dissimilarity matrices in symmetric storage mode.  (Input) 

Each matrix must occupy consecutive memory positions, and must be stored as a column in X. X must 
be dimensioned as
DIMENSION X(NC2,NSUB)

where NC2 = NSTIM * (NSTIM - 1)/2. Each matrix is stored without the diagonal elements by column 
as upper triangular matrices. For example, a 3 by 3 matrix would be stored with the (1, 2), (1, 3), (2, 3) 
elements as the first three elements of the first column of X.

NDIM — Number of dimensions desired in the solution.  (Input)
DIST — Vector of length NSUB * NC2, where NC2 = NSTIM * (NSTIM - 1)/2, containing the predicted dis-

tances.  (Output) 
DIST contains the distances as predicted by the estimated parameters in the model. DIST has the same 
storage mode as X and may be treated as a series of NSUB matrices in symmetric storage mode but 
without the diagonal elements.

CFL — Matrix of size NSTIM by NDIM containing the configuration of points obtained from the multidi-
mensional scaling.  (Output)

A — Vector of length NSUB containing the intercepts for each subject.  (Output)
B — Vector of length NSUB containing the slopes for each subject.  (Output)
WT — Vector of length NSUB containing the criterion function weights for each subject.  (Output)
STRS — Vector of length NSUB containing the value of the weighted optimized criterion within each sub-

ject.  (Output)
STRSS — Value of the weighted optimized criterion function (summed over subjects).  (Output)
RESID — NSUB * NC2 vector containing the observation residuals.  (Output)

Here, NC2 = NSTIM (NSTIM - 1)/2.

Optional Arguments
NSUB — Number of matrices to be used in the analysis.  (Input)

Default: NSUB = size (X,2).
ICNVT — Option for converting from similarity to dissimilarity data.  (Input)

If ICNVT = 0, the input data contains dissimilarities and no conversion is performed. If ICNVT = 1, the 
data are converted from similarity to dissimilarity data by subtracting each similarity from the largest 

more...
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similarity for the subject. If ICNVT = 2, the data are converted to dissimilarities by reciprocating each 
similarity.
Default: ICNVT = 0.

MODEL — Model option parameter.  (Input) 
MODEL = 0 means the Euclidean model is used, otherwise, the individual differences model is used.
Default: MODEL = 0.

ISTRS — Option giving the stress formula to be used.  (Input) 
Default: ISTRS = 0.
Stress formulas differ in the weighting given to each subject. The valid values of ISTRS are:

See the Description section for further discussion of the stress formula weights.
ITRANS — Option giving the transformation to be used on the observed and predicted dissimilarities 

when computing the criterion function.  (Input)
Default: ITRANS = 0.

See the Description section for further discussion of stress formula transformations.
IPRINT — Printing option.  (Input) 

Default: IPRINT = 0.

LDCFL — Leading dimension of CFL exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCFL = size (CFL,1).

W — NSUB by NDIM matrix containing the subject weights.  (Output when MODEL is not zero, not refer-
enced otherwise)
W is not used and may be a 1x1 array if MODEL = 0.

LDW — Leading dimension of W exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDW = size (W,1).

ISTRS Weighting

0 Inverse of within-subject variance of observed dissimilarities about 
the predicted distances

1 Inverse of within-subject sum of squared dissimilarities

2 Inverse of within-subject variance of dissimilarities about the sub-
ject mean

ITRANS Transformation

0 Squared distances

1 Distances (that is, no transformation is performed)

2 Log of the distances

IPRINT Action

0 No printing is performed.

1 Printing is performed, but the output is abbreviated.

2 All printing is performed.
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FORTRAN 90 Interface
Generic: CALL MSIDV (NSTIM, X, NDIM, DIST, CFL, A, B, WT, STRS, STRSS,

RESID [, …])
Specific: The specific interface names are S_MSIDV and D_MSIDV.

FORTRAN 77 Interface
Single: CALL MSIDV (NSTIM, NSUB, X, ICNVT, MODEL, ISTRS, ITRANS, NDIM, IPRINT, DIST, 

CFL, LDCFL, W, LDW, A, B, WT, STRS, STRSS, RESID)
Double: The double precision name is DMSIDV.

Description

Routine MSIDV performs multidimensional scaling analysis according to an alternating optimization algo-
rithm. Input to MSIDV consists of symmetric dissimilarity matrices measuring distances between the row and 
column objects. Optionally, similarities can be input, and these can be converted to dissimilarities by use of 
the ICNVT option. In MSIDV, the row and column objects (stimuli) must be identical. Dissimilarities in multi-
dimensional scaling are used to position the objects within a d = NDIM dimensional space, where d is 
specified by the user. Optionally, in the individual differences scaling model (MODEL ≠ 0), the weight 
assigned to each dimension for each subject may be changed.

The Input Data

The data input in X must be in a special symmetric storage form. For this storage mode, the input array X 
contains only the upper triangular part of each dissimilarity matrix and does not contain the diagonal ele-
ments (which should all be zero anyway). Storage of symmetric data in X is as follows: X(1) corresponds to 
the (1, 2) element in the first matrix (which is a measure of the distance between objects 1 and 2), X(2) corre-
sponds to the (1, 3) element, X(3) corresponds to the (2, 3) element, etc., until all t = q(q - 1)/2 off-diagonal 
elements in the first matrix are stored, where q = NSTIM. The t + 1 element in X contains the (1, 2) element in 
the second matrix, and so on.

Missing values are indicated in either of two ways: 1) The standard missing value indicator NaN (not a num-
ber), specified via routine AMACH(6) (Reference Material) may be used to indicate missing values, or 2) 
Negative elements of X may be used to indicate missing observations. In either case, missing values are esti-
mated as the mean dissimilarity for the subject and used as such when computing initial estimates, and they 
are omitted from the criterion function when optimal estimates are computed.

Routine MSIDV assumes a metric scaling model. When no transformation is specified (ITRANS = 1), then 
each datum (after transforming to dissimilarities) is a measure of distance plus a constant, αm. In this case, 
the constant (which is always called the “intercept”) is assumed to vary with subject and must first be added 
to the observed dissimilarities in order to obtain a metric. When a transformation is specified (ITRANS ≠ 1), 
the meaning of αm changes (with respect to metrics). Thus, when ITRANS = 1, the data is assumed to be 
interval (see the chapter introduction) while when ITRANS ≠ 1 ratio data is assumed. A scaling factor, the 
“slope”, is also always estimated for each subject.
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The Criterion Function

When ISTRS = 1 or 2, the criterion function in MSIDV is given as

where δijm denotes the predicted distance between objects i and j on subject m, 

denotes the corresponding dissimilarity (the observed distance), νm is the subject weight, f is one of the trans-

formations f(x) = x2, f(x) = x, or f(x) = ln(x) specified by parameter ITRANS, αm is the intercept added to the 
transformed observation within each subject, and βm is the slope for the subject. For ISTRS = 0, the criterion 
function is given as

where nm is the number of nonmissing observations on the m-th subject. Assuming fixed weights, the first 
derivatives of the criterion for ISTRS = 0 are identical to the first derivatives of the criterion when ISTRS = 1 
or 2, but with weights

ISTRS can, thus, be thought of as changing the weighting to be used in the criterion function.

The transformation f(x) specified by parameter ITRANS is used to obtain constant within-subject variance of 
the subject dissimilarities. If the variance of the log of the observed dissimilarities (about the predicted dis-
similarities) is constant within subject, then the log transformation should be used. In this case, the variance 
of a dissimilarity should be proportional to its magnitude. Alternatively, the within-subject variance may be 
constant when distances (or squared distances) are used.

The Distance Models

The distance models for δijm available in MSIDV are given by:

 The Euclidian Model
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 The individual-differences model:

where Λ denotes the configuration (CFL) so that λik is the location of the i-th stimulus in the k-th dimension, 
where d is the number of dimensions, and where wmk is the weight assigned by the m-th subject to the k-th 
dimension (W).

The Subject Weights

Weights that are inversely proportional to the estimated variance of the dissimilarities (about their predicted 
values) within each subject may be preferred because such weights lead to normal distribution theory maxi-
mum likelihood estimates (when it is assumed that the dissimilarities are independently normally 
distributed with constant residual variance). The estimated (conditional) variance used as the inverse of the 
weight νm for the m-th subject in MSIDV (when ISTRS = 0) is computed as

where the sum is over the observations for the subject, and where nm is the number of observed nonmissing 
dissimilarities for the subject. These weights are used in the first derivatives of the criterion function.

When ISTRS = 1, the within-subject average sum of squared dissimilarities are used for the weights. They 
are computed as

Finally, when ISTRS = 2, the within-subject variance of the dissimilarities is used for the weights. These are 
computed as follows

where

denotes the average of the transformed dissimilarities in the stratum.
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The Optimization Procedure

Initial estimates of all parameters are obtained through methods discussed in routine MSINI. After obtaining 
initial estimates, a modified Gauss-Newton algorithm is used to obtain estimates for the parameters that 
optimize the criterion function. The parameters are optimized sequentially as follows:

1. Optimize the configuration estimates, Λ = CFL.
2. If required, estimate the optimal subject weights, wmk = W(m, k), one subject at a time.

3. Optimize the parameters αm = A(m) and βm = B(m), one subject at a time.

4. If convergence has not been reached, continue at Step 1.

An iteration is defined to be all of the Steps 1, 2, and 3. Convergence is assumed when the maximum absolute 

change in any parameter during an iteration is less than 10−4 or if there is no change in the criterion function 
during an iteration.

The Lp Gauss-Newton Description

A modified Gauss-Newton algorithm is used in the estimation of all parameters. This algorithm, which is 
discussed in detail by Merle and Spath (1974), uses iteratively reweighted least squares on a Taylor series lin-
earization of the parameters in δijm. During each iteration, the subject weights, which may depend upon the 
parameters in the model, are assumed to be fixed.

Standardization

All models available are overparameterized so the resulting parameter estimates are not uniquely defined. 
For example, in the Euclidean model, the columns of X can be translated or “rotated” (multiplied by an 
orthonormal matrix), and the resulting stress will not be changed. To eliminate lack of uniqueness due to 
translation, model estimates for the configuration are centered in all models. No attempt at eliminating the 
rotation problem is made, but note that rotation invariance is not a problem in many of the models given. 
With more general models than the Euclidean model, other kinds of overparameterization occur. Further 
restrictions on the parameters to eliminate this overparameterization are given below by the model transfor-
mation type specified by ITRANS. In the following, wlk ∈W, where W is the matrix of subject weights. The 
restrictions to be applied by model transformation type are

1. For all models:

(a)

where q = NSTIM. i.e., center the columns of X. 
(b) If W is in the model, scale the columns of W so that

2. For f(x) = x and f(x) = x2:
(a) Set bh = 1 if the data are matrix conditional and W is in the model or if the data are uncondi-

tional. (Matrix conditional with one matrix is considered to be unconditional data.)
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(b) If W is not in the model, scale all elements in X so that

where η = NSUB is the number of matrices observed.
3. For f(x) = ln(x), substitute ah for bh (but set ah to 0 instead of 1) in all restrictions in Item 2.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2IDV/DM2IDV. The reference is:

CALL M2IDV (NSTIM, NSUB, X, ICNVT, MODEL, ISTRS, ITRANS, NDIM, IPRINT, DIST, CFL, 
LDCFL, W, LDW, A, B, WT, STRS, STRSS, RESID, WK1, WK2, WK3, WK4, WK5, WK6, WK7, IWK8, 
WK10, WK11, WK12, WK13, ID, WKDER, DWKHES, DWKGRA, WKDDP, NCOM, DISP)

The additional arguments are as follows:

WK1 — Work vector of length equal to max(NSUB, NDIM * NSTIM, ND + 1)

WK2 — Work vector of length equal to NDIM * NDIM

WK3 — Work vector of length equal to NSTIM * NSTIM

WK4 — Work vector of length equal to NSTIM * NSTIM

WK5 — Work vector of length equal to NDSS * NDSS

WK6 — Work vector of length equal to 3 * NDSS

WK7 — Work vector of length equal to 5 * NDSS

IWK8 — Integer work vector of length equal to NDSS

WK10 — Work vector of length equal to NDIM * NDIM

WK11 — Work vector of length equal to NSUB * NSUB

WK12 — Work vector of length equal to NDIM * NDIM * max(NSUB, NSTIM)

WK13 — Work vector of length equal to NSTIM * NDIM

ID — Integer work vector of length equal to 4 * NDIM + 2

WKDER — Work vector of length equal to NPAR

DWKHES — Double precision work vector of length equal to NDIM * NDIM * NSTIM * NSTIM

DWKGRA — Double precision work vector of length equal to NPAR

WKDDP — Work vector of length equal to NC2

NCOM — Work vector of length equal to NSUB

DISP — Work vector of length equal to NSUB * NC2
where ND = NDIM * (NDIM + 1)/2, NC2 = NSTIM * (NSTIM - 1)/2, NDSS = max(NDIM, NSTIM, NSUB), 
and where NPAR = NDIM * NSTIM + 2 * NSUB when MODEL = 0; otherwise 
NPAR = NDIM * NSTIM + (NDIM + 2) * NSUB.

2. Informational errors
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Examples

Example 1

The following example concerns some intercity distance rankings. The data are described by Young and 
Lewyckyj (1979, page 83). The driving mileages between various cities in the United States are ranked, yield-
ing a symmetric ordinal dissimilarity matrix. These rankings are used as input to MSIDV. A Euclidean model 
is fit. The resulting two-dimensional scaling yields results closely resembling the locations of the major cites 
in the U.S. Note that MSIDV assumes continuous, not ranked, data.

The original rankings are given as:

      USE PGOPT_INT
      USE MSIDV_INT

      IMPLICIT   NONE

      INTEGER    IPRINT, ISTRS, LDCFL, LDW, LNX, NDIM, NSTIM, NSUB, IPAGE
      PARAMETER  (IPRINT=2, ISTRS=1, LDCFL=10, LNX=45, NDIM=2, &
                  NSTIM=10, NSUB=1)
!
      REAL       A(1), B(1), CFL(LDCFL,NDIM), DIST(45), RESID(LNX), &
                 STRS(1), STRSS, WT(1), X(45,1)
!
      DATA X/4, 22, 13, 8, 15, 12, 34, 31, 11, 24, 6, 21, 29, 18, 39, &
          10, 9, 27, 25, 42, 20, 35, 32, 16, 28, 2, 44, 43, 36, 30, &
          19, 33, 17, 45, 40, 7, 3, 5, 26, 23, 37, 14, 1, 41, 38/
!                                 Call PGOPT to set page length for

Type Code Description

3 1 At some point during the iterations there were too many step halvings. This 
is usually not serious.

4 1 The program cannot continue because a Hessian matrix is ill defined. A dif-
ferent model may be required. This error should only occur when there is 
serious numerical imprecision.

4 2 A dissimilarity matrix has every element missing.
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!                                 the plotting
      IPAGE =50

      CALL PGOPT (-2, IPAGE)
!
      CALL MSIDV (NSTIM, X, NDIM, DIST, CFL, A, B, WT, STRS, &
                 STRSS, RESID, ISTRS=ISTRS, IPRINT=IPRINT)
!
      END

Output

 Initial parameter estimates.
        CFL
         1       2
 1  -0.762   0.124
 2  -0.451  -0.349
 3   0.496   0.073
 4  -0.151   0.651
 5   1.237   0.392
 6  -1.114   0.588
 7  -1.077  -0.566
 8   1.461   0.034
 9   1.321  -0.614
10  -0.961  -0.333

                       Iteration history
 Iter      Source        Stress   Stress change  Maximum Change
  1     INIT   STRSS  0.3755E-02
  1     CONFIG STRSS  0.3399E-02    0.3559E-03      0.8062E-03
  1     LINES  STRSS  0.3142E-02    0.2564E-03      0.8062E-03
  2     CONFIG STRSS  0.3068E-02    0.7382E-04      0.1022E-04
  2     LINES  STRSS  0.3047E-02    0.2156E-04      0.1022E-04

                      Plot(s) of the configuration matrix (CFL)
              :::::::+::::::::::::X::+:::::::::::::::+:::::::::::::::+
              .                      I                               .
        0.600 X                      I                               +
              .                      I                               .
              .                      I                               .
              .                      I                               .
        0.450 +                      I                               +
              .                      I                        X      .
              .                      I                               .
              .                      I                               .
        0.300 +                      I                               +
              .                      I                               .
              .                      I                               .
 D            .                      I                               .
 i      0.150 +                      I                               +
 m            .       X              I                               .
 e            .                      I         X                     .
 n            .                      I                            X  .
 s      0.000 +------------------------------------------------------+
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 i            .                      I                               .
 o            .                      I                               .
 n            .                      I                               .
       -0.150 +                      I                               +
 2            .                      I                               .
              .                      I                               .
              .                      I                               .
       -0.300 +                      I                               +
              .   X         X        I                               .
              .                      I                               .
              .                      I                               .
       -0.450 +                      I                               +
              .                      I                               .
              .                      I                               .
              . X                    I                               .
       -0.600 +                      I                               +
              :::::::+:::::::::::::::+:::::::::::::::+::::::::::X::::+
                   -0.80           0.00            0.80            1.60

                                 Dimension 1

Final parameter estimates.

 NCOM
   45

        CFL
         1       2
  1  -0.738   0.095
  2  -0.447  -0.337
  3   0.497   0.077
  4  -0.153   0.661
  5   1.237   0.399
  6  -1.132   0.609
  7  -1.074  -0.571
  8   1.445   0.035
  9   1.325  -0.624
 10  -0.960  -0.343

     A
 -0.04255

   B
 0.4019

   WT
 0.01248

  STRS
 0.003047

STRESS =     3.04681E-03

                  Residuals
 Subject  Row Stimulus  Column Stimulus Residual
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     1           2                1       -0.0436
     1           3                1        0.1230
     1           3                2       -0.1422
     1           4                1       -0.1318
     1           4                2       -.0697
     1           4                3       -0.0581
     1           5                1        0.0950
     1           5                2        0.0631
     1           5                3       -0.0456
     1           5                4        0.0639
     1           6                1       -0.0742
     1           6                2        0.1268
     1           6                3        0.0681
     1           6                4        0.1212
     1           6                5       -0.0495
     1           7                1       -0.0376
     1           7                2       -0.0216
     1           7                3       -0.0736
     1           7                4       -0.0119
     1           7                5        0.0464
     1           7                6        0.0558
     1           8                1       -0.1177
     1           8                2        0.0169
     1           8                3        0.0480
     1           8                4       -0.0173
     1           8                5       -0.0223
     1           8                6        0.0178
     1           8                7       -0.0047
     1           9                1       -0.0185
     1           9                2        0.0373
     1           9                3        0.0872
     1           9                4        0.0618
     1           9                5        0.0335
     1           9                6       -0.0913
     1           9                7        0.0202
     1           9                8       -0.0671
     1          10                1       -0.0415
     1          10                2       -0.0276
     1          10                3        0.0869
     1          10                4        0.1342
     1          10                5       -0.1565
     1          10                6       -0.0522
     1          10                7        0.0179
     1          10                8        0.0701
     1          10                9       -0.0191

                           Residual Plot

        0.160 :::::::+::::::::::::::+::::::::::::::+::::::::::::::+::::
              .                                                       .
              .                                                       .
              .           X                                           .
              .         X                                             .
        0.120 +      X   X                                            +
              .                                                       .
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              .                                                       .
              .                            X                          .
              .       X        X                                      .
        0.080 +                                                       +
              .                    X                     X            .
              .              X         X  X                           .
              .         X                                             .
              .     X                                       X         .
        0.040 +                       X                               +
 R            .      X                                                .
 e            .                                         X             .
 s            X                          X                        X   .
 i            .                                                       .
 d      0.000 +-------------------------------------------------------+
 u            .                X                               X      .
 a            .                     X            X   X                .
 l            .X X                                                    .
 s            .                                                       .
       -0.040 +XX X                                                   +
              .   X                                    X              .
              .    X X                                                .
              .  X                                                    .
              .  X    X            X                                  .
       -0.080 +                                                       +
              .                                                       X
              .                                                       .
              .                                                       .
              .                                                       .
       -0.120 +                                 X                     +
              .   X                                                   .
              .                                                       .
              .      X                                                .
              .                                                       .
       -0.160 :::::::+::::::::::::::+::::::::::::::+::X:::::::::::+::::
                     1              3              5              7

                                 Predicted Distances

Example 2

The second example involves three subjects’ assessment of the dissimilarity between rectangles that vary in 
height and width. An analysis is performed in k = 2 dimensions using the individual-differences scaling 
model. The estimated subject weights, wmk, indicate how each subject weight the dimensions. The raw data 
are given as follows:
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      USE MSIDV_INT

      IMPLICIT   NONE
      INTEGER    ICNVT, IPRINT, ISTRS, ITRANS, LDCFL, LDW, LNX, MODEL, &
                NDIM, NSTIM, NSUB
      PARAMETER  (IPRINT=1, LDCFL=9, LDW=3, LNX=108, MODEL=1, NDIM=2, &
                  NSTIM=9, NSUB=3)
!
      REAL       A(NSUB), B(NSUB), CFL(LDCFL,NDIM), DIST(LNX), &
                 RESID(LNX), STRS(NSUB), STRSS, W(LDW,NDIM), WT(NSUB), &
                 X(36,NSUB)
!
      DATA X/1.00, 1.41, 1.00, 2.24, 2.00, 1.00, 2.00, 2.24, 1.41, &
          1.00, 2.24, 2.83, 2.24, 2.00, 1.00, 1.41, 2.24, 2.00, 2.24, &
          1.41, 1.00, 1.00, 2.00, 2.24, 2.83, 2.24, 2.00, 1.00, 1.00, &
          1.41, 1.00, 1.41, 1.00, 1.41, 1.00, 1.41, 1.50, 1.68, 0.75, &
          2.12, 1.50, 0.75, 1.50, 2.12, 1.68, 1.50, 2.12, 3.35, 3.09, &
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          3.00, 1.50, 1.68, 3.09, 3.00, 3.09, 1.68, 0.75, 1.50, 3.00, &
          3.09, 3.35, 2.12, 1.50, 0.75, 0.75, 1.68, 1.50, 1.68, 0.75, &
          1.68, 1.50, 1.68, 0.50, 2.06, 2.00, 4.03, 4.00, 2.00, 4.00, &
          4.03, 2.06, 0.50, 4.03, 4.12, 2.24, 1.00, 0.50, 2.06, 2.24, &
          1.00, 2.24, 2.06, 2.00, 0.50, 1.00, 2.24, 4.12, 4.03, 4.00, &
          2.00, 2.00, 2.06, 0.50, 2.06, 2.00, 2.06, 0.50, 2.06/
!
      CALL MSIDV (NSTIM, X, NDIM, DIST, CFL, A, B, WT, STRS, &
                 STRSS, RESID, MODEL=MODEL, IPRINT=IPRINT, W=W)
!
      END

Output

                  Iteration history
Iter      Source        Stress   Stress change  Maximum Change
  1     INIT   STRSS -0.3590E+03
  1     CONFIG STRSS -0.3590E+03    0.0000E+00      0.5708E-03
  1     SUB WT STRSS -0.3590E+03    0.0000E+00      0.1581E-02
  1     LINES  STRSS -0.3590E+03    0.0000E+00      0.2727E-02
  2     CONFIG STRSS -0.3590E+03    0.0000E+00      0.1442E-06
  2     SUB WT STRSS -0.3590E+03    0.0000E+00      0.7165E-04
  2     LINES  STRSS -0.3590E+03    0.0000E+00      0.7165E-04
Final parameter estimates.

    NCOM
  1    2    3
 36   36   36

 CFL
 1       2
 1   1.225   0.000
 2   1.225  -1.225
 3   0.000  -1.225
 4  -1.225  -1.225
 5  -1.225   0.000
 6  -1.225   1.225
 7   0.000   1.225
 8   1.225   1.225
 9   0.000   0.000

         W
         1       2
 1   1.000   1.000
 2   0.342   1.372
 3   1.411   0.089

                A
         1          2          3
 -0.002773   0.001941   0.000055

            B
      1        2        3
 0.2229   0.2587   0.2963
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           WT
      1        2        3
 1000.0   1000.0   1000.0

          STRS
      1       2       3
 -119.7  -119.7  -119.7

STRESS =    -359.018
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MSDST

Computes distances in a multidimensional scaling model.

Required Arguments
CFL — NSTIM by NDIM matrix containing the stimulus configuration.  (Input)
NSUB — Number of subjects.  (Input)
DIST — Vector of length nv * NSUB, where nv = NSTIM * (NSTIM - 1)/2 if IFORM = 0, and 

nv = NSTIM * NSTIM otherwise.  (Output)
DIST may be treated as NSUB distance matrices. Storage in DIST is such that the elements of each col-
umn of a subject’s distance matrix are adjacent. Each column in the matrix is immediately followed by 
the elements in the next column. If IFORM = 0, then only the elements in each column above the diago-
nal are stored. Otherwise, all elements are stored.

Optional Arguments
NSTIM — Number of stimuli.  (Input)

Default: NSTIM = size (CFL,1).
NDIM — Number of dimensions in the model.  (Input)

Default: NDIM = size (CFL,2).
LDCFL — Leading dimension of CFL exactly as specified in the dimension statement in the calling pro-

gram.  (Input) 
Default: LDCFL = size (CFL,1).

IMOD — Vector of length 3 describing the weighting to be used.  (Input) 
Default: IMOD = 0.

If IMOD(i) is zero, then the i-th set of weights is not used. Otherwise, the weights are used. For the 
Euclidean model, set IMOD(2) = IMOD(3) = 0. For the individual differences model, IMOD(2) should not 
be zero. For the stimulus weighted individual differences model, both IMOD(2) and IMOD(3) are not 
zero.

IFORM — Form option.  (Input) 
If IFORM = 0, the computed distances are stored as the upper triangle of square matrices stored 
columnwise without the diagonal elements. Otherwise, the distances are stored as square matrices and 
include the diagonal elements. See argument DIST.
Default: IFORM = 0.

IMOD Weight

1 Not used. Reserved for other scaling subroutines.

2 Subject weights (in W).

3 Stimulus weights (in WS).
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ITRANS — Transformation option.  (Input) 
ITRANS determines the output returned in DIST.
Default: ITRANS = 0.

W — NSUB by NDIM matrix of individual weights.  (Input) 
If IMOD(2) is zero, then W is not referenced and can be a 1 ×  1 array.
Default: W is a 1x1 array and not used.

LDW — Leading dimension of W exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDW =size(W,1).

WS — NSTIM by NDIM matrix of stimulus weights.  (Input) 
If IMOD(3) is zero, then W is not referenced and can be a 1 ×  1 array.
Default: WS is a 1x1 array and not used.

LDWS — Leading dimension of WS exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDWS =size(WS,1)

FORTRAN 90 Interface
Generic: CALL MSDST (CFL, NSUB, DIST [, …])
Specific: The specific interface names are S_MSDST and D_MSDST.

FORTRAN 77 Interface
Single: CALL MSDST (NSTIM, NDIM, CFL, LDCFL, NSUB, IMOD, IFORM, ITRANS, W, LDW, WS, LDWS, 

DIST)
Double: The double precision name is DMSDST.

Description

Routine MSDST computes squared distances, distances, or log distances for various metrics in multidimen-
sional scaling. The “distances” are computed and stored as either square matrices or as upper triangular 
symmetric matrices stored columnwise without the diagonal. In both cases, the distances are output in a vec-
tor of the required length. The terminology and metrics used here are the same as those used in the ALSCAL 
program of Takane, Young, De Leeuw (1977).

Suppose that there are q stimuli, m subjects, and d dimensions. Let λik denote the location of the i-th stimulus 
in the k-th dimension. If wik denotes the weight of the i-th subject on the k-th dimension (matrix W) and piik 
denotes the weight for the i-th stimulus on the k-th dimension (matrix WS), then the distance models com-
puted are the same as the distance models in MSIDV. They are given by:

ITRANS Output in DIST

0 Squared distances

1 Distances

2 Log of the distances
MSDST         Chapter 14: Multidimensional Scaling      1257



Euclidean Model

Individual Differences Model

Stimulus-Weighted Model

Stimulus-Weighted Individual Differences Model

where δijm is the distance between the i-th and j-th stimuli on the m-th subject.

Example

The following small example illustrates the distance computations in symmetric matrices. The data are 
fictional.

      USE MSDST_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IFORM, ITRANS, LDCFL, LDW, LDWS, NDIM, NSTIM, NSUB
      PARAMETER  (LDCFL=4, LDW=2, LDWS=4, NDIM=2, NSTIM=4, NSUB=2)
!
      INTEGER    IMOD(3), NOUT
      REAL       CFL(NSTIM,NDIM), DIST(12), W(NSUB,NDIM), WS(1,1)
!
      DATA IMOD/0, 1, 0/
!
      DATA CFL/1.0, -1.0, 1.0, -1.0, &
              1.0, 1.0, -1.0, -1.0/
!
      DATA W/1.0, 2.0, 1.0, 2.0/
!
      CALL MSDST (CFL, NSUB, DIST, IMOD=IMOD, W=W)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) DIST
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      END

Output

4.00000    4.00000    8.00000    8.00000    4.00000    4.00000    8.00000
8.00000    16.0000    16.0000    8.00000    8.00000
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MSSTN

Transforms dissimilarity/similarity matrices and replace missing values by estimates to obtain standardized 
dissimilarity matrices.

Required Arguments
NROW — Number of row stimuli in each dissimilarity/similarity matrix.  (Input)
NCOL — Number of column stimuli in each dissimilarity/similarity matrix.  (Input) 

If IFORM = 0 or 1, NCOL must equal NROW, and the stimuli in the rows and columns must correspond to 
one another.

IFORM — Storage option indicating the storage mode for the input data in each column of X.  (Input) 
Array X contains NSUB columns, and each column of X contains a dissimilarity/similarity matrix 
stored as specified by option IFORM.

X — NSUB similarity or dissimilarity matrices in storage mode as determined by IFORM.  (Input) 
X must be dimensioned as:
DIMENSION X (LDX,NSUB)

where LDX ≥ NROW * NCOL in full storage mode and LDX ≥ NROW * (NROW -  1)/2 in symmetric stor-
age mode. See argument IFORM for the method of storage used for each storage mode. Negative 
elements of X, or elements equal to NaN (“not a number”) are presumed to be missing values and will 
be estimated as an appropriate average in MSSTN.

ICNVT — Option for converting from similarity to dissimilarity matrices.  (Input)

IFORM Data Storage Mode

0 Symmetric storage mode without the diagonal elements. (Upper triangular matrix 
stored columnwise.) In this storage mode, consecutive elements of each column of X 
contain the (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), …, (NROW - 1, NROW) elements of the 
corresponding dissimilarity/similarity matrix.

1 Square matrix in full storage mode. Consecutive elements of each column of X con-
tain the (1, 1), (2, 1), (3, 1), …, (NROW, 1), (1, 2), (2, 2), …, (NROW, NROW) elements of the 
corresponding dissimilarity/similarity matrix.

2 Rectangular matrix in full storage mode. In this storage mode, the row and column 
stimuli input in X do not correspond to each other. Let m = NROW. Consecutive ele-
ments of each column of X contain the (1, m + 1), (2, m + 1), …, (NROW, m + 1), 
(1, m + 2), …, (NROW, m + 2), …, (NROW, m + NCOL) elements of the corresponding dis-
similarity/similarity matrix.
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ISTRAT — Option giving the level of stratification to be used.  (Input) 
If ISTRAT = 1, each dissimilarity/similarity matrix in X is considered to be in a different stratum. The 
data are said to be matrix conditional. If ISTRAT = 2, each column of each dissimilarity matrix is con-
sidered to be in a different stratum. (Thus, each column of array X contains NCOL strata.) For ISTRAT 
to be 2, IFORM must be 1 or 2. The data are said to be column conditional. If ISTRAT = 3, all of the dis-
similarity/similarity matrices in X are considered to be in the same stratum. The data are said to be 
unconditional.

NCOM — Vector containing the number of nonmissing observations in each stratum.  (Output) 
The diagonal elements of each dissimilarity/similarity matrix are not counted.

XOUT — Vector of length NV * NSUB containing the standardized dissimilarity matrices where 
NV = NROW * (NROW -  1)/2 if IFORM = 0 and NV = NSTIM * NSTIM otherwise.  (Output) 
The value of NSTIM is as described in parameter NCOM. XOUT contains the standardized dissimilarity 
matrices in the same storage mode as X if IFORM = 0 or 1 and stored as square matrices when 
IFORM = 2. Missing values are replaced by an appropriate average dissimilarity and changed in sign. 
Scaling is performed as requested.

Optional Arguments
NSUB — Number of dissimilarity/similarity matrices.  (Input)

Default: NSUB = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

ISCALE — Scaling option.  (Input) 
Default: ISCALE = 1.

ICNVT Conversion

0 No conversion performed.

1 Subtracting each similarity from the largest similarity in the strata 
(see ISTRAT).

2 Take the reciprocal of each similarity (elements of X equal to zero are 
assumed to be missing).

ISTRAT Length of NCOM

1 NSUB

2 NSUB * NSTIM, where NSTIM = NROW when IFORM = 0 or 1, and 
NSTIM = NROW + NCOL when IFORM = 2

3 1
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FORTRAN 90 Interface
Generic: CALL MSSTN (NROW, NCOL, IFORM, X, ICNVT, ISTRAT, NCOM, XOUT [, …])
Specific: The specific interface names are S_MSSTN and D_MSSTN.

FORTRAN 77 Interface
Single: CALL MSSTN (NROW, NCOL, NSUB, IFORM, X, LDX, ICNVT, ISTRAT, ISCALE, NCOM, XOUT)
Double: The double precision name is DMSSTN.

Description

Routine MSSTN standardizes dissimilarity/similarity data to be usable by other routines in the multidimen-
sional scaling chapter. Routine MSSTN converts similarity to dissimilarity data, estimates missing values 
within specified strata (“conditionality groups”), scales the data, computes the number of nonmissing data 
elements within each stratum, and stores the data in a standard form.

The computations proceed as follows:

1. Routine MSSTN begins by expanding rectangular or symmetric storage-form data into square storage 
mode (the form when IFORM = 1).

2. Missing values are replaced by the average nonmissing value within the stratum, or when there is 
only one stratum, the average within each matrix is used. If all elements in a stratum are missing and 
the stratum is a column of the dissimilarity/similarity matrix, then the average of the nonmissing ele-
ments in the matrix is used as the missing value estimate. (Missing values are estimated primarily for 
use in routines computing estimates via “double-centering”, routines MSINIand MSDBL.) Missing val-
ues are denoted in the output by changing the signs of the estimated missing elements to be negative.

3. The data are converted to dissimilarity data from similarity data according to the method specified by 
the parameter ICNVT.

4. The data are scaled according to the method specified by the ISCALE parameter.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2STN/DM2STN. The reference is:

CALL M2STN (NROW, NCOL, IFORM, NSUB, X, LDX, ICNVT, ISTRAT, ISCALE, NCOM, XOUT, NSTIM, 
XX, XMIS)

The additional arguments are as follows:

NSTIM — Integer scalar. NSTIM = NROW when IFORM = 0 or 1, and NSTIM = NROW + NCOL when 
IFORM = 2.

XX — Work vector of length NSTIM * NSTIM.

ISCALE Scaling

0 No scaling is performed.

1 The data in each stratum are scaled such that the sum of the 
squared dissimilarities equals the number of elements in the 
stratum.
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XMIS — Work vector of length NSTIM * NSTIM.
2. Informational errors

Example

The following example illustrates the use of MSSTN on similarity data that are converted to dissimilarity data 
with the ICNVT = 1 option. Standardization within each matrix is used. The input data is such that 
IFORM = 0. Since ICNVT = 1 and all elements of the input data are nonnegative, no missing values are esti-
mated. The input data is given by the following two similarity matrices:

      USE MSSTN_INT
      USE WRIRN_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    ICNVT, IFORM, ISTRAT, LDX, NCOL, NROW, NSUB
      PARAMETER  (ICNVT=1, IFORM=0, ISTRAT=1, LDX=10, NCOL=5, &
                  NROW=5, NSUB=2)
!
      INTEGER    I, J, K, N, NCOM(NSUB), NOUT
      REAL       X(LDX,NSUB), XOUT(NROW*(NROW-1))
!
      DATA X/4.0, 0.0, 1.0, 3.0, 1.0, 0.0, 1.0, 3.0, 2.0, 4.0, 1.0, &
          2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 0.0, 3.0, 4.0/
!
      CALL MSSTN (NROW, NCOL, IFORM, X, ICNVT, ISTRAT, &
                  NCOM, XOUT)
!
      CALL WRIRN ('NCOM', NCOM, 1, NSUB, 1)
      CALL UMACH (2, NOUT)
!
      N = 1
      DO 20  I=1, 2
         WRITE (NOUT,99998) I
         DO 10  J=1, 4
            WRITE (NOUT,99999) (XOUT(K),K=N,N+J-1)
            N = N + J
   10    CONTINUE
   20 CONTINUE
!

Type Code Description

3 1 At least one column in column conditional data has all elements missing.

4 2 A dissimilarity matrix has every element missing.
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99998 FORMAT (///' Output matrix (in XOUT)', I2)
99999 FORMAT (1X, 4F8.3)
!
      END

Output

NCOM
 1    2
10   10

Output matrix (in XOUT) 1
 0.000
 1.569   1.177
 0.392   1.177   1.569
 1.177   0.392   0.784   0.000

Output matrix (in XOUT) 2
 1.205
 0.803   1.205
 0.402   0.803   1.205
 1.205   1.606   0.402   0.000
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MSDBL

Obtains normalized product-moment (double centered) matrices from dissimilarity matrices.

Required Arguments
NSTIM — Number of stimuli in each dissimilarity matrix.  (Input)
IFORM — Storage option for the data in each dissimilarity matrix.  (Input) Each column of X contains one 

of the NSUB dissimilarity matrices in the storage mode specified by IFORM.

X — NV by NSUB matrix containing the NSUB dissimilarity matrices, where NV = NSTIM * (NSTIM -  1)/2 if 
IFORM = 0, and NV = NSTIM * NSTIM if IFORM = 1.  (Input)
Missing values (NaN, “not a number”) are not allowed in X, but the position of a missing element may 
be indicated as a negative dissimilarity. Since MSDBL uses the absolute value of each element in X in 
the estimation procedure, the signs of elements in X have no effect. See Comments.

DISP — NSTIM by NSTIM by NSUB array containing the NSUB dissimilarity matrices in full storage mode.  
(Output)
In DISP, missing value estimates are positive, and all elements represent the square of distances.

P — NSTIM by NSTIM by NSUB array containing the standardized product-moment matrices in full stor-
age mode.  (Output)
P contains NSUB matrices, each of size NSTIM by NSTIM. If DISP is not needed, DISP and P can 
occupy the same storage locations.

DS — NSTIM by NSTIM array containing the sum of the NSUB matrices in P.  (Output)

Optional Arguments
NSUB — Number of dissimilarity matrices.  (Input)

Default: NSUB = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

IFORM Data Storage Mode

0 Symmetric storage mode without the diagonal elements. (Upper triangular 
matrix stored columnwise.) In this storage mode, consecutive elements of 
each column of X contain the (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), …, 
(NSTIM - 1, NSTIM) elements of the corresponding dissimilarity matrix.

1 Square matrix in full storage mode. Consecutive elements of each column of 
X contain the (1, 1), (2, 1), (3, 1), …, (NROW, 1), (1, 2), (2, 2), …, (NSTIM, NSTIM) 
elements of the corresponding dissimilarity matrix.
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ISCALE — Scaling option.  (Input)
Default: ISCALE = 1.

Scaling is such that the Euclidean norm of the vector of scaled data is equal to the number of elements 
in vector.

LDDISP — Leading and second dimension of DISP exactly as specified in the dimension statement in the 
calling program.  (Input)
Default: LDDISP = size (DISP,1).

LDP — Leading and second dimension of P exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDP = size (P,1).

LDDS — Leading dimension of DS exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDDS = size (DS,1).

FORTRAN 90 Interface
Generic: CALL MSDBL (NSTIM, IFORM, X, DISP, P, DS [, …])
Specific: The specific interface names are S_MSDBL and D_MSDBL.

FORTRAN 77 Interface
Single: CALL MSDBL (NSTIM, NSUB, IFORM, X, LDX, ISCALE, DISP, LDDISP, P, LDP, DS, LDDS)
Double: The double precision name is DMSDBL.

Description

Routine MSDBL computes product-moment (double-centered) matrices from input dissimilarity matrices. 
The product-moment matrices output from MSDBL may be scaled either within each matrix, over all matrices 
input, or not at all.

The interest in product-moment matrices can be explained as follows: Let Λ denote a configuration of points 
in an d-dimensional Euclidean space with center at the origin. When the data is measured without error, the 

matrix P = ΛΛT can also be written as the “double-centered” matrix (defined below) obtained from the matrix 
of squares of distances between the rows of 

ISCALE Type of Scaling

0 No scaling

1 Scaling within each matrix

2 Scaling over all matrices
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These distances are input, approximately, in the dissimilarities. Thus, an estimate for Λ can be obtained, 
approximately, by computing the double-centered matrix P from the squared dissimilarities and then com-

puting Λ from the scaled eigenvectors of P (such that P = ΛΛT).

The computation in MSDBL proceeds as follows:

1. Each input dissimilarity matrix is transformed into a square symmetric matrix of distances. Asymmet-
ric matrices are made symmetric by averaging the matrix of dissimilarities with its transpose.

2. Estimates for the square of the distances,

are computed as the square of the estimated distances.
3. Let

denote the average squared distance in a matrix m of squared distances, let

denote the average of the i-th row of estimated squared distances in matrix m and let

denote the average of the j-th column. The m-th product-moment matrix is computed from the m-th 
estimated squared distance matrix as

The resulting matrix is said to be double-centered.
4. If the elements of Pm are to be scaled within matrix m, then the elements of Pm are divided by

where q = NSTIM so that q2 is the total number of elements in the matrix. If the elements of P are to be 
scaled over all matrices, then the elements of each matrix are divided by 

where s = NSUB.
5. The matrix DS is computed as the sum over all subjects of the product-moment matrices, Pm.
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Comments
Routine MSSTN may be used to obtain the matrix X with missing values estimated and changed in sign so 
that all estimates of missing values are negative. Routine MSSTN will also convert similarities to dissimilar-
ities. Unless a ratio distance measure is observed, the user will usually call MSSTN prior to calling MSDBL.

Example

The following example illustrates the use of MSDBL in computing product-moment matrices for two input 
dissimilarity matrices. The input matrices are given as:

      USE MSDBL_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    IFORM, LDDISP, LDDS, LDP, LDX, NSTIM, NSUB
      PARAMETER  (IFORM=0, LDDISP=5, LDDS=5, LDP=5, LDX=10, &
                  NSTIM=5, NSUB=2)
!
      REAL       DISP(LDDISP,LDDISP,NSUB), DS(LDDS,NSTIM), &
                 P(LDP,LDP,NSUB), X(LDX,NSUB)
!
      DATA X/4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0, 1.0, &
          2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 4.0/
!
      CALL MSDBL (NSTIM, IFORM, X, DISP, P, DS)
!
      CALL WRRRN ('The first matrix in DISP', DISP(1:,1:,1))
      CALL WRRRN ('The second matrix in DISP', DISP(1:,1:,2))
      CALL WRRRN ('The first matrix in P', P(1:,1:,1))
      CALL WRRRN ('The second matrix in P', P(1:,1:,2))
      CALL WRRRN ('DS', DS)
!
      END

Output

        The first matrix in DISP
        1       2       3       4       5
1    0.00   16.00    1.00    9.00    1.00
2   16.00    0.00    1.00    1.00    9.00
3    1.00    1.00    0.00    4.00    4.00
4    9.00    1.00    4.00    0.00   16.00
5    1.00    9.00    4.00   16.00    0.00
        The second matrix in DISP
        1       2       3       4       5
MSDBL         Chapter 14: Multidimensional Scaling      1268



1    0.00    1.00    4.00    9.00    1.00
2    1.00    0.00    1.00    4.00    4.00
3    4.00    1.00    0.00    1.00    9.00
4    9.00    4.00    1.00    0.00   16.00
5    1.00    4.00    9.00   16.00    0.00
        The first matrix in P
        1       2       3       4       5
1   1.110  -1.931   0.274  -0.487   1.034
2  -1.931   1.110   0.274   1.034  -0.487
3   0.274   0.274  -0.182  -0.182  -0.182
4  -0.487   1.034  -0.182   1.338  -1.703
5   1.034  -0.487  -0.182  -1.703   1.338
        The second matrix in P
        1       2       3       4       5
1   0.500   0.000  -0.500  -1.000   1.000
2   0.000   0.000   0.000   0.000   0.000
3  -0.500   0.000   0.500   1.000  -1.000
4  -1.000   0.000   1.000   2.000  -2.000
5   1.000   0.000  -1.000  -2.000   2.000
                   DS
        1       2       3       4       5
1   0.805  -0.966  -0.113  -0.743   1.017
2  -0.966   0.555   0.137   0.517  -0.243
3  -0.113   0.137   0.159   0.409  -0.591
4  -0.743   0.517   0.409   1.669  -1.852
5   1.017  -0.243  -0.591  -1.852   1.669
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MSINI

Computes initial estimates in multidimensional scaling models.

Required Arguments
NSTIM — Number of stimuli in each dissimilarity matrix.  (Input)
IFORM — Storage option for the data in each dissimilarity matrix.  (Input)

Each column of X contains one of the NSUB dissimilarity matrices in the storage mode specified by 
IFORM.

X — NV by NSUB matrix containing the NSUB dissimilarity matrices, where NV = NSTIM * (NSTIM - 1)/2 if 
IFORM = 0, and NV = NSTIM * NSTIM if IFORM = 1.  (Input)
If IFORM = 0, then the input data is assumed to be symmetric, and the elements below and on the diag-
onal are not input. If IFORM = 1, all elements of each column of X are input, and the data for the 
column need not form a symmetric matrix. Missing values (NaN, “not a number”) are not allowed in 
X, but the position of a missing element may be indicated as a negative dissimilarity. Since MSINI uses 
the absolute value of each element in X as the dissimilarity to be used in the estimation procedure, the 
sign of an element in X has no effect. See Comment 3.

IMOD — Vector of length 3 giving the model parameters to be estimated.  (Input)
IMOD also gives the method of initialization to be used for each set of parameters. Each element of 
IMOD corresponds to a different parameter matrix. The correspondence is given as:

more...

IFORM Data Storage Mode

0 Symmetric storage mode without the diagonal elements. (Upper triangular matrix 
stored columnwise.) Consecutive elements of each column of X contain the (1, 2), (1, 3), 
(2, 3), (1, 4), (2, 4), (3, 4), …, (NSTIM - 1, NSTIM) elements of the dissimilarity matrix.

1 Square matrix in full storage mode. Consecutive elements of each column of X contain 
the (1, 1), (2, 1), (3, 1), …, (NSTIM, 1), (1, 2), (2, 2), …, (NSTIM, NSTIM) elements of the dis-
similarity matrix.

Element Parameter Matrix

1 CFL–The configuration

2 W–The subject weights

3 WS–The stimulus weights
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The value used for each element of IMOD tells how the parameter matrix is to be initialized.

IMOD(1) must be nonzero. IFORM must not be 0 if IMOD(3) is not zero. If IMOD(2) or IMOD(3) is 1, 
IMOD(1) must be 1. If IMOD(3) is 1, IMOD(2) must not be 2 or 3.

CFL — NSTIM by NDIM matrix containing the estimated stimulus coordinates.  (Input/Output, if 
IMOD(1) = 1 or 2; Output, otherwise)

W — NSUB by NDIM matrix of subject weights.  (Input/Output, if IMOD(2) = 1 or 2, output, if IMOD(2) = 3, 
not referenced if IMOD(2) = 0)
W is not referenced and can be dimensioned as a 1 by 1 matrix if IMOD(2) = 0.

WS — NSTIM by NDIM matrix of stimulus weights.  (Input/Output, if IMOD(3) = 1 or 2; Output, if 
IMOD(3) = 3; not referenced if IMOD(3) = 0)
WS is not referenced and can be dimensioned as a 1 by 1 matrix if IMOD(3) = 0.

WMIN — Minimum weight in W prior to adjustment.  (Output, if IMOD(2) = 2 or 3; not referenced if 
IMOD(2) = 0 or 1)
If WMIN is negative, the weights in W are adjusted such that all weights are positive by subtracting 
WMIN from each element in W.

WSMIN — Minimum weight in WS prior to adjustment.  (Output, if IMOD(3) = 2 or 3; not referenced if 
IMOD(3) = 0 or 1)
If WSMIN is negative, the weights in WS are adjusted such that all weights are positive by subtracting 
WSMIN from each element in WS.

Optional Arguments
NSUB — Number of dissimilarity matrices to be used in the analysis.  (Input)

Default: NSUB = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

NDIM — Number of dimensions in the solution.  (Input)
Default: NDIM = size (CFL,2).

LDCFL — Leading dimension of CFL exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDCFL = size (CFL,1).

LDW — Leading dimension of W exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDW = size (W,1).

LDWS — Leading dimension of WS exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDWS = size (WS,1).

Value Effect on Parameter Matrix

0 The parameter matrix is not used.

1 The parameter matrix is input and its values are fixed. The parameter 
matrix may be standardized.

2 Initial estimates are input, but they may be changed by MSINI.

3 MSINI calculates the initial estimates.
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FORTRAN 90 Interface
Generic: CALL MSINI (NSTIM, IFORM, X, IMOD, CFL, W, WS, WMIN, WSMIN [, …])
Specific: The specific interface names are S_MSINI and D_MSINI.

FORTRAN 77 Interface
Single: CALL MSINI (NSTIM, NSUB, IFORM, X, LDX, IMOD, NDIM, CFL, LDCFL, W, LDW, WS, LDWS, 

WMIN, WSMIN)
Double: The double precision name is DMSINI.

Description

Routine MSINI computes initial estimates for the stimulus configuration (Λ = CFL), subject weights (W = W), 
and stimulus weights (Π = WS) in multidimensional scaling models. The number of dimensions in the solu-
tion must also be input. Routine MSINI requires complete (i.e., no missing values) dissimilarity matrices as 
input. Consequently, missing data must be replaced by an estimate (often an average of other dissimilarities). 
Because the absolute values of dissimilarities are used, missing dissimilarities may be denoted by changing 
their sign to be negative. Estimation of missing values, and further standardization, can be performed 
through the use of routine MSSTN.

In some cases, MSINI can use values input in parameter matrices CFL, W, or WS in order to compute initial 
estimates for other parameter matrices. For example, values input in matrix CFL may be used in the estima-
tion of initial estimates for W or WS. Because of the method of estimation, values input for some parameter 
matrices will not effect the estimate computed for other matrices. In particular, values input in W will not 
effect the estimation of CFL, and values input in WS will not effect the estimation of either CFL or W. Note that 
some combinations of input and estimated matrices are not even allowed (see the option parameter IMOD). 
Also, note that when the configuration matrix CFL is input and fixed (except for standardization), computed 
estimates for all weights W and WS are arbitrarily taken as 1.

Let

denote the squared distance between stimulus i and stimulus j for matrix (subject) l, let

denote the average of the squared distances in the i-th row for the l-th subject, let

be similarly defined, and let
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denote the average of all squared distances for the l-th subject. If each dissimilarity input in X is measured 
without error, then the dissimilarities and the distances are identical. In MSINI, the errors observed in the 
dissimilarities, 

are assumed to be small so that good estimates for the squared distances may be computed by squaring each 
dissimilarity (after first subtracting the constant obtained in Step 1 below). The computations proceed as 
follows:

1. The squared distance matrices are double-centered using the product moment transformation

The matrix formed by averaging the product moment matrices Pl (over subjects) is computed as .

2. If the configuration has been input and cannot be modified (i.e., if IMOD(1) is 1), then all weights to be 
estimated are taken as 1, and the computations continue in Step 8 below.

3. If the configuration matrix has not been input, then a preliminary estimate is obtained by first comput-

ing the eigenvectors (Γ) corresponding to the d-largest eigenvalues of .

The configuration is then estimated as ΓΔ1∕2 where Δ is the square matrix containing the eigenvalues 
along the diagonal and zeros off the diagonal.

4. If the subject weights W are to be estimated, or if they can be modified (i.e., if IMOD(2) is 2 or greater), 
then a SUMSCALE procedure (De Leeuw and Pruzansky, 1978) is used to estimate the weights 
(regardless of the values input) and to “rotate” the configuration estimates. This is done as follows:
A. The matrices

are computed, where Φ = Δ if Δ has been computed, and where the diagonal elements of Φ are 
the diagonal elements of ΛTΛ otherwise (the off-diagonal elements of Φ are always zero).

B. An orthogonal matrix Q is found such that the sum of the squared off-diagonal elements of 
QTClQ is minimized over all matrices C. (See IMSL routine KPRIN, in Chapter 9.

C. A new configuration estimate is obtained by “rotating” the current estimate, i.e., Λn = Λ.

D. The subject weights for subject l are taken as the diagonal elements of QTCl Q.

5. If the subject weights have been computed and the minimum weight in W is negative, add its absolute 
value to all elements in W to ensure that all estimated stimulus weights are nonnegative.

6. If the stimulus weights are to be estimated (i.e., if (IMOD(3) is 2 or 3), then least-squares estimates are 
used. The least-squares model is obtained by substituting predicted distance for actual distance in the 
multidimensional scaling model specified by IMOD (see the chapter introduction for a discussion of the 
models available). Least-squares fitting is then performed over the NSUB subjects.

7. If the stimulus weights have been computed and the minimum weight in WS is negative, its absolute 
value is added to all elements in WS to ensure that all estimated stimulus weights are nonnegative.
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8. The estimates are standardized (even when IMOD(i) = 2) as follows:
A. If IMOD(2) is not zero, then let

where λi is the i-th column of the configuration matrix. Let wi denote the i-th column of the sub-

ject weight matrix. Standardize Λ such that the diagonal elements of ΛTΛ are 1. Multiply wi by ri.

B. If IMOD(2) = 0 but IMOD(3) is not zero, then compute ri and standardize the configuration matrix 
as above. Multiply the i-th column of WS by ri.

C. If both IMOD(2) and IMOD(3) are nonzero, then compute 

and standardize W such that WTW is an identity matrix. Multiply the i-th column of WS by ci.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2INI/DM2INI. The reference is:

CALL M2INI (NSTIM, NSUB, IFORM, X, LDX, IMOD, NDIM, CFL, LDCFL, W, LDW, WS, LDWS, WMIN, 
WSMIN, TR, XX, DISP, DS, EWK1, EWK2, IEWK, C)

The additional arguments are as follows:

TR — Real work vector of length max(NDIM + 1, NSUB, NSTIM).

XX — Real work vector of length NSTIM * NSTIM.

DISP — Real work vector of length NSTIM * NSTIM * NSUB.

DS — Real work vector of length NSTIM * NSTIM.

EWK1 — Real work vector of length 3 * NSTIM.

EWK2 — Real work vector of length max(5 * NSTIM, 4 * NSUB).

IEWK — Integer work vector of length NSTIM.

C — Real work vector of length NDIM * NDIM * NSUB.
2. Informational error

3. Routine MSSTN may be used to obtain the matrix X with missing values estimated and changed in sign 
so that all estimates of missing values are negative. Routine MSSTN will also convert similarities to dis-
similarities. Unless a ratio distance measure is observed, the user will usually call MSSTN prior to 
calling MSINI.

Type Code Description

4 1 The sum of the product moment matrices for the data input in X has less 
than NDIM positive eigenvalues. Rerun with NDIM = number of positive 
eigenvalues or less or provide initial estimates for the configuration matrix 
CFL.
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Example

The following example illustrates the use of MSINI to obtain initial estimates for an individual differences 
model when symmetric dissimilarities matrices obtained from two subjects are input. The input matrices are 
given as:

Estimates obtained from MSINI are not optimal. Usually an optimizing multidimensional scaling routine 
will be called with the initial estimates computed in MSINI.

      USE UMACH_INT
      USE MSINI_INT
      USE WRRRN_INT 

      IMPLICIT   NONE
      INTEGER    IFORM, LDCFL, LDW, LDWS, LDX, NDIM, NSTIM, NSUB
      PARAMETER  (IFORM=0, LDCFL=5, LDW=2, LDWS=5, LDX=10, NDIM=2, &
                NSTIM=5, NSUB=2)
!
      INTEGER    IMOD(3), NOUT
      REAL       CFL(LDCFL,NDIM), W(LDW,NDIM), WMIN, WS(LDWS,NDIM), &
                WSMIN, X(LDX,NSUB)
!
      DATA X/4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0, 1.0, &
          2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 4.0/
      DATA IMOD/3, 3, 0/
!
      CALL UMACH (2, NOUT)
!
      CALL MSINI (NSTIM, IFORM, X, IMOD, CFL, W, WS, WMIN, WSMIN)
!
      CALL WRRRN ('The Configuration', CFL)
      CALL WRRRN ('Subject weights', W)
      WRITE (NOUT,99999) WMIN
!
99999 FORMAT (/, ' WMIN = ', F12.4)
!
      END

Output

The Configuration
         1        2
1   0.2279   0.6854
2  -0.0808  -0.6584
3  -0.1728  -0.0090
4  -0.6621  -0.2287
5   0.6879   0.2107
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Subject weights
        1       2
1   7.078   8.533
2   9.615   0.000
WMIN =       0.0000
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MSTRS

Computes various stress criteria in multidimensional scaling.

Required Arguments
DIST — Vector of length N containing the distances.  (Input) 

Missing values are not allowed in DIST.
DISP — Vector of length N containing the disparities.  (Input)
A — The intercept.  (Input)

If INTCEP = 0, A is not used.
B — The slope.  (Input)

If ISLOPE = 0, B is not used.
POWER — Power to use in the stress function.  (Input)

POWER must be greater than or equal to 1.
STRSS — The computed stress criterion.  (Output)
WT — The weight used in computing the stress.  (Output)

If the weight is too large, a maximum weight is used. See the Description section.

Optional Arguments
N — Number of distances and disparities.  (Input)

Default: N = size (DIST,1).
INTCEP — Intercept option parameter.  (Input)

If INTCEP = 0, the intercept is not used in the model. If INTCEP = 1, the intercept is used in the model.
Default: INTCEP = 1.

ISLOPE — Slope option parameter.  (Input)
If ISLOPE = 0, the slope B is not used. If ISLOPE = 1, the slope is used.
Default: ISLOPE = 1.

ISTRS — Stress option parameter.  (Input)
Default: ISTRS = 1.

FORTRAN 90 Interface
Generic: CALL MSTRS (DIST, DISP, A, B, POWER, STRSS, WT [, …])
Specific: The specific interface names are S_MSTRS and D_MSTRS.

ISTRS Stress Criterion Used

0 Log stress

1 Stress weighted by the inverse of the sum of the squared disparities

2 Stress weighted by the inverse of the sum of the centered squared disparities
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FORTRAN 77 Interface
Single: CALL MSTRS (N, DIST, DISP, INTCEP, A, ISLOPE, B, POWER, ISTRS, STRSS, WT)
Double: The double precision name is DMSTRS.

Description

Routine MSTRS computes the value of stress criteria commonly used in multidimensional scaling. Routine 
MSTRS allows transformed values of the disparities and distances to be input and will compute the stress on 
the transformed values. Additionally, the user can input a slope and/or an intercept to be used in the stress 
computations, and the stress can be computed using an arbitrary Lp norm as well as the squared error norm 
in which p = 2.

Let

denote a disparity, δi denote the corresponding distance, α denote the intercept, and let β denote the slope. If 
INTCEP = 0, then set α = 0. If ISLOPE = 0, then set β = 1.

Set ɛ = 0.001, and let

When ISTRS = 0, the stress is computed as

where n is the number of nonmissing disparities, and p = POWER is the power to be used. This stress formula, 
when optimized, can lead to to normal distribution theory maximum likelihood estimation. It can not be 
used in nonmetric scaling. The weight is computed as n/max(nɛ, ).

When ISTRS is 1, the stress is computed as

and the weight returned is given as 

Takane, Young, and de Leeuw (1977) recommend using this formula when the data is not column conditional 
(i.e., whenever the stress is computed over one or more dissimilarity matrices rather than over one column in 
a single matrix). When ISTRS = 2, the stress is given by
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where

is the average of the nonmissing disparities. The weight is computed as

Takane, Young, and de Leeuw (1977) recommend this stress for column conditional data.

Missing values (NaN) are not allowed in DIST while missing disparities in DISP are not used in the compu-
tations. If all disparities are missing, the stress criteria is set to 0, and the weight (WT) is set to missing (NaN).

In general, a single call to MSTRS would be made for each strata (“conditionality group”) in the data.

Example

The following example illustrates the computation of stress when the log of the distances and disparities are 
input. For this example, ISTRS is 1 and POWER is 2.

      USE MSTRS_INT
      USE UMACH_INT
      USE SDOT_INT

      IMPLICIT   NONE
      INTEGER    INTCEP, ISLOPE, ISTRS, N
      REAL       A, POWER
      PARAMETER  (A=0.0, INTCEP=0, N=10, POWER=2.0)
!
      INTEGER    I, NOUT
      REAL       ALOG, B, DISP(N), DIST(N), STRSS, WT
      INTRINSIC  ALOG
!
      DATA DIST/4.0, 1.5, 1.25, 3.0, 1.75, 2.0, 1.0, 3.5, 2.5, 3.75/
      DATA DISP/4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0/
!                                 Transform the data
      DO 10  I=1, N
         DIST(I) = ALOG(DIST(I))
         DISP(I) = ALOG(DISP(I))
   10 CONTINUE
!                                 Compute a slope
      B = SDOT(N,DISP,1,DIST,1)/SDOT(N,DIST,1,DIST,1)
!                                 Compute the stress
      CALL MSTRS (DIST, DISP, A, B, POWER, STRSS, WT, INTCEP=INTCEP)
!                                 Print results
      CALL UMACH (2, NOUT)
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      WRITE (NOUT,99999) STRSS, WT
!
99999 FORMAT (' STRSS = ', F12.4, '    WT = ', F12.4)
      END

Output

STRSS =       0.0720    WT =       0.1385
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Usage Notes

The routines described in this chapter compute estimates for smoothing parameters and estimates in models 
for estimating density and hazard functions. For density estimation, the penalized likelihood method of Scott 
(1976) may be used to obtain smooth estimates for arbitrary (smooth) densities. Alternatively, the routines 
DESKN and DNFFT obtain density estimates by the kernel method for a given window width and kernel func-
tion. Routine DNFFT uses a Gaussian kernel, while for routine DESKN, the kernel is provided by the user. 
Finally, routine DESPT finds linear or quasi-cubic interpolated estimates of a density. Tapia and Thompson 
(1978) discuss all of these methods.

For hazard estimation, the methods of Tanner and Wong (1984) are used to obtain estimates of the smoothing 
parameters in a modified likelihood. These methods are implemented in routines HAZRD and HAZEZ, the dif-
ference between the routines is in the ease of use and the options offered. For given smoothing parameters, 
the routine HAZST may be used to obtain estimates for the hazard function.
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DESPL

Performs nonparametric probability density function estimation by the penalized likelihood method.

Required Arguments
X — Vector of length NOBS containing the random sample of responses.  (Input)
NODE — Number of mesh nodes for the discrete probability density estimate.  (Input)

NODE must be an odd integer greater than 4.
BNDS — Vector of length 2 containing the upper and lower endpoints for the interval of support of the 

density.  (Input) 
The node values are taken as BNDS(1), BNDS(1) + h, …, BNDS(2), where 
h = (BNDS(2) - BNDS(1))/(NODE - 1). All observations in vector X should be in the support interval.

DENS — Vector of length NODE containing the estimated values of the discrete pdf at the NODE equally 
spaced mesh nodes.  (Input/Output, if INIT ≠ 0;  Output, otherwise) 
If INIT is not zero, then DENS(1) through DENS(NODE) contain the (positive) initial estimates on input. 
The sum of these estimates times the window width h (see BNDS) must equal 1.0, i.e., the integral of the 
density must be 1.

STAT — Vector of length 4 containing output statistics.  (Output) 
STAT(1) and STAT(2) contain the log-likelihood and the log-penalty terms, respectively. STAT(3) and 
STAT(4) contain the estimated mean and variance for the estimated density.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
INIT — Initialization option.  (Input) 

INIT = 0 means that a bootstrap procedure is used to obtain initial estimates for the density. Other-
wise, user-supplied initial estimates are contained in DENS on entry into DESPL.
Default: INIT = 0.

ALPHA — Penalty-weighting factor that controls the smoothness of the estimate.  (Input) 
For standard normal data, ALPHA = 10.0 works well. Other values that might be tried are 1.0 and 100.0. 
ALPHA must be greater than 0.0.
Default: ALPHA = 10.0.

MAXIT — Maximum number of iterations allowed in the iterative procedure.  (Input) 
MAXIT = 30 is typical.
Default: MAXIT = 30.

more...
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EPS — Convergence criterion.  (Input) 
When the Euclidean norm of the changes to DENS is less than EPS, convergence is assumed. 
EPS = 0.0001 is typical.
Default: EPS = 0.0001.

NMISS — Number of missing values in X.  (Output)

FORTRAN 90 Interface
Generic: CALL DESPL (X, NODE, BNDS, DENS, STAT [, …])
Specific: The specific interface names are S_DESPL and D_DESPL.

FORTRAN 77 Interface
Single: CALL DESPL (NOBS, X, NODE, BNDS, INIT, ALPHA, MAXIT, EPS, DENS, STAT, NMISS)
Double: The double precision name is DDESPL.

Description

Routine DESPL computes piecewise linear estimates of a one-dimensional density function for a given ran-
dom sample of observations. These estimates are discussed in detail in Scott et al. (1980), and in Tapia and 
Thompson (1978, Chapter 5). The estimator of the density function is piecewise linear over the finite interval 
(BNDS(1) to BNDS(2)), is nonnegative, and integrates to one. A penalty method is used to ensure “smooth” 
behavior of the estimator. The criterion function to be maximized is a discrete approximation to

where n = NOBS and f(t) is a density function. Let m = NODE. The discrete approximation is as follows: The 
density f is estimated at each of the equally spaced grid points tj, for j = 1, …, m, with restriction 
f(t1) = f(tm) = 0.0; the density at each data point xi is then estimated using linear interpolation. The integral of 
the second derivative of the square of f is approximated using the piecewise linear function defined by the 
estimates of f at the grid points tj.

Because ln Φ is actually maximized, the criterion can be separated into a likelihood term (returned in 
STAT(1)) and a penalty term (returned in STAT(2)). 

The parameter α (= ALPHA) determines the amount of “smoothness” in the estimate. The larger the value of 
α, the smoother the resulting estimator for f. In practice, the user should pick α as small as possible such that 
there is not excessive bumpiness in the estimator. One way of doing this is to try several values of α that dif-
fer by factors of 10. The resulting estimators can then be graphically displayed and examined for bumpiness. 
α could then be chosen from the displayed density estimates. IMSL routines can be used to produce line 
printer plots (PLOTP) of the estimated density. For a random sample from the standard normal distribution, 
α = 10.0 works well. Note that α changes with scale. If x is multiplied by a factor β, α should be multiplied 

by a factor β5. 
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The second choice to be made in using DESPL is the mesh for the estimator. The mesh interval (BNDS(1), 
BNDS(2)) should be picked as narrow as possible since a narrow mesh will speed algorithm convergence. 
Note, however, that points outside the interval (BNDS(1), BNDS(2)) are not included in the likelihood. Because 
of this fact, DESPL actually estimates a density that is conditional on the mesh interval (BNDS(1), BNDS(2)). 
The number of mesh nodes, NODE, should be as small as possible, but large enough to exhibit the “fine” 
structure of the density. One possible method for determining NODE is to use NODE = 21 initially. With 
NODE = 21, find an acceptable value for α. When an acceptable value for α has been found, increase or 
decrease NODE as required. 

STAT(3) and STAT(4) contain “exact” estimates of the mean and variance when the estimated piecewise lin-
ear density is used in the required integrals. Routine DESPT may be used to find interpolated estimates for 
the density at any point x given the NODE estimates of the density returned in DENS.

Comments
1. Workspace may be explicitly provided, if desired, by use of D2SPL/DD2SPL. The reference is:

CALL D2SPL (NOBS, X, NODE, BNDS, INIT, ALPHA, MAXIT, EPS, DENS, STAT, NMISS, HESS, 
LDHESS, ILOHI, DENEST, B, IPVT, WK2, XWK)

The additional arguments are as follows:

HESS — Work vector of length 7 * (NODE – 2).

LDHESS — Leading dimension of HESS exactly as specified in the dimension statement in the 
calling program.  (Input) 
The leading dimension must be set to 7.

ILOHI — Integer work vector of length 2 * NODE.

DENEST — Work vector of length 3 * NODE.

B — Work vector of length NODE.

IPVT — Integer work vector of length NODE - 2.

WK2 — Work vector of length NODE – 2.

XWK — Work vector of length NOBS. If X is sorted with all missing (NaN, not a number) values at 
the end, then XWK is not needed. If X is not needed, X and XWK can share the same storage 
location.

2. Informational error 

3 Routine DESPT may be used after the estimates DENS have been obtained in order to obtain an inter-
polated estimate of the density at new points. Use AMESH = BNDS in calling DESPT.

Example

An estimate for a density function of unknown form using a random sample of size 10 and 13 mesh points 
with α = 10 is estimated as follows:

      USE DESPL_INT
      USE UMACH_INT

Type Code Description

3 1 The maximum number of iterations is exceeded.
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      IMPLICIT   NONE
      INTEGER    NOBS, NODE
      PARAMETER  (NOBS=10, NODE=13)
!
      INTEGER    NOUT
      REAL       BNDS(2), DENS(NODE), STAT(4), X(NOBS)
!
      DATA BNDS/-3., 3./
      DATA X/-.9471, -.7065, -.2933, -.1169, .2217, .4425, .4919, &
          .5752, 1.1439, 1.3589/
!
      CALL DESPL (X, NODE, BNDS, DENS, STAT)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,'('' DENS = '',9F7.4, /, 9X, 4F7.4)') DENS
      WRITE (NOUT,'('' Log-likelihood term = '', F7.3, /, &
                   '' Log-penalty term    = '', F7.3, /, &
                  '' Mean                = '', F7.3, /, &
                  '' Variance            = '', F7.3)') STAT
      END

Output

DENS =  0.0000 0.0014 0.0356 0.1111 0.2132 0.3040 0.3575 0.3565 0.2947
         0.1986 0.0986 0.0288 0.0000
Log-likelihood term = -11.968
Log-penalty term    =  -1.303
Mean                =   0.217
Variance            =   1.042

The following figure shows the affect of various choices of α. For larger α, the density estimate is smoother.
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Figure 15.1 — Density Estimates Using α = 1, 10, 100
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DESKN

Performs nonparametric probability density function estimation by the kernel method.

Required Arguments
XKER — User-supplied FUNCTION to compute the kernel at any point on the real line. The form is 

XKER(Y), where:
Y — Point at which the kernel is to be evaluated.
XKER — Value of the kernel at point Y.

X — Vector of length NOBS containing the random sample of observations.  (Input)
WINDOW — Window width for the kernel function.  (Input) 

Generally, several different values of WINDOW should be tried.
XMAX — Cutoff value such that XKER(Y) = 0.0 for all ∣Y∣ greater than XMAX.  (Input) 

If XMAX exists, then the kernel function is 0.0 for all Y greater in absolute value than XMAX, and the effi-
ciency of the computations is enhanced. If no such XMAX exists or the user does not wish to make use 
of XMAX, then XMAX should be assigned any nonpositive value.

XPT — Vector of length NXPT containing the values at which a density estimate is desired.  (Input)
If XMAX is greater than zero, then XPT must be sorted from smallest to largest.

DENS — Vector of length NXPT containing the density estimates at the points specified in XPT.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
NXPT — Number of points at which a density estimate is desired.  (Input)

Default: NXPT = size (XPT,1).
NMISS — Number of missing (NaN, not a number) values in X.  (Output)

FORTRAN 90 Interface
Generic: CALL DESKN (XKER, X, WINDOW, XMAX, XPT, DENS [, …])
Specific: The specific interface names are S_DESKN and D_DESKN.

FORTRAN 77 Interface
Single: CALL DESKN (XKER, NOBS, X, WINDOW, XMAX, NXPT, XPT, DENS, NMISS)
Double: The double precision name is DDESKN.
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Description

Routine DESKN computes kernel estimates of the density function for a random sample of (scalar-valued) 
observations. The kernel estimate of the density at the point y is given by.

where

is the estimated density at y, K is the kernel function, xi denotes the i-th observation, n is the number of obser-
vations, and h is a fixed constant (called the “window width”) supplied by the user.

One is usually interested in computing the density estimates using several values of the window width h. 
Tapia and Thompson (1978), Chapter 2, give some considerations relevant to the choice of h. Some common 
kernel functions (see Tapia and Thompson 1978, page 60) are given as follows.

The computation can be made much more efficient when the kernel is nonzero over a finite range since 
observations outside this range can be ignored in the computation of the density. In this case, the array XPT is 
assumed to be sorted.

Comments
1. Informational error

Name Function

Uniform

Triangular

Biweight

Normal
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2. Routine may be used to obtain interpolated density estimates from the NXPT density estimates 
returned in DENS. Array AMESH in DESPT corresponds to array XPT in DESKN.

Example

In this example, the standard normal density function is estimated at 13 points using a random sample of 10 
points from a standard normal distribution. The biweight kernel function is used. The actual density for the 
standard normal density is also reported in the output for comparison. The random sample is generated 
using routines RNSET and RNNOR in Chapter 18, “Random Number Generation”.

      USE RNSET_INT
      USE RNNOR_INT
      USE DESKN_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS, NXPT
      REAL       C1, WINDOW, XMAX
      PARAMETER  (C1=0.3989423, NOBS=10, NXPT=13, WINDOW=2.0, XMAX=1.0)
!
      INTEGER    I, NMISS, NOUT
      REAL       DENS(NXPT), EXP, X(NOBS), XKER, XPT(NXPT)
      INTRINSIC  EXP
      EXTERNAL   XKER
!
      DATA XPT/-3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, &
          2.0, 2.5, 3.0/
!
      CALL RNSET (1234457)
      
      CALL RNNOR (X)
      CALL DESKN (XKER, X, WINDOW, XMAX, XPT, DENS, NMISS=NMISS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,'('' NMISS = '', I1)') NMISS
      WRITE (NOUT,'('' DENS Estimate = '', 10F6.4,/,8X,3F6.4)') DENS
      WRITE (NOUT,'('' DENS Exact    = '',10F6.4,/,8X,3F6.4)') &
                             (C1*EXP(-XPT(I)*XPT(I)/2.0),I=1,NXPT)
      END
      REAL FUNCTION XKER (Y)
      REAL       Y
!
      REAL       ABS
      INTRINSIC  ABS
!
      IF (ABS(Y) .LT. 1.0) THEN
         XKER = 15.0*(1.0-Y*Y)*(1.0-Y*Y)/16.0
      ELSE
         XKER = 0.0

Type Code Description

4 7 Negative kernel functions are not allowed.
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      END IF
      RETURN
      END

Output

NMISS = 0
DENS Estimate = 0.00000.01180.07900.16980.26780.34670.36870.31840.22340.1391
        0.06120.01350.0005
DENS Exact    = 0.00440.01750.05400.12950.24200.35210.39890.35210.24200.1295
        0.05400.01750.0044

Figure 15.2 — Density Estimate and Standard Normal Density
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DNFFT

Computes Gaussian kernel estimates of a univariate density via the fast Fourier transform over a fixed 
interval.

Required Arguments
X — Vector of length NOBS containing the data for which a univariate density estimate is desired.  (Input)

X is not referenced and may be dimensioned of length 1 in the calling program if IFFT = 1.
BNDS — Vector of length 2 containing the minimum and maximum values of X at which the density is to 

be estimated.  (Input) 
Observations less than BNDS(1) or greater than BNDS(2) are ignored. If either range of the hypothe-
sized density is infinite, a value equal to the smallest observation minus 3 * WINDOW is a good choice 
for BNDS(1), and a value equal to the largest observation plus 3 * WINDOW is a good choice for BNDS(2). 
Let STEP = (BNDS(2) - BNDS(1))/(NXPT - 1), and note that the density is estimated at the points 
BNDS(1) + i STEP where i = 0, 1, …, NXPT - 1. The density is assumed constant over the interval from 
BNDS(1) + i * STEP to BNDS(1) + (i + 1) * STEP.

WINDOW — Window width for the kernel function.  (Input) 
Generally, several different values for WINDOW should be tried. When several different values are tried, 
use the IFFT option.

COEF — Vector of length NXPT containing the Fourier coefficients.  (Input, if IFFT = 1; output, otherwise)
DENS — Vector of length NXPT containing the density estimates.  (Output) 

The density is estimated at the points BNDS(1) + i * STEP, i = 0, 1, …, NXPT - 1, where 
STEP = (BNDS (2) - BNDS(1))/(NXPT - 1).

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
FRQ — Vector of length NOBS containing the frequency of the corresponding element of X.  (Input) 

If FRQ(1) is - 1.0, then the vector FRQ is not used and all frequencies are taken to be one. FRQ is also not 
used if IFFT = 1. In either case, FRQ may be dimensioned of length 1 in the calling program.
Default: FRQ(1) = –1.0.

IFFT — Fourier transform option parameter.  (Input) 
If IFFT = 1, then COEF contains the Fourier coefficients on input, and the coefficients are not com-
puted. Otherwise, the coefficients are computed. This option is used when several different values for 
WINDOW are to be tried. On the first call to DNFFT, IFFT = 0 and the coefficients COEF are computed. 
On subsequent calls, these coefficients do not need to be recomputed (but only if NXPT also remains 
fixed).
Default: IFFT = 0.

more...
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NXPT — Number of equally-spaced points points at which the density is to be estimated.  (Input) 
Routine DNFFT is most efficient when NXPT is a power of 2. Little efficiency is lost if NXPT is a product 
of small primes. Because of the method of estimation, NXPT should be large, say greater than 64.
Default: NXPT = 128.

NRMISS — Number of rows of data that contain missing values in X or FRQ.  (Output) NRMISS is not ref-
erenced if IFFT = 1.

FORTRAN 90 Interface
Generic: CALL DNFFT (X, BNDS, WINDOW, COEF, DENS [, …])
Specific: The specific interface names are S_DNFFT and D_DNFFT.

FORTRAN 77 Interface
Single: CALL DNFFT (NOBS, X, FRQ, BNDS, WINDOW, IFFT, NXPT, COEF, DENS, NRMISS)
Double: The double precision name is DDNFFT.

Description

Routine DNFFT computes Gaussian kernel estimates of the density function for a random sample of (sca-
lar-valued) observations using a Gaussian kernel (normal density). The computations are comparatively fast 
because they are performed through the use of the fast Fourier transform. Routine DESKN should be used in 
place of DNFFT if a kernel other than the Gaussian kernel is to be used, if a irregular grid is desired, or if the 
approximations in DNFFT are not acceptable. Because of its speed, DNFFT will usually be preferred to DESKN.

A Gaussian kernel estimate of the density at the point y is given by:

where

is the estimated density at y, xi denotes the i-th observation, n is the number of observations, and h is a fixed 
constant called the window width supplied by the user. If density estimates for several different window sizes 
are to be computed, then DNFFT performs a fast Fourier transform on the data only during the first call 
(when IFFT is zero). On subsequent calls (with IFFT set at 1), the Fourier transform of the data need not be 
recomputed.

If the same value of NXPT is to be used with several different input vectors X, then the computations can be 
made faster by the use of D2FFT. In D2FFT, it is assumed that some constants required by the Fourier trans-
form and its inverse have already been computed via routine FFTRI (IMSL MATH/LIBRARY) in work array 
WFFTR. If D2FFT is called repeatedly with the same value of NXPT, WFTTR need only be computed once.
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Routine DNFFT is an implementation of Applied Statistics algorithm AS 176 (Silverman 1982) using IMSL rou-
tines for the fast Fourier transforms. Modification to algorithm AS 176, as discussed in Silverman (1986, 
pages 61–66), gives the details of the computational method. The basic idea is to partition the support of the 
density into NXPT equally-sized nonoverlapping intervals. The frequency of the observations within each 
interval is then computed, and the Fourier transform of the frequencies obtained. Since the kernel density 
estimate is the convolution of the frequencies with the Gaussian kernel (for given window size), the Fourier 
coefficients for the Gaussian kernel density estimates are computed as the product of the coefficients 
obtained for the frequencies, times the Fourier coefficients for the Gaussian kernel function. The discrete Fou-
rier coefficients for the Gaussian kernel may be estimated from the continuous transform. The inverse 
transform is then used to to obtain the density estimates.

Because the fast Fourier transform is used in computing

the computations are relatively fast (providing that NXPT is a product of small primes). To maintain preci-
sion, a large number of intervals, say 256, is usually recommended. Tapia and Thompson (1978), Chapter 2, 
give some considerations relevant to the choice of the window size parameter WINDOW. Generally, several 
different window sizes should be tried in order to obtain the best value for this parameter.

Comments
1. Workspace may be explicitly provided, if desired, by use of D2FFT/DD2FFT. The reference is:

CALL D2FFT (NOBS, X, FRQ, BNDS, WINDOW, IFFT, NXPT, COEF, DENS, NRMISS, WFFTR)
The additional argument is: 

WFFTR – Work vector of length 2 * NXPT + 15. See Comment 3.  (Input)
2. Informational errors

3. WFFTR is computed in DNFFT. If D2FFT is to be called, WFFTR must first be computed via the follow-
ing FORTRAN statement:

CALL FFTRI (NXPT, WFFTR)

If DD2FFT is used, call DFFTRI instead of FFTRI. WFFTR need not be recomputed between successive 
calls to D2FFT if NXPT does not change.

Example

In this example, the density function is estimated at 64 points using a random sample of 150 points from a 
standard normal distribution. The actual density for the standard normal density is also reported in the out-
put for comparison. The random sample is generated using routines RNSET and RNNOR in Chapter 18, 
“Random Number Generation”.

Type Code Description

4 1 The sum of the frequencies must be positive.

4 2 Each frequency must be nonnegative.

4 3 There are no valid observations remaining after all missing values are 
eliminated.
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      USE RNSET_INT
      USE RNNOR_INT
      USE DNFFT_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOBS, NXPT
      REAL       CONS, WINDOW
      PARAMETER  (CONS=0.39894228, NOBS=150, NXPT=64, WINDOW=0.25)
!
      INTEGER    I, NOUT
      REAL       BNDS(2), COEF(NXPT), DENS(NXPT), EXP, STEP, X(NOBS), XX
      INTRINSIC  EXP
!
      DATA BNDS/-4.0, 3.875/
!
      CALL RNSET (123457)
      CALL RNNOR (X)
!
      CALL DNFFT (X, BNDS, WINDOW, COEF, DENS, NXPT=NXPT)
! 
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99998)
99998 FORMAT ('   X  DENSITY POPULATION')
      STEP = (BNDS(2)-BNDS(1))/(NXPT-1)
      XX   = BNDS(1)
      DO 10  I=1, NXPT, 2
         WRITE (NOUT,99999) XX, DENS(I), CONS*EXP(-XX*XX/2.0)
99999    FORMAT (F6.2, 2F8.4)
         XX = XX + STEP*2.0
   10 CONTINUE
!
      END

Output

X  DENSITY POPULATION
-4.00  0.0000  0.0001
-3.75  0.0000  0.0004
-3.50  0.0000  0.0009
-3.25  0.0000  0.0020
-3.00  0.0001  0.0044
-2.75  0.0011  0.0091
-2.50  0.0089  0.0175
-2.25  0.0345  0.0317
-2.00  0.0772  0.0540
-1.75  0.1204  0.0863
-1.50  0.1573  0.1295
-1.25  0.2076  0.1826
-1.00  0.2682  0.2420
-0.75  0.2987  0.3011
-0.50  0.2976  0.3521
-0.25  0.3072  0.3867
 0.00  0.3336  0.3989
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 0.25  0.3458  0.3867
 0.50  0.3169  0.3521
 0.75  0.2834  0.3011
 1.00  0.2683  0.2420
 1.25  0.2242  0.1826
 1.50  0.1557  0.1295
 1.75  0.1182  0.0863
 2.00  0.0946  0.0540
 2.25  0.0569  0.0317
 2.50  0.0199  0.0175
 2.75  0.0033  0.0091
 3.00  0.0002  0.0044
 3.25  0.0000  0.0020
 3.50  0.0000  0.0009
 3.75  0.0000  0.0004
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DESPT

Estimates a probability density function at specified points using linear or cubic interpolation.

Required Arguments
XPT — Vector of length NODE containing the points at which an estimate of the probability density is 

desired.  (Input)
AMESH — Vector of length NORD for IOPT = 2 or 4, and of length 2 for IOPT = 1 or 3.  (Input) 

If IOPT = 2 or 4, AMESH(I) contains the abscissas corresponding to each density estimate in DENS(I). 
In this case, the abscissas must be specified in increasing order. If IOPT = 1 or 3 (i.e., for an equally 
spaced mesh), then the lower and upper ends of the mesh are specified by AMESH(1) and AMESH(2), 
respectively, with the increment between mesh points given by (AMESH(2) - AMESH(1))/(NORD - 1).

DENS — Vector of length NORD containing the density function values corresponding to each of the NORD 
abscissa values.  (Input)

DENEST — Vector of length NODE containing the density function estimates for the points in XPT.  
(Output)

Optional Arguments
NODE — Number of points at which the density is desired.  (Input)

Default: NODE = size (XPT,1).
IOPT — Interpolation option parameter.  (Input)

Default: IOPT = 1.

NORD — Number of ordinates supplied.  (Input) 
NORD must be greater than one for linear interpolation, and greater than three for cubic interpolation.
Default: NORD = size (DENS,1).

FORTRAN 90 Interface
Generic: CALL DESPT (XPT, AMESH, DENS, DENEST [, …])
Specific: The specific interface names are S_DESPT and D_DESPT.

FORTRAN 77 Interface
Single: CALL DESPT (NODE, XPT, IOPT, NORD, AMESH, DENS, DENEST)
Double: The double precision name is DDESPT.

IOPT Method of interpolation

1 Linear on equally spaced points

2 Linear with unequal spacing

3 Cubic on equally spaced points

4 Cubic with unequal spacing
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Description

Routine DESPT computes an estimate of a density function using either linear or cubic spline interpolation 
on a set {(Xi, Fi), for i = 1, …, N}, where Fi = DENS(i), N = NODE, and where the values of the the grid points Xi 
can be obtained from the vector AMESH. The value of IOPT indicates the type of interpolation (linear or cubic) 
to be performed and whether the mesh values are equally spaced. When IOPT is 1 or 3, then an equally 
spaced mesh is used with mesh values given by

AMESH (1) + i * DELTA

for i = 0, 1, …, N – 1, where

DELTA = (AMESH(2) - AMESH(1))/(NORD - 1)

IOPT = 2 or 4 yields an unequally spaced mesh with all mesh values contained in the vector AMESH.

The Akima cubic spline method of interpolation (Akima 1970) is used for the cubic interpolation.

Comments
1. Workspace may be explicitly provided, if desired, by use of D2SPT/DD2SPT . The reference is:

CALL D2SPT (NODE, XPT, IOPT, NORD, AMESH, DENS, DENEST, CF, X, BREAK)
The additional arguments are as follows:

CF — Work vector of length 4 * NORD for IOPT = 3 or 4. CF is not used for other values of IOPT 
and may be dimensioned of length 1.

X — Work vector of length NORD for IOPT = 3 or 4. X is not used for other values of IOPT and may 
be dimensioned of length 1.

BREAK — Work vector of length NORD for IOPT = 3 or 4. BREAK is not used for other values of 
IOPT and may be dimensioned of length 1.

2. Array AMESH is the same as array BNDS in DESPL when IOPT is 1 or 3, and the same as array XPT in 
DESKN when IOPT is 2 or 4.

Example

The standard normal density is to be estimated via a grid of points over which the density is provided. Grid 
points are given by (0.0, 0.5, 1.0, 1.5, 2.0) while the density is to be estimated (via linear interpolation) at the 
four points (0.25, 0.75, 1.25, 1.75). For comparison, both the exact and the estimated density values at each of 
the four points are printed.

      USE DESPT_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NODE, NORD
      PARAMETER  (NODE=4, NORD=5)
!
      INTEGER    I, NOUT
      REAL       AMESH(2), DENEST(NODE), DENS(NORD), EXP, F, H, X, X0, &
                XPT(NODE)
      INTRINSIC  EXP
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!
      DATA XPT/0.25, 0.75, 1.25, 1.75/
      DATA AMESH/0, 2/
!
      F(X) = 0.3989423*EXP(-X*X/2.0)
!                                 Get the grid values
      H  = (AMESH(2)-AMESH(1))/(NORD-1)
      X0 = AMESH(1)
      DO 10  I=1, NORD
         DENS(I) = F(X0)
         X0      = X0 + H
   10 CONTINUE
!                                 Get the density estimates
      CALL DESPT (XPT, AMESH, DENS, DENEST)
!                                 Print the results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,'(''    X       DENEST      EXACT'')')
      DO 20  I=1, NODE
         WRITE (NOUT,'(F5.2, 2F12.5)') XPT(I), DENEST(I), F(XPT(I))
   20 CONTINUE
      END

Output

   X       DENEST      EXACT
0.25     0.37550     0.38667
0.75     0.29702     0.30114
1.25     0.18574     0.18265
1.75     0.09175     0.08628
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HAZRD

Performs nonparametric hazard rate estimation using kernel functions and quasi-likelihoods.

Required Arguments
X — NOBS by m matrix containing the raw data, where m = 1 if ICEN = 0, and m = 2 otherwise.  (Input)
IRT — Column number in X of the event times.  (Input)
KMIN — Minimum number for parameter k.  (Input) 

Parameter k is the number of nearest neighbors to be used in computing the k-th nearest neighbor 
distance.

INK — Increment between successive values of parameter k.  (Input)
NK — Number of values of k to be considered.  (Input) 

HAZRD finds the optimal value of k over the grid given by: KMIN + (j - 1) * INK, for j = 1, …, NK.
ST — Vector of length NOBS containing the times of occurrence of the events, sorted from smallest to larg-

est.  (Output) 
Vector ST is obtained from the matrix X and should be used as input to routine HAZST.

JCEN — Vector of length NOBS containing the sorted censor codes.  (Output)
Censor codes are sorted corresponding to the events ST(i), with censored observations preceding tied 
failures. Vector JCEN is obtained from the censor codes in X, if present, and is used as input to routine 
HAZST.

ALPHA — Optimal estimate for the parameter α.  (Output)
BTA — Optimal estimate for the parameter β.  (Output)
K — Optimal estimate for the parameter k.  (Output)
VML — Optimum value of the criterion function.  (Output)
H — Vector of length NOBS * 5 containing constants needed to compute the k-th nearest failure distances, 

and the observation weights.  (Output) 
H is used as input to routine HAZST.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

ICEN — Censoring option.  (Input) 
If ICEN = 0, then all of the data is treated as exact data with no censoring. For ICEN > 0, column ICEN 
of X contains the censoring codes. A censoring code of 0 means an exact event (failure). A censoring 
code of 1 means that the observation was right censored at the event time.
Default: ICEN = 0.

IWTO — Weight option.  (Input) 
If IWTO = 1, then weight ln(1 + 1/(NOBS -  i + 1)) is used for the i-th smallest observation. Otherwise, 
weight 1/(NOBS - i + 1) is used.
Default: IWTO = 0.
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NGRID — Grid option.  (Input) 
If NGRID = 0, a default grid is used to locate an initial starting value for parameter BTA. For NGRID > 0, 
a user-defined grid is used. This grid is defined as BSTART + (j - 1) * GINC, for j = 1, …, NGRID, where 
BSTART, GINC, and NGRID are input.
Default: NGRID = 0.

BSTART — First value to be used in the user-defined grid.  (Input) 
Not used if NGRID = 0.

GINC — For a user-defined grid, the increment between successive grid values of BTA.  (Input) 
Not used if NGRID = 0.

IPRINT — Printing option.  (Input) 
If IPRINT = 1, the grid estimates and the optimized estimates are printed for each value of k. Other-
wise, no printing is performed.
Default: IPRINT = 0.

ISORT — Sorting option.  (Input) 
If ISORT = 1, then the event times are not automatically sorted by HAZRD. Otherwise, sorting is per-
formed with exact failure times following tied right-censored times.
Default: ISORT = 0.

NMISS — Number of missing (NaN, not a number) values in X.  (Output)

FORTRAN 90 Interface
Generic: CALL HAZRD (X, IRT, KMIN, INK, NK, ST, JCEN, ALPHA, BTA, K, VML, H [, …])
Specific: The specific interface names are S_HAZRD and D_HAZRD.

FORTRAN 77 Interface
Single: CALL HAZRD (NOBS, X, LDX, IRT, ICEN, IWTO, NGRID, BSTART, GINC, KMIN, INK, NK, 

IPRINT, ISORT, ST, JCEN, ALPHA, BTA, K, VML, H, NMISS)
Double: The double precision name is DHAZRD.

Description

Routine HAZRD is an implementation of the methods discussed by Tanner and Wong (1984) for estimating the 
hazard rate in survival or reliability data with right censoring. It uses the biweight kernel,

and a modified likelihood to obtain data-based estimates of the smoothing parameters α, β, and k needed in 
the estimation of the hazard rate. For kernel K(x), define the “smoothed” kernel Ks(x - x(j)) as follows:
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where djk is the distance to the k-th nearest failure from x(j), and x(j) is the j-th ordered observation (from 
smallest to largest). For given α and β, the hazard at point x is then

where N = NOBS, δi is the i-th observation’s censor code (1 = censored, 0 = failed), and wi is the i-th ordered 
observation’s weight, which may be chosen as either 1/(N - i + 1), or ln(1 + 1/(N - i + 1)). After the smooth-
ing parameters have been obtained, the hazard may be estimated via HAZST.

Let

The likelihood is given by

where Π denotes product. Since the likelihood leads to degenerate estimates, Tanner and Wong (1984) sug-
gest the use of a modified likelihood. The modification consists of deleting observation xi in the calculation of 
h(xi) and H(xi) when the likelihood term for xi is computed using the usual optimization techniques. α and β 
for given k can then be estimated.

Estimates for α and β are computed as follows: for given β, a closed form solution is available for α. The 
problem is thus reduced to the estimation of β. A grid search for β is first performed. Experience indicates 

that if the initial estimate of β from this grid search is greater than, say, e6, then the modified likelihood is 
degenerate because the hazard rate does not change with time. In this situation, β should be taken to be 
infinite, and an estimate of α corresponding to infinite β should be directly computed. When the estimate of 

β from the grid search is less than e6, a secant algorithm is used to optimize the modified likelihood. The 

secant algorithm iteration stops when the change in β from one iteration to the next is less than 10−5. Alterna-

tively, the iterations may cease when the value of β becomes greater than e6, at which point an infinite β with 
a degenerate likelihood is assumed.

To find the optimum value of the likelihood with respect to k, a user-specified grid of k-values is used. For 
each grid value, the modified likelihood is optimized with respect to α and β. That grid point, which leads to 
the smallest likelihood, is taken to be the optimal k.
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Comments
1. Informational Errors

2. In the optimization routines, the parameterization is changed to β* and α*, where β* = - ln(β) and 
α* = -ln(α). The default grid uses –8, –4, –3, –2.5, –2, –1.5, –1, –0.5, and 0.5 for β*. This corresponds to a 
grid in β of 2981, 54.6, 20.08, 12.18, 7.39, 4.48, 2.72, 1.64, and .61. The grid β that maximizes the modi-
fied “likelihood” is used as the starting point for the iterations.

3. If the initial estimate of β as determined from the grid or as given by the user is greater than 400 (actu-
ally e6), then infinite β is assumed, and an analytic estimate of α based upon infinite β is used. In the 
optimization, if it is determined that β must be greater than 1000, then an infinite β is assumed. Infinite 
β corresponds to a “flat” hazard rate.

Programming Notes
1. The routine HAZST may be used to estimate the hazard on a grid of points once the optimal values for 

α, β and k have been found. The user should also consider using the “easy-to-use” version of HAZRD, 
routine HAZEZ.

2. If sorting of the data is performed by HAZRD, then the sorted array will be such that all censored obser-
vations at a given time precede all failures at that time. To specify an arbitrary pattern of 
censored/failed observations at a given time point, the ISORT = 1 option must be used. In this case, it 
is assumed that the times have already been sorted from smallest to largest.

3. The smallest value of k must be greater than the largest number of tied failures since djk must be posi-
tive for all j. (Censored observations are not counted.) Similarly, the largest value of k must be less than 
the total number of failures. If the grid specified for k includes values outside the allowable range, then 
a warning error is issued; but k is still optimized over the allowable grid values.

4. The secant algorithm iterates on the transformed parameter β* = exp(- β). This assures a positive β, 
and it also seems to lead to a more desirable grid search. All results returned to the user are in the orig-
inal parameterization, however.

5. Since local minimums have been observed in the modified likelihood, it is recommended that more 
than one grid of initial values for α and β be used.

Example

The following example is taken from Tanner and Wong (1984). The data are from Stablein, Carter, and Novak 
(1981) and involve the survival times of individuals with nonresectable gastric carcinoma. Individuals 
treated with radiation and chemotherapy are used. For each value of k from 18 to 22 with increment of 2, the 
default grid search for β is performed. Using the optimal value of β in the grid, the optimal parameter esti-
mates of α and β are computed for each value of k. The final solution is the parameter estimates for the value 
of k which optimizes the modified likelihood (VML). Because the IPRINT = 1 option is in effect, HAZRD prints 
all of the results in the output.

      USE HAZRD_INT
      USE UMACH_INT
      USE WRRRN_INT

Type Code Description

4 18 All observations are missing (NaN, not a number) values.
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      USE WRIRN_INT

      IMPLICIT   NONE
      INTEGER    ICEN, INK, IPRINT, IRT, ISORT, KMIN, LDX, &
                 NK, NOBS
      PARAMETER  (ICEN=2, INK=2, IPRINT=1, IRT=1, ISORT=1, &
                  KMIN=18, LDX=45, NK=3, NOBS=45)
!
      INTEGER    JCEN(NOBS), K, NMISS, NOUT
      REAL       ALPHA, BTA, H(5*NOBS), ST(NOBS), VML, X(NOBS,2)
!
      DATA X/17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167, &
          170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315, &
          401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882, &
          892, 1031, 1033, 1306, 1335, 1366, 1452, 1472, 36*0, 9*1/
!
      CALL HAZRD (X, IRT, KMIN, INK, NK, ST, JCEN, ALPHA, BTA, &
                 K, VML, H, ICEN=ICEN, IPRINT=IPRINT, ISORT=ISORT, &
                 NMISS=NMISS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (/' NMISS = ', I4/)
      CALL WRRRN ('ST', ST, 1, NOBS, 1)
      CALL WRIRN ('JCEN', JCEN, 1, NOBS, 1)
      CALL WRRRN ('H', H, NOBS, 5, NOBS)
      END

Output

                  *** GRID SEARCH FOR K =    18 ***
           ALPHA                   BETA                   VML
           4.578322            2980.958008            -266.804504
           4.543117              54.598148            -266.619690
           4.336464              20.085537            -265.541168
           4.019334              12.182494            -264.001404
           3.542742               7.389056            -262.540100
           2.990577               4.481689            -262.511810
           2.351537               2.718282            -262.633911
           1.584173               1.648721            -262.158264
           0.966332               1.000000            -262.868408

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.695147               1.769263            -262.118530

                  *** GRID SEARCH FOR K =    20 ***
           ALPHA                   BETA                   VML
           4.053934            2980.958008            -266.525970
           4.032835              54.598148            -266.401428
           3.905046              20.085537            -265.648315
           3.687815              12.182494            -264.401672
           3.304344               7.389056            -262.665924
           2.822716               4.481689            -262.080078
           2.252759               2.718282            -262.445251
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           1.555777               1.648721            -261.772278
           0.955586               1.000000            -262.617645

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484

                  *** GRID SEARCH FOR K =    22 ***
           ALPHA                   BETA                   VML
           3.656405            2980.958008            -267.595337
           3.641593              54.598148            -267.498596
           3.550560              20.085537            -266.903870
           3.388752              12.182494            -265.859131
           3.071474               7.389056            -264.066040
           2.645036               4.481689            -263.038696
           2.137399               2.718282            -263.334717
           1.512606               1.648721            -262.639740
           0.936368               1.000000            -262.682739

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.342176               1.450016            -262.561188

              *** THE FINAL SOLUTION     (K =    20) ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484
 NMISS =    0

                                   ST
       1        2        3        4        5        6        7        8
    17.0     42.0     44.0     48.0     60.0     72.0     74.0     95.0
       9       10       11       12       13       14       15       16
   103.0    108.0    122.0    144.0    167.0    170.0    183.0    185.0
      17       18       19       20       21       22       23       24
   193.0    195.0    197.0    208.0    234.0    235.0    254.0    307.0
      25       26       27       28       29       30       31       32
   315.0    401.0    445.0    464.0    484.0    528.0    542.0    567.0
      33       34       35       36       37       38       39       40
   577.0    580.0    795.0    855.0    882.0    892.0   1031.0   1033.0
      41       42       43       44       45
  1306.0   1335.0   1366.0   1452.0   1472.0
                                     JCEN
  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1
 41  42  43  44  45
  1   1   1   1   1
                       H
          1        2        3        4        5
 1    217.0    218.0      1.0     21.0      1.0
 2    192.0    193.0      1.0     21.0      0.5
 3    190.0    191.0      1.0     21.0      0.3
 4    186.0    187.0      1.0     21.0      0.2
 5    174.0    175.0      1.0     21.0      0.2
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 6    162.0    163.0      1.0     21.0      0.2
 7    160.0    161.0      1.0     21.0      0.1
 8    139.0    140.0      1.0     21.0      0.1
 9    131.0    132.0      1.0     21.0      0.1
10    126.0    127.0      1.0     21.0      0.1
11    112.0    113.0      1.0     21.0      0.1
12    102.0    110.0      2.0     22.0      0.1
13    123.0    125.0      3.0     23.0      0.1
14    126.0    128.0      3.0     23.0      0.1
15    132.0    135.0      5.0     25.0      0.1
16    130.0    137.0      5.0     25.0      0.1
17    133.0    145.0      5.0     25.0      0.1
18    135.0    147.0      5.0     25.0      0.1
19    137.0    149.0      5.0     25.0      0.1
20    148.0    160.0      5.0     25.0      0.1
21    167.0    174.0      6.0     26.0      0.0
22    166.0    175.0      6.0     26.0      0.0
23    182.0    191.0      6.0     26.0      0.0
24    204.0    212.0      9.0     29.0      0.0
25    212.0    213.0      9.0     29.0      0.0
26    231.0    234.0     14.0     34.0      0.0
27    275.0    278.0     14.0     34.0      0.0
28    294.0    297.0     14.0     34.0      0.0
29    311.0    314.0     15.0     35.0      0.0
30    343.0    345.0     16.0     36.0      0.0
31    357.0    359.0     16.0     38.0      0.0
32    382.0    384.0     16.0     38.0      0.0
33    392.0    394.0     16.0     38.0      0.0
34    395.0    397.0     16.0     38.0      0.0
35    610.0    612.0     16.0     43.0      0.0
36    670.0    672.0     16.0     45.0      0.0
37    689.0    697.0     17.0     45.0      0.0
38    699.0    707.0     17.0     45.0      0.0
39    838.0    846.0     17.0     45.0      0.0
40    840.0    848.0     17.0     45.0      0.0
41   1113.0   1121.0     17.0     45.0      0.0
42   1142.0   1150.0     17.0     45.0      0.0
43   1173.0   1181.0     17.0     45.0      0.0
44   1259.0   1267.0     17.0     45.0      0.0
45   1279.0   1287.0     17.0     45.0      0.0
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HAZEZ

Performs nonparametric hazard rate estimation using kernel functions. Easy-to-use version of HAZRD.

Required Arguments
X — NOBS by m matrix containing the raw data, where m = 1 if ICEN = 0, and m = 2 otherwise.  (Input)
IRT — Column number in X containing the times of occurrence of the events.  (Input)
ST — Vector of length NOBS containing the times of occurrence of the events, sorted from smallest to larg-

est.  (Output) 
Vector ST is obtained from matrix X and is used as input to routine HAZST.

JCEN — Vector of length NOBS containing the sorted censor codes.  (Output) 
Censor codes are sorted corresponding to the events ST(i), with censored observations preceding tied 
failures. Vector JCEN is obtained from the censor codes in X and is used as input to routine HAZST.

ALPHA — Optimal estimate for the parameter α.  (Output)
BTA — Optimal estimate for the parameter β.  (Output)
K — Optimal estimate for the parameter k.  (Output)
VML — Optimal value of the criterion function.  (Output) 

VML is the “modified likelihood”.
H — Vector of length 5 * NOBS containing the constants needed to compute the k-th nearest failure dis-

tance and the observation weights.  (Output)
H is used as input to routine HAZST.

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

ICEN — Censoring option.  (Input) 
If ICEN = 0, then all of the data is treated as exact data with no censoring. For ICEN > 0, column ICEN 
of X contains the censoring codes. A censoring code of 0 means an exact event (failure). A censoring 
code of 1 means that the observation was right censored at the event time.
Default: ICEN = 0.

IPRINT — Printing option.  (Input) 
If IPRINT = 1, the grid estimates and the optimized estimates are printed for each value of k. Other-
wise, no printing is performed.
Default : IPRINT = 0.

NMISS — Number of missing (NaN, not a number) values in X.  (Output)

FORTRAN 90 Interface
Generic: CALL HAZEZ (X, IRT, ST, JCEN, ALPHA, BTA, K, VML, H [, …])
Specific: The specific interface names are S_HAZEZ and D_HAZEZ.
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FORTRAN 77 Interface
Single: CALL HAZEZ (NOBS, X, LDX, IRT, ICEN, IPRINT, ST, JCEN, ALPHA, BTA, K, VML, H, 

NMISS)
Double: The double precision name is DHAZEZ.

Description

Routine HAZEZ is an implementation of the methods discussed by Tanner and Wong (1984) for estimating the 
hazard rate in survival or reliability data with right censoring. It uses the biweight kernel,

and a modified likelihood to obtain data-based estimates of the smoothing parameters α, β, and k needed in 
the estimation of the hazard rate. For kernel K(x), define the “smoothed” kernel 
Ks(x – x(j)) as follows:

where djk is the distance to the k-th nearest failure from x(j), and x(j)is the j-th ordered observation (from 
smallest to largest). For given α and β, the hazard at point x is given by:

where N = NOBS, δi is the censor code (0 = failed, 1 = censored) for the i-th ordered observation, and wi is the 
weight of the i-th ordered observation (given by 1/(N – i + 1)). The hazard may be estimated via routine  after 
the smoothing parameters have been obtained

Let 

The likelihood is given by:

where Π denotes product. Since the likelihood, as specified, will lead to degenerate estimates, Tanner and 
Wong (1984) suggest the use of a modified likelihood. The modification consists of deleting the observation xi 
in the calculation of h(xi) and H(xi) when the likelihood term for xi is computed. For a given k, α and β can 
then be estimated via the usual optimization techniques. 
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Estimates for α and β are computed as follows. For a given β, a closed form solution is available for α. The 
problem is thus reduced to the estimation of β. To estimate α and β, a grid search is first performed. Experi-
ence indicates that if the initial estimate of β from this grid search is greater than exp(6), then the modified 
likelihood is degenerate because the hazard rate does not change with time. In this situation, β should be 
taken to be infinite, and an estimate of α corresponding to infinite β is computed directly. When the estimate 
of β from the grid search is less than exp(6) (approximately 400), a secant algorithm is used to optimize the 
modified likelihood. The secant algorithm is said to have converged when the change in β from one iteration 
to the next is less than 0.00001. Additionally, convergence is assumed when the value of β becomes greater 
than exp(6). This corresponds to an infinite β with a degenerate likelihood. 

A grid of k-values is used to find the optimum value of the likelihood with respect to k. The grid is deter-
mined by HAZEZ and consists of at most 10 points. The starting value in the grid is the smallest possible value 
of k. An increment of 2 is then used to obtain the remaining grid points.

For each grid value, the modified likelihood is optimized with respect to α and β. That grid point, which 
leads to the smallest likelihood, is taken to be the optimal k.

Comments
1. Informational errors 

2. The grid values in the initial grid search are given as follows: Let 
β* = – 8, – 4, – 2, – 1, – 0.5,0.5,1, and 2, and

For each value of β, VML is computed at the optimizing β. The maximizing β is used to initiate the 
iterations.

3. If the initial β* is determined from the grid search to be less than –6, then it is presumed that β is 
infinite, and an analytic estimate of α based upon infinite β is used. Infinite β corresponds to a flat haz-
ard rate.

Programming Notes
1. Routine HAZST may be used to estimate the hazard on a grid of points once the optimal values for α, β 

and k have been found. (The user should also consider using routine HAZRD, which allows for more 
options than HAZEZ.)

2. Routine HAZEZ assumes that censored observations precede failed observations at tied failure/censor-
ing times.

3. The secant algorithm iterates on the transformed parameter β* = exp(–β). This assures a positive β, 
and it also seems to lead to a more desirable grid search. All results returned to the user are in the orig-
inal parameterization.

Type Code Description

4 6 All observations are missing (NaN, not a number) values.

4 7 There are not enough failing observations in X to continue.
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Example

The following example is illustrated in Tanner and Wong (1984), and the data are taken from Stablein, Carter, 
and Novak (1981). It involves the survival times of individuals with nonresectable gastric carcinoma. Only 
those individuals treated with radiation and chemotherapy are used.

      USE HAZEZ_INT
      USE UMACH_INT
      USE WRRRN_INT
      USE WRIRN_INT

      IMPLICIT   NONE
      INTEGER    ICEN, IPRINT, IRT, LDX, NOBS
      PARAMETER  (ICEN=2, IPRINT=1, IRT=1, LDX=45, NOBS=45)
!
      INTEGER    JCEN(NOBS), K, NMISS, NOUT
      REAL       ALPHA, BTA, H(5*NOBS), ST(NOBS), VML, X(NOBS,2)
!
      DATA X/17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167, &
          170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315, &
          401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882, &
          892, 1031, 1033, 1306, 1335, 1366, 1452, 1472, 36*0, 9*1/
!
      CALL HAZEZ (X, IRT, ST, JCEN, ALPHA, BTA, K, VML, H, ICEN=ICEN, &
                 IPRINT=IPRINT, NMISS=NMISS)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (/' NMISS = ', I4/)
      CALL WRRRN ('ST', ST, 1, NOBS, 1)
      CALL WRIRN ('JCEN', JCEN, 1, NOBS, 1)
      CALL WRRRN ('H', H, NOBS, 5, NOBS)
      END

Output

                  *** GRID SEARCH FOR K =     2 ***
           ALPHA                   BETA                   VML
          65.157967            2980.958008            -266.543945
          32.434208              54.598148            -262.551147
          17.100269              20.085537            -263.100769
          11.402525              12.182494            -264.410187
           7.263529               7.389056            -267.502014
           4.452315               4.481689            -270.548523
           2.689497               2.718282            -335.407288
           1.633702               1.648721            -338.566162
           0.995799               1.000000            -519.939514

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
          32.219337              53.968315            -262.550781

                  *** GRID SEARCH FOR K =     4 ***
           ALPHA                   BETA                   VML
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          25.596716            2980.958008            -266.471558
          20.476425              54.598148            -262.893860
          13.995192              20.085537            -262.792755
          10.109113              12.182494            -262.573212
           6.883837               7.389056            -263.030121
           4.407142               4.481689            -265.238647
           2.690131               2.718282            -265.606293
           1.633339               1.648721            -266.822693
           0.993371               1.000000            -271.831390

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           8.530729               9.683726            -262.545593

                  *** GRID SEARCH FOR K =     6 ***
           ALPHA                   BETA                   VML
          16.828691            2980.958008            -266.729248
          14.840095              54.598148            -264.019409
          11.215133              20.085537            -262.844360
           9.013870              12.182494            -263.663391
           6.557755               7.389056            -263.283752
           4.330785               4.481689            -263.732697
           2.691744               2.718282            -264.613800
           1.633932               1.648721            -265.381866
           0.990891               1.000000            -266.242767

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
          12.553377              28.178671            -262.529877

                  *** GRID SEARCH FOR K =     8 ***
           ALPHA                   BETA                   VML
          11.377748            2980.958008            -266.746185
          10.773529              54.598148            -265.469299
           8.766835              20.085537            -262.476807
           7.427887              12.182494            -263.109009
           5.916299               7.389056            -264.492432
           4.184323               4.481689            -264.289886
           2.656351               2.718282            -264.807617
           1.623750               1.648721            -265.270691
           0.989442               1.000000            -264.738403

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           8.522110              18.281288            -262.438568

                  *** GRID SEARCH FOR K =    10 ***
           ALPHA                   BETA                   VML
           8.689023            2980.958008            -267.026093
           8.412854              54.598148            -266.250366
           7.196551              20.085537            -263.192688
           6.207793              12.182494            -262.648376
           5.143391               7.389056            -264.274384
           3.934601               4.481689            -264.523193
           2.630993               2.718282            -264.877869
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           1.611710               1.648721            -264.332581
           0.984530               1.000000            -263.920013

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           6.483376              13.956067            -262.589661

                  *** GRID SEARCH FOR K =    12 ***
           ALPHA                   BETA                   VML
           6.669007            2980.958008            -266.778259
           6.551508              54.598148            -266.347595
           5.933167              20.085537            -264.141174
           5.252526              12.182494            -262.516205
           4.471936               7.389056            -262.691589
           3.598284               4.481689            -263.914032
           2.557817               2.718282            -263.390106
           1.588307               1.648721            -263.879578
           0.973723               1.000000            -263.361908

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           4.923379               9.819798            -262.336670

                  *** GRID SEARCH FOR K =    14 ***
           ALPHA                   BETA                   VML
           5.668086            2980.958008            -266.747559
           5.595870              54.598148            -266.436584
           5.195685              20.085537            -264.737946
           4.685275              12.182494            -262.971497
           4.044650               7.389056            -262.288147
           3.335586               4.481689            -263.126434
           2.496436               2.718282            -262.891663
           1.585763               1.648721            -263.418976
           0.969140               1.000000            -263.164032

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           4.145060               7.966486            -262.260559

                  *** GRID SEARCH FOR K =    16 ***
           ALPHA                   BETA                   VML
           4.970138            2980.958008            -266.419281
           4.924928              54.598148            -266.199646
           4.663393              20.085537            -264.938660
           4.280633              12.182494            -263.266602
           3.741570               7.389056            -262.020355
           3.132969               4.481689            -262.401733
           2.421248               2.718282            -262.555817
           1.586469               1.648721            -262.426025
           0.967658               1.000000            -263.135101

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           3.639074               6.767537            -261.987305
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                  *** GRID SEARCH FOR K =    18 ***
           ALPHA                   BETA                   VML
           4.578322            2980.958008            -266.804504
           4.543117              54.598148            -266.619690
           4.336464              20.085537            -265.541168
           4.019334              12.182494            -264.001404
           3.542742               7.389056            -262.540100
           2.990577               4.481689            -262.511810
           2.351537               2.718282            -262.633911
           1.584173               1.648721            -262.158264
           0.966332               1.000000            -262.868408

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.695147               1.769263            -262.118530

                  *** GRID SEARCH FOR K =    20 ***
           ALPHA                   BETA                   VML
           4.053934            2980.958008            -266.525970
           4.032835              54.598148            -266.401428
           3.905046              20.085537            -265.648315
           3.687815              12.182494            -264.401672
           3.304344               7.389056            -262.665924
           2.822716               4.481689            -262.080078
           2.252759               2.718282            -262.445251
           1.555777               1.648721            -261.772278
           0.955586               1.000000            -262.617645
                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484

              *** THE FINAL SOLUTION     (K =    20) ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484

NMISS =    0

                               ST
     1        2        3        4        5        6        7        8
  17.0     42.0     44.0     48.0     60.0     72.0     74.0     95.0

     9       10       11       12       13       14       15       16
 103.0    108.0    122.0    144.0    167.0    170.0    183.0    185.0

    17       18       19       20       21       22       23       24
 193.0    195.0    197.0    208.0    234.0    235.0    254.0    307.0

    25       26       27       28       29       30       31       32
 315.0    401.0    445.0    464.0    484.0    528.0    542.0    567.0

    33       34       35       36       37       38       39       40
 577.0    580.0    795.0    855.0    882.0    892.0   1031.0   1033.0

    41       42       43       44       45
1306.0   1335.0   1366.0   1452.0   1472.0
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                                     JCEN
 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1

41  42  43  44  45
 1   1   1   1   1

                       H
          1        2        3        4        5
 1    217.0    218.0      1.0     21.0      1.0
 2    192.0    193.0      1.0     21.0      0.5
 3    190.0    191.0      1.0     21.0      0.3
                      .
                      .
                      .
43   1173.0   1181.0     17.0     45.0      0.0
44   1259.0   1267.0     17.0     45.0      0.0
45   1279.0   1287.0     17.0     45.0      0.0
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HAZST

Performs hazard rate estimation over a grid of points using a kernel function.

Required Arguments
ST — Vector of length NOBS containing the event times, sorted in ascending order.  (Input) 

ST may not contain missing values.
JCEN — Vector of length NOBS containing the censor codes.  (Input) 

JCEN(i) = 1 means that event i was (right) censored at time ST(i), i = 1, …, NOBS. JCEN(i) = 0 means 
that event i was a failure at time ST(i).

NGRID — Number of grid points at which to compute the hazard.  (Input)
GSTRT — First grid value.  (Input)
GINC — Increment between grid values.  (Input)
ALPHA — Value for parameter α.  (Input)
BTA — Value for parameter β.  (Input)
K — Value for parameter k.  (Input)
H — Vector of length 5 * NOBS containing the constants used in computing the k-th failure distance.  

(Input, if IHCOMP = 1; Output, otherwise)
HAZ — Vector of length NGRID containing the estimated hazard rates.  (Output)

Optional Arguments
NOBS — Number of observations.  (Input)

If HAZRD or HAZEZ is called prior to this routine and the original data contained missing values, then 
NOBS in HAZST must be adjusted for the number of missing values from the value used in HAZRD or 
HAZEZ. That is, NOBS in HAZST is NOBS minus NMISS from HAZRD or HAZEZ.
Default: NOBS = size (ST,1).

IWTO — Weighting option.  (Input) 
IWTO = 1 means use weights ln(1 + 1/(NOBS -  i + 1)). IWTO = 0 means use weights 1/(NOBS -  i + 1). 
Not used if IHCOMP = 1.
Default: IWTO = 0.

IHCOMP — Option parameter.  (Input) 
If IHCOMP = 0, H is computed. If IHCOMP = 1, H has already been computed (generally by HAZRD or 
HAZEZ).
Default: IHCOMP = 0.

FORTRAN 90 Interface
Generic: CALL HAZST (ST, JCEN, NGRID, GSTRT, GINC, ALPHA, BTA, K, H, HAZ [, …])
Specific: The specific interface names are S_HAZST and D_HAZST.

FORTRAN 77 Interface
Single: CALL HAZST (NOBS, ST, JCEN, IWTO, NGRID, GSTRT, GINC, ALPHA, BTA, K, IHCOMP, H, 

HAZ)
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Double: The double precision name is DHAZST.

Description

Routine HAZST estimates the hazard function by use of the biweight kernel,

Because a “smoothed” estimate is computed, one generally would use either routine HAZRD  or HAZEZ rou-
tine to obtain maximum (modified) likelihood estimates of the smoothing parameters α, β, and k. Maximum 
(modified) likelihood estimates of these parameters are not required, however. A user-specified grid of 
points is generated. For each point, the hazard estimate is computed as

where n = NOBS, δi is the i-th observation’s censoring code (0 = failed, 1 = censored), wi is the i-th observa-
tion’s weight (either 1/(n - i + 1) or ln(1 + 1/(n - i + 1)) depending upon IWTO), and Ks(x - x(i)), the 
“smoothed kernel”, is as follows:

Here, dik is the distance to the k-th nearest failure from the i-th observation. Because of the dik, HAZST requires 
the computation of matrix H, which contains constants needed to quickly compute dik. Often, H will have 
been computed in routine HAZRD or HAZEZ. In this case, the parameter IHCOMP should be set to zero and H 
should be input to HAZST. If H must be computed by HAZST, set IHCOMP = 1.

Comments
1. Informational error 

2. The user-defined grid is given by GSTRT + j * GINC, j = 0, …, NGRID - 1.
3. Routine HAZST assumes that the grid points are new data points.

Example

The following example is a continuation of the example from HAZRD. The data are from Stablein, Carter, and 
Novak (1981), and involve the survival times of individuals with nonresectable gastric carcinoma. Only those 
individuals treated with both radiation and chemotherapy are used.

Type Code Description

4 13 At least one missing (NaN, not a number) value was found in ST. Missing 
values are not allowed in this routine.
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      USE HAZST_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    K, NGRID, NOBS
      REAL       ALPHA, BTA, GINC, GSTRT
      PARAMETER  (ALPHA=1.540537, BTA=1.631553, GINC=10, GSTRT=0.0, &
                  K=20, NGRID=100, NOBS=45)
!
      INTEGER    JCEN(NOBS), NOUT
      REAL       H(5*NOBS), HAZ(NGRID), ST(NOBS)
!
      DATA ST/17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167, &
          170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315, &
          401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882, &
          892, 1031, 1033, 1306, 1335, 1366, 1452, 1472/
      DATA JCEN/36*0, 9*1/
!
      CALL HAZST (ST, JCEN, NGRID, GSTRT, GINC, ALPHA, &
                  BTA, K, H, HAZ)
!
      CALL WRRRN ('Ten elements of HAZ', HAZ, 1, 10, 1)
      CALL WRRRN ('The first 10 rows of H', H, 10, 5, NOBS)
      END

Output

                           Ten elements of HAZ
       1          2          3          4          5          6          7
0.000962   0.001111   0.001276   0.001451   0.001634   0.001819   0.002004

       8          9         10
0.002185   0.002359   0.002523

          The first 10 rows of H
         1       2       3       4       5
 1   217.0   218.0     1.0    21.0     1.0
 2   192.0   193.0     1.0    21.0     0.5
 3   190.0   191.0     1.0    21.0     0.3
 4   186.0   187.0     1.0    21.0     0.2
 5   174.0   175.0     1.0    21.0     0.2
 6   162.0   163.0     1.0    21.0     0.2
 7   160.0   161.0     1.0    21.0     0.1
 8   139.0   140.0     1.0    21.0     0.1
 9   131.0   132.0     1.0    21.0     0.1
10   126.0   127.0     1.0    21.0     0.1
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Chapter 16: Line Printer Graphics
Routines

16.1 Histograms

Vertical histogram plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VHSTP     1321

Vertical histogram plot with bars subdivided into two parts . . . . . . . . . . . . . VHS2P     1324

Horizontal histogram plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .HHSTP     1327

16.2 Scatter Plots

Scatter plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCTP     1330

16.3 Exploratory Data Analysis

Boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BOXP     1334

Stem and leaf plot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STMLP     1337

16.4 Empirical Probability Distribution

Cumulative distribution function (CDF) plot . . . . . . . . . . . . . . . . . . . . . . . . . . CDFP     1340

Plot of two sample CDFs on the same frame. . . . . . . . . . . . . . . . . . . . . . . . CDF2P     1343

Probability plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PROBP     1346

16.5 Other Graphics Routines

Plot up to 10 sets of points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLOTP     1351

Binary tree plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TREEP     1354
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Usage Notes

The routine names in this chapter end with the letter “P” to indicate line printer plotting and every routine 
starts printing at the beginning of a new page.

Depending on the nature of plots, some routines allow the user to change page width and/or length. This 
capability is specified in each routine and, if allowed, can be done by calling the routine PGOPT (see Chapter 
19, “Utilities”) in advance. To change the page width, the user should make the following call to PGOPT:

CALL PGOPT(–1, IPAGEW)

where IPAGEW indicates the page width in columns. To change the page length, the user should make the fol-
lowing call to PGOPT:

CALL PGOPT(-2, IPAGEL)

where IPAGEL indicates the page length in rows. See the PGOPT document for more information.
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VHSTP

Prints a vertical histogram.

Required Arguments
FRQ — Vector of length NBAR containing the frequencies or counts.  (Input) 

Elements of FRQ must be nonnegative.
TITLE — CHARACTER string containing main title.  (Input)

Optional Arguments
NBAR – Number of bars.  (Input) 

If NBAR exceeds 100/(ISP + 1), then NBAR = 100/(ISP + 1) is used. NBAR must be positive.
Default: NBAR = size (FRQ,1).

ISP — Spacing between histogram bars.  (Input) 
ISP may be 0, 1, or 4.
Default: ISP= 4.

FORTRAN 90 Interface
Generic: CALL VHSTP (FRQ, TITLE [, …])
Specific: The specific interface names are S_VHSTP and D_VHSTP.

FORTRAN 77 Interface
Single: CALL VHSTP (NBAR, FRQ, ISP, TITLE)
Double: The double precision name is DVHSTP.

Description

VHSTP prints a vertical histogram on not more than one printer page using not more than 50 vertical and 100 
horizontal print positions. Spacing control is allowed on the horizontal axis.

Given a vector containing positive counts, VHSTP determines the maximum count Tmax. Vertical printing 
position depends on K defined by K = 1 + (Tmax – 1)/50. If a frequency is greater than K, then a character is 
printed on the corresponding position of the first horizontal line from above. Henceforth, K is reduced by 
K/50 for each horizontal line, and frequencies are compared to the new K.
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Comments
1. Informational errors

2. Output is written to the unit specified by the routine UMACH (see the Reference Material section of this 
manual;).

3. TITLE is centered and placed at the top of the plot. The plot starts on a new page.

Example

Consider the data set in Example 1of the routine OWFRQ (see Chapter 1, "Basic Statistics".) This data set con-
sists of the measurements (in inches) of precipitaion in Minneapolis/St. Paul during the month of March for 
30 consecutive years. We use the routine OWFRQ to create a one-way frequency table. A vertical histogram is 
then generated using VHSTP. A horizontal histogram for the same data set can be found in the document 
example for the routine .

      USE UMACH_INT
      USE OWFRQ_INT
      USE VHSTP_INT

      IMPLICIT   NONE
      INTEGER    NBAR, NOBS
      PARAMETER  (NBAR=10, NOBS=30)
!
      INTEGER    IOPT, NOUT
      REAL       DIV(NBAR), TABLE(NBAR), X(NOBS), XHI, XLO
!
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
!                                 Get output unit number
      CALL UMACH (2, NOUT)
!                                 Create a one-way frequency table from
!                                 a given data set using intervals of
!                                 equal length and user-supplied values
!                                 of XLO and XHI
      IOPT = 1
      XLO  = 0.5
      XHI  = 4.5

Type Code Description

3 1 ISP is out of range. ISP = 0 is used.

3 3 NBAR * (ISP + 1) is less than 1 or greater than 100. The width of the histo-
gram is set to 100, and 100/(ISP + 1) bars are printed. The number of class 
intervals will be printed completely if ISP ≠ 0 and will always be printed up 
to and including 100/(ISP + 1) even though the histogram body is only 100 
spaces wide.

3 5 The maximum value in the vector FRQ is less than 1; therefore, the body of 
the histogram is blank.

3 6 TITLE is too long. TITLE was truncated from the right side.
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      CALL OWFRQ (X, NBAR, TABLE, IOPT=IOPT, XLO=XLO, XHI=XHI, DIV=DIV)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (' Midpoints:  ', 10F6.2, /, '    Counts:  ', 10F6.0)
!                                 Create the horizontal histogram
      CALL VHSTP (TABLE, 'Plot of VHSTP')
      END

Output

 Midpoints:    0.25  0.75  1.25  1.75  2.25  2.75  3.25  3.75  4.25  4.75
    Counts:      2.    7.    6.    6.    4.    2.    2.    0.    0.    1.

                            Plot of VHSTP
Frequency-------------------------------------------------------
   7  *          I                                           *
   6  *          I    I    I                                 *
   5  *          I    I    I                                 *
   4  *          I    I    I    I                            *
   3  *          I    I    I    I                            *
   2  *     I    I    I    I    I    I    I                  *
   1  *     I    I    I    I    I    I    I              I   *
----------------------------------------------------------------
Class       1    2    3    4    5    6    7    8    9   10
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VHS2P

Prints a vertical histogram with every bar subdivided into two parts.

Required Arguments
FRQX — Vector of length NBAR.  (Input) 

FRQX contains the frequencies or counts, and the elements of FRQX must be nonnegative.
FRQY — Vector of length NBAR.  (Input) 

FRQY contains the second frequencies or counts, and the elements of FRQY must be nonnegative.
TITLE — CHARACTER string containing the title.  (Input)

Optional Arguments
NBAR — Number of bars.  (Input) 

NBAR must be positive.
Default: NBAR = size (FRQX,1).

ISP —Spacing between histogram bars.  (Input) 
ISP = 0, 1 or 4 is allowed.
Default: ISP = 4.

FORTRAN 90 Interface
Generic: CALL VHS2P (FRQX, FRQY, TITLE [, …])
Specific: The specific interface names are S_VHS2P and D_VHS2P.

FORTRAN 77 Interface
Single: CALL VHS2P (FRQX, FRQY, TITLE, NBAR, ISP)
Double: The double precision name is DVHS2P.

Description

The routine VHS2P prints a vertical histogram on one or more pages, using not more than 50 vertical and 100 
horizontal print positions. Spacing control is allowed on the horizontal axis. Given two vectors containing 
positive counts, VHS2P determines the maximum count of the combined vectors Tmax. Vertical printing posi-
tion depends on K defined by K = 1 + (Tmax - 1)/50. If a frequency is greater than K, then a character is 
printed on the first line. Henceforth, K is reduced by K/50 for each position, and frequencies are compared to 
the new K.

Comments
1. Workspace may be explicitly provided, if desired, by use of V2S2P/DV2S2P. The reference is:

CALL V2S2P (NBAR, FRQX, FRQY, ISP, TITLE, WK)
The additional argument is
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WK — Work vector of length 2 * NBAR.
2. Informational errors

3. If NBAR exceeds 100/(ISP + 1), then only 100/(ISP + 1) bars are printed.
4. If the maximum frequency is greater than 9999, the frequency column contains on some lines.
5. Output is written to the unit specified by the routine UMACH (see the Reference Material section of this 

manual).
6. TITLE is automatically centered and plot starts on a new page.

Example

Let X = FRQX contain 12 months of projected income figures and let Y = FRQY contain the actual income fig-
ures for the same 12 months. VHS2P produces a histogram that allows projected versus actual figures to be 
graphically compared.

      USE VHS2P_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NBAR
      PARAMETER  (NBAR=12)
!
      INTEGER    ISP, NOUT
      REAL       FRQX(NBAR), FRQY(NBAR)
!
      DATA FRQX/11., 4., 4., 8., 4., 3., 10., 14., 4., 20., 4., 3./
      DATA FRQY/10., 6., 4., 12., 3., 4., 8., 18., 6., 18., 3., 7./
!
      CALL VHS2P (FRQX, FRQY, 'Plot of VHS2P')
!                                 Get output unit number
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999)
99999 FORMAT (/, 3X, 'Twelve months projected sales versus actual ', &
            'sales, in thousands of dollars.', /, 11X, 'A positive ', &
            'sign (+) implies projected exceeded actual.', /, 11X, &
            'A negative sign (-) implies actual exceeded projected.')
!
      END

Type Code Description

3 2 NBAR * (ISP + 1) is less than 1 or greater than 100. The width of the histo-
gram is set to 100 and 100/(ISP + 1) bars are printed.

3 3 ISP as specified is not valid. The zero option is used.

3 4 TITLE is too long. TITLE was truncated from the right side.
VHS2P         Chapter 16: Line Printer Graphics      1325



Output

                              Plot of VHS2P
Frequency---------------------------------------------------------------
  20                                                    -
  19                                                    -
  18                                          +         I
  17                                          +         I
  16                                          +         I
  15                                          +         I
  14                                          I         I
  13                                          I         I
  12                      +                   I         I
  11       -              +                   I         I
  10       I              +              -    I         I
   9       I              +              -    I         I
   8       I              I              I    I         I
   7       I              I              I    I         I         +
   6       I    +         I              I    I    +    I         +
   5       I    +         I              I    I    +    I         +
   4       I    I    I    I    -    +    I    I    I    I    -    +
   3       I    I    I    I    I    I    I    I    I    I    I    I
   2       I    I    I    I    I    I    I    I    I    I    I    I
   1       I    I    I    I    I    I    I    I    I    I    I    I
------------------------------------------------------------------------
Class      1    2    3    4    5    6    7    8    9   10   11   12

  Twelve months projected sales versus actual sales, in thousands of dollars.
           A positive sign (+) implies projected exceeded actual.
           A negative sign (-) implies actual exceeded projected.
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HHSTP

Prints a horizontal histogram.

Required Arguments
FRQ —Vector of length NBAR containing the frequencies or counts.  (Input) 

Elements of FRQ must be nonnegative.
IBEG — Indicates the beginning setting of the plot.  (Input) 

If IBEG = 0, HHSTP skips to a new page before printing the first line. If IBEG ≠ 0, HHSTP skips two 
spaces and begins printing on the same page.

TITLE — CHARACTER string containing the title of the histogram.  (Input)

Optional Arguments
NBAR — Number of bars.  (Input) 

NBAR must be positive.
Default: NBAR = size (FRQ,1).

ISPACE — Indicates spaces between horizontal histogram lines.  (Input) 
ISPACE = 0, 1, or 2 is allowed.
Default: ISPACE = 1.

LENGTH — Indicates the upper limit of the number of lines to print within the histogram per page.  
(Input) 
After that number of lines is printed, the routine skips to a new page to continue printing. If 
LENGTH = 0; then the maximum number of lines coincides with the standard printer page, which is 60.
Default: LENGTH = 0.

IREP — Determines the repeating appearance for the class line (top) and frequency line (bottom) when 
multiple pages are required.  (Input) 
If IREP = 0, the class line and the frequency line are printed on the first and last page of the histogram, 
respectively. If IREP ≠ 0, both class and frequency line are printed on every page.
Default: IREP = 0.

IOPT — Page width option.  (Input) 
IOPT = 0 will cause a full (horizontal) page histogram. IOPT = 1 will limit the width to 80 columns.
Default: IOPT = 1.

FORTRAN 90 Interface
Generic: CALL HHSTP (FRQ, IBEG, TITLE [, …])
Specific: The specific interface names are S_HHSTP and D_HHSTP.

FORTRAN 77 Interface
Single: CALL HHSTP (NBAR, FRQ, IBEG, ISPACE, LENGTH, IREP, IOPT, TITLE)
Double: The double precision name is DHHSTP.
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Description

The routine HHSTP prints a horizontal histogram on one or more pages. Given a vector containing frequen-
cies or counts, HHSTP determines the maximum count Tmax. Horizontal printing position depends on K 
defined by 

K = 1 + (Tmax – 1)/60  for 72 characters

K = 1 + (Tmax – 1)/120  for 132 characters

If a frequency is greater than K, then a character is printed in the first position. Henceforth, K is increased by 
K/60 or K/120 for each position, and frequencies are compared to the resulting K.

Comments
Informational Errors

Example

Consider the data set in Example 1of the routine OWFRQ (see Chapter 1, "Basic Statistics"). We use the routine 
OWFRQ to create a one-way frequency table. A horizontal histogram is then generated using HHSTP. The user 
may find a vertical histogram for the same data set in the routine. Note that classes are listed from left to right 
in VHSTP.

      USE UMACH_INT
      USE OWFRQ_INT
      USE HHSTP_INT

      IMPLICIT   NONE
      INTEGER    NBAR, NOBS
      PARAMETER  (NBAR=10, NOBS=30)
!
      INTEGER    IBEG, IOPT, NOUT
      REAL       CLHW, DIV(NBAR), TABLE(NBAR), X(NOBS), XHI, XLO
!
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,  &
          2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
          0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
          2.05/
!                                 Get output unit number
      CALL UMACH (2, NOUT)
!                                 Create a one-way frequency table from
!                                 a given data set with intervals of
!                                 equal length and user-supplied values
!                                 of XLO and XHI
      IOPT = 1
      XLO  = 0.5

Type Code Description

3 3 ISPACE is not 0, 1, or 2. The zero option is used for ISPACE.

3 6 IOPT is not 0 or 1. The zero option is used for IOPT.

3 7 TITLE is too long and is truncated from the right side.
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      XHI  = 4.5
      CALL OWFRQ (X, NBAR, TABLE, IOPT=IOPT, XLO=XLO, XHI=XHI, DIV=DIV)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT ('  Midpoints:  ', 10F6.2, /, '     Counts:  ', 10F6.0)
!                                 Create the horizontal histogram
      IBEG   = 1
      IOPT   = 0
      CALL HHSTP (TABLE, IBEG, 'Histogram', IOPT=IOPT)
      END

Output

Midpoints:     .25   .75  1.25  1.75  2.25  2.75  3.25  3.75  4.25  4.75
   Counts:      2.    7.    6.    6.    4.    2.    2.    0.    0.    1.

    Histogram
Class -----------
  10  *I       *
      *        *
   9  *        *
      *        *
   8  *        *
      *        *
   7  *II      *
      *        *
   6  *II      *
      *        *
   5  *IIII    *
      *        *
   4  *IIIIII  *
      *        *
   3  *IIIIII  *
      *        *
   2  *IIIIIII *
      *        *
   1  *II      *
-----------------
Frequency  5
           One frequency unit is equal to 1 count unit(s).
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SCTP

Prints a scatter plot of several groups of data.

Required Arguments
A —NOBS by NVAR matrix containing the data.  (Input)
ICOL — Vector of length NVAR representing the nature of each column of matrix A.  (Input) 

The I-th column of A is the independent variable vector if ICOL(I) = 1. The I-th column of A is a 
dependent variable vector if ICOL(I) = 2. The I-th column of A is ignored otherwise.

RANGE — Vector of length four specifying minimum x, maximum x, minimum y and maximum y.  
(Input) 
SCTP will calculate the range of the axis if the minimum of that range is greater than or equal to the 
maximum of that range.

SYMBOL — CHARACTER string of length NVAR.  (Input) 
SYMBOL (I : I) is the character used to plot the data set represented by column I. SYMBOL(I : I) is 
ignored if ICOL(I) ≠ 2.

XTITLE — CHARACTER string containing the x-axis title.  (Input)
YTITLE — CHARACTER string containing the y-axis title.  (Input)
TITLE — CHARACTER string containing the plot title.  (Input)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (A,1).
NVAR — Number of variables.  (Input)

Default: NVAR = size (A,2).
LDA —Leading dimension of A exactly as specified in the dimension statement of the calling program.  

(Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL SCTP (A, ICOL, RANGE, SYMBOL, XTITLE, YTITLE, TITLE [, …])
Specific: The specific interface names are S_SCTP and D_SCTP.

FORTRAN 77 Interface
Single: CALL SCTP (NOBS, NVAR, A, LDA, ICOL, RANGE, SYMBOL, XTITLE, YTITLE, TITLE)
Double: The double precision name is DSCTP.
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Description

Routine SCTP prints a scatter plot of one variable on the x-axis against several variables on the y-axis. For 
multiple points, 2, 3, …, 9 are used to denote the number of points at a location. The character “M” is used 
when the number of points is greater than 9. Any entry of the matrix A containing NaN (not a number) is 
ignored. See AMACH in “Machine-Dependent Constants”.

Comments
1. Informational errors

2. Integers 2, …, 9 indicate two through nine points occupying the same plot position, respectively, and 
the character “M” indicates 10 or more multiple points. Consequently, it is recommended not to use 
any one of the above characters for SYMBOL.

3. One and only one column of A can be the independent variable vector.
4. A point is ignored if either the independent or the dependent variable contains NaN (not a number).
5. Output is written to the unit number specified by the routine UMACH (see the Reference Material section 

in this manual).
6. Default page width and length are 78 and 60, respectively. The user may change them by calling the 

routine PGOPT (see Chapter 19, “Utilities”) in advance.

Example

This example prints a scatter plot of width against length for 150 iris petals. The routine GDATA (see Chapter 
19, "Utilities") is used to retrieve the Fisher iris data.

      USE GDATA_INT
      USE SCTP_INT
      USE PGOPT_INT

      IMPLICIT   NONE
      INTEGER    ICOL(5), IDATA, IPAGE, LDA, NDA, NOBS, NVAR
      REAL       A(150,5), RANGE(4)
      CHARACTER  SYMBOL*5
!
      DATA ICOL/5*0/
      DATA RANGE/4*0./
      DATA SYMBOL/'    *'/
!
      IDATA  = 3
!                                 Get Fisher Iris Data

Type Code Description

3 10 XTITLE is too long to fit into the page width determined by the routine 
PGOPT. XTITLE is truncated from the right side.

3 11 YTITLE is too long to fit into the page width determined by the routine 
PGOPT. YTITLE is truncated from the right side.

3 12 TITLE is too long to fit into the page width determined by the routine PGOPT. 
TITLE is truncated from the right side.
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      CALL GDATA (IDATA, A, NOBS, NVAR)
!                                 Plot petal width against
!                                 petal length
      ICOL(4) = 1
      ICOL(5) = 2
!                                 Set page width and length
      IPAGE = 78
      CALL PGOPT (-1, IPAGE)
      IPAGE = 40
      CALL PGOPT (-2, IPAGE)

      CALL SCTP (A, ICOL, RANGE, SYMBOL, 'Petal length', &
                 'Petal width', 'Fisher Iris Data') 
!
      END

Output

                                   Fisher Iris Data
           :
           :                                              *  **
      2.4 -:                                        *    2
           :                                        ****  * * *       *
           :                                             * *        *
           :
           :                                           **** *      *
           :                                      ****           *  *
           :                                       *2 *       *
           :                                     32 *   2* * *  *
           :
           :                                  *    *
P     1.6 -:                                  * *   *      *
e          :                               *  5** 2**
t          :                             *    2 *2*       *
a          :
l          :                          *   3222***
           :                             ** * *  *
w          :                    *       **
i          :                       2 2 *  **
d          :
t          :
h     0.8 -:
           :
           :      *
           :
           :       *
           :   * 3** *
           :   23* *
           :* 24875* *
           :
           : *  22
      0.0 -:
           :...............................................................
            :         :         :         :         :         :        :
            1.        2.        3.        4.        5.        6.       7.
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                                     Petal length
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BOXP

Prints boxplots for one or more samples.

Required Arguments
NI — Vector of length NGROUP.  (Input) 

NI(I) is the number of observations in the I-th group.
X —Vector of length NI(1) + NI(2) + … + NI(NGROUP).  (Input) 

The first NI(1) positions contain the observations for the first group. The next NI(2) positions contain 
the observations for the second group, and so on.

TITLE — CHARACTER string containing the title of the plot.  (Input)

Optional Arguments
NGROUP — The total number of groups of samples.  (Input)

Default: NGROUP = size (NI,1).

FORTRAN 90 Interface
Generic: CALL BOXP (NI, X, TITLE [, …])
Specific: The specific interface names are S_BOXP and D_BOXP.

FORTRAN 77 Interface
Single: CALL BOXP (NGROUP, NI, X, TITLE)
Double: The double precision name is DBOXP.

Description

BOXP prints NGROUP boxplots. The minimum and maximum of X are printed. The median of each data group 
is marked by “*” and the upper and lower hinges by “I”. The “H-spread” is the distance between the upper 
and lower hinges. The observation farthest from the median that still remains within one step (1.5 H-spread) 
from each hinge also is marked by “+”. The values in the second step (between 1.5 and 3 H-spreads from the 
hinges) are marked by the letter “O” and the values beyond the second step are marked by “X”. If there are 
fewer than five data points, each data point is plotted with an “X.” If multiple data points occur at positions 
marked “X” or “O”, the number of multiple points is noted. More information on boxplots can be found in 
Chapter 2 of Chambers et al. (1983).

Comments
1. Workspace may be explicitly provided, if desired, by use of B2XP/DB2XP. The reference is:

CALL B2XP (NGROUP, NI, X, TITLE, WKSP)
The additional argument is:
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WKSP — Workspace of length NI(1) + … + NI(NGROUP).  (Input) 
The first NI(1) positions contain the sorted data from the first NI(1) positions of X. The next 
NI(2) positions contain sorted data from the next NI(2) positions of X, and so on.

2. Informational error

3. TITLE is centered and placed at the top of the plot. The plot starts on a new page and the default page 
width is 78. The user may change the width by calling the routine PGOPT (see Chapter 19, "Utilities") in 
advance.

Example

This example prints boxplots of three batches of data containing 5, 16 and 7 observations, respectively.

      USE PGOPT_INT
      USE BOXP_INT

      IMPLICIT   NONE
      INTEGER    IPAGE, NGROUP, I
      PARAMETER  (NGROUP=3)
!
      INTEGER    NI(NGROUP)
      REAL       X(28)
!
      DATA (NI(I),I=1,3)/5, 16, 7/
      DATA (X(I),I=1,5)/7., 9., 3., 1., 1./
      DATA (X(I),I=6,21)/25., 0., 1., 0., 5., 4., 3., 5., 5., 5., 5., &
          5., 5., 25., 15., 9./
      DATA (X(I),I=22,28)/10., 15., 20., 25., 2., 9., 12./
!                                 Set page width.
      IPAGE = 70
      CALL PGOPT (-1, IPAGE)
      CALL BOXP (NI, X, 'Plot of BOXP')
!
      END

Output

                            Plot of BOXP

  X    X          X    X
  2

         I--------I
+--------I   *    I-----+               O                         X
         I--------I                                               2

                         I--------------------I
     +-------------------I     *              I-------------------+

Type Code Description

3 5 TITLE is too long to fit into the page width determined by the routine PGOPT. 
TITLE is truncated from the right side.
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                         I--------------------I

+................................+.................................+
0.0                             12.5                            25.0
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STMLP

Prints a stem-and-leaf plot.

Required Arguments
X —Array of length NOBS containing the data.  (Input)
UNITS — Size of the increment on the stem.  (Input) 

If UNITS is set so small that the length of the stem is more than 60 lines, STMLP will use a UNITS such 
that the stem will be no longer than 60 lines. However, if UNITS is a negative integer, STMLP will use 
the absolute value of UNITS, even if the stem would become very long. A common value for UNITS is 
10.

TITLE — CHARACTER string containing the plot title.  (Input)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOB = size (X,1).

FORTRAN 90 Interface
Generic: CALL STMLP (X, UNITS, TITLE [, …])
Specific: The specific interface names are S_STMLP and D_STMLP.

FORTRAN 77 Interface
Single: CALL STMLP (NOBS, X, UNITS, TITLE)
Double: The double precision name is DSTMLP.

Description

Routine STMLP prints a stem-and-leaf display. The user can specify that the plot be longer than one page, but 
the default maximum is 60 lines. A plus sign (+) at the end of a line indicates that there are too many data 
points to fit within the width specifications. A scale marked in units of 10 is printed below the stem-and-leaf 
display.

Comments
1. Workspace may be explicitly provided, if desired, by use of S2MLP/DS2MLP. The reference is:

CALL S2MLP (NOBS, X, UNITS, TITLE, MAXWID, IWK, WK)
The additional arguments are as follows:

MAXWID — Page width.  (Input) 
MAXWID = 78 when STMLP is called.

IWK — Work vector of length MAXWID.
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WK — Vector of length NOBS.  (Output) 
WK contains the sorted data from X.

2. Informational error

3. Default page width is 78. The user may change it by calling the routine PGOPT (see Chapter 19, "Utili-
ties") in advance.

Example

This example prints a stem-and-leaf plot consisting of 27 data points ranging from –21.8 to 106.5.

      USE STMLP_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=27)
!
      REAL       UNITS, X(NOBS)
!
      DATA X/6.0, 106.5, 34.0, 88.1, 89.0, 0.3, 0.7, 4.0, 4.0, 5.0, &
          56.0, 62.8, 99.0, 4.0, 15.0, 76.0, 7.6, 101.5, 33.0, 91.0, &
          91.0, -6.3, -21.8, 0.0, 8.99, 5.5, 6.9/
!
      UNITS = 10.
      CALL STMLP (X, UNITS, 'Stem and leaf plot')
!
      END

Output

                           Stem and leaf plot

Each line on the stem represents 1.0  unit(s).
For example:  1 25 
              2 2
represents the data 12., 15., and 22.
      -2.2
      -1
      -0 6
       0 001444566789
       1 5
       2
       3 34
       4
       5 6
       6 3
       7 6
       8 89

Type Code Description

3 4 TITLE is too long to fit into the page width determined by the routine PGOPT. 
TITLE is truncated from the right side.
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       9 119
      10 27
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CDFP

Prints a sample cumulative distribution function (CDF), a theoretical CDF, and confidence band information.

Required Arguments
CDF — User-supplied FUNCTION to compute the cumulative distribution function. The form is CDF(P), 

where
P — Sample point.  (Input)
CDF — Theoretical probability at the point P or integral of the probability density function at the point 
P.  (Output)

X —Vector of length NOBS containing the sample.  (Input)

Optional Arguments
NOBS — Number of observations.  (Input)

Default: NOBS = size (X,1).
N12 —Confidence band option.  (Input) 

If N12 = 0, then no confidence bands are printed. If N12 = 1, then positive or upper one-sided confi-
dence band information is printed. If N12 = –1, then negative or lower one-sided confidence band 
information is printed. If N12 = 2, then two-sided confidence band information is printed.
Default: N12 = 2.

N95 —Confidence band option.  (Input) 
If N95 = 95, the 95-percent band is desired. Otherwise, the 99-percent band is desired.
Default: N95 = 95.

IPRINT — Print option.  (Input) 
If IPRINT = 1, then CDFP prints the sample CDF, the theoretical CDF, and the confidence band on the 
CDF. If IPRINT = 0, then the above information will not be printed.
Default: IPRINT = 1.

FORTRAN 90 Interface
Generic: CALL CDFP (CDF, X [, …])
Specific: The specific interface names are S_CDFP and D_CDFP.

FORTRAN 77 Interface
Single: CALL CDFP (CDF, NOBS, X, N12, N95, IPRINT)
Double: The double precision name is DCDFP.

Description

When IPRINT = 1, CDFP prints the sample cumulative distribution function (CDF), the theoretical CDF, and 
confidence bands on the CDF. The theoretical CDF will be plotted with or without the confidence band infor-
mation. The sample CDF is calculated. The theoretical CDF is calculated by calling the user supplied 
FUNCTION subprogram CDF. Asymptotic critical values are used (from the Smirnov tables) for confidence 
interval calculations.
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Comments
1. Workspace may be explicitly provided, if desired, by use of C2FP/DC2FP. The reference is:

CALL C2FP (CDF, NOBS, X, N12, N95, IPRINT, WKX, WK)
The additional arguments are as follows:

WKX — Vector of length NOBS containing the sorted data X in ascending order.  (Output)

WK — Vector of length 4 * NOBS containing confidence band values.  (Output)
WK may be dimensioned 3 * NOBS instead of 4 * NOBS for a lower or upper confidence band.

2. Note that sample CDFs are step functions.
3. Confidence bands are plotted around the sample CDF.
4. Output is written to the unit specified by the routine UMACH (see the Reference Material section in this 

manual ).
5. Printing starts on a new page with default page width 78 columns and default page length 60 rows. 

The user may change these values by calling the routine PGOPT in advance.

Example

This example prints and plots the sample CDF, the theoretical CDF, and the two-sided 95 percent band infor-
mation using 70 observations. Routines RNSET and RNUN are called to generate these uniform (0, 1) random 
numbers.

      USE PGOPT_INT
      USE RNSET_INT
      USE RNUN_INT
      USE CDFP_INT

      IMPLICIT   NONE
      INTEGER    IPAGE, ISEED, NOBS
      PARAMETER  (NOBS=70)
      REAL       CDF, X(NOBS)
      EXTERNAL   CDF
!
      ISEED = 123457
!                                 Two-sided confidence band option.
!                                 95-percent band option.
!                                 Set page width and length.
      IPAGE =  78
      CALL PGOPT (-1, IPAGE)
      IPAGE=40
      CALL PGOPT (-2, IPAGE)
!                                 Initialize the seed.
      CALL RNSET (ISEED)
!                                 Generate pseudo-random numbers from
!                                 a uniform (0,1) distribution.
      CALL RNUN (X)
!                                 Plot
      CALL CDFP (CDF, X, IPRINT=0)
      END
!
      REAL FUNCTION CDF (X)
      REAL       X
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!
      CDF = X
      RETURN
      END

Output

                      Cumulative Sample and Theoretical CDFs

             +::::::::::::::::+::::::::::::::::+::::::::::::::4444:4MM
        0.95 +                                               44    M2+
             .                                              44  MM   .
             .                                          44 4  2M1    .
             .                                       44 4   22 1    33
        0.80 +                                      44     2 11    33+
             .                                    4 4   22   1  33 3 .
             .                                  4    22  1 11  33    .
P            .                                44    2 1 1      3     .
r       0.65 +                             4 4    2  1        33     +
o            .                           4     22 1 1        3       .
b            .                          4    22 1 1        33        .
a            .                     44  4   2  11        33           .
b       0.50 +                   4 4    22   11      33              +
i            .               4  4      221 1        33               .
l            .            4 4           11      3 3                  .
i            .         444         2M  11      33                    .
t       0.35 +       4 4         2 1         33                      +
y            .      44       1  M1       3 3 3                       .
             .    44      1 MM          33                           .
             .  4       112            33                            .
        0.20 + 4       122         33                                +
             .4      M 2        33 3                                 .
             .    11M2      33                                       .
             .  1 M2     33                                          .
        0.05 + MM      33                                            +
             +MM3:3333:3::::::+::::::::::::::::+::::::::::::::::+:::::
            0.0              0.3              0.6              0.9
                                   Sample Values
                      Sample CDF = 1      Theoretical CDF = 2
                             Confidence bands = 3 and 4
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CDF2P

Prints a plot of two sample cumulative distribution functions.

Required Arguments
NOBS1 — Size of sample one.  (Input)
NOBS2 — Size of sample two.  (Input)
X — Vector of length NOBS1 + NOBS2.  (Input) 

X contains sample one followed by sample two.

FORTRAN 90 Interface
Generic: CALL CDF2P (NOBS1, NOBS2, X)
Specific: The specific interface names are S_CDF2P and D_CDF2P.

FORTRAN 77 Interface
Single: CALL CDF2P (NOBS1, NOBS2, X)
Double: The double precision name is DCDF2P.

Description

Routine CDF2P plots two sample cumulative probability distribution functions (CDFs). Two samples are first 
merged and then sorted. The cumulative distribution functions are then calculated. On the plots, the charac-
ters “1” and “2” indicate the first and second samples, respectively, and the character “M” indicates multiple 
points.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2F2P/DC2F2P. The reference is:

CALL C2F2P (NOBS1, NOBS2, X, WK, IWK)
The additional arguments are as follows:

WK — Work vector of length 3 * (NOBS1 + NOBS2).

IWK — Work vector of length NOBS1 + NOBS2.
2. Printing starts on a new page with default page width 78 and default page length 60. The user may 

change page width and length by calling the routine PGOPT in advance.

Example

The first sample consists of pseudo-random numbers from a uniform (0, 1) distribution. Routines RNSET and 
RNUN (see Chapter 18, "Random Number Generation") are used to generate this sample. The second sample con-
sists of points of the standard normal (Gaussian) distribution function generated by the routine ANORDF (see 
Chapter 17, "Probability Distribution Functions and Inverses").
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      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    I, IPAGE
      REAL       VAL, X(100)
!                                 Initialize the seed.
      CALL RNSET (1234567)
!                                 Generate pseudo-random numbers from
!                                 a uniform (0,1) distribution.
      CALL RNUN (X)
!                                 Second sample consists of 50 points of 
!                                 the std normal distribution function.
      VAL = 0.
      DO 10  I=1, 50
         VAL     = VAL + .02
         X(I+50) = ANORDF(VAL)
   10 CONTINUE
!                                 Set page width and length.
      IPAGE =  78
      CALL PGOPT (-1, IPAGE)
      IPAGE =  40
      CALL PGOPT (-2, IPAGE)
      CALL CDF2P (50, 50, X)
      END

Output

                     Cumulative Sample Distribution Functions
             +::::::::::::::::+::::::::::::::::+::::::::::::22:2+22:M
        0.95 +                                             2     1 +
             .                                            22  1 1  .
             .                                            2 1 1    .
             .                                           2111      .
        0.80 +                                           1         +
             .                                          M2         .
             .                                       11M2          .
P            .                                      11 2           .
r       0.65 +                                    111 2            +
o            .                               11111   22            .
b            .                       1    11111      22            .
a            .                      1                2             .
b       0.50 +                     1                2              +
i            .                    11               22              .
l            .                  1 1                2               .
i            .                 1                  22               .
t       0.35 +             1   1                 2                 +
y            .            1                     2                  .
             .          11                     22                  .
             .       11                       22                   .
        0.20 +      1                         2                    +
             .      1                        2                     .
             .   1                          2                      .
             .  1                          22                      .
        0.05 +1 1                         22                       +
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             M2:22::222:2222::+22:2222::::2::::+:::::::::::::::+::::
            0.0              0.3              0.6              0.9

                                   Sample values
                           Sample 1 = 1     Sample 2 = 2
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PROBP

Prints a probability plot.

Required Arguments
NOBS — Total number of observations in uncensored sample.  (Input)
N1 — The rank number of the smallest observation in the sample X, if ranked in the complete sample.  

(Input) 
In other words, the number of observations that have been censored from below is N1 - 1.

N2 — The rank number of the largest observation in the sample X, if ranked in the complete sample.  
(Input)
In other words, the number of observations that have been censored from above is NOBS - N2.

X — Vector of length N2 - N1 + 1.  (Input) 
X contains the data, possibly a censored data set from a complete sample of size NOBS.

IDIST — Distribution option.  (Input)
IDIST = 1, normal distribution. 
IDIST = 2, lognormal distribution. 
IDIST = 3, half-normal distribution. 
IDIST = 4, exponential distribution.
IDIST = 5, Weibull distribution.
IDIST = 6, extreme value distribution.

FORTRAN 90 Interface
Generic: CALL PROBP (NOBS, N1, N2, X, IDIST)
Specific: The specific interface names are S_PROBP and D_PROBP.

FORTRAN 77 Interface
Single: CALL PROBP (NOBS, N1, N2, X, IDIST)
Double: The double precision name is DPROBP.

Description

Routine PROBP sorts a data set and plots the observed values along the vertical axis and the ranks along the 
horizontal axis. In the case of the lognormal and Weibull distributions, the vertical axis has a log scale. The 
horizontal axis has the appropriate cumulative distribution function scale. Let M = NOBS denote the total 
number of observations in an uncensored sample. For normal and lognormal distributions, the horizontal 
plotting distance for the observation with rank I (out of M) is proportional to the inverse normal cumulative 
distribution function evaluated at (3 * I - 1)/(3 * M + 1). For the half-normal plot, the corresponding hori-
zontal distance is proportional to the inverse normal cumulative distribution function evaluated at 
(3 * M + 3 * I - 1)/(6 * M + 1). For other plots, the horizontal distances are proportional to the respective 
inverse cumulative distribution functions evaluated at (I -  .5)/M. 
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Let N1 = N1 and N2 = N2. In PROBP it is assumed that the N1 - 1 smallest observations and the M - N2 largest 
observations have been censored. If there has been no censoring, N1 should be set to 1 and N2 set to M. The 
smallest observation is plotted against the expected value (or the approximated expected value) of the N1-th 
order statistic from a sample of size M; the next smallest observation is plotted as if it were the (N1 + 1)-th 
sample order statistic, and so on. 

PROBP does not do any shifting of location of the observation in the data set. If any observations fall outside 
of the range of the distribution (that is, if any observations are nonpositive when the distribution specified is 
lognormal or Weibull), those observations are censored and N1 or N1 is modified to reflect the number cen-
sored. In this case an error message of type 3 is generated. A plot which is a straight line provides evidence 
that the sample is from the distribution specified.

Comments
1. Workspace may be explicitly provided, if desired, by use of P2OBP/DP2OBP. The reference is:

CALL P2OBP (NOBS, N1, N2, X, IDIST, M1, M2, WK)
The additional arguments are as follows:

M1 — Rank of the smallest observation actually used.  (Output)

M2 — Rank of the largest observation actually used.  (output)

WK — Work space of length 2 * NOBS.
2. Informational error

3. NOBS must be greater than or equal to N2 - N1 + 1. If there is no censoring, then N1 = 1 and N2 = NOBS.
4. Output is written to the unit specified by the routine UMACH (see the Reference Material section in this 

manual).
5. Printing starts on a new page with default page width 78. The user may change it by calling the rou-

tine PGOPT (see Chapter 19, "Utilities") in advance.

Example

In this example, a sample of size 250 (artificially generated from a normal distribution by routines RNSET and 
RNNOR in Chapter 18, “Random Number Generation”) is plotted by PROBP against a normal distribution func-
tion. The generally straight line produced is an indication that the sample is from a normal distribution.

      USE RNSET_INT
      USE RNNOR_INT
      USE PROBP_INT

      IMPLICIT   NONE
      INTEGER    NOBS
      PARAMETER  (NOBS=250)
!
      INTEGER    IDIST, N1, N2

Type Code Description

3 7 It is necessary to delete some items from the plotting because those items do 
not satisfy properties of the distribution.
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      REAL       X(NOBS)
!
      IDIST = 1
!                                 No censoring
      N1 = 1
      N2 = 250
!                                 Initialize the seed
      CALL RNSET (123457)
      CALL RNNOR (X)
!
      CALL PROBP (NOBS, N1, N2, X, IDIST)
      END
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Output

            Probability plot for normal distribution
        2.5 +::::::::::::::::::::::::::::::::::::::::::::::  ::::.
            .                                                    .
            .                                                    .
            .                                               *    *
            .                                            **      .
        2.0 +                                          ***       .
            .                                        **          .
            .                                       **           .
            .                                      **            .
            .                                      *             .
        1.5 +                                      *             .
            .                                     **             .
            .                                    **              .
            .                                   *                .
            .                                 **                 .
        1.0 +                                **                  .
            .                               **                   .
            .                               **                   .
            .                              **                    .
O           .                             **                     .
b       0.5 +                            **                      .
s           .                          **                        .
e           .                          *                         .
r           .                         **                         .
v           .                        **                          .
a       0.0 +-------------------------*--------------------------.
t           .                       *                            .
i           .                      **                            .
o           .                     **                             .
n           .                    **                              .
s      -0.5 +                   **                               .
            .                   *                                .
            .                  *                                 .
            .                  **                                .
            .                **                                  .
       -1.0 +               **                                   .
            .              **                                    .
            .             **                                     .
            .            **                                      .
            .            *                                       .
       -1.5 +           ***                                      .
            .           *                                        .
            .          *                                         .
            .        **                                          .
            .                                                    .
       -2.0 +     ***                                            .
            *  * **                                              .
            .                                                    .
            .                                                    .
            .                                                    .
       -2.5 +:::+::::+:::+::::+::::+::::::+:::::+:::+::::::+:::::.
                .01  .05 .10  .25  .50    .75   .90 .95    .99
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                           Cumulative Probability
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PLOTP

Prints a plot of up to 10 sets of points.

Required Arguments
X — Vector of length NDATA containing the values of the independent variable.  (Input)
A — Matrix of dimension NDATA by NFUN containing the NFUN sets of dependent variable values.  (Input)
SYMBOL — CHARACTER string of length NFUN.  (Input) 

SYMBOL (I : I) is the symbol used to plot function I.
XTITLE — CHARACTER string used to label the x-axis.  (Input)
YTITLE — CHARACTER string used to label the y-axis.  (Input)
TITLE — CHARACTER string used to label the plot.  (Input)

Optional Arguments
NDATA — Number of independent variable data points.  (Input)

Default: NDATA = size (X,1).
NFUN — Number of sets of points.  (Input) 

NFUN must be less than or equal to 10.
Default: NFUN = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDA = size (A,1).

INC — Increment between elements of the data to be used.  (Input) 
PLOTP plots X(1 + (I – 1) * INC) for I = 1, 2, …, NDATA.
Default: INC = 1.

RANGE — Vector of length four specifying minimum x, maximum x, minimum y and maximum y.  
(Input) 
PLOTP will calculate the range of the axis if the minimum and maximum of that range are equal.
Default: RANGE = 1.0.

FORTRAN 90 Interface
Generic: CALL PLOTP (X, A, SYMBOL, XTITLE, YTITLE, TITLE [, …])
Specific: The specific interface names are S_PLOTP and D_PLOTP.

FORTRAN 77 Interface
Single: CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL, XTITLE, YTITLE, TITLE)
Double: The double precision name is DPLOTP.
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Description

Routine PLOTP produces a line printer plot of up to ten sets of points superimposed upon the same plot. A 
character “M” is printed to indicate multiple points. The user may specify the x and y-axis plot ranges and 
plotting symbols. Plot width and length may be reset in advance by calling PGOPT.

Comments
1. Informational errors 

2. YTITLE and TITLE are automatically centered.
3. For multiple plots, the character M is used if the same print position is shared by two or more data sets.
4. Output is written to the unit specified by routine UMACH (see the "Reference Material").

Default page width is 78 and default page length is 60. They may be changed by calling PGOPT in advance.

Example

This example plots the sine and cosine functions from – 3.5 to + 3.5 and sets page width and length to 78 and 
40, respectively, by calling PGOPT (see Chapter 19, “Utilities” in advance.

      USE PGOPT_INT
      USE PLOTP_INT

      IMPLICIT   NONE
      INTEGER    I, IPAGE
      REAL       A(200,2), DELX, PI, RANGE(4), X(200)
      CHARACTER  SYMBOL*2
      INTRINSIC  COS, SIN
!
      DATA SYMBOL/'SC'/
      DATA RANGE/-3.5, 3.5, -1.2, 1.2/
!
      PI     = 3.14159
      DELX   = 2.*PI/199.
      DO 10  I= 1, 200
         X(I)   = -PI + FLOAT(I-1) * DELX
         A(I,1) = SIN(X(I))
         A(I,2) = COS(X(I))
   10 CONTINUE
!                                 Set page width and length
      IPAGE =  78

Type Code Description

3 7 NFUN is greater than 10. Only the first 10 functions are plotted.

3 8 TITLE is too long. TITLE is truncated from the right side.

3 9 YTITLE is too long. YTITLE is truncated from the right side.

3 10 XTITLE is too long. XTITLE is truncated from the right side. The maximum 
number of characters allowed depends on the page width and the page 
length. See Comment 5 below for more information.
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      CALL PGOPT (-1, IPAGE)
      IPAGE =  40
      CALL PGOPT (-2, IPAGE)
      CALL PLOTP (X, A, SYMBOL,'X AXIS', 'Y AXIS', 'C = COS, S = SIN')
!
      END

Output
                                  C = COS,   S = SIN
          1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
              .                           I                           .
              .                           I                           .
              .                        CCCCCCC     SSSSSSSS           .
              .                       CC  I  CC   SS      SS          .
          0.8 +                      C    I    C SS        SS         +
              .                     C     I     MS          SS        .
              .                    C      I    SSC           SS       .
              .                   CC      I   SS CC           SS      .
              .                  CC       I   S   CC           S      .
          0.4 +                  C        I  S     C            S     +
              .                 C         I SS      C           SS    .
 Y            .                CC         I S       CC           S    .
              .                C          IS         C            S   .
 A            .               C           SS          C           SS  .
 X        0.0 +--S-----------CC-----------S-----------CC-----------S--+
 I            .  SS         CC           SS            CC             .
 S            .   S         C            SI             C             .
              .    S       CC           S I             CC            .
              .    SS      C           SS I              C            .
         -0.4 +     S     C            S  I               C           +
              .      S   CC           S   I               CC          .
              .      SS CC           SS   I                CC         .
              .       SSC           SS    I                 C         .
              .        MS          SS     I                  C        .
         -0.8 +       C SS        SS      I                   C       +
              .     CC   SS      SS       I                    CC     .
              .  CCCC     SSSSSSSS        I                     CCCC  .
              .  C                        I                        C  .
              .                           I                           .
         -1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
                 -3              -1               1               3
                                      X AXIS
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TREEP

Prints a binary tree.

Required Arguments
ICLSON — Vector of length NODE – 1 containing the left son nodes.  (Input) 

Node number NODE + K has left son given by ICLSON(K) for K = 1, …, NODE -  1.
ICRSON — Vector of length NODE – 1 containing the right son nodes.  (Input) 

Node number NODE + K has right son given by ICRSON(K) for K = 1, …, NODE -  1.
CLEVEL — Vector of length NODE -  1 containing the level used in merging or splitting the son nodes.  

(Input) 
CLEVEL(K) specifies the scale to be used on the vertical (IMETH = 1 or 2) or horizontal (IMETH = 3) axis 
for node NODE + K, for K = 1, 2, …, NODE - 1.

NSCALE — Number of horizontal slices of tree.  (Input) 
NSCALE must be positive.

SCALE — Vector of length two giving the interval on the CLEVEL axis which should be used to plot the 
tree.  (Input) 
SCALE(1) is the location for printing the terminal nodes. The root node is printed at SCALE(2).

NODENM — CHARACTER*(*) vector of length NODE containing the terminal node labels.  (Input)
If terminal node labels are to be 1, 2, 3, …, then NODENM(1) should be “DEFAULT” and the remaining 
elements of NODENM are not used. The length of each label is M, where M is determined by the user.

Optional Arguments
NODE — Initial number of observations or nodes.  (Input) 

NODE must be greater than 2.
Default: NODE = size (ICLSON,1) + 1.

IMETH — Method to be used for printing the binary tree.  (Input)
Default: IMETH = 1.

IROOT — Subtree specification.  (Input) 
IROOT specifies the root node of the subtree to be printed. If IROOT = 2 * NODE - 1 (or zero for the 
default), the entire tree is printed. IROOT must be in the range NODE + 1 to 2 * NODE - 1.
Default: IROOT = 0.

NFILL — The number of filler lines printed between horizontal or vertical node lines.  (Input) 
NFILL = 1 is usually sufficient. NFILL must be nonnegative.
Default: NFILL = 1.

IMETH Method

1 Horizontal tree

2 Horizontal I-tree

3 Vertical tree
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FORTRAN 90 Interface
Generic: CALL TREEP (ICLSON, ICRSON, CLEVEL, NSCALE, SCALE, NODENM [, …])
Specific: The specific interface names are S_TREEP and D_TREEP.

FORTRAN 77 Interface
Single: CALL TREEP (NODE, ICLSON, ICRSON, IMETH, CLEVEL, IROOT, NSCALE, NFILL, SCALE, 

NODENM)
Double: The double precision name is DTREEP.

Description

Routine TREEP prints a binary tree which may represent results of hierarchical clustering algorithm such as 
the routine CLINK.

Let M = NODE indicate the number of nodes. A binary tree is composed of M terminal nodes and M - 1 non-
terminal nodes uniquely numbered 1 to M and M + 1 to M + (M - 1), respectively. Each nonterminal node 
joins together two son nodes which may or may not be terminal. Nonterminal nodes M + K are printed on 
the vertical scale interval [S1, S2] at the level given in CK, for K = 1, 2, …, M - 1, where S1 = SCALE(1), 
S2 = SCALE(2), and CK = CLEVEL(K).

Comments
1. Workspace may be explicitly provided, if desired, by use of T2EEP/DT2EEP. The reference is:

CALL T2EEP (NODE, ICLSON, ICRSON, IMETH, CLEVEL, IROOT, NSCALE, NFILL, SCALE, NODENM, 
IDTREE, ISTREE, IOTREE, INTREE, TLTREE)

The additional arguments are as follows:

IDTREE — Work vector of length IROOT. IDTREE is used to store the distance of each node from 
the vertical axis in vertical tree.

ISTREE — Work vector of length IROOT used to store all the nodes. IROOT is the first element of 
the array.

IOTREE — Work vector of length IROOT + 1 used to store the index of each node as TLTREE is 
sorted.

INTREE — Work vector of length IROOT.

TLTREE — Work vector of length IROOT + 1 used to store the level of each node in descending 
order in a vertical tree. It is used to store the distance of each node from the top of the horizon-
tal line in ascending order in a horizontal tree.

2. Printing starts on a new page with default page width 78. The user may change it by calling the rou-
tine PGOPT in advance.

Example

      USE PGOPT_INT
      USE TREEP_INT
      USE UMACH_INT
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      IMPLICIT   NONE
      INTEGER    NODE
      PARAMETER  (NODE=5)
!
      INTEGER    ICLSON(NODE-1), ICRSON(NODE-1), IMETH, IPAGE, NOUT, NSCALE
      REAL       CLEVEL(NODE-1), SCALE(2)
      CHARACTER  NODENM(NODE)*7
!
      DATA ICLSON/5, 6, 4, 7/
      DATA ICRSON/3, 1, 2, 8/
      DATA NODENM/'DEFAULT', ' ', ' ', ' ', ' '/
      DATA CLEVEL/1., 2., 3., 4./
      DATA SCALE/0., 5./
!                                 Set page width
      IPAGE = 70
      CALL PGOPT (-1, IPAGE)
      NSCALE = 1
!                                 Horizontal tree
      IMETH = 1
      CALL TREEP (ICLSON, ICRSON, CLEVEL, NSCALE, SCALE, NODENM, &
                  IMETH=IMETH)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999)
99999 FORMAT (1X, //////)
!                                 Horizontal I-tree
      IMETH = 2
      CALL TREEP (ICLSON, ICRSON, CLEVEL, NSCALE, SCALE, NODENM, &
                  IMETH=IMETH)
!
      END
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Output

Similarity range from   0.   to    5.000000
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
   5*************
                *
                6*************
                *            *
   3*************            *
                             *
                             7**************************
                             *                         *
   1**************************                         *
                                                       *
                                                       9**************
                                                       *
   4***************************************            *
                                          *            *
                                          8*************
                                          *
   2***************************************
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Similarity range from   0.   to    5.000000
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
   5************6************7*************************9**************
                *            *                         *
   3*************            *                         *
                             *                         *
   1**************************                         *
                                                       *
   4**************************************8*************
                                          *
   2***************************************
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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Chapter 17: Probability Distribution 
Functions
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17.1 Discrete Random Variables: Cumulative Distribution Functions and Probability 
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Usage Notes

Comments

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz (1969, 1970a, 
1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the subprograms described in this chapter 
are written for standard forms of statistical distributions. Hence, the number of parameters for any given dis-
tribution may be fewer than the number often associated with the distribution. For example, while a gamma 
distribution is often characterized by two parameters (or even a third, “location”), there is only one parame-
ter that is necessary, the “shape”. The “scale” parameter can be used to scale the variable to the standard 
gamma distribution. Also, the functions relating to the normal distribution, ANORDF and ANORIN, are for a 
normal distribution with mean equal to zero and variance equal to one. For other means and variances, it is 
very easy for the user to standardize the variables by subtracting the mean and dividing by the square root of 
the variance.

The cumulative distribution function for the (real, single-valued) random variable X is the function F defined 
for all real x by 

F(x) = Prob(X ≤ x)

where Prob(·) denotes the probability of an event. The distribution function is often called the cumulative dis-
tribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than the left 
endpoint and 1 for values greater than the right endpoint. The subprograms described in this chapter return 
the correct values for the distribution functions when values outside of the range of the random variable are 
input, but warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random variable takes on specific val-
ues is called the probability function, defined by

p(x) = Prob(X = x)

The “PR” routines described in this chapter evaluate probability functions. 

The CDF for a discrete random variable is

where A is the set such that k ≤ x. The “DF” routines in this chapter evaluate cumulative distribution func-
tions. Since the distribution function is a step function, its inverse does not exist uniquely.
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Figure 17.1 — Discrete Random Variable

In the plot above, a routine like BINPR in this chapter evaluates the individual probability, given X. A routine 
like BINDFwould evaluate the sum of the probabilities up to and including the probability at X.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not be useful because the prob-
ability of any given point is 0. For such distributions, the useful analog is the probability density function (PDF). 
The integral of the PDF is the probability over the interval, if the continuous random variable X has PDF f, 
then

The relationship between the CDF and the PDF is
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as shown in Figure 17-2.

Figure 17.2 — Probability Density Function

The “DF” routines described in this chapter evaluate cumulative distribution functions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the support of the 
distribution. The “IN” routines described in this chapter compute the inverses of the cumulative distribution 
functions, that is, given P =F(x) (called “P” for “probability”), a routine such as BETIN computes x. The 
inverses are defined only over the open interval (0,1).
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Figure 17.3 — Cumulative Probability Distribution Function

There are three routines described in this chapter that deal with general continuous distribution functions. 
The routine GCDF computes a distribution function using values of the density function, and the routine 
GCIN computes the inverse. These two routines may be useful when the user has an estimate of a probability 
density, as perhaps computed by the routine DESPL or DESKN (see Chapter 15: “Density and Hazard Estima-
tion”), or computed from a frequency polygon. The routine GFNIN computes the inverse of a distribution 
function that is specified as a FORTRAN function.

Parameter Estimation

A related task to evaluating a probability density or distribution function is to estimate the values of its 
parameters. For many of the distributions covered in this chapter, routine MLE provides maximum likelihood 
estimates of the unknown parameter values given a sample of observations. 

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to an inverse 
function, it is often impossible to achieve good accuracy because of the nature of the representation of 
numeric values. In this case, it may be better to work with the complementary distribution function (one 
minus the distribution function). If the distribution is symmetric about some point (as the normal distribu-
tion, for example) or is reflective about some point (as the beta distribution, for example), the complementary 
distribution function has a simple relationship with the distribution function. For example, to evaluate the 
standard normal distribution at 4.0, using ANORIN directly, the result to six places is 0.999968. Only two of 
those digits are really useful, however. A more useful result may be 1.000000 minus this value, which can be 
obtained to six significant figures as 3.16713E-05 by evaluating ANORIN at -4.0. For the normal distribution, 
the two values are related by Φ(x) = 1 - Φ(-x), where Φ(·) is the normal distribution function. Another exam-
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ple is the beta distribution with parameters 2 and 10. This distribution is skewed to the right, so evaluating 
BETDF at 0.7, we obtain 0.999953. A more precise result is obtained by evaluating BETDF with parameters 10 
and 2 at 0.3. This yields 4.72392E-5. (In both of these examples, it is wise not to trust the last digit.)

Many of the algorithms used by routines in this chapter are discussed by Abramowitz and Stegun (1964). The 
algorithms make use of various expansions and recursive relationships and often use different methods in 
different regions. 

Cumulative distribution functions are defined for all real arguments, however, if the input to one of the dis-
tribution functions in this chapter is outside the range of the random variable, an error of Type 1 is issued, 
and the output is set to zero or one, as appropriate. A Type 1 error is of lowest severity, a “note”, and, by 
default, no printing or stopping of the program occurs. The other common errors that occur in the routines of 
this chapter are Type 2, “alert”, for a function value being set to zero due to underflow, Type 3, “warning”, for 
considerable loss of accuracy in the result returned, and Type 5, “terminal”, for incorrect and/or inconsistent 
input, complete loss of accuracy in the result returned, or inability to represent the result (because of over-
flow). When a Type 5 error occurs, the result is set to NaN (not a number, also used as a missing value code, 
obtained by routine AMACH(6). (See the section “User Errors” in the Reference Material.)
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BINDF

This function evaluates the binomial cumulative distribution function.

Function Return Value
BINDF — Function value, the probability that a binomial random variable takes a value less than or equal 

to K.  (Output) 
BINDF is the probability that K or fewer successes occur in N independent Bernoulli trials, each of 
which has a PIN probability of success.

Required Arguments
K — Argument for which the binomial distribution function is to be evaluated.  (Input)
N — Number of Bernoulli trials.  (Input)
PIN — Probability of success on each independent trial.  (Input)

FORTRAN 90 Interface
Generic: BINDF (K, N, PIN)
Specific: The specific interface names are S_BINDF and D_BINDF.

FORTRAN 77 Interface
Single: BINDF (K, N, PIN)
Double: The double precision name is DBINDF.

Description

Function BINDF evaluates the cumulative distribution function of a binomial random variable with parame-
ters n and p where n = N and p = PIN. It does this by summing probabilities of the random variable taking on 
the specific values in its range. These probabilities are computed by the recursive relationship

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not greater than n 
times p, and are computed backward from n, otherwise. The smallest positive machine number, ɛ, is used as 

the starting value for summing the probabilities, which are rescaled by (1 - p)nɛ if forward computation is 

performed and by pnɛ if backward computation is done. For the special case of p = 0, BINDF is set to 1; and 
for the case p = 1, BINDF is set to 1 if k = n and to 0 otherwise.
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Comments
Informational Errors

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we find the probability 
that X is less than or equal to 3.

      USE UMACH_INT
      USE BINDF_INT

      IMPLICIT   NONE
      INTEGER    K, N, NOUT
      REAL       PIN, PR
!
      CALL UMACH (2, NOUT)
      K  = 3
      N  = 5
      PIN  = 0.95
      PR = BINDF(K,N, PIN)
      WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is less than or equal to 3 is ' &
            , F6.4)
      END

Output

The probability that X is less than or equal to 3 is 0.0226

Type Code Description

1 3 The input argument, K, is less than zero.

1 4 The input argument, K, is greater than the number of Bernoulli trials, N.
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BINPR

This function evaluates the binomial probability density function.

Function Return Value
BINPR   Function value, the probability that a binomial random variable takes a value equal to K.  

(Output)

Required Arguments
K — Argument for which the binomial probability function is to be evaluated.  (Input)
N — Number of Bernoulli trials.  (Input)
PIN — Probability of success on each independent trial.  (Input)

FORTRAN 90 Interface
Generic: BINPR (K, N, PIN)
Specific: The specific interface names are S_BINPR and D_BINPR.

FORTRAN 77 Interface
Single: BINPR (K, N, PIN)
Double: The double precision name is DBINPR.

Description

The function BINPR evaluates the probability that a binomial random variable with parameters n and p 
where p =PIN takes on the value k. It does this by computing probabilities of the random variable taking on 
the values in its range less than (or the values greater than) k. These probabilities are computed by the recur-
sive relationship

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not greater than n 
times p, and are computed backward from n, otherwise. The smallest positive machine number, ɛ, is used as 

the starting value for computing the probabilities, which are rescaled by (1 - p)nɛ if forward computation is 

performed and by pnɛ if backward computation is done.

For the special case of p = 0, BINPR is set to 0 if k is greater than 0 and to 1 otherwise; and for the case p = 1, 
BINPR is set to 0 if k is less than n and to 1 otherwise.
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Figure 17.4 — Binomial Probability Function

Comments
Informational Errors

Example

Suppose X is a binomial random variable with n = 5 and pin = 0.95. In this example, we find the probability 
that X is equal to 3.

      USE UMACH_INT
      USE BINPR_INT
      IMPLICIT   NONE
      INTEGER    K, N, NOUT
      REAL       PIN, PR
!
      CALL UMACH (2, NOUT)
      K  = 3
      N  = 5
      PIN  = 0.95
      PR = BINPR(K,N,PIN)
      WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is equal to 3 is ', F6.4)
      END

Type Code Description

1 3 The input argument, K, is less than zero.

1 4 The input argument, K, is greater than the number of Bernoulli trials, N.
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Output

The probability that X is equal to 3 is 0.0214
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GEODF

This function evaluates the discrete geometric cumulative probability distribution function.

Function Return Value
GEODF — Function value, the probability that a geometric random variable takes a value less than or 

equal to IX.  (Output)

Required Arguments
IX — Argument for which the geometric cumulative distribution function is to be evaluated.  (Input)
PIN — Probability parameter for each independent trial (the probability of success for each independent 

trial).  PIN must be in the open interval (0, 1). (Input) 

FORTRAN 90 Interface
Generic: GEODF (IX, PIN)
Specific: The specific interface names are S_GEODF and D_GEODF.

FORTRAN 77 Interface
Single: GEODF (IX, PIN)
Double: The double precision name is DGEODF.

Description

The function GEODF evaluates the discrete geometric cumulative probability distribution function with 
parameter p = PIN, defined

The return value is the probability that up to x trials would be observed before observing a success.

Example

In this example, we evaluate the probability function at IX = 3, PIN = 0.25.

      USE UMACH_INT
      USE GEODF_INT
      IMPLICIT NONE
      INTEGER NOUT, IX
      REAL PIN, PR
      CALL UMACH(2, NOUT)
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      IX = 3
      PIN = 0.25e0
      PR = GEODF(IX, PIN)
      WRITE (NOUT, 99999) IX, PIN, PR
99999 FORMAT (' GEODF(', I2, ', ', F4.2, ') = ', F10.6)
      END

Output

GEODF( 3, 0.25) =   0.683594  
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GEOIN

This function evaluates the inverse of the geometric cumulative probability distribution function.

Function Return Value
GEOIN — Integer function value. The probability that a geometric random variable takes a value less than 

or equal to the returned value is the input probability, P.  (Output)

Required Arguments
P — Probability for which the inverse of the discrete geometric cumulative distibution function is to be 

evaluated. P must be in the open interval (0, 1). (Input)
PIN — Probability parameter for each independent trial (the probability of success for each independent 

trial). PIN must be in the open interval (0, 1). (Input) 

FORTRAN 90 Interface
Generic: GEOIN (P, PIN)
Specific: The specific interface names are S_GEOIN and D_GEOIN.

FORTRAN 77 Interface
Single: GEOIN (P, PIN)
Double: The double precision name is DGEOIN.

Description

The function GEOIN evaluates the inverse distribution function of a geometric random variable with param-
eter PIN. The inverse of the CDF is defined as the smallest integer x such that the geometric CDF is not less 
than a given value P,  0 < P < 1.

Example

In this example, we evaluate the inverse probability function at PIN = 0.25, P = 0.6835.

      USE UMACH_INT
      USE GEOIN_INT
      IMPLICIT NONE
      INTEGER NOUT, IX
      REAL P, PIN
      CALL UMACH(2, NOUT)
      PIN = 0.25
      P =  0.6835
      IX = GEOIN(P, PIN)
      WRITE (NOUT, 99999) P, PIN, IX
99999 FORMAT (' GEOIN(', F4.2, ', ', F6.4 ') = ', I2)
      END
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Output

GEOIN(0.6835, 0.25) =  3  
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GEOPR

This function evaluates the discrete geometric probability density function.

Function Return Value
GEOPR — Function value, the probability that a random variable from a geometric distribution having 

parameter PIN will be equal to IX.  (Output)

Required Arguments
IX — Argument for which the discrete geometric probability density function is to be evaluated. IX must 

be greater than or equal to 0. (Input)
PIN — Probability parameter of the geometric probability function (the probability of success for each 

independent trial). PIN must be in the open interval (0, 1). (Input)

FORTRAN 90 Interface
Generic: GEOPR (IX, PIN)
Specific: The specific interface names are S_GEOPR and D_GEOPR.

FORTRAN 77 Interface
Single: GEOPR (IX, PIN)
Double: The double precision name is DGEOPR.

Description

The function GEOPR evaluates the discrete geometric probability density function, defined 

where p = PIN.

Example

In this example, we evaluate the probability density function at IX = 3, PIN = 0.25.

      USE UMACH_INT
      USE GEOPR_INT
      IMPLICIT NONE
      INTEGER NOUT, IX
      REAL PIN, PR
      CALL UMACH(2, NOUT)
      IX = 3
      PIN = 0.25e0
      PR = GEOPR(IX, PIN)
      WRITE (NOUT, 99999) IX, PIN, PR
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99999 FORMAT (' GEOPR(', I2, ', ', F4.2, ') = ', F6.4)
      END

Output

GEOPR( 3, 0.25) = 0.1055  
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HYPDF

This function evaluates the hypergeometric cumulative distribution function.

Function Return Value
HYPDF — Function value, the probability that a hypergeometric random variable takes a value less than 

or equal to K.  (Output) 
HYPDF is the probability that K or fewer defectives occur in a sample of size N drawn from a lot of size 
L that contains M defectives.
See Comment 1.

Required Arguments
K — Argument for which the hypergeometric cumulative distribution function is to be evaluated.  (Input)
N — Sample size.  (Input) 

N must be greater than zero and greater than or equal to K.
M — Number of defectives in the lot.  (Input)
L — Lot size.  (Input) 

L must be greater than or equal to N and M.

FORTRAN 90 Interface
Generic: HYPDF (K, N, M, L)
Specific: The specific interface names are S_HYPDF and D_HYPDF.

FORTRAN 77 Interface
Single: HYPDF (K, N, M, L)
Double: The double precision name is DHYPDF.

Description

The function HYPDF evaluates the cumulative distribution function of a hypergeometric random variable 
with parameters n, l, and m. The hypergeometric random variable X can be thought of as the number of items 
of a given type in a random sample of size n that is drawn without replacement from a population of size l 
containing m items of this type. The probability function is 

where i = max(0, n - l + m).
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If k is greater than or equal to i and less than or equal to min(n, m), HYPDF sums the terms in this expression 
for j going from i up to k. Otherwise, HYPDF returns 0 or 1, as appropriate. So, as to avoid rounding in the 
accumulation, HYPDF performs the summation differently depending on whether or not k is greater than the 
mode of the distribution, which is the greatest integer less than or equal to (m + 1)(n + 1)/(l + 2).

Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before 

use in an expression. For example:
X = HYPDF(K, N, M, L)
Y = SQRT(X)

must be used rather than
Y = SQRT(HYPDF(K, N, M, L))

If this is too much of a restriction on the programmer, then the specific name can be used without this 
restriction.

2. Informational errors 

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this example, we eval-
uate the distribution function at 7.

      USE UMACH_INT
      USE HYPDF_INT
      IMPLICIT   NONE
      INTEGER    K, L, M, N, NOUT
      REAL       DF
!
      CALL UMACH (2, NOUT)
      K  = 7
      N  = 100
      L  = 1000
      M  = 70
      DF = HYPDF(K,N,M,L)
      WRITE (NOUT,99999) DF
99999 FORMAT (' The probability that X is less than or equal to 7 is ' &
            , F6.4)
      END

Output

The probability that X is less than or equal to 7 is 0.5995

Type Code Description

1 5 The input argument, K, is less than zero.

1 6 The input argument, K, is greater than the sample size.
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HYPPR

This function evaluates the hypergeometric probability density function.

Function Return Value
HYPPR — Function value, the probability that a hypergeometric random variable takes a value equal to K.  

(Output) 
HYPPR is the probability that exactly K defectives occur in a sample of size N drawn from a lot of size L 
that contains M defectives.
See Comment 1. 

Required Arguments
K — Argument for which the hypergeometric probability function is to be evaluated.  (Input)
N — Sample size.  (Input) 

N must be greater than zero and greater than or equal to K.
M — Number of defectives in the lot.  (Input)
L — Lot size.  (Input) 

L must be greater than or equal to N and M.

FORTRAN 90 Interface
Generic: HYPPR (K, N, M, L)
Specific: The specific interface names are S_HYPPR and D_HYPPR.

FORTRAN 77 Interface
Single: HYPPR (K, N, M, L)
Double: The double precision name is DHYPPR.

Description

The function HYPPR evaluates the probability density function of a hypergeometric random variable with 
parameters n, l, and m. The hypergeometric random variable X can be thought of as the number of items of a 
given type in a random sample of size n that is drawn without replacement from a population of size l con-
taining m items of this type. The probability density function is

where i = max(0, n - l + m). HYPPR evaluates the expression using log gamma functions.
HYPPR         Chapter 17: Probability Distribution Functions      1380



Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before 

use in an expression. For example:
X = HYPPR(K, N, M, L)
Y = SQRT(X)

must be used rather than
Y = SQRT(HYPPR(K, N, M, L))

If this is too much of a restriction on the programmer, then the specific name can be used without this 
restriction.

2. Informational errors

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this example, we eval-
uate the probability function at 7.

      USE UMACH_INT
      USE HYPPR_INT

      IMPLICIT   NONE
      INTEGER    K, L, M, N, NOUT
      REAL       PR
!
      CALL UMACH (2, NOUT)
      K  = 7
      N  = 100
      L  = 1000
      M  = 70
      PR = HYPPR(K,N,M,L)
      WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is equal to 7 is ', F6.4)
      END

Output

The probability that X is equal to 7 is 0.1628

Type Code Description

1 5 The input argument, K, is less than zero.

1 6 The input argument, K, is greater than the sample size.
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POIDF

This function evaluates the Poisson cumulative distribution function.

Function Return Value
POIDF — Function value, the probability that a Poisson random variable takes a value less than or equal 

to K.  (Output)

Required Arguments
K — Argument for which the Poisson cumulative distribution function is to be evaluated.  (Input)
THETA — Mean of the Poisson distribution.  (Input) 

THETA must be positive.

FORTRAN 90 Interface
Generic: POIDF (K, THETA)
Specific: The specific interface names are S_POIDF and D_POIDF.

FORTRAN 77 Interface
Single: POIDF (K, THETA)
Double: The double precision name is DPOIDF.

Description

The function POIDF evaluates the cumulative distribution function of a Poisson random variable with 
parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probabil-
ity function (with θ = THETA) is

f(x) = e−θθx/x!, for x = 0, 1, 2, …
The individual terms are calculated from the tails of the distribution to the mode of the distribution and 
summed. POIDF uses the recursive relationship

f(x + 1) = f(x)θ/(x + 1), for x = 0, 1, 2, …k – 1,

with f(0) = e−θ

Comments
Informational Error

Type Code Description

1 1 The input argument, K, is less than zero.
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Example

Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the distribution function at 
7.

      USE UMACH_INT
      USE POIDF_INT
      IMPLICIT   NONE
      INTEGER    K, NOUT
      REAL       DF, THETA
!
      CALL UMACH (2, NOUT)
      K     = 7
      THETA = 10.0
      DF    = POIDF(K,THETA)
      WRITE (NOUT,99999) DF
99999 FORMAT (' The probability that X is less than or equal to ', &
            '7 is ', F6.4)
      END

Output

The probability that X is less than or equal to 7 is 0.2202
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POIPR

This function evaluates the Poisson probability density function.

Function Return Value
POIPR — Function value, the probability that a Poisson random variable takes a value equal to K.  

(Output)

Required Arguments
K — Argument for which the Poisson probability density function is to be evaluated.  (Input)
THETA — Mean of the Poisson distribution.  (Input) 

THETA must be positive.

FORTRAN 90 Interface
Generic: POIPR (K, THETA)
Specific: The specific interface names are S_POIPR and D_POIPR.

FORTRAN 77 Interface
Single: POIPR (K, THETA)
Double: The double precision name is DPOIPR.

Description

The function POIPR evaluates the probability density function of a Poisson random variable with parameter 
THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probability function 
(with θ = THETA) is

f(x) = e−θθk/k!, for k = 0, 1, 2, …
POIPR evaluates this function directly, taking logarithms and using the log gamma function.
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Figure 17.5 — Poisson Probability Density Function

Comments
Informational Error

Example

Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the probability function at 
7.

      USE UMACH_INT
      USE POIPR_INT
      IMPLICIT   NONE

      INTEGER    K, NOUT
      REAL       PR, THETA
!
      CALL UMACH (2, NOUT)
      K     = 7
      THETA = 10.0
      PR    = POIPR(K,THETA)
      WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is equal to 7 is ', F6.4)
      END

Type Code Description

1 1 The input argument, K, is less than zero.
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Output

The probability that X is equal to 7 is 0.0901
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UNDDF

This function evaluates the discrete uniform cumulative distribution function.

Function Return Value
UNDDF — Function value, the probability that a uniform random variable takes a value less than or equal 

to IX.  (Output)

Required Arguments
IX — Argument for which the discrete uniform cumulative distribution function is to be evaluated.  

(Input)
N — Scale parameter.  N must be greater than 0. (Input) 

FORTRAN 90 Interface
Generic: UNDDF (IX, N)
Specific: The specific interface names are S_UNDDF and D_UNDDF.

FORTRAN 77 Interface
Single: UNDDF (IX, N)
Double: The double precision name is DUNDDF.

Description

The notation below uses the floor and ceiling function notation,  and . 

The function UNDDF evaluates the discrete uniform cumulative probability distribution function with scale 
parameter N, defined

Example

In this example, we evaluate the probability function at IX = 3, N = 5.

      USE UMACH_INT
      USE UNDDF_INT
      IMPLICIT NONE
      INTEGER NOUT, IX, N
      REAL PR
      CALL UMACH(2, NOUT)
      IX = 3
      N = 5
      PR = UNDDF(IX, N)
UNDDF         Chapter 17: Probability Distribution Functions      1387



      WRITE (NOUT, 99999) IX, N, PR
99999 FORMAT (' UNDDF(', I2, ', ', I2, ') = ', F6.4)
      END

Output

UNDDF( 3,  5) = 0.6000 
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UNDIN

This function evaluates the inverse of the discrete uniform cumulative distribution function.

Function Return Value
UNDIN — Integer function value. The probability that a uniform random variable takes a value less than 

or equal to the returned value is the input probability, P.  (Output)

Required Arguments
P — Probability for which the inverse of the discrete uniform cumulative distribution function is to be 

evaluated. P must be nonnegative and less than or equal to 1.0. (Input)
N — Scale parameter.  N must be greater than 0. (Input) 

FORTRAN 90 Interface
Generic: UNDIN (P, N)
Specific: The specific interface names are S_UNDIN and D_UNDIN.

FORTRAN 77 Interface
Single: UNDIN (P, N)
Double: The double precision name is DUNDIN.

Description

The notation below uses the floor and ceiling function notation,  and .

The function UNDIN evaluates the inverse distribution function of a discrete uniform random variable with 
scale parameter N, defined

Example

In this example, we evaluate the inverse probability function at P = 0.6, N = 5.

      USE UMACH_INT
      USE UNDIN_INT
      IMPLICIT NONE
      INTEGER NOUT, N, IX
      REAL P
      CALL UMACH(2, NOUT)
      P = 0.60
      N = 5
      IX = UNDIN(P, N)
      WRITE (NOUT, 99999) P, N, IX
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99999 FORMAT (' UNDIN(', F4.2, ', ', I2 ') = ', I2)
      END

Output

UNDIN(0.60,  5) =  3  
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UNDPR

This function evaluates the discrete uniform probability density function.

Function Return Value
UNDPR — Function value, the probability that a random variable from a uniform distribution having 

scale parameter N will be equal to IX.  (Output)

Required Arguments
IX — Argument for which the discrete uniform probability density function is to be evaluated.  (Input)
N — Scale parameter.  N must be greater than 0. (Input) 

FORTRAN 90 Interface
Generic: UNDPR (IX, N)
Specific: The specific interface names are S_UNDPR and D_UNDPR.

FORTRAN 77 Interface
Single: UNDPR (IX, N)
Double: The double precision name is DUNDPR.

Description

The discrete uniform PDF is defined for positive integers x in the range 1, …, N, N > 0. It has the value 

, and y = 0, for x > N. Allowing the function to accept values of x result-

ing in y = 0, for x > N is provided as a convenience to the user. Values of x ≤ 0 are errors.

Example

In this example, we evaluate the discrete uniform probability density function at IX = 3, N = 5.

      USE UMACH_INT
      USE UNDPR_INT
      IMPLICIT NONE
      INTEGER NOUT, IX, N
      REAL PR
      CALL UMACH(2, NOUT)
      IX = 3
      N = 5
      PR = UNDPR(IX, N)
      WRITE (NOUT, 99999) IX, N, PR
99999 FORMAT (' UNDPR(', I2, ', ', I2, ') = ', F6.4)
      END
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Output

UNDPR( 3,  5) = 0.2000   
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AKS1DF

This function evaluates the cumulative distribution function of the one-sided Kolmogorov-Smirnov good-

ness of fit D+ or D− test statistic based on continuous data for one sample.

Function Return Value
AKS1DF — The probability of a smaller D.  (Output)

Required Arguments
NOBS — The total number of observations in the sample.  (Input)

D — The D+ or D− test statistic.  (Input) 
D is the maximum positive difference of the empirical cumulative distribution function (CDF) minus 
the hypothetical CDF or the maximum positive difference of the hypothetical CDF minus the empiri-
cal CDF.

FORTRAN 90 Interface
Generic: AKS1DF (NOBS, D)
Specific: The specific interface names are S_AKS1DF and D_AKS1DF.

FORTRAN 77 Interface
Single: AKS1DF (NOBS, D)
Double: The double precision name is DKS1DF.

Description

Routine AKS1DF computes the cumulative distribution function (CDF) for the one-sided Kolmog-
orov-Smirnov one-sample 

D+ or D-

statistic when the theoretical CDF is strictly continuous. Let 

F(x)

denote the theoretical distribution function, and let

denote the empirical distribution function obtained from a sample of size NOBS. Then, the 

D+
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statistic is computed as

while the one-sided 

D-

 statistic is computed as

Exact probabilities are computed according to a method given by Conover (1980, page 350) for sample sizes 
of 80 or less. For sample sizes greater than 80, Smirnov’s asymptotic result is used, that is, the value of the 

CDF is taken as , where d is D+ or D− (Kendall and Stuart, 1979, page 482). This asymptotic expres-
sion is conservative (the value returned by AKS1DF is smaller than the exact value, when the sample size 
exceeds 80).

Comments
1. Workspace may be explicitly provided, if desired, by use of AK21DF/DK21DF. The reference is:

AK2DF (NOBS, D, WK)
The additional argument is:

WK — Work vector of length 3 * NOBS + 3 if NOBS ≤ 80. WK is not used if NOBS is greater than 80.
2. Informational errors

3. If NOBS ≤ 80, then exact one-sided probabilities are computed. In this case, on the order of NOBS2 oper-
ations are required. For NOBS > 80, approximate one-sided probabilities are computed. These 
approximate probabilities require very few computations.

4. An approximate two-sided probability for the D = max (D+, D−) statistic can be computed as twice the 
AKS1DF probability for D (minus one, if the probability from AKS1DF is greater than 0.5).

Programming Notes

Routine AKS1DF requires on the order of NOBS2 operations to compute the exact probabilities, where an 
operation consists of taking ten or so logarithms. Because so much computation is occurring within each 
“operation,” AKS1DF is much slower than its two-sample counterpart, function AKS2DF.

Type Code Description

1 2 Since the D test statistic is less than zero, the distribution function is zero at D.

1 3 Since the D test statistic is greater than one, the distribution function is one at 
D.
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Example

In this example, the exact one-sided probabilities for the tabled values of D+ or D−, given, for example, in 
Conover (1980, page 462), are computed. Tabled values at the 10% level of significance are used as input to 
AKS1DF for sample sizes of 5 to 50 in increments of 5 (the last two tabled values are obtained using the 
asymptotic critical values of

The resulting probabilities should all be close to 0.90.

      USE UMACH_INT
      USE AKS1DF_INT
      IMPLICIT   NONE
      INTEGER    I, NOBS, NOUT
      REAL       D(10)
!
      DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165, &
          0.160, 0.151/
!
      CALL UMACH (2, NOUT)
!
      DO 10  I=1, 10
         NOBS = 5*I
!
         WRITE (NOUT,99999) D(I), NOBS, AKS1DF(NOBS,D(I))
!
99999    FORMAT (' One-sided Probability for D = ', F8.3, ' with NOBS ' &
               , '= ', I2, ' is ', F8.4)
   10 CONTINUE
      END

Output

One-sided Probability for D =    0.447 with NOBS =  5 is   0.9000
One-sided Probability for D =    0.323 with NOBS = 10 is   0.9006
One-sided Probability for D =    0.266 with NOBS = 15 is   0.9002
One-sided Probability for D =    0.232 with NOBS = 20 is   0.9009
One-sided Probability for D =    0.208 with NOBS = 25 is   0.9002
One-sided Probability for D =    0.190 with NOBS = 30 is   0.8992
One-sided Probability for D =    0.177 with NOBS = 35 is   0.9011
One-sided Probability for D =    0.165 with NOBS = 40 is   0.8987
One-sided Probability for D =    0.160 with NOBS = 45 is   0.9105
One-sided Probability for D =    0.151 with NOBS = 50 is   0.9077
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AKS2DF

This function evaluates the cumulative distribution function of the Kolmogorov-Smirnov goodness of fit D 
test statistic based on continuous data for two samples.

Function Return Value
AKS2DF — The probability of a smaller D.  (Output)

Required Arguments
NOBSX — The total number of observations in the first sample.  (Input)
NOBSY — The total number of observations in the second sample.  (Input)
D — The D test statistic.  (Input)

D is the maximum absolute difference between empirical cumulative distribution functions (CDFs) of 
the two samples.

FORTRAN 90 Interface
Generic: AKS2DF (NOBSX, NOBSY, D)
Specific: The specific interface names are S_AKS2DF and D_AKS2DF.

FORTRAN 77 Interface
Single: AKS2DF (NOBSX, NOBSY, D)
Double: The double precision name is DKS2DF.

Description

Function AKS2DF computes the cumulative distribution function (CDF) for the two-sided Kolmog-
orov-Smirnov two-sample D statistic when the theoretical CDF is strictly continuous. Exact probabilities are 
computed according to a method given by Kim and Jennrich (1973). Approximate asymptotic probabilities 
are computed according to methods also given in this reference. 

Let Fn(x) and Gm(x) denote the empirical distribution functions for the two samples, based on n = NOBSX and 
m = NOBSY observations. Then, the D statistic is computed as

Comments
1. Workspace may be explicitly provided, if desired, by use of AK22DF/DK22DF. The reference is:

AK22DF (NOBSX, NOBSY, D, WK)
The additional argument is:

WK — Work vector of length max(NOBSX, NOBSY) + 1.
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2. Informational errors 

Programming Notes

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute the exact probabilities, 
where an operation consists of an addition and a multiplication. For NOBSX * NOBSY less than 10000, the 
exact probability is computed. If this is not the case, then the Smirnov approximation discussed by Kim and 
Jennrich (1973) is used if the minimum of NOBSX and NOBSY is greater than ten percent of the maximum of 
NOBSX and NOBSY, or if the minimum is greater than 80. Otherwise, the Kolmogorov approximation dis-
cussed by Kim and Jennrich (1973) is used.

Example

Function AKS2DF is used to compute the probability of a smaller D statistic for a variety of sample sizes 
using values close to the 0.95 probability value.

      USE UMACH_INT
      USE AKS2DF_INT

      IMPLICIT   NONE
      INTEGER    I, NOBSX(10), NOBSY(10), NOUT
      REAL       D(10)
!
      DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/
      DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/
      DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796, &
          0.18, 0.18/
!
      CALL UMACH (2, NOUT)
!
      DO 10  I=1, 10
!
         WRITE (NOUT,99999) D(I), NOBSX(I), NOBSY(I), &
                          AKS2DF(NOBSX(I),NOBSY(I),D(I))
!
99999    FORMAT (' Probability for D = ', F5.3, ' with NOBSX = ', I3, &
               ' and NOBSY = ', I3, ' is ', F9.6, '.')
   10 CONTINUE
      END

Type Code Description

1 2 Since the D test statistic is less than zero, then the distribution function is zero 
at D.

1 3 Since the D test statistic is greater than one, then the distribution function is 
one at D.
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Output

Probability for D = 0.700 with NOBSX =   5 and NOBSY =  10 is  0.980686.
Probability for D = 0.550 with NOBSX =  20 and NOBSY =  10 is  0.987553.
Probability for D = 0.475 with NOBSX =  40 and NOBSY =  10 is  0.972423.
Probability for D = 0.443 with NOBSX =  70 and NOBSY =  10 is  0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY =  10 is  0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY =  20 is  0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY =  40 is  0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY =  60 is  0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY =  80 is  0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is  0.946098.
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ALNDF

This function evaluates the lognormal cumulative probability distribution function.

Function Return Value
ALNDF — Function value, the probability that a standard lognormal random variable takes a value less 

than or equal to X.  (Output)

Required Arguments
X — Argument for which the lognormal cumulative distribution function is to be evaluated.  (Input)
AMU — Location parameter of the lognormal cumulative distribution function.  (Input) 
SIGMA — Shape parameter of the lognormal cumulative distribution function. SIGMA must be greater 

than 0. (Input)

FORTRAN 90 Interface
Generic: ALNDF (X, AMU, SIGMA)
Specific: The specific interface names are S_ALNDF and D_ALNDF.

FORTRAN 77 Interface
Single: ALNDF (X, AMU, SIGMA)
Double: The double precision name is DLNDF.

Description

The function ALNDF evaluates the lognormal cumulative probability distribution function, defined as 

where

 

is the standard normal CDF.
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Example

In this example, we evaluate the probability distribution function at X = 0.7137, AMU = 0.0, 
SIGMA = 0.5.

      USE UMACH_INT
      USE ALNDF_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, AMU, SIGMA, PR
      CALL UMACH(2, NOUT)
      X = .7137
      AMU = 0.0
      SIGMA = 0.5
      PR = ALNDF(X, AMU, SIGMA)
      WRITE (NOUT, 99999) X, AMU, SIGMA, PR
99999 FORMAT (' ALNDF(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

ALNDF(  0.71, 0.00, 0.50) = 0.2500 
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ALNIN

This function evaluates the inverse of the lognormal cumulative probability distribution function.

Function Return Value
ALNIN — Function value, the probability that a lognormal random variable takes a value less than or 

equal to the returned value is the input probability P.  (Output)

Required Arguments
P — Probability for which the inverse of the lognormal distribution function is to be evaluated.  (Input)
AMU — Location parameter of the lognormal cumulative distribution function.  (Input) 
SIGMA — Shape parameter of the lognormal cumulative distribution function. SIGMA must be greater 

than 0. (Input) 

FORTRAN 90 Interface
Generic: ALNIN (P, AMU, SIGMA)
Specific: The specific interface names are S_ALNIN and D_ALNIN.

FORTRAN 77 Interface
Single: ALNIN (P, AMU, SIGMA)
Double: The double precision name is DLNIN.

Description

The function ALNIN evaluates the inverse distribution function of a lognormal random variable with location 
parameter AMU and scale parameter SIGMA. The probability that a standard lognormal random variable takes 
a value less than or equal to the returned value is P.

Example

In this example, we evaluate the inverse probability function at P = 0.25,  AMU = 0.0, SIGMA = 0.5.

      USE UMACH_INT
      USE ALNIN_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, AMU, SIGMA, P
      CALL UMACH(2, NOUT)
      P = .25
      AMU = 0.0
      SIGMA = 0.5
      X = ALNIN(P, AMU, SIGMA)
      WRITE (NOUT, 99999) P, AMU, SIGMA, X
99999 FORMAT (' ALNIN(', F6.3, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
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      END

Output

ALNIN( 0.250, 0.00, 0.50) = 0.7137 
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ALNPR

This function evaluates the lognormal probability density function.

Function Return Value
ALNPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the lognormal probability density function is to be evaluated.  (Input)
AMU — Location parameter of the lognormal probability function.  (Input) 
SIGMA — Shape parameter of the lognormal probability function. SIGMA must be greater than 0. (Input)

FORTRAN 90 Interface
Generic: ALNPR (X, AMU, SIGMA)
Specific: The specific interface names are S_ALNPR and D_ALNPR.

FORTRAN 77 Interface
Single: ALNPR (X, AMU, SIGMA)
Double: The double precision name is DLNPR.

Description

The function ALNPR evaluates the lognormal probability density function, defined as 

Example

In this example, we evaluate the probability function at X = 1.0, AMU = 0.0, SIGMA = 0.5.

      USE UMACH_INT
      USE ALNPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, AMU, SIGMA, PR
      CALL UMACH(2, NOUT)
      X = 1.0
      AMU = 0.0
      SIGMA = 0.5
      PR = ALNPR(X, AMU, SIGMA)
      WRITE (NOUT, 99999) X, AMU, SIGMA, PR
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99999 FORMAT (' ALNPR(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

ALNPR(  1.00, 0.00, 0.50) = 0.7979 
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ANORDF

This function evaluates the standard normal (Gaussian) cumulative distribution function.

Function Return Value
ANORDF — Function value, the probability that a normal random variable takes a value less than or 

equal to X.  (Output)

Required Arguments
X — Argument for which the normal cumulative distribution function is to be evaluated.  (Input)

FORTRAN 90 Interface
Generic: ANORDF (X)
Specific: The specific interface names are S_ANORDF and D_ANORDF.

FORTRAN 77 Interface
Single: ANORDF (X)
Double: The double precision name is DNORDF.

Description

Function ANORDF evaluates the cumulative distribution function, Φ, of a standard normal (Gaussian) ran-
dom variable, that is,

The value of the distribution function at the point x is the probability that the random variable takes a value 
less than or equal to x. 

The standard normal distribution (for which ANORDF is the distribution function) has mean of 0 and variance 

of 1. The probability that a normal random variable with mean μ and variance σ2 is less than y is given by 
ANORDF evaluated at (y - μ)/σ. 

Φ(x) is evaluated by use of the complementary error function, erfc. (See ERFC, IMSL MATH/LIBRARY Spe-
cial Functions). The relationship is: 
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Figure 17.6 — Standard Normal Distribution Function

Example

Suppose X is a normal random variable with mean 100 and variance 225. In this example, we find the proba-
bility that X is less than 90, and the probability that X is between 105 and 110.

      USE UMACH_INT
      USE ANORDF_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       P, X1, X2
!
      CALL UMACH (2, NOUT)
      X1 = (90.0-100.0)/15.0
      P  = ANORDF(X1)
      WRITE (NOUT,99998) P
99998 FORMAT (' The probability that X is less than 90 is ', F6.4)
      X1 = (105.0-100.0)/15.0
      X2 = (110.0-100.0)/15.0
      P  = ANORDF(X2) - ANORDF(X1)
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 105 and 110 is ', &
            F6.4)
      END

Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
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ANORIN

This function evaluates the inverse of the standard normal (Gaussian) cumulative distribution function.

Function Return Value
ANORIN — Function value.  (Output) 

The probability that a standard normal random variable takes a value less than or equal to ANORIN is 
P.

Required Arguments
P — Probability for which the inverse of the normal cumulative distribution function is to be evaluated.  

(Input) 
P must be in the open interval (0.0, 1.0).

FORTRAN 90 Interface
Generic: ANORIN (P)
Specific: The specific interface names are S_ANORIN and D_ANORIN.

FORTRAN 77 Interface
Single: ANORIN (P)
Double: The double precision name is DNORIN.

Description

Function ANORIN evaluates the inverse of the cumulative distribution function, Φ, of a standard normal 

(Gaussian) random variable, that is, x =  ANORIN(P) = Φ−1(p), where

The value of the distribution function at the point x is the probability that the random variable takes a value 
less than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.
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Example

In this example, we compute the point such that the probability is 0.9 that a standard normal random vari-
able is less than or equal to this point.

      USE UMACH_INT
      USE ANORIN_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       P, X
!
      CALL UMACH (2, NOUT)
      P = 0.9
      X = ANORIN(P)
      WRITE (NOUT,99999) X
99999 FORMAT (' The 90th percentile of a standard normal is ', F6.4)
      END

Output

The 90th percentile of a standard normal is 1.2816
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ANORPR

This function evaluates the normal probability density function.

Function Return Value
ANORPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the normal probability density function is to be evaluated.  (Input)

FORTRAN 90 Interface
Generic: ANORPR (X)
Specific: The specific interface names are S_NORPR and D_NORPR.

FORTRAN 77 Interface
Single: ANORPR (X)
Double: The double precision name is DNORPR.

Description

The function ANORPR evaluates the normal probability density function, defined as 

Example

In this example, we evaluate the probability function at X = 0.5.

      USE UMACH_INT
      USE ANORPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, PR
      CALL UMACH(2, NOUT)
      X = 0.5
      PR = ANORPR(X)
      WRITE (NOUT, 99999) X, PR
99999 FORMAT (' ANORPR(', F4.2, ') = ', F6.4)
      END

Output

ANORPR(0.50) = 0.3521 
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BETDF

This function evaluates the beta cumulative distribution function.

Function Return Value
BETDF — Probability that a random variable from a beta distribution having parameters PIN and QIN 

will be less than or equal to X.  (Output)

Required Arguments
X — Argument for which the beta distribution function is to be evaluated.  (Input)
PIN — First beta distribution parameter.  (Input) 

PIN must be positive.
QIN — Second beta distribution parameter.  (Input)

QIN must be positive.

FORTRAN 90 Interface
Generic: BETDF (X, PIN, QIN)
Specific: The specific interface names are S_BETDF and D_BETDF.

FORTRAN 77 Interface
Single: BETDF (X, PIN, QIN)
Double: The double precision name is DBETDF.

Description

Function BETDF evaluates the cumulative distribution function of a beta random variable with parameters 
PIN and QIN. This function is sometimes called the incomplete beta ratio and, with p = PIN and q = QIN, is 
denoted by Ix(p, q). It is given by

where Γ(·) is the gamma function. The value of the distribution function Ix(p, q) is the probability that the ran-
dom variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is denoted by βx(p, q). The con-
stant in the expression is the reciprocal of the beta function (the incomplete function evaluated at one) and is 
denoted by β(p, q).

Function BETDF uses the method of Bosten and Battiste (1974).
BETDF         Chapter 17: Probability Distribution Functions      1410



Figure 17.7 — Beta Distribution Function

Comments
Informational Errors

Type Code Description

1 1 Since the input argument X is less than or  equal to zero, the distribution 
function is equal to zero at X.

1 2 Since the input argument X is greater than or equal to one, the distribution  
function is equal to one at X.
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Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) In this 
example, we find the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. 
(Since X is a symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

      USE UMACH_INT
      USE BETDF_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       P, PIN, QIN, X
!
      CALL UMACH (2, NOUT)
      PIN = 12.0
      QIN = 12.0
      X   = 0.6
      P   = BETDF(X,PIN,QIN)
      WRITE (NOUT,99998) P
99998 FORMAT (' The probability that X is less than 0.6 is ', F6.4)
      X = 0.5
      P = P - BETDF(X,PIN,QIN)
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 0.5 and 0.6 is ', &
            F6.4)
      END

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
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BETIN

This function evaluates the inverse of the beta cumulative distribution function.

Function Return Value
BETIN — Function value.  (Output) 

The probability that a beta random variable takes a value less than or equal to BETIN is P.

Required Arguments
P — Probability for which the inverse of the beta distribution function is to be evaluated.  (Input) 

P must be in the open interval (0.0, 1.0).
PIN — First beta distribution parameter.  (Input) 

PIN must be positive.
QIN — Second beta distribution parameter.  (Input)

QIN must be positive.

FORTRAN 90 Interface
Generic: BETIN (P, PIN, QIN)
Specific: The specific interface names are S_BETIN and D_BETIN.

FORTRAN 77 Interface
Single: BETIN (P, PIN, QIN)
Double: The double precision name is DBETIN.

Description

The function BETIN evaluates the inverse distribution function of a beta random variable with parameters 
PIN and QIN, that is, with P = P, p = PIN, and q = QIN, it determines x (equal to BETIN(P, PIN, QIN)), such 
that

where Γ(·) is the gamma function. The probability that the random variable takes a value less than or equal to 
x is P. 
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Comments
Informational Error

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) In this 
example, we find the value x0 such that the probability that X ≤ x0 is 0.9.

      USE UMACH_INT
      USE BETIN_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       P, PIN, QIN, X
!
      CALL UMACH (2, NOUT)
      PIN = 12.0
      QIN = 12.0
      P   = 0.9
      X   = BETIN(P,PIN,QIN)
      WRITE (NOUT,99999) X
99999 FORMAT (' X is less than ', F6.4, ' with probability 0.9.')
      END

Output

X is less than 0.6299 with probability 0.9.

Type Code Description

3 1 The value for the inverse Beta distribution could not be found in 100 itera-
tions. The best approximation is used.
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BETPR

This function evaluates the beta probability density function.

Function Return Value
BETPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the beta probability density function is to be evaluated.  (Input)
PIN — First beta distribution parameter.  (Input) 

PIN must be positive.
QIN — Second beta distribution parameter.  (Input)

QIN must be positive.

FORTRAN 90 Interface
Generic: BETPR (X, PIN, QIN)
Specific: The specific interface names are S_BETPR and D_BETPR.

FORTRAN 77 Interface
Single: BETPR (X, PIN, QIN)
Double: The double precision name is DBETPR.

Description

The function BETPR evaluates the beta probability density function with parameters PIN and QIN. Using 
x = X, a = PIN and b = QIN, the beta distribution is defined as

where beta function B(a, b) is computed using IMSL function BETA (see the Special Functions book, Chapter 4, 
Gamma and Related Functions).
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Example

In this example, we evaluate the probability function at X = 0.75, PIN = 2.0, QIN = 0.5.

      USE UMACH_INT
      USE BETPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, PIN, QIN, PR
      CALL UMACH(2, NOUT)
      X = .75
      PIN = 2.0
      QIN = 0.5
      PR = BETPR(X, PIN, QIN)
      WRITE (NOUT, 99999) X, PIN, QIN, PR
99999 FORMAT (' BETPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

 BETPR(0.75, 2.00, 0.50) = 1.1250 
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BETNDF

This function evaluates the noncentral beta cumulative distribution function (CDF).

Function Return Value
BETNDF — Probability that a random variable from a beta distribution having shape parameters SHAPE1 

and SHAPE2 and noncentrality parameter LAMBDA will be less than or equal to X.  (Output)

Required Arguments
X — Argument for which the noncentral beta cumulative distribution function is to be evaluated.  (Input)

 X must be non-negative and less than or equal to 1.
SHAPE1 — First shape parameter of the noncentral beta distribution.  (Input)

SHAPE1 must be positive.
SHAPE2 — Second shape parameter of the noncentral beta distribution.  (Input)

SHAPE2 must be positive.
LAMBDA — Noncentrality parameter. (Input)

LAMBDA must be non-negative.

FORTRAN 90 Interface
Generic: BETNDF (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNDF and D_BETNDF.

Description

The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square 
random variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random 
variable with 2α2 degrees of freedom which is statistically independent of Z, then

is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply 
defined in terms of the noncentral F CDF:
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where  is a noncentral beta CDF with x = x, α1 = SHAPE1, α2 = SHAPE2, and noncentral-

ity parameter λ = LAMBDA;  is a noncentral F CDF with argument f, numerator and 

denominator degrees of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ and:

(See documentation for function FNDF for a discussion of how the noncentral F CDF is defined and 
calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example

This example traces out a portion of a noncentral beta distribution with parameters SHAPE1 = 50, 
SHAPE2 = 5, and LAMBDA = 10.

      USE UMACH_INT
      USE BETNDF_INT 
      USE FNDF_INT
      IMPLICIT NONE
      INTEGER NOUT, I
      REAL X, LAMBDA, SHAPE1, SHAPE2, &
         BCDFV, FCDFV, F(8)

      DATA F /0.0, 0.4, 0.8, 1.2, &
              1.6, 2.0, 2.8, 4.0 /

      CALL UMACH (2, NOUT)
      SHAPE1 = 50.0
      SHAPE2 = 5.0
      LAMBDA = 10.0

      WRITE (NOUT,'(/"  SHAPE1: ", F4.0, &
        & ";  SHAPE2: ", F4.0, &
        & ";  LAMBDA: ", F4.0 // &
        & 6x,"X",6x,"NCBETCDF(X)",3x,"NCBETCDF(X)"/ &
        & 14x,"expected")') SHAPE1, SHAPE2, LAMBDA

      DO I = 1, 8
         X = (SHAPE1*F(I)) / (SHAPE1*F(I) + SHAPE2)
         FCDFV = FNDF(F(I),2*SHAPE1,2*SHAPE2,LAMBDA)
         BCDFV = BETNDF(X, SHAPE1, SHAPE2, LAMBDA)
         WRITE (NOUT,'(2X, F8.6, 2(2X, E12.6))') &
            X, FCDFV, BCDFV
      END DO
      END
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Output

  SHAPE1:  50.;  SHAPE2:   5.;  LAMBDA:  10.

      X      NCBETCDF(X)   NCBETCDF(X)
              expected
  0.000000  0.000000E+00  0.000000E+00
  0.800000  0.488790E-02  0.488790E-02
  0.888889  0.202633E+00  0.202633E+00
  0.923077  0.521143E+00  0.521143E+00
  0.941176  0.733853E+00  0.733853E+00
  0.952381  0.850413E+00  0.850413E+00
  0.965517  0.947125E+00  0.947125E+00
  0.975610  0.985358E+00  0.985358E+00
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BETNIN

This function evaluates the inverse of the noncentral beta cumulative distribution function (CDF).

Function Return Value
BETNIN — Function value, the value of the inverse of the cumulative distribution function evaluated at P. 

The probability that a noncentral beta random variable takes a value less than or equal to BETNIN is P.  
(Output)

Required Arguments
P — Probability for which the inverse of the noncentral beta cumulative distribution function is to be eval-

uated.  (Input)
P must be non-negative and less than or equal to 1.

SHAPE1 — First shape parameter of the noncentral beta distribution.  (Input)
SHAPE1 must be positive.

SHAPE2 — Second shape parameter of the noncentral beta distribution.  (Input)
SHAPE2 must be positive. 

LAMBDA — Noncentrality parameter.  (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface
Generic: BETNIN (P, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNIN and D_BETNIN.

Description

The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square 
random variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random 
variable with 2α2 degrees of freedom which is statistically independent of Z, then

is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply 
defined in terms of the noncentral F CDF:
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where  is a noncentral beta CDF with x = x, α1 = SHAPE1, α2 = SHAPE2, and noncentral-

ity parameter λ = LAMBDA;  is a noncentral F CDF with argument f , numerator and 

denominator degrees of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; p  = the probabil-
ity that F ≤ f = the probability that X ≤ x and:

(See the documentation for function FNDF for a discussion of how the noncentral F CDF is defined and calcu-
lated.)  The correspondence between the arguments of function BETNIN(P,SHAPE1,SHAPE2,LAMBDA) and 
the variables in the above equations is as follows: α1 = SHAPE1,  α2 = SHAPE2, λ = LAMBDA, and p = P.

Function BETNIN evaluates

by first evaluating

and then solving for x using

(See the documentation for function FNIN for a discussion of how the inverse noncentral F CDF is 
calculated.)

Example

This example traces out a portion of an inverse noncentral beta distribution with parameters 
SHAPE1 = 50, SHAPE2 = 5, and LAMBDA= 10.

 USE UMACH_INT
 USE BETNDF_INT
 USE BETNIN_INT
 USE UMACH_INT
 IMPLICIT NONE

 INTEGER  :: NOUT, I
 REAL  :: SHAPE1 = 50.0, SHAPE2=5.0, LAMBDA=10.0
 REAL  :: X, CDF, CDFINV
 REAL  :: F0(8)=(/ 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /)

 CALL UMACH (2, NOUT)
 WRITE (NOUT,'(/"  SHAPE1: ", F4.0, "  SHAPE2: ", F4.0,'// &

 '" LAMBDA: ", F4.0 // ' //  &
 '"  X  P = CDF(X)  CDFINV(P)")')  &

 SHAPE1, SHAPE2, LAMBDA
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 DO I = 1, 8
 X = (SHAPE1*F0(I))/(SHAPE2 + SHAPE1*F0(I))
 CDF = BETNDF(X, SHAPE1, SHAPE2, LAMBDA)
 CDFINV = BETNIN(CDF, SHAPE1, SHAPE2, LAMBDA)
 WRITE (NOUT,'(3(2X, E12.6))') X, CDF, CDFINV

 END DO
 END

Output

 SHAPE1:  50.  SHAPE2:  5. LAMBDA:  10.

 X  P = CDF(X)  CDFINV(P)
 0.000000E+00  0.000000E+00  0.000000E+00
 0.800000E+00  0.488791E-02  0.800000E+00
 0.888889E+00  0.202633E+00  0.888889E+00
 0.923077E+00  0.521144E+00  0.923077E+00
 0.941176E+00  0.733853E+00  0.941176E+00
 0.952381E+00  0.850413E+00  0.952381E+00
 0.965517E+00  0.947125E+00  0.965517E+00
 0.975610E+00  0.985358E+00  0.975610E+00
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BETNPR

This function evaluates the noncentral beta probability density function.

Function Return Value
BETNPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the noncentral beta probability density function is to be evaluated.  (Input)

X must be non-negative and less than or equal to 1.
SHAPE1 — First shape parameter of the noncentral beta distribution.  (Input)

SHAPE1 must be positive.
SHAPE2 — Second shape parameter of the noncentral beta distribution.  (Input)

SHAPE2 must be positive.
LAMBDA — Noncentrality parameter.  (Input)

LAMBDA must be non-negative.

FORTRAN 90 Interface
Generic: BETNPR (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_BETNPR and D_BETNPR.

Description

The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square 
random variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random 
variable with 2α2 degrees of freedom which is statistically independent of Z, then

is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The PDF for noncentral beta variable X can thus be simply 
defined in terms of the noncentral F PDF:
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where  is a noncentral beta PDF with x = x, α1 = SHAPE1, α2 = SHAPE2, and noncentral-

ity parameter λ = LAMBDA;  is a noncentral F PDF with argument f , numerator and 

denominator degrees of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; and:

(See the documentation for function FNPR for a discussion of how the noncentral F PDF is defined and 
calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example

This example traces out a portion of a noncentral beta distribution with parameters  SHAPE1 = 50, 
SHAPE2 = 5, and LAMBDA = 10.

      USE UMACH_INT
      USE BETNPR_INT
      USE FNPR_INT
      IMPLICIT NONE
      
      INTEGER NOUT, I
      REAL X, LAMBDA, SHAPE1, SHAPE2, &
         BPDFV, FPDFV, DBETNPR, DFNPR, F(8), &
         BPDFVEXPECT, DFDX

      DATA F /0.0, 0.4, 0.8, 3.2, 5.6, 8.8, 14.0, 18.0/

      CALL UMACH (2, NOUT)
      SHAPE1 = 50.0
      SHAPE2 = 5.0
      LAMBDA = 10.0

      WRITE (NOUT,'(/"  SHAPE1: ", F4.0, ";  SHAPE2: ", F4.0, ";  '// &
         'LAMBDA: ", F4.0 // 6x,"X",6x,"NCBETPDF(X)",3x,"NCBETPDF'// &
         '(X)",/     14x,"expected")') SHAPE1, SHAPE2, LAMBDA

      DO I = 1, 8
         X = (SHAPE1*F(I)) / (SHAPE1*F(I) + SHAPE2)
         DFDX = (SHAPE2/SHAPE1) / (1.0 - X)**2
         FPDFV = FNPR(F(I),2*SHAPE1,2*SHAPE2,LAMBDA)
         BPDFVEXPECT = DFDX * FPDFV
         BPDFV = BETNPR(X, SHAPE1, SHAPE2, LAMBDA)
         WRITE (NOUT,'(2X, F8.6, 2(2X, E12.6))')  X, BPDFVEXPECT, BPDFV
      END DO
      END
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Output

  SHAPE1:  50.;  SHAPE2:   5.;  LAMBDA:  10.

      X      NCBETPDF(X)   NCBETPDF(X)
              expected
  0.000000  0.000000E+00  0.000000E+00
  0.800000  0.243720E+00  0.243720E+00
  0.888889  0.658624E+01  0.658624E+01
  0.969697  0.402367E+01  0.402365E+01
  0.982456  0.919544E+00  0.919542E+00
  0.988764  0.219100E+00  0.219100E+00
  0.992908  0.436654E-01  0.436647E-01
  0.994475  0.175215E-01  0.175217E-01
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BNRDF

This function evaluates the bivariate normal cumulative distribution function.

Function Return Value
BNRDF — Function value, the probability that a bivariate normal random variable with correlation RHO 

takes a value less than or equal to X and less than or equal to Y.  (Output)

Required Arguments
X — One argument for which the bivariate normal distribution function is to be evaluated.  (Input)
Y — The other argument for which the bivariate normal distribution function is to be evaluated.  (Input)
RHO — Correlation coefficient.  (Input)

FORTRAN 90 Interface
Generic: BNRDF (X, Y, RHO)
Specific: The specific interface names are S_BNRDF and D_BNRDF.

FORTRAN 77 Interface
Single: BNRDF (X, Y, RHO)
Double: The double precision name is DBNRDF.

Description

Function BNRDF evaluates the cumulative distribution function F of a bivariate normal distribution with 
means of zero, variances of one, and correlation of RHO; that is, with ρ = RHO, and ∣ρ∣ < 1,

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V)T is a bivariate normal random variable 

with mean µ = (µU, µV)T and variance-covariance matrix

transform (U, V)T to a vector with zero means and unit variances. The input to BNRDF would be 
X = (u0 - µU)/σU, Y = (v0 - µV)/σV, and ρ = σUV/(σUσV).
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Function BNRDF uses the method of Owen (1962, 1965). Computation of Owen’s T-function is based on code 
by M. Patefield and D. Tandy (2000). For ∣ρ∣ = 1, the distribution function is computed based on the univari-
ate statistic, Z = min(x, y), and on the normal distribution function ANORDF.

Example

Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance matrix

In this example, we find the probability that X is less than –2.0 and Y is less than 0.0.

      USE BNRDF_INT
      USE UMACH_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       P, RHO, X, Y
!
      CALL UMACH (2, NOUT)
      X   = -2.0
      Y   = 0.0
      RHO = 0.9
      P   = BNRDF(X,Y,RHO)
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is less than -2.0  and Y ', &
            'is less than 0.0 is ', F6.4)
      END

Output

The probability that X is less than –2.0 and Y is less than 0.0 is 0.0228
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CHIDF

This function evaluates the chi-squared cumulative distribution function.

Function Return Value
CHIDF — Function value, the probability that a chi-squared random variable takes a value less than or 

equal to CHSQ.  (Output)

Required Arguments
CHSQ — Argument for which the chi-squared distribution function is to be evaluated.  (Input)
DF — Number of degrees of freedom of the chi-squared distribution.  (Input) 

DF must be positive.

Optional Arguments
COMPLEMENT — Logical. If .TRUE., the complement of the chi-squared cumulative distribution func-

tion is evaluated. If .FALSE., the chi-squared cumulative distribution function is evaluated.  (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

FORTRAN 90 Interface
Generic: CHIDF (CHSQ, DF [, …])
Specific: The specific interface names are S_CHIDF and D_CHIDF.

FORTRAN 77 Interface
Single: CHIDF (CHSQ, DF)
Double: The double precision name is DCHIDF.

Description

Function CHIDF evaluates the cumulative distribution function, F, of a chi-squared random variable with DF 
degrees of freedom, that is, with ν = DF, and x = CHSQ,

where Γ(·) is the gamma function. The value of the distribution function at the point x is the probability that 
the random variable takes a value less than or equal to x.

For ν > νmax = {343 for double precision, 171 for single precision}, CHIDF uses the Wilson-Hilferty approxi-
mation (Abramowitz and Stegun [A&S] 1964, equation 26.4.17) for p in terms of the normal CDF, which is 
evaluated using function ANORDF.  
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For ν ≤ νmax , CHIDF uses series expansions to evaluate p: for x <  ν, CHIDF calculates p using A&S series 
6.5.29, and for x ≥ ν, CHIDF calculates p using the continued fraction expansion of the incomplete gamma 
function given in A&S equation 6.5.31.

If COMPLEMENT = .TRUE., the value of CHIDF at the point x is 1 - p, where 1 - p is the probability that the 
random variable takes a value greater than x. In those situations where the desired end result is 1 - p, the 
user can achieve greater accuracy in the right tail region by using the result returned by CHIDF with the 
optional argument COMPLEMENT set to .TRUE. rather than by using 1 - p where p is the result returned by 
CHIDF with COMPLEMENT set to .FALSE..

Figure 17.8 — Chi-Squared Distribution Function

Comments
Informational Errors

Type Code Description

1 1 Since the input argument, CHSQ, is less than zero, the distribution function is 
zero at CHSQ.

2 3 The normal distribution is used for large degrees of freedom. However, it 
has produced underflow. Therefore, the probability, CHIDF, is set to zero.
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Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. In this example, we find the proba-
bility that X is less than 0.15 and the probability that X is greater than 3.0.

 USE CHIDF_INT
 USE UMACH_INT
 IMPLICIT  NONE

 INTEGER  NOUT
 REAL  CHSQ, DF, P

 CALL UMACH (2, NOUT)
 DF  = 2.0
 CHSQ = 0.15
 P  = CHIDF(CHSQ,DF)
 WRITE (NOUT,99998) P

99998 FORMAT (' The probability that chi-squared with 2 df is less ', &
 'than 0.15 is ', F6.4)

 CHSQ = 3.0
 P  = CHIDF(CHSQ,DF, complement=.true.)
 WRITE (NOUT,99999) P

99999 FORMAT (' The probability that chi-squared with 2 df is greater ' &
 , 'than 3.0 is ', F6.4)

 END

Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231
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CHIIN

This function evaluates the inverse of the chi-squared cumulative distribution function.

Function Return Value
CHIIN — Function value.  (Output) 

The probability that a chi-squared random variable takes a value less than or equal to CHIIN is P.

Required Arguments
P — Probability for which the inverse of the chi-squared distribution function is to be evaluated.  (Input)

P must be in the open interval (0.0, 1.0).
DF — Number of degrees of freedom of the chi-squared distribution.  (Input) 

DF must be greater than or equal to 0.5.

FORTRAN 90 Interface
Generic: CHIIN (P, DF)
Specific: The specific interface names are S_CHIIN and D_CHIIN.

FORTRAN 77 Interface
Single: CHIIN (P, DF)
Double: The double precision name is DCHIIN.

Description

Function CHIIN evaluates the inverse distribution function of a chi-squared random variable with DF 
degrees of freedom, that is, with P = P and ν = DF, it determines x (equal to CHIIN(P, DF)), such that

where Γ(·) is the gamma function. The probability that the random variable takes a value less than or equal to 
x is P.

For ν < 40, CHIIN uses bisection (if ν ≤ 2 or P > 0.98) or regula falsi to find the point at which the chi-squared 
distribution function is equal to P. The distribution function is evaluated using routine CHIDF.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.18) 
to the normal distribution is used, and routine ANORIN is used to evaluate the inverse of the normal distribu-
tion function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964, 
equation 26.4.17) is used.
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Comments
Informational Error

Example

In this example, we find the 99-th percentage points of a chi-squared random variable with 2 degrees of free-
dom and of one with 64 degrees of freedom.

      USE UMACH_INT
      USE CHIIN_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       DF, P, X
!
      CALL UMACH (2, NOUT)
      P  = 0.99
      DF = 2.0
      X  = CHIIN(P,DF)
      WRITE (NOUT,99998) X
99998 FORMAT (' The 99-th percentage point of chi-squared with  2 df ' &
            , 'is ', F7.3)
      DF = 64.0
      X  = CHIIN(P,DF)
      WRITE (NOUT,99999) X
99999 FORMAT (' The 99-th percentage point of chi-squared with 64 df ' &
            , 'is ', F7.3)
      END

Output

The 99-th percentage point of chi-squared with  2 df is   9.210
The 99-th percentage point of chi-squared with 64 df is  93.217

Type Code Description

4 1 Over 100 iterations have occurred without convergence. Convergence is 
assumed.
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CHIPR

This function evaluates the chi-squared probability density function.

Function Return Value
CHIPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the chi-squared probability density function is to be evaluated.  (Input)
DF — Number of degrees of freedom of the chi-squared distribution.  (Input) 

FORTRAN 90 Interface
Generic: CHIPR (X, DF)
Specific: The specific interface names are S_CHIPR and D_CHIPR.

FORTRAN 77 Interface
Single: CHIPR (X, DF)
Double: The double precision name is DCHIPR.

Description

The function CHIPR evaluates the chi-squared probability density function. The chi-squared distribution is a 
special case of the gamma distribution and is defined as 

Example

In this example, we evaluate the probability function at X = 3.0, DF = 5.0.

      USE UMACH_INT
      USE CHIPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, DF, PR
      CALL UMACH(2, NOUT)
      X = 3.0
      DF = 5.0
      PR = CHIPR(X, DF)
      WRITE (NOUT, 99999) X, DF, PR
99999 FORMAT (' CHIPR(', F4.2, ', ', F4.2, ') = ', F6.4)
      END
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Output

 CHIPR(3.00, 5.00) = 0.1542
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CSNDF

This function evaluates the noncentral chi-squared cumulative distribution function.

Function Return Value
CSNDF — Function value, the probability that a noncentral chi-squared random variable takes a value less 

than or equal to CHSQ.  (Output)

Required Arguments
CHSQ — Argument for which the noncentral chi-squared cumulative distribution function is to be evalu-

ated.  (Input)
DF —Number of degrees of freedom of the noncentral chi-squared cumulative distribution.  (Input)

DF must be positive and less than or equal to 200,000.
ALAM — The noncentrality parameter.  (Input)

ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

FORTRAN 90 Interface
Generic: CSNDF (CHSQ, DF, ALAM)
Specific: The specific interface names are S_CSNDF and D_CSNDF.

FORTRAN 77 Interface
Single: CSNDF (CHSQ, DF, ALAM)
Double: The double precision name is DCSNDF.

Description

Function CSNDF evaluates the cumulative distribution function of a noncentral chi-squared random variable 
with DF degrees of freedom and noncentrality parameter ALAM, that is, with ν = DF, λ = ALAM, and x = CHSQ,

where Γ(·) is the gamma function. This is a series of central chi-squared distribution functions with Poisson 
weights. The value of the distribution function at the point x is the probability that the random variable takes 
a value less than or equal to x. 
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The noncentral chi-squared random variable can be defined by the distribution function above, or alterna-
tively and equivalently, as the sum of squares of independent normal random variables. If Yi have 
independent normal distributions with means µi and variances equal to one and

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality parameter 
equal to

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the 
chi-squared distribution. 

Function CSNDF determines the point at which the Poisson weight is greatest, and then sums forward and 
backward from that point, terminating when the additional terms are sufficiently small or when a maximum 
of 1000 terms have been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is 
used to speed the evaluation of the central chi-squared distribution functions.

Figure 17.9 — Noncentral Chi-squared Distribution Function
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Example

In this example, CSNDF is used to compute the probability that a random variable that follows the noncentral 
chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of freedom is less than or 
equal to 8.642.

      USE UMACH_INT
      USE CSNDF_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       ALAM, CHSQ, DF, P
!
      CALL UMACH (2, NOUT)
      DF   = 2.0
      ALAM = 1.0
      CHSQ = 8.642
      P    = CSNDF(CHSQ,DF,ALAM)
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that a noncentral chi-squared random', &
            /, ' variable with 2 df and noncentrality 1.0 is less', &
            /, ' than 8.642 is ', F5.3)
      END

Output

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950
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CSNIN

This function evaluates the inverse of the noncentral chi-squared cumulative function.

Function Return Value
CSNIN — Function value.  (Output) 

The probability that a noncentral chi-squared random variable takes a value less than or equal to 
CSNIN is P.

Required Arguments
P — Probability for which the inverse of the noncentral chi-squared cumulative distribution function is to 

be evaluated.  (Input) 
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the noncentral chi-squared distribution.  (Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter.  (Input) 
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

FORTRAN 90 Interface
Generic: CSNIN (P, DF, ALAM)
Specific: The specific interface names are S_CSNIN and D_CSNIN.

FORTRAN 77 Interface
Single: CSNIN (P, DF, ALAM)
Double: The double precision name is DCSNIN.

Description

Function CSNIN evaluates the inverse distribution function of a noncentral chi-squared random variable 
with DF degrees of freedom and noncentrality parameter ALAM; that is, with P = P, v = DF, and =λ = ALAM, it 
determines c0 (= CSNIN(P,DF,ALAM)), such that

where Γ(·) is the gamma function. The probability that the random variable takes a value less than or equal to 
c0 is P .

Function CSNIN uses bisection and modified regula falsi to invert the distribution function, which is evalu-
ated using routine CSNDF. See CSNDF for an alternative definition of the noncentral chi-squared random 
variable in terms of normal random variables.
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Comments
Informational Error

Example

In this example, we find the 95-th percentage point for a noncentral chi-squared random variable with 2 
degrees of freedom and noncentrality parameter 1.

      USE CSNIN_INT
      USE UMACH_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       ALAM, CHSQ, DF, P
!
      CALL UMACH (2, NOUT)
      DF   = 2.0
      ALAM = 1.0
      P    = 0.95
      CHSQ = CSNIN(P,DF,ALAM)
      WRITE (NOUT,99999) CHSQ
!
99999 FORMAT (' The 0.05 noncentral chi-squared critical value is ', &
            F6.3, '.')
!
      END

Output

The 0.05 noncentral chi-squared critical value is  8.642.

Type Code Description

4 1 Over 100 iterations have occurred without convergence. Convergence is 
assumed.
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CSNPR

This function evaluates the noncentral chi-squared probability density function.

Function Return Value
CSNPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the noncentral chi-squared probability density function is to be evaluated.  

(Input)
X must be non-negative. 

DF — Number of degrees of freedom of the noncentral chi-squared distribution.  (Input)
DF must be positive. 

LAMBDA — Noncentrality parameter.  (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface
Generic: CSNPR (X, DF, LAMBDA)
Specific: The specific interface names are S_CSNPR and D_CSNPR.

Description

The noncentral chi-squared distribution is a generalization of the chi-squared distribution. If {Xi} are k inde-

pendent, normally distributed random variables with means μi and variances σ2
i, then the random variable: 

is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution 
has two parameters: k which specifies the number of degrees of freedom (i.e. the number of Xi), andλ,  which 
is related to the mean of the random variables Xi by:

The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with k + 2i 
degrees of freedom, where i is the value of a Poisson distributed random variable with parameter λ/2. Thus, 
the probability density function is given by: 
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where the (central) chi-squared PDF f(x, k) is given by: 

where Γ(·) is the gamma function. The above representation of F(x, k, λ)  can be shown to be equivalent to the 
representation:

Function CSNPR (X, DF, LAMBDA) evaluates the probability density function of a noncentral chi-squared ran-
dom variable with DF degrees of freedom and noncentrality parameter LAMBDA, corresponding to k = DF,  
λ = LAMBDA, and x = X.

Function CSNDF (X, DF, LAMBDA) evaluates the cumulative distribution function incorporating the above 
probability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central 
chi-squared distribution.

Example

This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of free-
dom and noncentrality parameter = 40.

 USE UMACH_INT
 USE CSNPR_INT
 IMPLICIT NONE

 INTEGER :: NOUT, I
 REAL  :: X(6)=(/ 0.0, 8.0, 40.0, 136.0, 280.0, 400.0 /)
 REAL  :: LAMBDA=40.0, DF=100.0, PDFV

 CALL UMACH (2, NOUT)
 WRITE (NOUT,'(//"DF: ", F4.0, "  LAMBDA: ", F4.0 //'// &

 ' "  X  PDF(X)")') DF, LAMBDA
 DO I = 1, 6

 PDFV = CSNPR(X(I), DF, LAMBDA)
 WRITE (NOUT,'(1X, F5.0, 2X, E12.5)') X(I), PDFV

 END DO
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 END

Output

DF: 100.  LAMBDA:  40.

 X  PDF(X)
 0.  0.00000E+00
 8.  0.00000E+00
 40.  0.34621E-13

 136.  0.21092E-01
 280.  0.40027E-09
 400.  0.11250E-21
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EXPDF

This function evaluates the exponential cumulative distribution function.

Function Return Value
EXPDF — Function value, the probability that an exponential random variable takes a value less than or 

equal to X.  (Output)

Required Arguments
X — Argument for which the exponential cumulative distribution function is to be evaluated.  (Input)
B — Scale parameter of the exponential distribution function.  (Input) 

FORTRAN 90 Interface
Generic: EXPDF (X, B)
Specific: The specific interface names are S_EXPDF and D_EXPDF.

FORTRAN 77 Interface
Single: EXPDF (X, B)
Double: The double precision name is DEXPDF.

Description

The function EXPDF evaluates the exponential cumulative distribution function (CDF), defined:

where

is the exponential probability density function (PDF).
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Example

In this example, we evaluate the probability function at X = 2.0, B = 1.0.

      USE UMACH_INT
      USE EXPDF_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, B, PR
      CALL UMACH(2, NOUT)
      X = 2.0
      B = 1.0
      PR = EXPDF(X, B)
      WRITE (NOUT, 99999) X, B, PR
99999 FORMAT (' EXPDF(', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

 EXPDF(2.00, 1.00) = 0.8647
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EXPIN

This function evaluates the inverse of the exponential cumulative distribution function.

Function Return Value
EXPIN — Function value, the value of the inverse of the cumulative distribution function.  (Output)

Required Arguments
P — Probability for which the inverse of the exponential distribution function is to be evaluated.  (Input)
B — Scale parameter of the exponential distribution function.  (Input) 

FORTRAN 90 Interface
Generic: EXPIN (P, B)
Specific: The specific interface names are S_EXPIN and D_EXPIN.

FORTRAN 77 Interface
Single: EXPIN (P, B)
Double: The double precision name is DEXPIN.

Description

The function EXPIN evaluates the inverse distribution function of an exponential random variable with scale 
parameter b = B.

Example

In this example, we evaluate the inverse probability function at P = 0.8647, B = 1.0.

      USE UMACH_INT
      USE EXPIN_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, B, P
      CALL UMACH(2, NOUT)
      
      P = 0.8647
      B = 1.0
      X = EXPIN(P, B)
      WRITE (NOUT, 99999) P, B, X
99999 FORMAT (' EXPIN(', F6.4, ', ', F4.2, ') = ', F6.4)
      END
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Output

 EXPIN(0.8647, 1.00) = 2.0003
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EXPPR

This function evaluates the exponential probability density function.

Function Return Value
EXPPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the exponential probability density function is to be evaluated.  (Input)
B — Scale parameter of the exponential probability density function.  (Input) 

FORTRAN 90 Interface
Generic: EXPPR (X, B)
Specific: The specific interface names are S_EXPPR and D_EXPPR.

FORTRAN 77 Interface
Single: EXPPR (X, B)
Double: The double precision name is DEXPPR.

Description

The function EXPPR evaluates the exponential probability density function. The exponential distribution is a 
special case of the gamma distribution and is defined as 

This relationship is used in the computation of f(x∣b).

Example

In this example, we evaluate the probability function at X = 2.0, B = 1.0.

      USE UMACH_INT
      USE EXPPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, B, PR
      CALL UMACH(2, NOUT)
      X = 2.0
      B = 1.0
      PR = EXPPR(X, B)
      WRITE (NOUT, 99999) X, B, PR
99999 FORMAT (' EXPPR(', F4.2, ', ', F4.2, ') = ', F6.4)
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      END

Output

 EXPPR(2.00, 1.00) = 0.1353
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EXVDF

This function evaluates the extreme value cumulative distribution function.

Function Return Value
EXVDF — Function value, the probability that an extreme value random variable takes a value less than or 

equal to X.  (Output)

Required Arguments
X — Argument for which the extreme value cumulative distribution function is to be evaluated.  (Input)
AMU — Location parameter of the extreme value probability distribution function.  (Input) 
BETA — Scale parameter of the extreme value probability distribution function.  (Input) 

FORTRAN 90 Interface
Generic: EXVDF (X, AMU, BETA)
Specific: The specific interface names are S_EXVDF and D_EXVDF.

FORTRAN 77 Interface
Single: EXVDF (X, AMU, BETA)
Double: The double precision name is DEXVDF.

Description

The function EXVDF evaluates the extreme value cumulative distribution function, defined as 

The extreme value distribution is also known as the Gumbel minimum distribution.
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Example

In this example, we evaluate the probability function at X = 1.0, AMU = 0.0, BETA = 1.0.

      USE UMACH_INT
      USE EXVDF_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, AMU, B, PR
      CALL UMACH(2, NOUT)
      X = 1.0
      AMU = 0.0
      B = 1.0
      PR = EXVDF(X, AMU, B)
      WRITE (NOUT, 99999) X, AMU, B, PR
99999 FORMAT (' EXVDF(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

EXVDF(  1.00, 0.00, 1.00) = 0.9340
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EXVIN

This function evaluates the inverse of the extreme value cumulative distribution function.

Function Return Value
EXVIN — Function value, the value of the inverse of the extreme value cumulative distribution function.  

(Output)

Required Arguments
P — Probability for which the inverse of the extreme value distribution function is to be evaluated.  (Input)
AMU — Location parameter of the extreme value probability function.  (Input) 
BETA — Scale parameter of the extreme value probability function.  (Input) 

FORTRAN 90 Interface
Generic: EXVIN (P, AMU, BETA)
Specific: The specific interface names are S_EXVIN and D_EXVIN.

FORTRAN 77 Interface
Single: EXVIN (P, AMU, BETA)
Double: The double precision name is DEXVIN.

Description

The function EXVIN evaluates the inverse distribution function of an extreme value random variable with 
location parameter AMU and scale parameter BETA.

Example

In this example, we evaluate the inverse probability function at P = 0.934,  AMU = 1.0, BETA = 1.0

      USE UMACH_INT
      USE EXVIN_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, AMU, B, PR
      CALL UMACH(2, NOUT)
      PR = .934
      AMU = 0.0
      B = 1.0
      X = EXVIN(PR, AMU, B)
      WRITE (NOUT, 99999) PR, AMU, B, X
99999 FORMAT (' EXVIN(', F6.3, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END
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Output

EXVIN( 0.934, 0.00, 1.00) = 0.9999
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EXVPR

This function evaluates the extreme value probability density function.

Function Return Value
EXVPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the extreme value probability density function is to be evaluated.  (Input)
AMU — Location parameter of the extreme value probability density function.  (Input) 
BETA — Scale parameter of the extreme value probability density function.  (Input) 

FORTRAN 90 Interface
Generic: EXVPR (X, AMU, BETA)
Specific: The specific interface names are S_EXVPR and D_EXVPR.

FORTRAN 77 Interface
Single: EXVPR (X, AMU, BETA)
Double: The double precision name is DEXVPR.

Description

The function EXVPR evaluates the extreme value probability density function, defined as 

The extreme value distribution is also known as the Gumbel minimum distribution.
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Example

In this example, we evaluate the extreme value probability density function at X = 2.0, AMU = 0.0, BETA = 1.0.

      USE UMACH_INT
      USE EXVPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, AMU, B, PR
      CALL UMACH(2, NOUT)
      X = -2.0
      AMU = 0.0
      B = 1.0
      PR = EXVPR(X, AMU, B)
      WRITE (NOUT, 99999) X, AMU, B, PR
99999 FORMAT (' EXVPR(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

 EXVPR( -2.00, 0.00, 1.00) = 0.1182 
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FDF

This function evaluates the F cumulative distribution function.

Function Return Value
FDF — Function value, the probability that an F random variable takes a value less than or equal to the 

input F.  (Output)

Required Arguments
F — Argument for which the F cumulative distribution function is to be evaluated.  (Input)
DFN — Numerator degrees of freedom.  (Input) 

DFN must be positive.
DFD — Denominator degrees of freedom.  (Input)

DFD must be positive.

Optional Arguments
COMPLEMENT — Logical. If .TRUE., the complement of the F cumulative distribution function is evalu-

ated. If .FALSE., the F cumulative distribution function is evaluated.  (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

FORTRAN 90 Interface
Generic: FDF (F, DFN, DFD [, …])
Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface
Single: FDF (F, DFN, DFD)
Double: The double precision name is DFDF.

Description

Function FDF evaluates the distribution function of a Snedecor’s F random variable with DFN numerator 
degrees of freedom and DFD denominator degrees of freedom. The function is evaluated by making a trans-
formation to a beta random variable and then using the routine BETDF. If X is an F variate with ν1 and ν2 
degrees of freedom and Y = ν1X/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2. 
The function FDF also uses a relationship between F random variables that can be expressed as follows.

FDF(X, DFN, DFD) = 1.0 - FDF(1.0/X, DFD, DFN)
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If COMPLEMENT = .TRUE., the value of FDF at the point x is 1 - p, where 1 - p is the probability that the ran-
dom variable takes a value greater than x. In those situations where the desired end result is 1 - p, the user 
can achieve greater accuracy in the right tail region by using the result returned by FDF with the optional 
argument COMPLEMENT set to .TRUE. rather than by using 1 - p where p is the result returned by FDF with 
COMPLEMENT set to .FALSE..

Figure 17.10 — F Distribution Function

Comments
Informational Error

Example

In this example, we find the probability that an F random variable with one numerator and one denominator 
degree of freedom is greater than 648.

 USE UMACH_INT
 USE FDF_INT
 IMPLICIT  NONE
 INTEGER  NOUT
 REAL  DFD, DFN, F, P

!
 CALL UMACH (2, NOUT)

Type Code Description

1 3 Since the input argument F is not positive, the distribution function is zero at 
F.
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 F  = 648.0
 DFN = 1.0
 DFD = 1.0
 P  = FDF(F,DFN,DFD, COMPLEMENT=.TRUE.)
 WRITE (NOUT,99999) P

99999 FORMAT (' The probability that an F(1,1) variate is greater ', &
 'than 648 is ', F6.4)

 END

Output

The probability that an F(1, 1) variate is greater than 648 is 0.0250
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FIN

This function evaluates the inverse of the F cumulative distribution function.

Function Return Value
FIN — Function value.  (Output) 

The probability that an F random variable takes a value less than or equal to FIN is P.

Required Arguments
P — Probability for which the inverse of the F distribution function is to be evaluated.  (Input) 

P must be in the open interval (0.0, 1.0).
DFN — Numerator degrees of freedom.  (Input) 

DFN must be positive.
DFD — Denominator degrees of freedom.  (Input) 

DFD must be positive.

FORTRAN 90 Interface
Generic: FIN (P, DFN, DFD)
Specific: The specific interface names are S_FIN and D_FIN.

FORTRAN 77 Interface
Single: FIN (P, DFN, DFD)
Double: The double precision name is DFIN.

Description

Function FIN evaluates the inverse distribution function of a Snedecor’s F random variable with DFN numer-
ator degrees of freedom and DFD denominator degrees of freedom. The function is evaluated by making a 
transformation to a beta random variable and then using the routine BETIN. If X is an F variate with ν1 and 
ν2 degrees of freedom and Y = ν1X/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and 
q = ν2/2. If P ≤ 0.5, FIN uses this relationship directly, otherwise, it also uses a relationship between F ran-
dom variables that can be expressed as follows, using routine FDF, which is the F cumulative distribution 
function:

FDF (F, DFN, DFD) = 1.0 - FDF(1.0/F, DFD, DFN).

Comments
Informational Error
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Example

In this example, we find the 99-th percentage point for an F random variable with 1 and 7 degrees of 
freedom.

      USE UMACH_INT
      USE FIN_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       DFD, DFN, F, P
!
      CALL UMACH (2, NOUT)
      P   = 0.99
      DFN = 1.0
      DFD = 7.0
      F   = FIN(P,DFN,DFD)
      WRITE (NOUT,99999) F
99999 FORMAT (' The F(1,7) 0.01 critical value is ', F6.3)
      END

Output

The F(1, 7) 0.01 critical value is 12.246

Type Code Description

4 4 FIN is set to machine infinity since overflow would occur upon modifying 
the inverse value for the F distribution with the result obtained from the 
inverse beta distribution.
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FPR

This function evaluates the F probability density function. 

Function Return Value
FPR — Function value, the value of the probability density function.  (Output)

Required Arguments
F — Argument for which the F probability density function is to be evaluated.  (Input)
DFN — Numerator degrees of freedom.  (Input) 

DFN must be positive.
DFD — Denominator degrees of freedom.  (Input)

DFD must be positive.

FORTRAN 90 Interface
Generic: FPR (F, DFN, DFD)
Specific: The specific interface names are S_FPR and D_FPR

FORTRAN 77 Interface
Single: FPR (F, DFN, DFD)
Double: The double precision name is DFPR.

Description

The function FPR evaluates the F probability density function, defined as 

The parameters  and , correspond to the arguments DFN and DFD.
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Example

In this example, we evaluate the probability function at F = 2.0, DFN = 10.0, DFD = 1.0.

      USE UMACH_INT
      USE FPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL F, DFN, DFD, PR
      CALL UMACH(2, NOUT)
      F = 2.0
      DFN = 10.0
      DFD = 1.0
      PR = FPR(F, DFN, DFD)
      WRITE (NOUT, 99999) F, DFN, DFD, PR
99999 FORMAT (' FPR(', F6.2, ', ', F6.2, ', ', F6.2, ') = ', F6.4)
      END

Output

FPR(  2.00,  10.00,   1.00) = 0.1052 
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FNDF

This function evaluates the noncentral F cumulative distribution function (CDF).

Function Return Value
FNDF — Probability that a random variable from an F distribution having noncentrality parameter 

LAMBDA takes a value less than or equal to the input F. (Output)

Required Arguments
F — Argument for which the noncentral F cumulative distribution function is to be evaluated.  (Input)

F must be non-negative.
DF1 — Number of numerator degrees of freedom of the noncentral F distribution.  (Input)

DF1 must be positive. 
DF2 — Number of denominator degrees of freedom of the noncentral F distribution.  (Input)

DF2 must be positive.
LAMBDA — Noncentrality parameter.  (Input)

LAMBDA must be non-negative.

FORTRAN 90 Interface
Generic: FNDF (F, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNDF and D_FNDF.

Description

If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, 
and Y is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, 
then

is a noncentral F-distributed random variable whose CDF is given by

where
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and Γ(·) is the gamma function. The above series expansion for the noncentral F CDF was taken from Butler 
and Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below: 

extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder 
and Bhattacharjee (1973).

The correspondence between the arguments of function FNDF (F, DF1, DF2, LAMBDA) and the variables in the 
above equations is as follows: ν1 = DF1, ν2 = DF2, λ = LAMBDA, and f = F.

For λ = 0, the noncentral F distribution is the same as the F distribution.
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Example

This example traces out a portion of a noncentral F distribution with parameters DF1 = 100, DF2 = 10, and 
LAMBDA = 10.

      USE UMACH_INT
      USE FNDF_INT
      IMPLICIT NONE
      INTEGER NOUT, I
      REAL X, LAMBDA, DF1, DF2, CDFV, X0(8)
      DATA X0 / 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /

      CALL UMACH (2, NOUT)
      DF1 = 100.0
      DF2 = 10.0
      LAMBDA = 10.0
      WRITE (NOUT,'("DF1: ", F4.0, ";  DF2: ", F4.0, &
         ";  LAMBDA: ", F4.0 // "   X        CDF(X)")')&
         DF1, DF2, LAMBDA
      DO I = 1, 8
         X = X0(I)
         CDFV = FNDF(X, DF1, DF2, LAMBDA)
         WRITE (NOUT,'(1X, F5.1, 2X, E12.6)') X, CDFV
      END DO
      END

Output

DF1: 100.;  DF2:  10.;  LAMBDA:  10.

   X        CDF(X)
   0.0  0.000000E+00
   0.4  0.488790E-02
   0.8  0.202633E+00
   1.2  0.521143E+00
   1.6  0.733853E+00
   2.0  0.850413E+00
   2.8  0.947125E+00
   4.0  0.985358E+00
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FNIN

This function evaluates the inverse of the noncentral F cumulative distribution function (CDF).

Function Return Value
FNIN — Function value, the value of the inverse of the cumulative distribution function evaluated at P. 

The probability that a noncentral F random variable takes a value less than or equal to FNIN is P.  
(Output)

Required Arguments
P — Probability for which the inverse of the noncentral F cumulative distribution function is to be evalu-

ated.  (Input)
P must be non-negative and less than 1.

DF1 — Number of numerator degrees of freedom of the noncentral F distribution.  (Input)
DF1 must be positive. 

DF2 — Number of denominator degrees of freedom of the noncentral F distribution.  (Input)
DF2 must be positive. 

LAMBDA — Noncentrality parameter.  (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface
Generic: FNIN (P, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNIN and D_FNIN.

Description

If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, 
and Y is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, 
then

is a noncentral F-distributed random variable whose CDF is given by

where:
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and Γ(·) is the gamma function, and p = CDF(f) is the probability that F ≤ f. The correspondence between the 
arguments of function  FNIN (P,DF1,DF2,LAMBDA) and the variables in the above equations is as follows: 
ν1 = DF1,  ν2 = DF2, λ = LAMBDA, and p = P.

Function FNIN evaluates

Function FNIN uses bisection and modified regula falsi search algorithms to invert the distribution function 
CDF(f), which is evaluated using function FNDF. For sufficiently small p, an accurate approximation of 

CDF -1(p) can be used which requires no such inverse search algorithms.
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Example

This example traces out a portion of an inverse noncentral F distribution with parameters DF1 = 100, 
DF2 = 10, and LAMBDA = 10.

      USE UMACH_INT
      USE FNDF_INT
      USE FNIN_INT
      IMPLICIT NONE
      INTEGER NOUT, I
      REAL F, LAMBDA, DF1, DF2, CDF, CDFINV,F0(8)
      DATA F0 / 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /

      CALL UMACH (2, NOUT)
  DF1 = 100.0

 DF2 = 10.0
 LAMBDA = 10.0
 WRITE (NOUT,'("DF1: ", F4.0, ";  DF2: ", F4.0, &

 ";  LAMBDA: ", F4.0 // "  F  P = CDF(F)  CDFINV(P)")')&
 DF1, DF2, LAMBDA

      DO I = 1, 8
         F = F0(I)
         CDF = FNDF(F, DF1, DF2, LAMBDA)
         CDFINV = FNIN(CDF, DF1, DF2, LAMBDA)
         WRITE (NOUT,'(1X, F5.1, 2(2X, E12.6))') F, CDF, CDFINV
      END DO
      END 

Output

DF1: 100.;  DF2:  10.;  LAMBDA:  10.

   F     P = CDF(F)     CDFINV(P)
   0.0  0.000000E+00  0.000000E+00
   0.4  0.488790E-02  0.400000E+00
   0.8  0.202633E+00  0.800000E+00
   1.2  0.521143E+00  0.120000E+01
   1.6  0.733853E+00  0.160000E+01
   2.0  0.850413E+00  0.200000E+01
   2.8  0.947125E+00  0.280000E+01
   4.0  0.985358E+00  0.400000E+01
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FNPR

This function evaluates the noncentral F probability density function.

Function Return Value
FNPR — Function value, the value of the probability density function.  (Output)

Required Arguments
F — Argument for which the noncentral F probability density function is to be evaluated.  (Input)

F must be non-negative.  
DF1 — Number of numerator degrees of freedom of the noncentral F distribution.  (Input)

DF1 must be positive. 
DF2 — Number of denominator degrees of freedom of the noncentral F distribution.  (Input)

DF2 must be positive. 
LAMBDA — Noncentrality parameter.  (Input)

LAMBDA must be non-negative.

FORTRAN 90 Interface
Generic: FNPR (F, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNPR and D_FNPR.

Description

If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, 
and Y is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, 
then

is a noncentral F-distributed random variable whose PDF is given by

where
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and Γ(·) is the gamma function, ν1 = DF1, ν2 = DF2, λ = LAMBDA, and f = F.

With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.

The efficiency of the calculation of the above series is enhanced by:

 calculating each term Φk in the series recursively in terms of either the term Φk-1 preceding it or 
the term Φk+1 following it, and

 initializing the sum with the largest series term and adding the subsequent terms in order of 
decreasing magnitude.

Special cases:

For R = λf = 0

For λ = 0

For f = 0
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Example

This example traces out a portion of a noncentral F distribution with parameters DF1 = 100, DF2 = 10, and 
LAMBDA = 10.

      USE UMACH_INT
      USE FNPR_INT
      IMPLICIT NONE
      
      INTEGER NOUT, I
      REAL F, LAMBDA, DF1, DF2, PDFV, X0(8)
      DATA X0 /0.0, 0.4, 0.8, 3.2, 5.6,8.8, 14.0, 18.0/
                
      CALL UMACH (2, NOUT)
      DF1 = 100.0
      DF2 = 10.0
      LAMBDA = 10.0
      
      WRITE (NOUT,'("DF1: ", F4.0, ";  DF2: ", F4.0, ";  LAMBDA'// &
         ': ", F4.0 //"   F        PDF(F)")') DF1, DF2, LAMBDA 
         
      DO I = 1, 8
         F = X0(I)
         PDFV = FNPR(F, DF1, DF2, LAMBDA)
         WRITE (NOUT,'(1X, F5.1, 2X, E12.6)') F, PDFV
      END DO
      END

Output

DF1: 100.;  DF2:  10.;  LAMBDA:  10.

   F        PDF(F)
   0.0  0.000000E+00
   0.4  0.974879E-01
   0.8  0.813115E+00
   3.2  0.369482E-01
   5.6  0.283023E-02
   8.8  0.276607E-03
  14.0  0.219632E-04
  18.0  0.534831E-05
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GAMDF

This function evaluates the gamma cumulative distribution function.

Function Return Value
GAMDF — Function value, the probability that a gamma random variable takes a value less than or equal 

to X.  (Output)

Required Arguments
X — Argument for which the gamma distribution function is to be evaluated.  (Input)
A — The shape parameter of the gamma distribution.  (Input) 

This parameter must be positive.

FORTRAN 90 Interface
Generic: GAMDF (X, A)
Specific: The specific interface names are S_GAMDF and D_GAMDF.

FORTRAN 77 Interface
Single: GAMDF (X, A)
Double: The double precision name is DGAMDF.

Description

Function GAMDF evaluates the distribution function, F, of a gamma random variable with shape parameter a; 
that is,

where Γ(·) is the gamma function. (The gamma function is the integral from 0 to ∞ of the same integrand as 
above). The value of the distribution function at the point x is the probability that the random variable takes 
a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale parameter b (which 
must be positive), or even as a three-parameter distribution in which the third parameter c is a location 
parameter. In the most general case, the probability density function over (c,∞) is

If T is such a random variable with parameters a, b, and c, the probability that T ≤ t0 can be obtained from 
GAMDF by setting X = (t0 - c)/b.
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If X is less than a or if X is less than or equal to 1.0, GAMDF uses a series expansion. Otherwise, a continued 
fraction expansion is used. (See Abramowitz and Stegun, 1964.)

Figure 17.11 — Gamma Distribution Function

Comments
Informational Error

Type Code Description

1 2 Since the input argument X is less than zero, the distribution function is set to 
zero.
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Example

Suppose X is a gamma random variable with a shape parameter of 4. (In this case, it has an Erlang distribution 
since the shape parameter is an integer.) In this example, we find the probability that X is less than 0.5 and the 
probability that X is between 0.5 and 1.0.

      USE UMACH_INT
      USE GAMDF_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       A, P, X
!
      CALL UMACH (2, NOUT)
      A = 4.0
      X = 0.5
      P = GAMDF(X,A)
      WRITE (NOUT,99998) P
99998 FORMAT (' The probability that X is less than 0.5 is ', F6.4)
      X = 1.0
      P = GAMDF(X,A) - P
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 0.5 and 1.0 is ', &
            F6.4)
      END

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172
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GAMIN

This function evaluates the inverse of the gamma cumulative distribution function.

Function Return Value
GAMIN — Function value.  (Output) 

The probability that a gamma random variable takes a value less than or equal to GAMIN is P.

Required Arguments
P — Probability for which the inverse of the gamma cumulative distribution function is to be evaluated.  

(Input) 
P must be in the open interval (0.0, 1.0).

A — The shape parameter of the gamma distribution.  (Input) 
This parameter must be positive.

FORTRAN 90 Interface
Generic: GAMIN (P, A)
Specific: The specific interface names are S_GAMIN and D_GAMIN.

FORTRAN 77 Interface
Single: GAMIN (P, A)
Double: The double precision name is DGAMIN.

Description

Function GAMIN evaluates the inverse distribution function of a gamma random variable with shape param-
eter a, that is, it determines x (= GAMIN(P, A)), such that

where Γ(·) is the gamma function. The probability that the random variable takes a value less than or equal to 
x is P. See the documentation for routine GAMDF for further discussion of the gamma distribution. 

Function GAMIN uses bisection and modified regula falsi to invert the distribution function, which is evalu-
ated using routine GAMDF.
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Comments
Informational Error

Example

In this example, we find the 95-th percentage point for a gamma random variable with shape parameter of 4.

      USE UMACH_INT
      USE GAMIN_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       A, P, X
!
      CALL UMACH (2, NOUT)
      A = 4.0
      P = 0.95
      X = GAMIN(P,A)
      WRITE (NOUT,99999) X
!
99999 FORMAT (' The 0.05 gamma(4) critical value is ', F6.3, &
            '.')
!
      END

Output

The 0.05 gamma(4) critical value is 7.754.

Type Code Description

4 1 Over 100 iterations have occurred without convergence. Convergence is 
assumed.
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GAMPR

This function evaluates the gamma probability density function.

Function Return Value
GAMPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the gamma probability density function is to be evaluated.  (Input)
A — The shape parameter of the gamma distribution.  (Input) 

This parameter must be positive.

FORTRAN 90 Interface
Generic: GAMPR (X, A)
Specific: The specific interface names are S_GAMPR and D_GAMPR.

FORTRAN 77 Interface
Single: GAMPR (X, A)
Double: The double precision name is DGAMPR.

Description

The function GAMPR evaluates the gamma probability density function, defined as 

Example

In this example, we evaluate the probability function at X = 4.0, A = 5.0.

      USE UMACH_INT
      USE GAMPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, A, PR
      CALL UMACH(2, NOUT)
      X = 4.0
      A = 5.0
      PR = GAMPR(X, A)
      WRITE (NOUT, 99999) X, A, PR
99999 FORMAT (' GAMPR(', F4.2, ', ', F4.2, ') = ', F6.4)
      END
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Output

GAMPR(4.00, 5.00) = 0.1954
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RALDF

This function evaluates the Rayleigh cumulative distribution function.

Function Return Value
RALDF — Function value, the probability that a Rayleigh random variable takes a value less than or equal 

to X.  (Output)

Required Arguments
X — Argument for which the Rayleigh cumulative distribution function is to be evaluated.  (Input)
ALPHA — Scale parameter of the Rayleigh cumulative distribution function.  (Input) 

FORTRAN 90 Interface
Generic: RALDF (X, ALPHA)
Specific: The specific interface names are S_RALDF and D_RALDF.

FORTRAN 77 Interface
Single: RALDF (X, ALPHA)
Double: The double precision name is DRALDF.

Description

The function RALDF evaluates the Rayleigh cumulative probability distribution function, which is a special 
case of the Weibull cumulative probability distribution function, where the shape parameter GAMMA is 2.0

RALDF evaluates the Rayleigh cumulative probability distribution function using the relationsip 

RALDF (X, ALPHA) = WBLDF(X, SQRT(2.0)*ALPHA, 2.0).
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Example

In this example, we evaluate the Rayleigh cumulative distribution function at X = 0.25, ALPHA = 0.5.

      USE UMACH_INT
      USE RALDF_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, ALPHA, PR
      CALL UMACH(2, NOUT)
      X = 0.25
      ALPHA = 0.5
      PR = RALDF(X, ALPHA)
      WRITE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (' RALDF(', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

RALDF(0.25, 0.50) = 0.1175
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RALIN

This function evaluates the inverse of the Rayleigh cumulative distribution function.

Function Return Value
RALIN — Function value, the value of the inverse of the cumulative distribution function.  (Output)

Required Arguments
P — Probability for which the inverse of the Rayleigh distribution function is to be evaluated.  (Input)
ALPHA — Scale parameter of the Rayleigh cumulative distribution function.  (Input) 

FORTRAN 90 Interface
Generic: RALIN (P, ALPHA)
Specific: The specific interface names are S_RALIN and D_RALIN.

FORTRAN 77 Interface
Single: RALIN (P, ALPHA)
Double: The double precision name is DRALIN.

Description

The function RALIN evaluates the inverse distribution function of a Rayleigh random variable with scale 
parameter ALPHA.

Example

In this example, we evaluate the inverse probability function at P = 0.1175,  ALPHA= 0.5.

      USE UMACH_INT
      USE RALIN_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, ALPHA, P
      CALL UMACH(2, NOUT)
      P = 0.1175
      ALPHA = 0.5
      X = RALIN(P, ALPHA)
      WRITE (NOUT, 99999) P, ALPHA, X
99999 FORMAT (' RALIN(', F6.4, ', ', F4.2, ') = ', F6.4)
      END

Output

RALIN(0.1175, 0.50) = 0.2500  
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RALPR

This function evaluates the Rayleigh probability density function.

Function Return Value
RALPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the Rayleigh probability density function is to be evaluated.  (Input)
ALPHA — Scale parameter of the Rayleigh probability function.  (Input) 

FORTRAN 90 Interface
Generic: RALPR (X, ALPHA)
Specific: The specific interface names are S_RALPR and D_RALPR.

FORTRAN 77 Interface
Single: RALPR (X, ALPHA)
Double: The double precision name is DRALPR.

Description

The function RALPR evaluates the Rayleigh probability density function, which is a special case of the 
Weibull probability density function where GAMMA is equal to 2.0, and is defined as 

Example

In this example, we evaluate the Rayleigh probability density function at X = 0.25,  ALPHA = 0.5.

      USE UMACH_INT
      USE RALPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, ALPHA, PR
      CALL UMACH(2, NOUT)
      X = 0.25
      ALPHA = 0.5
      PR = RALPR(X, ALPHA)
      WRITE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (' RALPR(', F4.2, ', ', F4.2, ') = ', F6.4)
      END
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Output

RALPR(0.25, 0.50) = 0.8825 
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TDF

This function evaluates the Student’s t cumulative distribution function.

Function Return Value
TDF — Function value, the probability that a Student’s t random variable takes a value less than or equal 

to the input T.  (Output)

Required Arguments
T — Argument for which the Student’s t distribution function is to be evaluated.  (Input)
DF — Degrees of freedom.  (Input) 

DF must be greater than or equal to 1.0.

Optional Arguments
COMPLEMENT — Logical. If .TRUE., the complement of the Student’s t cumulative distribution function 

is evaluated. If .FALSE., the Student’s t cumulative distribution function is evaluated.  (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

FORTRAN 90 Interface
Generic: TDF (T, DF [, …])
Specific: The specific interface names are S_TDF and D_TDF.

FORTRAN 77 Interface
Single: TDF (T, DF)
Double: The double precision name is DTDF.

Description

Function TDF evaluates the cumulative distribution function of a Student’s t random variable with DF 
degrees of freedom. If the square of T is greater than or equal to DF, the relationship of a t to an F random 
variable (and subsequently, to a beta random variable) is exploited, and routine BETDF is used. Otherwise, 
the method described by Hill (1970) is used. Let ν = DF. If ν is not an integer, if ν is greater than 19, or if ν is 
greater than 200, a Cornish-Fisher expansion is used to evaluate the distribution function. If ν is less than 20 
and ABS(T) is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 
26.7.4, with some rearrangement) is used. For the remaining cases, a series given by Hill (1970) that con-
verges well for large values of T is used.
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If COMPLEMENT = .TRUE., the value of TDF at the point x is 1 - p, where 1 - p is the probability that the ran-
dom variable takes a value greater than x. In those situations where the desired end result is 1 - p, the user 
can achieve greater accuracy in the right tail region by using the result returned by TDF with the optional 
argument COMPLEMENT set to .TRUE. rather than by using 1 - p where p is the result returned by TDF with 
COMPLEMENT set to .FALSE..

Figure 17.12 — Student’s t Distribution Function

Example

In this example, we find the probability that a t random variable with 6 degrees of freedom is greater in abso-
lute value than 2.447. We use the fact that t is symmetric about 0.

      USE TDF_INT
      USE UMACH_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       DF, P, T
!
      CALL UMACH (2, NOUT)
      T  = 2.447
      DF = 6.0
      P  = 2.0*TDF(-T,DF)
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that a t(6) variate is greater ', &
            'than 2.447 in', /, ' absolute value is ', F6.4)
      END
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Output

The probability that a t(6) variate is greater than 2.447 in absolute value is 0.0500
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TIN

This function evaluates the inverse of the Student’s t cumulative distribution function.

Function Return Value
TIN — Function value.  (Output) 

The probability that a Student’s t random variable takes a value less than or equal to TIN is P.

Required Arguments
P — Probability for which the inverse of the Student’s t cumulative distribution function is to be evalu-

ated.  (Input) 
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom.  (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface
Generic: TIN (P, DF)
Specific: The specific interface names are S_TIN and D_TIN.

FORTRAN 77 Interface
Single: TIN (P, DF)
Double: The double precision name is DTIN.

Description

Function TIN evaluates the inverse distribution function of a Student’s t random variable with DF degrees of 
freedom. Let ν = DF. If ν equals 1 or 2, the inverse can be obtained in closed form, if ν is between 1 and 2, the 
relationship of a t to a beta random variable is exploited and routine BETIN is used to evaluate the inverse; 
otherwise the algorithm of Hill (1970) is used. For small values of ν greater than 2, Hill’s algorithm inverts an 

integrated expansion in 1/(1 + t2/ν) of the t density. For larger values, an asymptotic inverse Cornish-Fisher 
type expansion about normal deviates is used.

Comments
Informational Error

Type Code Description

4 3 TIN is set to machine infinity since overflow would occur upon modifying 
the inverse value for the F distribution with the result obtained from the 
inverse β distribution.
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Example

In this example, we find the 0.05 critical value for a two-sided t test with 6 degrees of freedom.

      USE TIN_INT
      USE UMACH_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       DF, P, T
!
      CALL UMACH (2, NOUT)
      P  = 0.975
      DF = 6.0
      T  = TIN(P,DF)
      WRITE (NOUT,99999) T
99999 FORMAT (' The two-sided t(6) 0.05 critical value is ', F6.3)
      END

Output

The two-sided t(6) 0.05 critical value is  2.447
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TPR

This function evaluates the Student's t probability density function 

Function Return Value
TPR — Function value, the value of the probability density function.  (Output)

Required Arguments
T — Argument for which the Student’s t probability density function is to be evaluated.  (Input)
DF — Degrees of freedom.  (Input) 

DF must be greater than or equal to 1.0.

FORTRAN 90 Interface
Generic: TPR (T, DF)
Specific: The specific interface names are S_TPR and D_TPR

FORTRAN 77 Interface
Single: TPR (T, DF)
Double: The double precision name is DTPR.

Description

The function TPR evaluates the Student’s t probability density function, defined as 

Where ν = DF.

The normalizing factor uses the Beta function, BETA (see the Special Functions book, Chapter 4, Gamma and 
Related Functions).
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Example

In this example, we evaluate the probability function at T = 1.5, DF = 10.0.

      USE UMACH_INT
      USE TPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL T, DF, PR
      CALL UMACH(2, NOUT)
      T = 1.5
      DF = 10.0
      PR = TPR(T, DF)
      WRITE (NOUT, 99999) T, DF, PR
99999 FORMAT (' TPR(', F4.2, ', ', F6.2, ') = ', F6.4)
      END

Output

TPR(1.50,  10.00) = 0.1274 
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TNDF

This function evaluates the noncentral Student’s t cumulative distribution function.

Function Return Value
TNDF — Function value, the probability that a noncentral Student’s t random variable takes a value less 

than or equal to T.  (Output)

Required Arguments
T — Argument for which the noncentral Student’s t cumulative distribution function is to be evaluated.  

(Input)
IDF — Number of degrees of freedom of the noncentral Student’s t cumulative distribution.  (Input)

IDF must be positive.
DELTA — The noncentrality parameter.  (Input)

FORTRAN 90 Interface
Generic: TNDF (T, IDF, DELTA)
Specific: The specific interface names are S_TNDF and D_TNDF.

FORTRAN 77 Interface
Single: TNDF (T, IDF, DELTA)
Double: The double precision name is DTNDF.

Description

Function TNDF evaluates the cumulative distribution function F of a noncentral t random variable with IDF 
degrees of freedom and noncentrality parameter DELTA; that is, with ν = IDF, δ = DELTA, and t0 = T,

where Γ(·) is the gamma function. The value of the distribution function at the point t0 is the probability that 
the random variable takes a value less than or equal to t0.

The noncentral t random variable can be defined by the distribution function above, or alternatively and 
equivalently, as the ratio of a normal random variable and an independent chi-squared random variable. If w 
has a normal distribution with mean δ and variance equal to one, u has an independent chi-squared distribu-
tion with ν degrees of freedom, and

then x has a noncentral t distribution with ν degrees of freedom and noncentrality parameter δ.
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The distribution function of the noncentral t can also be expressed as a double integral involving a normal 
density function (see, for example, Owen 1962, page 108). The function TNDF uses the method of Owen 
(1962, 1965), which uses repeated integration by parts on that alternate expression for the distribution 
function.

Figure 17.13 — Noncentral Student’s t Distribution Function

Comments
Informational error 

Type Code Description

4 2 An accurate result cannot be computed due to possible underflow for the 
machine precision available. DELTA*SQRT(IDF/(IDF+T**2)) must be less 
than SQRT(-1.9*ALOG(S)), where S=AMACH(1).
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Example

Suppose T is a noncentral t random variable with 6 degrees of freedom and noncentrality parameter 6. In this 
example, we find the probability that T is less than 12.0. (This can be checked using the table on page 111 of 
Owen 1962, with η = 0.866, which yields λ = 1.664.)

      USE UMACH_INT
      USE TNDF_INT
      IMPLICIT   NONE
      INTEGER    IDF, NOUT
      REAL       DELTA, P, T
!
      CALL UMACH (2, NOUT)
      IDF   = 6
      DELTA = 6.0
      T     = 12.0
      P     = TNDF(T,IDF,DELTA)
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that T is less than 12.0 is ', F6.4)
      END

Output

The probability that T is less than 12.0 is 0.9501
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TNIN

This function evaluates the inverse of the noncentral Student’s t cumulative distribution function.

Function Return Value
TNIN — Function value.  (Output) 

The probability that a noncentral Student’s t random variable takes a value less than or equal to TNIN 
is P.

Required Arguments
P — Probability for which the inverse of the noncentral Student’s t cumulative distribution function is to 

be evaluated.  (Input) 
P must be in the open interval (0.0, 1.0).

IDF — Number of degrees of freedom of the noncentral Student’s t cumulative distribution.  (Input) IDF 
must be positive.

DELTA — The noncentrality parameter.  (Input)

FORTRAN 90 Interface
Generic: TNIN (P, IDF, DELTA)
Specific: The specific interface names are S_TNIN and D_TNIN.

FORTRAN 77 Interface
Single: TNIN (P, IDF, DELTA)
Double: The double precision name is DTNIN.

Description

Function TNIN evaluates the inverse distribution function of a noncentral t random variable with IDF 
degrees of freedom and noncentrality parameter DELTA; that is, with P = P, ν = IDF, and δ = DELTA, it deter-
mines t0 (= TNIN(P,IDF,DELTA )), such that

where Γ(·) is the gamma function. The probability that the random variable takes a value less than or equal to 
t0 is P. See TNDF for an alternative definition in terms of normal and chi-squared random variables. The func-
tion TNIN uses bisection and modified regula falsi to invert the distribution function, which is evaluated 
using routine TNDF.
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Comments
Informational Error

Example

In this example, we find the 95-th percentage point for a noncentral t random variable with 6 degrees of free-
dom and noncentrality parameter 6.

      USE TNIN_INT
      USE UMACH_INT
      IMPLICIT   NONE
      INTEGER    IDF, NOUT
      REAL       DELTA, P, T
!
      CALL UMACH (2, NOUT)
      IDF   = 6
      DELTA = 6.0
      P     = 0.95
      T     = TNIN(P,IDF,DELTA)
      WRITE (NOUT,99999) T
!
99999 FORMAT (' The 0.05 noncentral t critical value is ', F6.3, &
            '.')
!
      END

Output

The 0.05 noncentral t critical value is 11.995.

Type Code Description

4 1 Over 100 iterations have occurred without convergence. Convergence is 
assumed.
TNIN         Chapter 17: Probability Distribution Functions      1494



TNPR

This function evaluates the noncentral Student's t probability density function.

Function Return Value
TNPR — Function value, the value of the probability density function.  (Output)

Required Arguments
T — Argument for which the noncentral Student's t probability density function is to be evaluated.  (Input)
DF — Number of degrees of freedom of the noncentral Student's t distribution.  (Input)

DF must be positive.
DELTA — Noncentrality parameter.  (Input)

FORTRAN 90 Interface
Generic: TNPR (T, DF, DELTA)
Specific: The specific interface names are S_TNPR and D_TNPR.

Description

The noncentral Student's t distribution is a generalization of the Student's t distribution. 

If w is a normally distributed random variable with unit variance and mean δ and u is a chi-square random 
variable with ν degrees of freedom that is statistically independent of w, then

is a noncentral t-distributed random variable with ν degrees of freedom and noncentrality parameter δ, that 
is, with ν = DF, and δ = DELTA. The probability density function for the noncentral t-distribution is: 

where 

and t = T.
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For δ = 0, the PDF reduces to the (central) Student’s t PDF:

and, for t = 0, the PDF becomes:

Example

This example calculates the noncentral  Student’s t PDF for a distribution with 2 degrees of freedom and non-
centrality parameter δ = 10. 

 USE TNPR_INT
 USE UMACH_INT
 IMPLICIT NONE
 
 INTEGER  :: NOUT, I
 REAL  :: X(6)=(/ -.5, 1.5, 3.5, 7.5, 51.5, 99.5 /)
 REAL  :: DF, DELTA, PDFV

 CALL UMACH (2, NOUT)
 DF = 2.0
 DELTA = 10.0

WRITE (NOUT,'("DF: ", F4.0, "  DELTA: ", F4.0 // &
"   X        PDF(X)")') DF, DELTA

 DO I = 1, 6
 PDFV = TNPR(X(I), DF, DELTA)
 WRITE (NOUT,'(1X, F4.1, 2X, E12.5)') X(I), PDFV

 END DO
 END

Output

DF:  2.  DELTA:  10.

 X  PDF(X)
-0.5  0.16399E-23
 1.5  0.74417E-09
 3.5  0.28972E-02
 7.5  0.78853E-01
51.5  0.14215E-02
99.5  0.20290E-03
TNPR         Chapter 17: Probability Distribution Functions      1496



UNDF

This function evaluates the uniform cumulative distribution function.

Function Return Value
UNDF — Function value, the probability that a uniform random variable takes a value less than or equal 

to X.  (Output)

Required Arguments
X — Argument for which the uniform cumulative distribution function is to be evaluated.  (Input)
A — Location parameter of the uniform cumulative distribution function.  (Input)
B — Value used to compute the scale parameter (B - A) of the uniform cumulative distribution function.  

(Input)

FORTRAN 90 Interface
Generic: UNDF (X, A, B)
Specific: The specific interface names are S_UNDF and D_UNDF.

FORTRAN 77 Interface
Single: UNDF (X, A, B)
Double: The double precision name is DUNDF.

Description

The function UNDF evaluates the uniform cumulative distribution function with location parameter A and 
scale parameter (B - A). The function definition is
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Example

In this example, we evaluate the probability function at X = 0.65, A = 0.25, B = 0.75.

      USE UMACH_INT
      USE UNDF_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, A, B, PR
      CALL UMACH(2, NOUT)
      X = 0.65
      A = 0.25
      B = 0.75
      PR = UNDF(X, A, B)
      WRITE (NOUT, 99999) X, A, B, PR
99999 FORMAT (' UNDF(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

 UNDF(0.65, 0.25, 0.75) = 0.8000
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UNIN

This function evaluates the inverse of the uniform cumulative distribution function.

Function Return Value
UNIN — Function value, the value of the inverse of the cumulative distribution function.  (Output)

Required Arguments
P — Probability for which the inverse of the uniform cumulative distribution function is to be evaluated.  

(Input)
A — Location parameter of the uniform cumulative distribution function.  (Input) 
B — Value used to compute the scale parameter (B - A) of the uniform cumulative distribution function.  

(Input) 

FORTRAN 90 Interface
Generic: UNIN (P, A, B)
Specific: The specific interface names are S_UNIN and D_UNIN.

FORTRAN 77 Interface
Single: UNIN (P, A, B)
Double: The double precision name is DUNIN.

Description

The function UNIN evaluates the inverse distribution function of a uniform random variable with location 
parameter A and scale parameter (B - A).

Example

In this example, we evaluate the inverse probability function at P = 0.80, A = 0.25, B = 0.75.

      USE UMACH_INT
      USE UNIN_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, A, B, P
      CALL UMACH(2, NOUT)
      P = 0.80
      A = 0.25
      B = 0.75
      X = UNIN(P, A, B)
      WRITE (NOUT, 99999) P, A, B, X
99999 FORMAT (' UNIN(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END
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Output

UNIN(0.80, 0.25, 0.75) = 0.6500  
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UNPR

This function evaluates the uniform probability density function.

Function Return Value
UNPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the uniform probability density function is to be evaluated.  (Input)
A — Location parameter of the uniform probability function.  (Input) 
B — Value used to compute the scale parameter (B - A) of the uniform probability density function.  

(Input) 

FORTRAN 90 Interface
Generic: UNPR (X, A, B)
Specific: The specific interface names are S_UNPR and D_UNPR.

FORTRAN 77 Interface
Single: UNPR (X, A, B)
Double: The double precision name is DUNPR.

Description

The function UNPR evaluates the uniform probability density function with location parameter A and scale 
parameter (B - A), defined 
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Example

In this example, we evaluate the uniform probability density function at X = 0.65, A = 0.25, 
B = 0.75.

      USE UMACH_INT
      USE UNPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, A, B, PR
      CALL UMACH(2, NOUT)
      X = 0.65
      A = 0.25
      B = 0.75
      PR = UNPR(X, A, B)
      WRITE (NOUT, 99999) X, A, B, PR
99999 FORMAT (' UNPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

UNPR(0.65, 0.25, 0.75) = 2.0000 
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WBLDF

This function evaluates the Weibull cumulative distribution function.

Function Return Value
WBLDF — Function value, the probability that a Weibull random variable takes a value less than or equal 

to X.  (Output)

Required Arguments
X — Argument for which the Weibull cumulative distribution function is to be evaluated.  (Input)
A — Scale parameter.  (Input) 
B — Shape parameter.  (Input) 

FORTRAN 90 Interface
Generic: WBLDF (X, A, B)
Specific: The specific interface names are S_WBLDF and D_WBLDF.

FORTRAN 77 Interface
Single: WBLDF (X, A, B)
Double: The double precision name is DWBLDF.

Description

The function WBLDF evaluates the Weibull cumulative distribution function with scale parameter A and 
shape parameter B, defined

To deal with potential loss of precision for small values of , the difference expression for 
p is re-written as

and the right factor is accurately evaluated using EXPRL.
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Example

In this example, we evaluate the Weibull cumulative distribution function at X = 1.5, A = 1.0, B = 2.0.

      USE UMACH_INT
      USE WBLDF_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, A, B, PR
      CALL UMACH(2, NOUT)
      X = 1.5
      A = 1.0
      B = 2.0
      PR = WBLDF(X, A, B)
      WRITE (NOUT, 99999) X, A, B, PR
99999 FORMAT (' WBLDF(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END

Output

WBLDF(1.50, 1.00, 2.00) = 0.8946  
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WBLIN

This function evaluates the inverse of the Weibull cumulative distribution function.

Function Return Value
WBLIN — Function value, the value of the inverse of the Weibull cumulative distribution distribution 

function.  (Output)

Required Arguments
P — Probability for which the inverse of the Weibull cumulative distribution function is to be evaluated.  

(Input)
A — Scale parameter.  (Input) 
B — Shape parameter.  (Input) 

FORTRAN 90 Interface
Generic: WBLIN (P, A, B)
Specific: The specific interface names are S_WBLIN and D_WBLIN.

FORTRAN 77 Interface
Single: WBLIN (P, A, B)
Double: The double precision name is DWBLIN.

Description

The function WBLIN evaluates the inverse distribution function of a Weibull random variable with scale 
parameter A and shape parameter B.

Example

In this example, we evaluate the inverse probability function at P = 0.8946, A = 1.0, B = 2.0.

      USE UMACH_INT
      USE WBLIN_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, A, B, P
      CALL UMACH(2, NOUT)
      P = 0.8946
      A = 1.0
      B = 2.0
      X = WBLIN(P, A, B)
      WRITE (NOUT, 99999) P, A, B, X
99999 FORMAT (' WBLIN(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
      END
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Output

WBLIN(0.8946, 1.00, 2.00) = 1.5000  
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WBLPR

This function evaluates the Weibull probability density function.

Function Return Value
WBLPR — Function value, the value of the probability density function.  (Output)

Required Arguments
X — Argument for which the Weibull probability density function is to be evaluated.  (Input)
A — Scale parameter.  (Input) 
B — Shape parameter.  (Input) 

FORTRAN 90 Interface
Generic: WBLPR (X, A, B)
Specific: The specific interface names are S_WBLPR and D_WBLPR.

FORTRAN 77 Interface
Single: WBLPR (X, A, B)
Double: The double precision name is DWBLPR.

Description

The function WBLPR evaluates the Weibull probability density function with scale parameter A and shape 
parameter B, defined

Example

In this example, we evaluate the Weibull probability density function at X = 1.5, A = 1.0, B = 2.0.

      USE UMACH_INT
      USE WBLPR_INT
      IMPLICIT NONE
      INTEGER NOUT
      REAL X, A, B, PR`
      CALL UMACH(2, NOUT)
      X = 1.5
      A = 1.0
      B = 2.0
      PR = WBLPR(X, A, B)
      WRITE (NOUT, 99999) X, A, B, PR
99999 FORMAT (' WBLPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
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      END

Output

WBLPR(1.50, 1.00, 2.00) = 0.3162
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GCDF

This function evaluates a general continuous cumulative distribution function given ordinates of the density.

Function Return Value
GCDF — Function value, the probability that a random variable whose density is given in F takes a value 

less than or equal to X0.  (Output)

Required Arguments
X0 —Point at which the cumulative distribution function is to be evaluated.  (Input)
X — Array containing the abscissas or the endpoints.  (Input) 

If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1 or 3, X(1) contains the 
lower endpoint of the support of the distribution and X(2) is the upper endpoint. For IOPT = 2 or 4, X 
contains, in strictly increasing order, the abscissas such that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates corresponding to increasing abscissas.  
(Input)
If IOPT = 1 or 3, for I = 1, 2, …, M, F(I) corresponds to X(1) + (I - 1) * (X(2) - X(1))/(M - 1); otherwise, 
F and X correspond one for one.

Optional Arguments
IOPT — Indicator of the method of interpolation.  (Input)

Default: IOPT = 1.

M —Number of ordinates of the density supplied.  (Input) 
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than 3 if a curve is fitted 
through the ordinates (IOPT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface
Generic: GCDF (X0, X, F [, …])
Specific: The specific interface names are S_GCDF and D_GCDF.

FORTRAN 77 Interface
Single: GCDF (X0, IOPT, M, X, F)
Double: The double precision name is DGCDF.

IOPT Interpolation Method

1 Linear interpolation with equally spaced abscissas.

2 Linear interpolation with possibly unequally spaced abscissas.

3 A cubic spline is fitted to equally spaced abscissas.

4 A cubic spline is fitted to possibly unequally spaced abscissas.
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Description

Function GCDF evaluates a continuous distribution function, given ordinates of the probability density func-
tion. It requires that the range of the distribution be specified in X. For distributions with infinite ranges, 
endpoints must be chosen so that most of the probability content is included. The function GCDF first fits a 

curve to the points given in X and F with either a piecewise linear interpolant or a C 1 cubic spline interpolant 
based on a method by Akima (1970). Function GCDF then determines the area, A, under the curve. (If the dis-
tribution were of finite range and if the fit were exact, this area would be 1.0.) Using the same fitted curve, 
GCDF next determines the area up to the point x0 (= X0). The value returned is the area up to x0 divided by A. 
Because of the scaling by A, it is not assumed that the integral of the density defined by X and F is 1.0. For 
most distributions, it is likely that better approximations to the distribution function are obtained when IOPT 
equals 3 or 4, that is, when a cubic spline is used to approximate the function. It is also likely that better 
approximations can be obtained when the abscissas are chosen more densely over regions where the density 
and its derivatives (when they exist) are varying greatly.

Comments
1. If IOPT = 3, automatic workspace usage is:

GCDF 6 * M units, or
DGCDF 11 * M units.

2. If IOPT = 4, automatic workspace usage is 
GCDF 5 * M units, or
DGCDF 9 * M units.

3. Workspace may be explicitly provided, if desired, by the use of G4DF/DG4DF. The reference is:

G4DF (P, IOPT, M, X, F, WK, IWK)
The arguments in addition to those of GCDF are:

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

IWK — Work vector of length M.

Example

In this example, we evaluate the beta distribution function at the point 0.6. The probability density function 
of a beta random variable with parameters p and q is

where Γ(·) is the gamma function. The density is equal to 0 outside the interval [0, 1]. We compute a constant 
multiple (we can ignore the constant gamma functions) of the density at 300 equally spaced points and input 
this information in X and F. Knowing that the probability density of this distribution is very peaked in the 
vicinity of 0.5, we could perhaps get a better fit by using unequally spaced abscissas, but we will keep it sim-
ple. Note that this is the same example as one used in the description of routine BETDF. The result from 
BETDF would be expected to be more accurate than that from GCDF since BETDF is designed specifically for 
this distribution.
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      USE UMACH_INT
      USE GCDF_INT
      IMPLICIT   NONE
      INTEGER    M
      PARAMETER  (M=300)
!
      INTEGER    I, IOPT, NOUT
      REAL       F(M), H, P, PIN1, QIN1, X(2), X0, XI
!
      CALL UMACH (2, NOUT)
      X0   = 0.6
      IOPT = 3
!                                 Initializations for a beta(12,12)
!                                 distribution.
      PIN1 = 11.0
      QIN1 = 11.0
      XI   = 0.0
      H    = 1.0/(M-1.0)
      X(1) = XI
      F(1) = 0.0
      XI   = XI + H
!                                 Compute ordinates of the probability
!                                 density function.
      DO 10  I=2, M - 1
         F(I) = XI**PIN1*(1.0-XI)**QIN1
         XI   = XI + H
   10 CONTINUE
      X(2) = 1.0
      F(M) = 0.0
      P    = GCDF(X0, X, F, IOPT=IOPT)
      WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is less than 0.6 is ', F6.4)
      END

Output

The probability that X is less than 0.6 is 0.8364
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GCIN

This function evaluates the inverse of a general continuous cumulative distribution function given ordinates 
of the density.

Function Return Value
GCIN — Function value.  (Output) 

The probability that a random variable whose density is given in F takes a value less than or equal to 
GCIN is P.

Required Arguments
P —Probability for which the inverse of the cumulative distribution function is to be evaluated.  (Input) 

P must be in the open interval (0.0, 1.0).
X —Array containing the abscissas or the endpoints.  (Input)

If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1 or 3, X(1) contains the 
lower endpoint of the support of the distribution and X(2) is the upper endpoint. For IOPT = 2 or 4, X 
contains, in strictly increasing order, the abscissas such that X(I) corresponds to F(I).

F —Vector of length M containing the probability density ordinates corresponding to increasing abscissas.  
(Input) 
If IOPT = 1 or 3, for I = 1, 2, …, M, F(I) corresponds to X(1) + (I - 1) * (X(2) - X(1))/(M -  1); otherwise, 
F and X correspond one for one.

Optional Arguments
IOPT — Indicator of the method of interpolation.  (Input)

Default: IOPT = 1.

M —Number of ordinates of the density supplied.  (Input) 
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than 3 if a curve is fitted 
through the ordinates (IOPT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface
Generic: GCIN (P, X, F [, …])
Specific: The specific interface names are S_GCIN and D_GCIN.

IOPT Interpolation Method

1 Linear interpolation with equally spaced abscissas.

2 Linear interpolation with possibly unequally spaced abscissas.

3 A cubic spline is fitted to equally spaced abscissas.

4 A cubic spline is fitted to possibly unequally spaced abscissas.
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FORTRAN 77 Interface
Single: GCIN (P, IOPT, M, X, F)
Double: The double precision name is DGCIN.

Description

Function GCIN evaluates the inverse of a continuous distribution function, given ordinates of the probability 
density function. The range of the distribution must be specified in X. For distributions with infinite ranges, 
endpoints must be chosen so that most of the probability content is included. 

The function GCIN first fits a curve to the points given in X and F with either a piecewise linear interpolant or 
a C cubic spline interpolant based on a method by Akima (1970). Function GCIN then determines the area, A, 
under the curve. (If the distribution were of finite range and if the fit were exact, this area would be 1.0.) It 
next finds the maximum abscissa up to which the area is less than AP and the minimum abscissa up to which 
the area is greater than AP . The routine then interpolates for the point corresponding to AP. Because of the 
scaling by A, it is not assumed that the integral of the density defined by X and F is 1.0. 

For most distributions, it is likely that better approximations to the distribution function are obtained when 
IOPT equals 3 or 4, that is, when a cubic spline is used to approximate the function. It is also likely that better 
approximations can be obtained when the abscissas are chosen more densely over regions where the density 
and its derivatives (when they exist) are varying greatly.

Comments
1. If IOPT = 3, automatic workspace usage is

GCIN 6 * M units, or
DGCIN 11 * M units.

2. If IOPT = 4, automatic workspace usage is 
GCIN 5 * M units, or
DGCIN 9 * M units.

3. Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The 
reference is:

G3IN (P, IOPT, M, X, F, WK, IWK)
The arguments in addition to those of GCIN are:

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

IWK — Work vector of length M.

Example

In this example, we find the 90-th percentage point for a beta random variable with parameters 12 and 12. 
The probability density function of a beta random variable with parameters p and q is 
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where Γ(·) is the gamma function. The density is equal to 0 outside the interval [0, 1]. With p = q, this is a 
symmetric distribution. Knowing that the probability density of this distribution is very peaked in the vicin-
ity of 0.5, we could perhaps get a better fit by using unequally spaced abscissas, but we will keep it simple 
and use 300 equally spaced points. Note that this is the same example that is used in the description of rou-
tine BETIN. The result from BETIN would be expected to be more accurate than that from GCIN since BETIN 
is designed specifically for this distribution.

      USE GCIN_INT
      USE UMACH_INT
      IMPLICIT   NONE
      INTEGER    M
      PARAMETER  (M=300)
!
      INTEGER    I, IOPT, NOUT
      REAL       C, F(M), H, P, PIN, PIN1, QIN, QIN1, X(2), X0, XI, BETA
!
      CALL UMACH (2, NOUT)
      P    = 0.9
      IOPT = 3
!                                 Initializations for a beta(12,12)
!                                 distribution.
      PIN  = 12.0
      QIN  = 12.0
      PIN1 = PIN - 1.0
      QIN1 = QIN - 1.0
      C    = 1.0/BETA(PIN,QIN)
      XI   = 0.0
      H    = 1.0/(M-1.0)
      X(1) = XI
      F(1) = 0.0
      XI   = XI + H
!                                 Compute ordinates of the probability
!                                 density function.
      DO 10  I=2, M - 1
         F(I) = C*XI**PIN1*(1.0-XI)**QIN1
         XI   = XI + H
   10 CONTINUE
      X(2) = 1.0
      F(M) = 0.0
      X0   = GCIN(P,X,F,IOPT=IOPT)
      WRITE (NOUT,99999) X0
99999 FORMAT (' X is less than ', F6.4, ' with probability 0.9.')
      END

Output

X is less than 0.6304 with probability 0.9.
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GFNIN

This function evaluates the inverse of a general continuous cumulative distribution function given in a 
subprogram.

Function Return Value
GFNIN — The inverse of the function F at the point P.  (Output)

F(GFNIN) is “close” to P.

Required Arguments
F — User-supplied FUNCTION to be inverted. F must be continuous and strictly monotone. The form is 

F(X), where
X — The argument to the function.  (Input)
F — The value of the function at X.  (Output)
F must be declared EXTERNAL in the calling program.

P — The point at which the inverse of F is desired.  (Input)
GUESS — An initial estimate of the inverse of F at P.  (Input)

Optional Arguments
EPS — Convergence criterion.  (Input)

When the relative change in GFNIN from one iteration to the next is less than EPS, convergence is 
assumed. A common value for EPS is 0.0001. Another common value is 100 times the machine epsilon.
Default: EPS = 100 times the machine epsilon.

FORTRAN 90 Interface
Generic: GFNIN (F, P, GUESS [, …])
Specific: The specific interface names are S_GFNIN and D_GFNIN.

FORTRAN 77 Interface
Single: GFNIN (F, P, EPS, GUESS)
Double: The double precision name is DGFNIN.

Description

Function GFNIN evaluates the inverse of a continuous, strictly monotone function. Its most obvious use is in 
evaluating inverses of continuous distribution functions that can be defined by a FORTRAN function. If the 
distribution function cannot be specified in a FORTRAN function, but the density function can be evaluated 
at a number of points, then routine GCIN can be used.

Function GFNIN uses regula falsi and/or bisection, possibly with the Illinois modification (see Dahlquist and 
Bjorck 1974). A maximum of 100 iterations are performed.
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Comments
1. Informational errors

2. The function to be inverted need not be a distribution function, it can be any continuous, monotonic 
function.

Example

In this example, we find the 99–th percentage point for an F random variable with 1 and 7 degrees of free-
dom. (This problem could be solved easily using routine FIN. Compare the example for FIN). The function 
to be inverted is the F distribution function, for which we use routine FDF. Since FDF requires the degrees of 
freedom in addition to the point at which the function is evaluated, we write another function F that receives 
the degrees of freedom via a common block and then calls FDF. The starting point (initial guess) is taken as 
two standard deviations above the mean (since this would be a good guess for a normal distribution). It is 
not necessary to supply such a good guess. In this particular case, an initial estimate of 1.0, for example, 
yields the same answer in essentially the same number of iterations. (In fact, since the F distribution is 
skewed, the initial guess, 7.0, is really not that close to the final answer.)

      USE UMACH_INT
      USE GFNIN_INT
      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       DFD, DFN, F, F0, GUESS, P, SQRT
      COMMON     /FCOM/ DFN, DFD
      INTRINSIC  SQRT
      EXTERNAL   F
!
      CALL UMACH (2, NOUT)
      P   = 0.99
      DFN = 1.0
      DFD = 7.0
!                                 Compute GUESS as two standard
!                                 deviations above the mean.
      GUESS = DFD/(DFD-2.0) + 2.0*SQRT(2.0*DFD*DFD*(DFN+DFD-2.0)/(DFN* &
             (DFD-2.0)**2*(DFD-4.0)))
      F0    = GFNIN(F,P,GUESS)
      WRITE (NOUT,99999) F0
99999 FORMAT (' The F(1,7) 0.01 critical value is ', F6.3)
      END
!
      REAL FUNCTION F (X)
      REAL       X
!

Type Code Description

4 1 After 100 attempts, a bound for the inverse cannot be determined. Try again 
with a different initial estimate.

4 2 No unique inverse exists.

4 3 Over 100 iterations have occurred without convergence. Convergence is 
assumed.
GFNIN         Chapter 17: Probability Distribution Functions      1516



      REAL       DFD, DFN, FDF
      COMMON     /FCOM/ DFN, DFD
      EXTERNAL   FDF
!
      F = FDF(X,DFN,DFD)
      RETURN
      END

Output

The F(1,7) 0.01 critical value is 12.246
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MLE

Calculates maximum likelihood estimates for the parameters of one of several univariate probability 
distributions.

Required Arguments
X— Array containing the data.  (Input)
IPDF — Specifies the probability density function.  (Input)

more...

Distribution IPDF size(PARAM) i PARAM(i)

Discrete uniform 0 1 1 scale - upper limit

Bernoulli 1 1 1 probability of success (mean)

Binomial 2 1 1 probability of success

Negative binomial 3 1 1 probability of success

Poisson 4 1 1 location (mean) - θ
Geometric 5 1 1 probability of success

Continuous uniform 6 2 1
2

scale - lower boundary
scale - upper boundary

Beta 7 2 1
2

shape - p
shape - q

Exponential 8 1 1 scale - b

Gamma 9 2 1
2

shape - k
scale - θ

Weibull 10 2 1
2

scale - λ
shape - k

Rayleigh 11 1 1 scale - α
Extreme value 12 2 1

2
location - μ
scale - σ

Generalized extreme value 13 3 1
2
3

location - μ
scale - σ
shape - β

Pareto 14 2 1
2

scale (lower boundary) xm
shape - k
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PARAM — Array of length p containing the parameter values, where p = size(PARAM) denotes the number 
of parameters (see the IPDF table above). On input, the values of PARAM are used as starting values, 
when USEMM = .FALSE.. On output, final parameter estimates replace the starting values.  
(Input/Output)

Optional Arguments
NOBS — Number of observations to use in the analysis.  (Input)

Default:  NOBS = size(X).
PARAMLB — Array of length p containing the lower bounds of the parameters.  (Input)

Default:  The default lower bound depends on the range of the parameter. That is, if PARAM(i) is pos-
itive, PARAMLB(i) = 0.01. If PARAM(i) is non-negative (≥0), then PARAMLB(i) = 0.0. If PARAM(i) 
can be any real value, then PARAMLB(i) = -10000.00. Exceptions are PARAMLB(i) = 0.25 for the scale 
parameter of the extreme value distribution, PARAMLB(i) = -5.0 for the shape parameter of the gener-
alized Pareto distribution, and PARAMLB(i) = -10.0 for the shape parameter of the generalized 
extreme value distribution.

PARAMUB — Array of length p containing the upper bounds of the parameters.  (Input)
Default:  PARAMUB(i) = 10000.00. Exceptions are PARAMUB(i) = 5.0 for the shape parameter of the gen-
eralized Pareto distribution and PARAMUB(i) = 10.0 for the shape parameter of the generalized 
extreme value distribution

USEMM — Logical. If .true., starting values are set to the method of moments estimates.  (Input)
If USEMM = .FALSE., PARAM values are used.
Default:  USEMM = .TRUE..

XSCALE — Array of length p containing the scaling factors for the parameters. XSCALE is used in the rou-
tine BCONF mainly in scaling the gradient and the distance between two points. See BCONF in the Math 
Libray, Chapter 8, “Optimization” for details.
Default:  XSCALE =1.0.

MAXIT — Maximum number of iterations.  (Input)
Default:  MAXIT = 100.

MAXFUN — Maximum number of function evaluations.  (Input)
Default:  MAXFUN = 400.

Generalized Pareto 15 2 1
2

scale - σ
shape - α

Normal 16 2 1
2

location (mean) - μ
scale (variance) - σ 2

Log-normal 17 2 1
2

location (mean of log(x)) - μ
scale (variance of log(x)) - σ2

Logistic 18 2 1
2

location (mean) - μ
scale - s

Log-logistic 19 2 1
2

scale (exp(mean)) - eμ
shape - β

Inverse Gaussian 20 2 1
2

location (mean) - μ
shape - λ

Distribution IPDF size(PARAM) i PARAM(i)
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MAXGRAD — Maximum number of gradient evaluations.  (Input)
Default:  MAXGRAD = 400.

IPRINT — Printing option   (Input)

Default: IPRINT = 0.
MLOGLIKE — Minus log-likelihood evaluated at the parameter estimates.  (Output)
SE — Array of length p containing the standard errors of the parameter estimates.  (Output)
HESS — Array of size p by p containing the Hessian matrix.  (Output)

FORTRAN 90 Interface
Generic: CALL MLE (X,IPDF,PARAM [, …])
Specific: The specific interface names are S_MLE and D_MLE.

Description

Routine MLE calculates maximum likelihood estimates for the parameters of a univariate probability distri-
bution, where the distribution is one specified by IPDF and where the input data X is (assumed to be) a 
random sample from that distribution.

Let {xi, i = 1, …, N} represent a random sample from a probability distribution with density function f(x∣θ), 

which depends on a vector θ ∈ ℜp containing the values of the parameters of the distribution. The values in 
θ are fixed but unknown and the problem is to find an estimate for θ given the sample data.

The likelihood function is defined to be the product

The estimator

That is, the estimator that maximizes L also maximizes log L and is the maximum likelihood estimate, or 
MLE for θ. 

IPRINT Action

0 No printing

1 Print final results only

2 Print intermediate and final results
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The likelihood problem is in general a constrained non-linear optimization problem, where the constraints 
are determined by the permissible range of θ. In a few situations, the problem has a closed form solution. 
Otherwise, MLE uses the numerical method as documented in routine BCONF (see Chapter 8, "Optimization" in 
the Math Library for details) to solve the likelihood problem. If USEMM is .TRUE. (the default), method of 
moments estimates serve as starting values of the parameters. In some cases, method of moments estimators 
may not exist, such as when certain moments of the true distribution do not exist; thus it is possible that the 
starting values are not truly method of moments estimates. If USEMM is set to .FALSE., input values of 
PARAM are used as starting values.

Upper and lower bounds, when needed for the optimization, have default values for each selection of IPDF 
(defaults will vary depending on the allowable range of the parameters). It is possible that the optimization 
will fail. In such cases, the user may try adjusting upper and lower bounds using the optional parameters 
PARAMLB, PARAMUB, or adjusting up or down the scaling factors in XSCALE, which can sometimes help the 
optimization converge.

Standard errors and covariances are supplied, in most cases, using the asymptotic properties of ML estima-
tors. Under some general regularity conditions, ML estimates are consistent and asymptotically normally 
distributed with variance-covariance equal to the inverse Fisher’s Information matrix evaluated at the true 
value of the parameter, θ0:

MLE approximates the asymptotic variance using the negative inverse Hessian evaluated at the ML estimate:

The Hessian is approximated numerically for all but a few cases where it can be determined in closed form.

In cases when the asymptotic result does not hold, standard errors may be available from the known sam-
pling distribution. For example, the ML estimate of the Pareto distribution location parameter is the 
minimum of the sample. The variance is estimated using the known sampling distribution of the minium, or 
first order-statistic for the Pareto distribution.

For further details regarding the properties of the estimators and the theory of the maximum likelihood 
method, see Kendall and Stuart (1979). The different probability distributions have wide coverage in the sta-
tistical literature. See Johnson & Kotz (1970a, 1970b, or later editions).

Parameter estimation (including maximum likelihoood) for the generalized Pareto distribution is studied in 
Hosking and Wallis (1987) and Giles and Feng (2009), and estimation for the generalized extreme value dis-
tribution is treated in Hosking, Wallis, and Wood (1985).

Comments
1. The location parameter is not estimated for the generalized Pareto distribution (IPDF=15). Instead, 

the minimum of the sample is subtracted from each observation before the estimation procedure.
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2. Only the probability of success parameter is estimated for the binomial and negative binomial distri-
butions, (IPDF=2,3). The number of trials and the number of failures, respectively, must be provided 
in PARAM(1) on input. 

3. MLE issues an error if missing or NaN values are encountered in the input data. Missing or NaN values 
should be removed before calling MLE.

4. Informational errors

Examples

Example 1

The data are N = 100 observations generated from the logistic distribution with location parameter μ = 0.85 
and scale parameter σ = 0.5.

      use mle_int
      implicit none

      integer, parameter :: ipdf=18, npar=2
      real(kind(1e0)) :: param(npar), stderr(npar), hess(npar,npar)
      real(kind(1e0)) :: fval

!                       Logistic distribution mu = 0.85, sigma=0.5
      real(kind(1e0)) :: log1(100)
      data log1 /&
         2.020394,  2.562315, -0.5453395, 1.258546, 0.7704533, &
         0.3662717, 0.6885536, 2.619634,  -0.49581, 2.972249, &
         0.5356222, 0.4262079, 1.023666, 0.8286033, 1.319018, &
         2.123659, 0.3904647, -0.1196832, 1.629261, 1.069602, &
         0.9438083, 1.314796, 1.404453, -0.5496156, 0.8326595, &
         1.570288, 1.326737, 0.9619384, -0.1795268, 1.330161, &
         -0.2916453, 0.7430826, 1.640854, 1.582755, 1.559261, &
         0.6177695, 1.739638, 1.308973, 0.568709, 0.2587071, &
         0.745583, 1.003815, 1.475413, 1.444586, 0.4515438, &
         1.264374, 1.788313, 1.062330, 2.126034, 0.3626510, &
         1.365612, 0.5044735, 2.51385, 0.7910572, 0.5932584, &
         1.140248, 2.104453, 1.345562, -0.9120445, 0.0006519341, &
         1.049729, -0.8246097, 0.8053433, 1.493787, -0.5199705, &
         2.285175, 0.9005916, 2.108943, 1.40268, 1.813626, &
         1.007817, 1.925250, 1.037391, 0.6767235, -0.3574937, &
         0.696697, 1.104745, -0.7691124, 1.554932, 2.090315, &
         0.60919, 0.4949385, -2.449544, 0.668952, 0.9480486, &

Type Code Description

3 1 The Hessian is not calculated for the negative binomial distribution.

3 2 Hessian is not used to calculate the standard errors of the estimates for the 
continuous uniform distribution.

3 3 The Hessian is not used to calculate the standard errors of the estimates for 
the Pareto distribution.

3 4 For the Pareto distribution, the Hessian cannot be calculated because the 
parameter estimate is 0.
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         0.9908558, -1.495384, 2.179275, 0.1858808, -0.3715074, &
         0.1447150, 0.857202, 1.805844, 0.405371, 1.425935, &
         0.3187476, 1.536181, -0.6352768, 0.5692068, 1.706736/
        
         param = 1.0
         stderr = 0.0
         hess = 0.0
        
         call mle(log1,ipdf,param,iprint=2,usemm=.true., &
                 mloglike=fval,se=stderr,hess=hess)  
       end

Output

 Univariate Statistics from UVSTA
  
 Variable       Mean      Variance     Std. Dev.      Skewness      Kurtosis
     1        0.9068        0.8600        0.9274       -0.6251        0.9725
  
 Variable    Minimum       Maximum         Range    Coef. Var.         Count
     1       -2.4495        2.9722        5.4218        1.0227      100.0000
  
 Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
     1           0.7228        1.0908        0.6629        1.1606
 
 Maximum likelihood estimation for the logistic distribution

 Starting estimates:   0.90677   0.51128

 Initial -log-likelihood:  132.75304

 -Log-likelihood  132.61487

 MLE for parameter      1      0.95341

 MLE for parameter      2      0.50944

 Std error for parameter   1      0.08845

 Std error for parameter   2      0.04364
  
      Hessian
         1       2
 1  -127.9    -5.7
 2    -5.7  -525.4

Example 2

The data are N = 100 observations generated from the generalized extreme value distribution with location 
parameter μ = 0, scale parameter σ = 1.0, and shape parameter ξ = -0.25.

      use mle_int
      implicit none
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      integer, parameter :: ipdf=13, npar=3
      real(kind(1e0)) :: param(npar), stderr(npar), &
         hess(npar,npar)
      real(kind(1e0)) :: fval

!                                  Generalized Extreme Value 
!                                  oc = 0, scale =1, shape = =-0.25
      real(kind(1e0)) :: gev(100)
      data gev/ &
         0.7688048, 0.1944504, -0.2992029, -0.3853738, -1.185593, &
         0.3056149, -0.4407711, 0.5001115, 0.3635027, -1.058632, &
         -0.2927695, -0.3205969, 0.03367599, 0.8850839, 1.860485, &
         0.4841038, 0.5421101, 1.883694, 1.707392, 0.2166106, &
         1.537204, 1.340291, 0.4589722, 1.616080, -0.8389288, &
         0.7057426, 1.532988, 1.161350, 0.9475416, 0.4995294, &
         -0.2392898, 0.8167126, 0.992479, -0.8357962, -0.3194499, &
         1.233603, 2.321555, -0.3715629, -0.1735171, 0.4624801, &
         -0.6249577, 0.7040129, -0.3598889, 0.7121399, -0.5178735, &
         -1.069429, 0.7169358, 0.4148059, 1.606248, -0.4640152, &
         1.463425, 0.9544342, -1.383239, 0.1393160, 0.622689, &
         0.365793, 0.7592438, 0.810005, 0.3483791, 2.375727, &
         -0.08124195, -0.4726068, 0.1496043, 0.4961212, 1.532723, &
         -0.1106993, 1.028553, 0.856018, -0.6634978, 0.3573150, &
         0.06391576, 0.3760349, -0.5998756, 0.4158309, -0.2832369, &
         -1.023551, 1.116887, 1.237714, 1.900794, 0.6010037, &
         1.599663, -0.3341879, 0.5278575, 0.5497694, 0.6392933, &
         0.592865, 1.646261, -1.042950, -1.113611, 1.229645, &
         1.655998, 0.6913992, 0.4548073, 0.4982649, -1.073640, &
         -0.4765107, -0.8692533, -0.8316462, -0.03609102, 0.655814/

!                                  initialize
      param=1.0
      stderr=0.0
      hess = 0.0

      call mle(gev, ipdf, param, iprint=2, usemm=.true., &
         mloglike=fval, se=stderr, hess=hess)

      end
MLE         Chapter 17: Probability Distribution Functions      1524



Output

 Univariate Statistics from UVSTA
  
 Variable       Mean      Variance     Std. Dev.      Skewness      Kurtosis
     1        0.3805        0.7484        0.8651       0.05492       -0.6240
  
 Variable    Minimum       Maximum         Range    Coef. Var.         Count
     1       -1.3832        2.3757        3.7590        2.2738      100.0000
  
 Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
     1           0.2088        0.5521        0.5769        1.0100
 
 Maximum likelihood estimation for the generalized extreme value distribution

 Starting estimates:  -0.00888   0.67451   0.00000

 Initial -log-likelihood:  135.43820

 -Log-likelihood  126.09403

 MLE for parameter      1      0.07500

 MLE for parameter      2      0.85115

 MLE for parameter      3     -0.27960

 Std error for parameter   1      0.09467

 Std error for parameter   2      0.07007

 Std error for parameter   3      0.06695
  
          Hessian
         1       2       3
 1  -141.1   -51.3  -112.8
 2   -51.3  -337.0  -241.0
 3  -112.8  -241.0  -438.8
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Chapter 18: Random Number 
Generation
Routines

18.1 Utility Routines for Random Number Generators

Selects the uniform (0,1) generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RNOPT     1535

Retrieves the indicator of the generator currently used . . . . . . . . . . . . . . . RNOPG     1536

Initializes the seed used in the generators. . . . . . . . . . . . . . . . . . . . . . . . . .RNSET     1537

Retrieves the current value of the seed . . . . . . . . . . . . . . . . . . . . . . . . . . . .RNGET     1537

Initializes the table used in the shuffled generators . . . . . . . . . . . . . . . . . . .RNSES     1537
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Usage Notes

In the following discussions, the phrases “random numbers,” “random deviates,” “deviates,” and “variates” 
are used interchangeably. The phrase “pseudorandom” is sometimes used to emphasize that the numbers 
generated are not really “random” since they result from a deterministic process. The usefulness of pseudo-
random numbers derives from the similarity, in a statistical sense, of samples of the pseudorandom numbers 
to samples of observations from the specified distributions. In short, while the pseudorandom numbers are 
completely deterministic and repeatable, they simulate the realizations of independent and identically distrib-
uted random variables.

The Basic Uniform Generators

The random number generators in this chapter use either a multiplicative congruential method, or a general-
ized feedback shift register (GFSR) method, or a Mersenne Twister method. The selection of the type of 
generator is made by calling the routine RNOPT. If no selection is made explicitly, a multiplicative generator 
(with multiplier 16807) is used. Whatever distribution is being simulated, uniform (0, 1) numbers are first 
generated and then transformed if necessary. The generation of the uniform (0, 1) numbers is done by the 
routine RNUN, or by its function analog RNUNF. These routines are portable in the sense that, given the same 
seed and for a given type of generator, they produce the same sequence in all computer/compiler environ-
ments. There are many other issues that must be considered in developing programs for the methods 
described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators

The form of the multiplicative congruential generators is

Each xi is then scaled into the unit interval (0, 1). If the multiplier, c, is a primitive root modulo 231 - 1 (which 

is a prime), then the generator will have maximal period of 231 - 2. There are several other considerations, 
however. The lattice structure induced by congruential generators (see Marsaglia 1968) can be assessed by 
the lattice test of Marsaglia (1972) or the spectral test of Coveyou and MacPherson (1967) (see also Knuth 
1981, pages 89-113). Also, empirical studies, such as by Fishman and Moore (1982 and 1986), indicate that 
different values of multipliers, all of which perform well under the lattice test and the spectral test, may yield 
quite different performances where the criterion is similarity of samples generated to samples from a true 
uniform distribution.

There are three possible choices for c in the IMSL generators: 16807 (which is 75), 397204094 (which is 

2 · 72 · 4053103), and 950706376 (which is 23 · 118838297). The selection is made by the routine RNOPT. The 
choice of 16807 will result in the fastest execution time (see Gentle 1981), but Fishman and Moore’s studies 
would seem to indicate that the performance of 950706376 is best among these three choices. If no selection is 
made explicitly, the routines use the multiplier 16807, which has been in use for some time (Lewis, Goodman, 
and Miller 1969). It is the “minimal standard generator” discussed by Park and Miller (1988).
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The user can also select a shuffled version of the multiplicative congruential generators using RNOPT. The 
shuffled generators use a scheme due to Learmonth and Lewis (1973a). In this scheme, a table is filled with 
the first 128 uniform (0, 1) numbers resulting from the simple multiplicative congruential generator. Then, 
for each xi from the simple generator, the low-order bits of xi are used to select a random integer, j, from 1 to 
128. The j-th entry in the table is then delivered as the random number; and xi, after being scaled into the unit 
interval, is inserted into the j-th position in the table.

The Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion Xt = Xt−1563 ⊕ Xt−96. This generator, which is different from earlier 
GFSR generators, was proposed by Fushimi (1990), who discusses the theory behind the generator and 
reports on several empirical tests of it. Background discussions on this type of generator can be found in Ken-
nedy and Gentle (1980), pages 150-162.

The Mersenne Twister Generator

Both of the Mersenne Twister generators have a period of 219937 - 1 and a 624-dimensional equidistribution 
property. See Matsumoto et al. 1998 for details.

Setting the Seed

The seed of the generator can be set in RNSET and can be retrieved by RNGET. Prior to invoking any genera-
tor in this chapter , the user can call RNSET to initialize the seed, which is an integer variable taking a value 
between 1 and 2147483646. If it is not initialized by RNSET, a random seed is obtained from the system clock. 
Once it is initialized, the seed need not be set again. The seed is updated and passed from one routine to 
another by means of a named COMMON block, R2NCOM.

If the user wishes to restart a simulation, RNGET can be used to obtain the final seed value of one run to be 
used as the starting value in a subsequent run. Also, if two random number streams are desired in one run, 
RNSET and RNGET can be used before and after the invocations of the generators in each stream. If a shuffled 
generator or the GFSR generator is used, in addition to resetting the seed, the user must also reset some val-
ues in a table. For the shuffled generators, this is done using the routines RNGES and RNSES  and for the 
GFSR generator, the table is retrieved and set by the routines RNGEF and RNSEF. The tables for the shuffled 
generators are separate for single and double precision; so, if precisions are mixed in a program, it is neces-
sary to manage each precision separately for the shuffled generators.

Timing Considerations

The generation of the uniform (0,1) numbers is done by the routine RNUN or by its function analog RNUNF. 
The particular generator selected in RNOPT, that is, the value of the multiplier and whether shuffling is done 
or whether the GFSR generator is used, affects the speed of RNUN and RNUNF. The smaller multiplier (16807, 
selected by IOPT = 1) is faster than the other multipliers. The multiplicative congruential generators that do 
not shuffle are faster than the ones that do. The GFSR generator is roughly as fast as the fastest multiplicative 
congruential generator, but the initialization for it (required only on the first invocation) takes longer than the 
generation of thousands of uniform random numbers. Precise statements of relative speeds depend on the 
computing system.
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Whether RNUN or RNUNF is used also has an effect on the speed due to the overhead in invoking an external 
routine, or due to the program’s inability to optimize computations by holding some operands in registers. 
This effect, of course, may be different in different environments. On an array processor or other computers 
with pipelined instructions, RNUN is likely to be considerably faster than RNUNF when several random num-
bers are to be generated at one time. In the case of array processors, the multiplicative congruential 
generators in RNUN are coded to generate subsequences in larger blocks (see Gentle 1990).

Use of Customized Uniform Generators

The basic uniform (0, 1) generators RNUN or RNUNF are used by all other routines in this chapter. If, for some 
reason, the user would prefer a different basic uniform generator, routines named “RNUN” and “RNUNF” can 
be written so that they include the named COMMON, through which the seed is passed, and that calls the user’s 
custom generator. The named COMMON is

      COMMON /R2NCOM/ D2P31A, DSEED, D2P31R, DWK, DINTTB, INDCTR, &
            INTTB, WK, ICEED, IDSTFS, INTFS, ISRCFS, S2P31R, IWFS 
      DOUBLE PRECISION D2P31A, D2P31R, DSEED, DWK(128)
      REAL    S2P31R, WK(128)
      INTEGER ICEED, IDSTFS, INDCTR, ISRCFS, IWFS(1563)
      LOGICAL DINTTB, INTTB, INTFS
      SAVE    /R2NCOM/

The user’s “RNUN” and “RNUNF” can pass the seed through any of the variables, but the routines RNSET and 
RNGET expect the seed to be in ICEED. (The user should not expect to use any utility routines other than 
RNSET and RNGET if customized versions of RNUN or RNUNF are used.) The double precision versions of the 
nonuniform generators, such as DRNBET and DRNGAM (RNGAM), use the double precision versions of the uni-
form generators, DRNUN (RNUN) and DRNUNF (RNUNF), so to use the double precision nonuniform generators 
with customized uniform generators, the user would supply routines to replace DRNUN and DRNUNF.

Distributions Other than the Uniform

The nonuniform generators use a variety of transformation procedures. All of the transformations used are 
exact (mathematically). The most straightforward transformation is the inverse CDF technique, but it is often 
less efficient than others involving acceptance/rejection and mixtures. See Kennedy and Gentle (1980) for dis-
cussion of these and other techniques.

Many of the nonuniform generators in this chapter use different algorithms depending on the values of the 
parameters of the distributions. This is particularly true of the generators for discrete distributions. 
Schmeiser (1983) gives an overview of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on different computers, because 
of rounding, the nonuniform generators that use acceptance/rejection may occasionally produce different 
sequences on different computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a very large number of deviates 
from a fixed distribution are to be generated, it might be worthwhile to consider a table sampling method, as 
implemented in the routines RNGDA, RNGDS, RNGDT, RNGCS, and RNGCT. After an initialization stage, which 
may take some time, the actual generation may proceed very fast.
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Order Statistics and Antithetic Variates

For those generators, such as RNCHY and RNNOR, that use the inverse CDF technique, it is possible to generate 
any set of order statistics directly by use of a customized uniform generator, as discussed above, by generat-
ing order statistics in a custom “RNUN” or “RNUNF”. In some routines that employ an inverse CDF technique, 
such as RNEXP and RNWIB, instead of directly using the uniform (0, 1) deviate u from RNUN, the uniform (0, 1) 
deviate 1 - u is used. In such routines the i-th order statistic from the uniform will yield the (n + 1 - i)-th 
order statistic from the nonuniform distribution.

A similar technique can be used to get antithetic variates. For each uniform deviate u, a second deviate 1 - u 
could be produced by a custom “RNUN” or “RNUNF”. As with order statistics, this technique would only be 
reasonable for routines that use the inverse CDF technique.

Tests

Extensive empirical tests of some of the uniform random number generators available in RNUN and RNUNF 
are reported by Fishman and Moore (1982 and 1986). Results of tests on the generator using the multiplier 
16807 with and without shuffling are reported by Learmonth and Lewis (1973b). If the user wishes to per-
form additional tests, the routines in Chapter 7, “Tests of Goodness of Fit and Randomness” may be of use. The 
user may also wish to compute some basic statistics or to make some plots of the output of the random num-
ber generator being used. The routines in Chapter 1, “Basic Statistics” and Chapter 16, “Line Printer Graphics” 
may be used for this purpose. Often in Monte Carlo applications, it is appropriate to construct an ad hoc test 
that is sensitive to departures that are important in the given application. For example, in using Monte Carlo 
methods to evaluate a one-dimensional integral, autocorrelations of order one may not be harmful, but they 
may be disastrous in evaluating a two-dimensional integral. Although generally the routines in this chapter 
for generating random deviates from nonuniform distributions use exact methods, and, hence, their quality 
depends almost solely on the quality of the underlying uniform generator, it is often advisable to employ an 
ad hoc test of goodness of fit for the transformations that are to be applied to the deviates from the nonuni-
form generator.

Copula Generators and Canonical Correlation

With release 7.0, three new subroutines associated with copulas have been added to the Fortran Numerical 
Library . A copula is a multivariate cumulative probability distribution (CDF) whose arguments are random 
variables uniformly distributed on the interval [0, 1] corresponding to the probabilities (variates) associated 
with arbitrarily distributed marginal deviates. The copula structure allows the multivariate CDF to be parti-
tioned into the copula, which has associated with it information characterizing the dependence among the 
marginal variables, and the set of separate marginal deviates, each of which has its own distribution 
structure.

Two subroutines, RNMVGC and RNMVTC, allow the user to specify a correlation structure (in the form of a 
Cholesky matrix) which can be used to imprint correlation information on a sequence of multivariate ran-
dom vectors. Each call to one of these methods returns a random vector whose elements (variates) are each 
uniformly distributed on the interval [0, 1] and correlated according to a user-specified Cholesky matrix. 
These variate vector sequences may then be inverted to marginal deviate sequences whose distributions and 
imprinted correlations are user-specified.
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Method RNMVGC generates a random Gaussian copula vector by inverting a vector of uniform [0, 1] random 
numbers to a N(0, 1) deviate vector, imprinting the N(0,1) vector with the correlation information by multi-
plying it with the Cholesky matrix, and then using the N(0,1) CDF to map the Cholesky-imprinted deviate 
vector back to a vector of imprinted uniform [0, 1] variates.

Method RNMVTC inverts a vector of uniform [0, 1] random numbers to a N(0,1) deviate vector, imprints the 
vector with correlation information by multiplying it with the Cholesky matrix, transforms the imprinted 
N(0,1) vector to an imprinted Student’s t vector (where each element is Student’s t distributed with  degrees 

of freedom) by dividing each element of the imprinted N(0,1) vector by , where s is a random deviate 
taken from a chi-squared distribution with  degrees of freedom, and finally maps the each element of the 
resulting imprinted Student’s t vector back to a uniform [0, 1] distributed variate using the Student’s t CDF.

The third copula subroutine, CANCOR, extracts a “canonical correlation” matrix from a sequence of multivari-
ate deviate vectors whose component marginals are arbitrarily distributed. This is accomplished by first 
extracting the empirical CDF from each of the marginal deviate sequences and then using this empirical CDF 
to map the deviates to uniform [0, 1] variates which are then inverted to N(0, 1) deviates. Each element Ci j of 
the canonical correlation matrix can then be extracted by averaging the products zi t zj t of N(0, 1) deviates i 
and j over the t-indexed sequence. The utility of subroutine CANCOR is that because the canonical correlation 
matrix is derived from N(0, 1) deviates, the correlation is unbiased, i.e. undistorted by the arbitrary marginal 
distribution structures of the original deviate vector sequences. This is important in such financial applica-
tions as portfolio optimization, where correlation is used to estimate and minimize risk.

The use of subroutines RNMVGC, RNMVTC, and CANCOR is illustrated in the examples following subroutines 
RNMVGC and RNMVTC. The example following RNMVGC first uses method RNMVGC to create a correlation 
imprinted sequence of random deviate vectors and then uses method CANCOR to extract the correlation 
matrix from the imprinted sequence of vectors. Similarly, The example following RNMVTC first uses method 
RNMVTC to create a correlation imprinted sequence of random deviate vectors and then uses method CANCOR 
to extract the correlation matrix from the imprinted sequence of vectors.

Other Notes on Usage

The generators for continuous distributions are available in both single and double precision versions. This is 
merely for the convenience of the user; the double precision versions should not be considered more “accu-
rate,” except possibly for the multivariate distributions.

The names of all of the routines for random number generation begin with “RN” for single precision and 
“DRN” for double precision. In most routines, the first argument, NR, is the number of variates to generate; 
and the last variable, either R or IR, is the vector of random variates.

Error handling and workspace allocation in the routines for random number generation are done somewhat 
differently than in most other IMSL routines. In general, there is less error checking than in other routines 
since there is more emphasis on speed in the random number generation routines. Simple checks for gross 
errors are made in all routines; and the routines for setup do complete checking since it is assumed that they 
would not be called frequently. Some routines, such as those that construct tables or interpolate from tables, 
require that the user explicitly provide some work arrays.
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Random Number Generation Utility Routines

All of the random number generators in this chapter depend on the generation of uniform (0, 1) numbers, 
which is done by the routine RNUN, or by its function analog RNUNF. These basic generators use either a mul-
tiplicative congruential method or a generalized feedback shift register (GFSR) method, or the Mersenne 
Twister method to yield a subsequence of a fixed cyclic sequence. The beginning of the subsequence is deter-
mined by the seed.

The utility routines for the random number generators allow the user to select the type of the generator (or to 
determine the type of the generator being used) and to set or retrieve the seed.

Selection of the Type of the Generator

The uniform pseudorandom number generators use a multiplicative congruential method, with or without 
shuffling or a GFSR method, or the Mersenne Twister method. Routine RNOPT determines which method is 
used; and in the case of a multiplicative congruential method, it determines the value of the multiplier and 
whether or not to use shuffling. The description of RNUN may provide some guidance in the choice of the 
form of the generator. If no selection is made explicitly, the generators use the multiplier 16807 without shuf-
fling. This form of the generator has been in use for some time (see Lewis, Goodman, and Miller, 1969). This 
is the generator formerly known as GGUBS in the IMSL Library. It is the “minimal standard generator” dis-
cussed by Park and Miller (1988).

Both of the Mersenne Twister generators have a period of 219937 - 1 and a 624-dimensional equidistribution 
property. See Matsumoto et al. 1998 for details. 

The IMSL Mersenne Twister generators are derived from code copyright (C) 1997 - 2002, Makoto Matsumoto 
and Takuji Nishimura, All rights reserved. It is subject to the following notice:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND 
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 
THE POSSIBILITY OF SUCH DAMAGE.

The IMSL 32-bit Mersenne Twister generator is based on the Matsumoto and Nishimura code ‘mt19937ar’ 
and the 64-bit code is based on ‘mt19937-64’.

The selection of the type of generator is made by calling the routine RNOPT, choosing one of nine different 
options. 

RNOPT

CALL RNOPT (IOPT)

The argument is:
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IOPT — The indicator of the generator.  (Input)

The random number generator is either a multiplicative congruential generator with modulus 231 - 1 
or a GFSR generator or Mersenne Twister. IOPT is used to choose the multiplier and whether or not 
shuffling is done, or is used to choose the GFSR method, or is used to choose the Mersenne Twister 
generator.

If no selection is made explicitly, a multiplicative generator (with multiplier 16807) is used (equivalent to 
IOPT = 1).

The type of generator being used can be determined by calling the routine RNOPG. 

RNOPG

CALL RNOPG (IOPT)

The argument is:
IOPT, which is an output variable in RNOPG.

Setting the Seed

Before using any of the random number generators, the generator must be initialized by selecting a seed, or 
starting value. The user does not have to do this, but it can done by calling the routine RNSET. If the user 
does not select a seed, one is generated using the system clock. A seed needs to be selected only once in a pro-
gram unless there is some desire to maintain two separate streams of random numbers. 

RNSET

CALL RNSET (ISEED)

The argument is:
ISEED — The seed of the random number generator.  (Input)

ISEED must be in the range (0, 2147483646). If ISEED is zero (or if RNSET is not called before the generation 
of random numbers begins), a value is computed using the system clock; and, hence, the results of programs 
using the IMSL random number generators will be different at different times.

IOPT Generator

1 Congruential, with multiplier 16807 is used.

2 Congruential, with multiplier 16807 is used with shuffling.

3 Congruential, with multiplier 397204094 is used.

4 Congruential, with multiplier 397204094 is used with shuffling.

5 Congruential, with multiplier 950706376 is used.

6 Congruential, with multiplier 950706376 is used with shuffling.

7 GFSR, with the recursion Xt = Xt−1563 ⊕ Xt−96 is used.

8 A 32-bit Mersenne Twister generator is used. The real and double random 
numbers are generated from 32-bit integers.

9 A 64-bit Mersenne Twister generator is used. The real and double random 
numbers are generated from 64-bit integers. This ensures that all bits of both 
float and double are random.
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Stopping and Restarting Simulations and Controlling More Than One Stream 
of Random Numbers

For most purposes, even if several simulations are being run in the same program or if the simulation is 
being conducted in blocks, it is best to use the sequence of uniform random deviates just as produced by 
RNUN or RNUNF without concern for from where in the underlying cyclic sequence the numbers are coming.

If, however, the simulations are being conducted incrementally or if simulations are being run in parallel, it 
may be necessary to exercise more control over the sequence. The routines that are used in stopping and 
restarting simulations come in pairs, one to get the current value and one to set the value. The argument for 
each pair is the same within the pair; it is output in one case and input in the other. (RNSET is an exception 
since it is often used at the beginning of a simulation before any seed is ever set.) If a nonshuffled form of the 
multiplicative congruential generators is used (that is IOPT in RNOPT is 1, 3, or 5), the only thing that must be 
controlled is the seed, so in this case the only routines needed are

RNSET

Initializes the seed used in the generators
RNGET

Retrieves the current value of the seed
The usages are:

CALL RNSET (ISEED) (ISEED is input)
CALL RNGET (ISEED) (ISEED is output)
ISEED is an integer in the range 1 to 2147483646 (except, as noted above, it can be input to RNSET as 0 
to indicate that the system clock is used to generate a seed).

If a shuffled generator, the GFSR generator, or a Mersenne Twister generator is used, in addition to con-
trolling the seed as described above, another array must be maintained if the user wishes to stop and restart 
the simulation. It is a floating-point array for the shuffled generators and an integer array for the GFSR gen-
erator and Mersenne Twister generator. The routines are:

RNSES

Initializes the table used in the shuffled generators.
RNGES

Retrieves the current table used in the shuffled generators.
RNSEF

Initializes the table used in the GFSR generator.
RNGEF

Retrieves the current table used in the GFSR generator.
RNIN32

Initializes the table used in the 32-bit Mersenne Twister generator using an array.
RNSE32

Sets the current table used in the 32-bit Mersenne Twister generator.
RNGE32

Retrieves the current table used in the 32-bit Mersenne Twister generator.
RNIN64

Initializes the table used in the 64-bit Mersenne Twister generator using an array.
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RNSE64

Sets the current table used in the 64-bit Mersenne Twister generator.
RNGE64

Retrieves the current table used in the 64-bit Mersenne Twister generator.

There are different tables used in the single and double precision versions of the shuffled generators, so 
RNGES and RNSES can also be used in double precision.

The usages are:

CALL RNGES (TABLE) (TABLE is output.)
CALL RNSES (TABLE) (TABLE is input.)
CALL RNGEF (IARRAY) (IARRAY is output.)
CALL RNSEF (IARRAY) (IARRAY is input.)
CALL RNGE32 (MTABLE32) (MTABLE is output.)
CALL RNSE32 (MTABLE32) (MTABLE is input.)
CALL RNGE64 (MTABLE64) (MTABLE is output.)
CALL RNSE64 (MTABLE64) (MTABLE is input.)

The arguments are:

TABLE — Array of length 128 used in the shuffled generators.
IARRAY — Array of length 1565 used in the GFSR generators.
MTABLE32 — Array of length 625 used in the 32-bit Mersenne Twister generators.
MTABLE64 — Array of length 313 used in the 64-bit Mersenne Twister generators. 

The values in both TABLE and IARRAY are initialized by the IMSL random number generators. The values 
are all positive in both arrays except if the user wishes to reinitialize the array, in which case the first element 
of the array is input as a nonpositive value. (Usually, one should avoid reinitializing these arrays, but it 
might be necessary sometimes in restarting a simulation.) If the first element of TABLE or IARRAY is set to a 
nonpositive value on the call to RNSES or RNSEF, on the next invocation of a routine to generate random 
numbers using shuffling (if RNSES) or a GFSR method (if RNSEF), the appropriate array will be reinitialized.

In addition to controlling separate streams of random numbers, sometimes it is desirable to insure from the 
beginning that two streams do not overlap. This can be done with the congruential generators that do not do 
shuffling by using RNISD to get a seed that will generate random numbers beginning 100,000 numbers far-
ther along.

RNISD

CALL RNISD (ISEED1, ISEED2)

The arguments are:
ISEED1 — The seed that yields the first stream.  (Input)
ISEED2 — The seed that yields a stream beginning 100,000 numbers beyond the stream that begins 

with ISEED1.  (Output)
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Given a seed, ISEED1, RNISD determines another seed, ISEED2, such that if one of the IMSL multiplicative 
congruential generators, using no shuffling, went through 100,000 generations starting with ISEED1, the 
next number in that sequence would be the first number in the sequence that begins with the seed ISEED2. 
This can be described more simply by stating that RN1 and RN2 in the following sequence of FORTRAN are 
assigned the same values.

       CALL RNISD(ISEED1, ISEED2)
       CALL RNSET(ISEED1)
       DO 10 I = 1, 100000
          RN1 = RNUNF()
    10 CONTINUE
       RN1 = RNUNF()
       CALL RNSET(ISEED2)
       RN2 = RNUNF()

To obtain seeds that generate sequences with beginning values separated by 200,000 numbers, call RNISD 
twice:

CALL RNISD(ISEED1, ISEED2)
CALL RNISD(ISEED2, ISEED2)

Note that RNISD works only when a multiplicative congruential generator without shuffling is used. This 
means that either the routine RNOPT has not been called at all or that it has been last called with IOPT taking 
a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use the inverse CDF method, the 
distance between the sequences generated starting with ISEED1 and starting with ISEED2 may be less than 
100,000. This is because the nonuniform generators that use other techniques may require more than one uni-
form deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known distance apart is for blocking 
Monte Carlo experiments or for running parallel streams.

Examples

Example 1: Selecting the Type of Generator and Stopping and Restarting the Simulations

In this example, three separate simulation streams are used, each with a different form of the generator. Each 
stream is stopped and restarted. (Although this example is obviously an artificial one, there may be reasons 
for maintaining separate streams and stopping and restarting them because of the nature of the usage of the 
random numbers coming from the separate streams.)

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    I, IARRAY(1565), ISEED1, ISEED2, ISEED7, NOUT, NR
      REAL       R(5), TABLE(128)
!
      CALL UMACH (2, NOUT)
      NR     = 5
      ISEED1 = 123457
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      ISEED2 = 123457
      ISEED7 = 123457
!                                 Begin first stream, IOPT = 1 (by
!                                 default)
      CALL RNSET (ISEED1)
      CALL RNUN (R)
      CALL RNGET (ISEED1)
      WRITE (NOUT,99997) (R(I),I=1,NR), ISEED1
!                                 Begin second stream, IOPT = 2
      CALL RNOPT (2)
      CALL RNSET (ISEED2)
      CALL RNUN (R)
      CALL RNGET (ISEED2)
      CALL RNGES (TABLE)
      WRITE (NOUT,99998) (R(I),I=1,NR), ISEED2
!                                 Begin third stream, IOPT = 7
      CALL RNOPT (7)
      CALL RNSET (ISEED7)
      CALL RNUN (R)
      CALL RNGET (ISEED7)
      CALL RNGEF (IARRAY)
      WRITE (NOUT,99999) (R(I),I=1,NR), ISEED7
!                                 Reinitialize seed
!                                 Resume first stream
      CALL RNOPT (1)
      CALL RNSET (ISEED1)
      CALL RNUN (R)
      CALL RNGET (ISEED1)
      WRITE (NOUT,99997) (R(I),I=1,NR), ISEED1
!                                 Reinitialize seed and table for
!                                 shuffling
!                                 Resume second stream
      CALL RNOPT (2)
      CALL RNSET (ISEED2)
      CALL RNSES (TABLE)
      CALL RNUN (R)
      CALL RNGET (ISEED2)
      WRITE (NOUT,99998) (R(I),I=1,NR), ISEED2
!                                 Reinitialize seed and table for GFSR
!                                 Resume third stream
      CALL RNOPT (7)
      CALL RNSET (ISEED7)
      CALL RNSEF (IARRAY)
      CALL RNUN (R)
      CALL RNGET (ISEED7)
      WRITE (NOUT,99999) (R(I),I=1,NR), ISEED7
!
99997 FORMAT (/, '  First stream  ', 5F8.4, /, '  Output seed = ', &
            I11)
99998 FORMAT (/, '  Second stream ', 5F8.4, /, '  Output seed = ', &
            I11)
99999 FORMAT (/, '  Third stream  ', 5F8.4, /, '  Output seed = ', &
            I11)
!
      END
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Output

First stream    0.9662  0.2607  0.7663  0.5693  0.8448
Output seed =   1814256879
Second stream   0.7095  0.1861  0.4794  0.6038  0.3790
Output seed =   1965912801
Third stream    0.3914  0.0263  0.7622  0.0281  0.8997
Output seed =   1932158269
First stream    0.0443  0.9872  0.6014  0.8964  0.3809
Output seed =   817878095
Second stream   0.2557  0.4788  0.2258  0.3455  0.5811
Output seed =   2108806573
Third stream    0.7519  0.5084  0.9070  0.0910  0.6917
Output seed =   1485334679

Example 2: Determining Seeds for Separate Streams

In this example, RNISD is used to determine seeds for 4 separate streams, each 200,000 numbers apart, for a 
multiplicative congruential generator without shuffling. (Since RNOPT is not invoked to select a generator, 
the multiplier is 16807.) To get each seed requires two invocations of RNISD. All of the streams are non-over-
lapping, since the period of the underlying generator is 2,147,483,646.

      USE UMACH_INT
      USE RNISD_INT

      IMPLICIT   NONE
      INTEGER    ISEED1, ISEED2, ISEED3, ISEED4, NOUT
!
      CALL UMACH (2, NOUT)
      ISEED1 = 123457
      CALL RNISD (ISEED1, ISEED2)
      CALL RNISD (ISEED2, ISEED2)
      CALL RNISD (ISEED2, ISEED3)
      CALL RNISD (ISEED3, ISEED3)
      CALL RNISD (ISEED3, ISEED4)
      CALL RNISD (ISEED4, ISEED4)
      WRITE (NOUT,99999) ISEED1, ISEED2, ISEED3, ISEED4
!
99999 FORMAT ('  Seeds for four separate streams: ', /, '  ', 4I11)
!
      END

Output

Seeds for four separate streams:
     123457 2016130173   85016329  979156171
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RNIN32

Initializes the 32-bit Mersenne Twister generator using an array.

Required Arguments
KEY— Integer array of length LEN used to initialize the 32-bit Mersenne Twister generator. (Input)

Optional Arguments
LEN — Length of the array key. (Input)

FORTRAN 90 Interface
Generic: CALL RNIN32 (KEY [, …])
Specific: The specific interface name is S_RNIN32.

FORTRAN 77 Interface
Single: CALL RNIN32 (KEY,LEN)

Description

By default, the Mersenne Twister random number generator is initialized using the current seed value (see 
RNGET). The seed is limited to one integer for initialization. This function allows an arbitrary length array to 
be used for initialization. This subroutine completely replaces the use of the seed for initialization of the 
32-bit Mersenne Twister generator.

Example

See routine RNGE32.
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RNGE32

Retrieves the current table used in the 32-bit Mersenne Twister generator. 

Required Arguments
MTABLE — Integer array of length 625 containing the table used in the 32-bit Mersenne Twister  generator. 

(Output)

FORTRAN 90 Interface
Generic: CALL RNGE32 (MTABLE)
Specific: The specific interface name is RNGE32

FORTRAN 77 Interface
Single: CALL RNGE32 (MTABLE)

Description

The values in the table contain the state of the 32-bit Mersenne Twister random number generator. The table 
can be used by RNSE32 to set the generator back to this state.

Example

In this example, four simulation streams are generated. The first series is generated with the seed used for 
initialization. The second series is generated using an array for initialization. The third series is obtained by 
resetting the generator back to the state it had at the beginning of the second stream. Therefore, the second 
and third streams are identical. The fourth stream is obtained by resetting the generator back to its original, 
uninitialized state, and having it reinitialize using the seed. The first and fourth streams are therefore the 
same.

      USE RNIN32_INT
      USE RNGE32_INT
      USE RNSET_INT
      USE UMACH_INT
      USE RNUN_INT
      IMPLICIT   NONE
      INTEGER    I, ISEED, NOUT
      INTEGER INIT(4)
      DATA INIT/291,564,837,1110/
      DATA ISEED/123457/
      INTEGER NR
      REAL R(5)
      INTEGER MTABLE(625)
      CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
      RLABEL(1)='NONE'
      CLABEL(1)='NONE'
      DATA FMT/'(W10.4)'/
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      NR=5
      CALL UMACH (2, NOUT)
      ISEED = 123457
      CALL RNOPT(8)
      CALL RNSET(ISEED)
      CALL RNUN(R)
      CALL WRRRL('FIRST STREAM OUTPUT',1,5,R,1,0, &
                  FMT, RLABEL, CLABEL)
!     REINITIALIZE MERSENNE TWISTER SERIES WITH AN ARRAY
      CALL RNIN32(INIT)
!     SAVE THE STATE OF THE SERIES
      CALL RNGE32(MTABLE)
      CALL RNUN(R)
      CALL WRRRL('SECOND STREAM OUTPUT',1,5,R,1,0, &
                   FMT, RLABEL, CLABEL)
!     RESTORE THE STATE OF THE TABLE
      CALL RNSE32(MTABLE)
      CALL RNUN(R)
      CALL WRRRL('THIRD STREAM OUTPUT',1,5,R,1,0, &
                   FMT, RLABEL, CLABEL)
!     RESET THE SERIES - IT WILL REINITIALIZE FROM THE SEED
      MTABLE(1)=1000
      CALL RNSE32(MTABLE)
      CALL RNUN(R)
      CALL WRRRL('FOURTH STREAM OUTPUT',1,5,R,1,0, &
                   FMT, RLABEL, CLABEL)
      END

Output

                     First stream output
     0.4347      0.3522      0.0139      0.2091      0.4956
                    Second stream output
     0.2486      0.2226      0.1111      0.9563      0.9846
                     Third stream output
     0.2486      0.2226      0.1111      0.9563      0.9846
                    Fourth stream output
     0.4347      0.3522      0.0139      0.2091      0.4956
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RNSE32

Sets the current table used in the 32-bit Mersenne Twister generator.

Required Arguments
MTABLE  — Integer array of length 625 containing the table used in the 32-bit Mersenne Twister generator. 

(Input)

FORTRAN 90 Interface
Generic: CALL RNSE32 (MTABLE)
Specific: The specific interface name is RNSE32

FORTRAN 77 Interface
Single: CALL RNSE32 (MTABLE)

Description

The values in MTABLE are the state of the 32-bit Mersenne Twister random number generator obtained by a 
call to RNGE32. The values in the table can be used to restore the state of the generator.

Alternatively, if MTABLE [1] > 625 then the generator is set to its original, uninitialized, state.

Example

See routine RNGE32.
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RNIN64

Initializes the 64-bit Mersenne Twister generator using an array.

Required Arguments
KEY— Integer (kind=8) array of length LEN used to initialize the  64-bit Mersenne Twister generator. 

(Input)

Optional Arguments
LEN — Length of the array key. (Input)

FORTRAN 90 Interface
Generic: CALL RNIN64 (KEY [, …])
Specific: The specific interface name is S_RNIN64.

FORTRAN 77 Interface
Single: CALL RNIN64 (KEY, LEN)

Description

By default, the Mersenne Twister random number generator is initialized using the current seed value (see 
RNGET). The seed is limited to one integer for initialization. This function allows an arbitrary length array to 
be used for initialization. This subroutine completely replaces the use of the seed for initialization of the 
64-bit Mersenne Twister generator.

Example

See routine RNGE64.
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RNGE64

Retrieves the current table used in the 64-bit Mersenne Twister generator.

Required Arguments
MTABLE — Integer (kind=8) array of length 313 containing the table used in the 64-bit Mersenne Twister  

generator. (Output)

FORTRAN 90 Interface
Generic: CALL RNGE64 (MTABLE)
Specific: The specific interface name is RNGE64

FORTRAN 77 Interface
Single: CALL RNGE64 (MTABLE)

Description

 The values in the table contain the state of the 64-bit Mersenne Twister random number generator. The table 
can be used by RNSE64 to set the generator back to this state.

Example

In this example, four simulation streams are generated. The first series is generated with the seed used for 
initialization. The second series is generated using an array for initialization. The third series is obtained by 
resetting the generator back to the state it had at the beginning of the second stream. Therefore, the second 
and third streams are identical. The fourth stream is obtained by resetting the generator back to its original, 
uninitialized state, and having it reinitialize using the seed. The first and fourth streams are therefore the 
same.

      USE RNIN64_INT
      USE RNGE64_INT
      USE RNSET_INT
      USE UMACH_INT
      USE RNUN_INT
      IMPLICIT   NONE
      INTEGER    I, ISEED, NOUT
      INTEGER(KIND=8) INIT(4)
      DATA INIT/291,564,837,1110/
      DATA ISEED/123457/
      INTEGER NR
      REAL R(5)
      INTEGER(KIND=8) MTABLE(313)
      CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
      RLABEL(1)='NONE'
      CLABEL(1)='NONE'
      DATA FMT/'(W10.4)'/
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      NR=5
      CALL UMACH (2, NOUT)
      ISEED = 123457
      CALL RNOPT(9)
      CALL RNSET(ISEED)
      CALL RNUN(R)
      CALL WRRRL('FIRST STREAM OUTPUT',1,5,R,1,0, &
                  FMT, RLABEL, CLABEL)
!     REINITIALIZE MERSENNE TWISTER SERIES WITH AN ARRAY
      CALL RNIN64(INIT)
!     SAVE THE STATE OF THE SERIES
      CALL RNGE64(MTABLE)
      CALL RNUN(R)
      CALL WRRRL('SECOND STREAM OUTPUT',1,5,R,1,0, &
                   FMT, RLABEL, CLABEL)
!     RESTORE THE STATE OF THE TABLE
      CALL RNSE64(MTABLE)
      CALL RNUN(R)
      CALL WRRRL('THIRD STREAM OUTPUT',1,5,R,1,0, &
                   FMT, RLABEL, CLABEL)
!     RESET THE SERIES - IT WILL REINITIALIZE FROM THE SEED
      MTABLE(1)=1000
      CALL RNSE64(MTABLE)
      CALL RNUN(R)
      CALL WRRRL('FOURTH STREAM OUTPUT',1,5,R,1,0, &
                   FMT, RLABEL, CLABEL)
      END

Output

                     First stream output
     0.5799      0.9401      0.7102      0.1640      0.5457
                    Second stream output
     0.4894      0.7397      0.5725      0.0863      0.7588
                     Third stream output
     0.4894      0.7397      0.5725      0.0863      0.7588
                    Fourth stream output
     0.5799      0.9401      0.7102      0.1640      0.5457
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RNSE64

Sets the current table used in the 64-bit Mersenne Twister generator.

Required Arguments
MTABLE  — Integer (kind=8)  array of length 313 containing the table used in the 64-bit Mersenne Twister 

generator. (Input)

FORTRAN 90 Interface
Generic: CALL RNSE64 (MTABLE)
Specific: The specific interface name is RNSE64

FORTRAN 77 Interface
Single: CALL RNSE64 (MTABLE)

Description

The values in MTABLE are the state of the 64-bit Mersenne Twister random number generator obtained by a 
call to RNGE64. The values in the table can be used to restore the state of the generator. Alternatively, if 
MTABLE [1] > 313 then the generator is set to its original, uninitialized, state.

Example

See routine RNGE64.
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RNUN

Generates pseudorandom numbers from a uniform (0, 1) distribution.

Required Arguments
R — Vector of length NR containing the random uniform (0, 1) deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNUN (R [, …])
Specific: The specific interface names are S_RNUN and D_RNUN.

FORTRAN 77 Interface
Single: CALL RNUN (NR, R)
Double: The double precision name is DRNUN.

Description

Routine RNUN generates pseudorandom numbers from a uniform (0,1) distribution using either a multiplica-
tive congruential method or a generalized feedback shift register (GFSR) method, or the Mersenne Twister 
generator. The form of the multiplicative congruential generator is

Each xi is then scaled into the unit interval (0,1). The possible values for c in the IMSL generators are 
16807, 397204094, and 950706376. The selection is made by the routine RNOPT. The choice of 16807 will result 
in the fastest execution time. If no selection is made explicitly, the routines use the multiplier 16807.

The user can also select a shuffled version of the multiplicative congruential generators. In this scheme, a 
table is filled with the first 128 uniform (0,1) numbers resulting from the simple multiplicative congruential 
generator. Then, for each xi from the simple generator, the low-order bits of xi are used to select a random 
integer, j, from 1 to 128. The j-th entry in the table is then delivered as the random number; and xi, after being 
scaled into the unit interval, is inserted into the j-th position in the table.

The GFSR method is based on the recursion Xt = Xt−1563 ⊕ Xt−96. This generator, which is different from ear-
lier GFSR generators, was proposed by Fushimi (1990), who discusses the theory behind the generator and 
reports on several empirical tests of it. 
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Mersenne Twister (MT) is a pseudorandom number generating algorithm developed by Makoto Matsumoto 
and Takuji Nishimura in 1996-1997. MT has far longer period and far higher order of equidistribution than 
any other implemented generators. The values returned in R by RNUN are positive and less than 1.0. Values in 
R may be smaller than the smallest relative spacing, however. Hence, it may be the case that some value R(i) 
is such that 1.0 - R(i) = 1.0.

Deviates from the distribution with uniform density over the interval (A, B) can be obtained by scaling the 
output from RNUN. The following statements (in single precision) would yield random deviates from a uni-
form (A, B) distribution:

       CALL RNUN (NR, R)
       CALL SSCAL (NR, B-A, R, 1)
       CALL SADD (NR, A, R, 1)

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNUN is used to generate five pseudorandom uniform numbers. Since RNOPT is not called, 
the generator used is a simple multiplicative congruential one with a multiplier of 16807.

      USE RNUN_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE

      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNUN (R)
      WRITE (NOUT,99999) R
99999 FORMAT ('      Uniform random deviates: ', 5F8.4)
      END

Output

Uniform random deviates:    .9662   .2607   .7663   .5693   .8448
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RNUNF

This function generates a pseudorandom number from a uniform (0, 1) distribution.

Function Return Value
RNUNF — Function value, a random uniform (0, 1) deviate.  (Output)

See Comment 1. 

Required Arguments
None.

FORTRAN 90 Interface
Generic: RNUNF()

Specific: The specific interface names are S_RNUNF and D_RNUNF.

FORTRAN 77 Interface
Single: RNUNF()

Double: The double precision name is DRNUNF.

Description

Routine RNUNF is the function form of RNUN. The routine RNUNF generates pseudorandom numbers from a 
uniform (0, 1) distribution. The algorithm used is determined by RNOPT. The values returned by RNUNF are 
positive and less than 1.0.

If several uniform deviates are needed, it may be more efficient to obtain them all at once by a call to RNUN 
rather than by several references to RNUNF.

Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before 

use in an expression. For example:
X = RNUNF()
Y = SQRT(X)

must be used rather than
Y = SQRT(RNUNF())

If this is too much of a restriction on the programmer, then the specific name can be used without this 
restriction.

2. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.

3. This function has a side effect: it changes the value of the seed, which is passed through a common 
block.
RNUNF         Chapter 18: Random Number Generation      1552



Example

In this example, RNUNF is used to generate five pseudorandom uniform numbers. Since RNOPT is not called, 
the generator used is a simple multiplicative congruential one with a multiplier of 16807.

      USE UMACH_INT
      USE RNSET_INT
      USE RNUNF_INT

      IMPLICIT   NONE
      INTEGER    I, ISEED, NOUT
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      ISEED = 123457
      CALL RNSET (ISEED)
      DO 10  I=1, 5
         R(I) = RNUNF()
   10 CONTINUE
      WRITE (NOUT,99999) R
99999 FORMAT ('      Uniform random deviates: ', 5F8.4)
      END

Output

Uniform random deviates:   0.9662  0.2607  0.7663  0.5693  0.8448
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RNBIN

Generates pseudorandom numbers from a binomial distribution.

Required Arguments
N — Number of Bernoulli trials.  (Input)
P — Probability of success on each trial.  (Input)

P must be greater than 0.0 and less than 1.0.
IR — Vector of length NR containing the random binomial deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNBIN (N, P, IR [, …])
Specific: The specific interface name is S_RNBIN.

FORTRAN 77 Interface
Single: CALL RNBIN (NR, N, P, IR)

Description

Routine RNBIN generates pseudorandom numbers from a binomial distribution with parameters N and P. N 
and P must be positive, and P must be less than 1. The probability function (with n = N and p = P) is

for x = 0, 1, 2, …, n.

The algorithm used depends on the values of n and p. If np < 10 or if p is less than a machine epsilon 
(AMACH(4) (Reference Material)), the inverse CDF technique is used; otherwise, the BTPE algorithm of Kachit-
vichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection method 
using a composition of four regions. (TPE = Triangle, Parallelogram, Exponential, left and right.)

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNBIN is used to generate five pseudorandom binomial variates with parameters 20 and 0.5.

      USE RNBIN_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    IR(NR), ISEED, N, NOUT
      REAL       P
!
      CALL UMACH (2, NOUT)
      N     = 20
      P     = 0.5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNBIN (N, P, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (' Binomial (20, 0.5) random deviates: ', 5I4)
      END

Output

Binomial (20, 0.5) random deviates:   14   9  12  10  12
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RNGDA

Generates pseudorandom numbers from a general discrete distribution using an alias method.

Required Arguments
IOPT — Indicator of whether the alias vectors are to be initialized.  (Input) 

IMIN — Smallest value the random deviate can assume.  (Input)
This is the value corresponding to the probability in PROBS(1).

PROBS — Vector of length NMASS containing probabilities associated with the individual mass points.  
(Input)
The elements of PROBS must be nonnegative and must sum to 1.0.

IWK — Index vector of length NMASS.  (Input, if IOPT = 1; Output, if IOPT = 0) IWK is a work vector.
WK — Index vector of length NMASS.  (Input, if IOPT = 1; Output, if IOPT = 0) WK is a work vector.
IR — Vector of length NR containing the random discrete deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).
NMASS — Number of mass points in the discrete distribution.  (Input)

Default: NMASS = size (PROBS,1).

FORTRAN 90 Interface
Generic: CALL RNGDA (IOPT, IMIN, PROBS, IWK, WK, IR [, …])
Specific: The specific interface names are S_RNGDA and D_RNGDA.

FORTRAN 77 Interface
Single: CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)
Double: The double precision name is DRNGDA.

Description

Routine RNGDA generates pseudorandom numbers from a discrete distribution with probability function 
given in the vector PROBS; that is

Pr(X = i) = pj

IOPT Action

0 The alias vectors are to be initialized using the probabilities in PROBS. IOPT is set to 0 
on the first call to RNGDA.

1 The alias vectors IWK and WK are used but PROBS is not used.
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for 

The algorithm is the alias method, due to Walker (1974), with modifications suggested by Kronmal and 
Peterson (1979). The method involves a setup phase, in which the vectors IWK and WK are filled. After the 
vectors are filled, the generation phase is very fast.

Comments
1. In the interest of efficiency, this routine does only limited error checking when 

IOPT = 1.
2. The routine RNSET can be used to initialize the seed of the random number generator. The routine 

RNOPT can be used to select the form of the generator.

Examples

Example 1

In this example, RNGDA is used to generate five pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

When RNGDA is called the first time, IOPT is input as 0. This causes the work arrays to be initialized. In the 
next call, IOPT is 1, so the setup phase is bypassed.

      USE RNGDA_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NMASS, NR
      PARAMETER  (NMASS=5, NR=5)
!
      INTEGER    IMIN, IOPT, IR(NR), ISEED, IWK(NMASS), NOUT
      REAL       PROBS(NMASS), WK(NMASS)
!
      CALL UMACH (2, NOUT)
      IMIN     = 1
      PROBS(1) = 0.05
      PROBS(2) = 0.45
      PROBS(3) = 0.31
      PROBS(4) = 0.04
      PROBS(5) = 0.15
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      IOPT     = 0
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNGDA (IOPT, IMIN, PROBS, IWK, WK, IR)
      WRITE (NOUT,99998) IR
99998 FORMAT ('          Random deviates: ', 5I4)
      IOPT = 1
      CALL RNGDA (IOPT, IMIN, PROBS, IWK, WK, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT ('                           ', 5I4)
      END

Output

Random deviates:    3   2   2   3   5
                    1   3   4   5   3

Example 2

In this example, RNGDA is used to generate five pseudorandom binomial variates with parameters 20 and 0.5.

      USE UMACH_INT
      USE RNSET_INT
      USE RNGDA_INT
      USE BINPR_INT

      IMPLICIT   NONE
      INTEGER    NMASS, NR
      PARAMETER  (NMASS=21, NR=5)
!
      INTEGER    IMIN, IOPT, IR(NR), ISEED, IWK(NMASS), K, N, NOUT
      REAL       P, PROBS(NMASS), WK(NMASS)
!
      CALL UMACH (2, NOUT)
      N    = 20
      P    = 0.5
      IMIN = 0
      DO 10  K=1, NMASS
         PROBS(K) = BINPR(K-1,N,P)
   10 CONTINUE
      IOPT  = 0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNGDA (IOPT, IMIN, PROBS, IWK, WK, IR)

      WRITE (NOUT,99999) IR
99999 FORMAT ('   Binomial (20, .5) deviates: ', 5I4)
      END

Output

Binomial (20, .5) deviates:   12  10  16  12  11
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RNGDS

Sets up table to generate pseudorandom numbers from a general discrete distribution.

Required Arguments
PRF — User-supplied FUNCTION to compute the probability associated with each mass point of the distri-

bution. The form is PRF(IX), where 
IX – Point at which the probability function is to be evaluated.  (Input)

IX can range from IMIN to the value at which the cumulative probability is greater than or equal 
to 1.0 – DEL.

PRF – Value of the probability function at IX.  (Output)
PRF must be declared EXTERNAL in the calling program.

DEL — Maximum absolute error allowed in computing the cumulative probability.  (Input)
Probabilities smaller than DEL are ignored; hence, DEL should be a small positive number. If DEL is too 
small, however, CUMPR(NMASS) must be exactly 1.0 since that value is compared to 1.0 - DEL.

NNDX — The number of elements of CUMPR available to be used as indexes.  (Input) 
NNDX must be greater than or equal to 1. In general, the larger NNDX is, to within sixty or seventy per-
cent of NMASS, the more efficient the generation of random numbers using RNGDS will be.

IMIN — Smallest value the random deviate can assume.  (Input/Output)
IMIN is not used if IOPT = 1. If IOPT = 0, PRF is evaluated at IMIN. If this value is less than DEL, IMIN 
is incremented by 1 and again PRF is evaluated at IMIN. This process is continued until 
PRF(IMIN) ≥ DEL. IMIN is output as this value and CUMPR(1) is output as PRF(IMIN).

NMASS — The number of mass points in the distribution.  (Input, if IOPT = 1; Output, if IOPT = 0)
If IOPT = 0, NMASS is the smallest integer such that PRF(IMIN + NMASS - 1) > 1.0 - DEL. NMASS does 
include the points IMIN(in) + j for which PRF(IMIN(in) + j) < DEL, for 
j = 0, 1, …, IMIN(out) - IMIN(in), where IMIN(in) denotes the input value of IMIN and IMIN(out) 
denotes its output value.

CUMPR — Vector of length NMASS + NNDX containing in the first NMASS positions, the cumulative proba-
bilities and in some of the remaining positions, indexes to speed access to the probabilities.  (Output, if 
IOPT = 0; Input/Output, otherwise)
CUMPR(NMASS + 1) + 1 is the actual number of index positions used.

Optional Arguments
IOPT — Indicator of the extent to which CUMPR is initialized prior to calling RNGDS.  (Input)

Default: IOPT = 0.

LCUMPR — Dimension of CUMPR exactly as specified in the dimension statement in the calling program.  
(Input)
Since the logical length of CUMPR is determined in RNGDS, LCUMPR is used for error checking.
Default : LCUMPR = size (CUMPR,1).

IOPT Action

0 RNGDS fills all of CUMPR, using PRF.

1 RNGDS fills only the index portion of CUMPR, using the values in the first NMASS posi-
tions. PRF is not used and may be a dummy function; also, IMIN and DEL are not used.
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FORTRAN 90 Interface
Generic: CALL RNGDS (PRF, DEL, NNDX, IMIN, NMASS, CUMPR [, …])
Specific: The specific interface names are S_RNGDS and D_RNGDS.

FORTRAN 77 Interface
Single: CALL RNGDS (PRF, IOPT, DEL, NNDX, IMIN, NMASS, CUMPR, LCUMPR)
Double: The double precision name is DRNGDS.

Description

Routine RNGDS sets up a table that routine RNGDT uses to generate pseudorandom deviates from a discrete 
distribution. The distribution can be specified either by its probability function PRF or by a vector of values 
of the cumulative probability function. Note that PRF is not the cumulative probability distribution function. 
If the cumulative probabilities are already available in CUMPR, the only reason to call RNGDS is to form an 
index vector in the upper portion of CUMPR so as to speed up the generation of random deviates by the rou-
tine RNGDT.

Comments
1. Informational error

2. The routine RNGDT uses the table set up by RNGDS to generate random numbers from the distribution 
with CDF represented in CUMPR.

Examples

Example 1

In this example, RNGDS is used to set up a table to generate pseudorandom variates from the discrete 
distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

Type Code Description

3 1 For some I, CUMPR(I) is computed to be less than 1.0 - DEL, and yet 
CUMPR(I + 1) - 1.0 is greater than 1.0 - CUMPR(I + 1). In this case, the maxi-
mum value that the random variable is allowed to take on is I; that is, 
CUMPR(I) is set to 1.0.
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In this simple example, we input the cumulative probabilities directly in CUMPR and request 3 indexes to be 
computed (NNDX = 4). Since the number of mass points is so small, the indexes would not have much effect 
on the speed of the generation of the random variates.

      USE RNGDS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LCUMPR
      PARAMETER  (LCUMPR=9)
!
      INTEGER    IMIN, IOPT, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, PRF
      EXTERNAL   PRF
!
      CALL UMACH (2, NOUT)
      NMASS    = 5
      CUMPR(1) = 0.05
      CUMPR(2) = 0.50
      CUMPR(3) = 0.81
      CUMPR(4) = 0.85
      CUMPR(5) = 1.00
      IOPT     = 1
      NNDX     = 4
      DEL      = 0.00001
      CALL RNGDS (PRF, DEL, NNDX, IMIN, NMASS, CUMPR, IOPT=IOPT)
      WRITE (NOUT,99999) CUMPR
99999 FORMAT ('   Cumulative probabilities and indexes: ', /, 9F6.2)
      END
!
!                                 Dummy function
      REAL FUNCTION PRF (IX)
      INTEGER    IX
!
      PRF = 0.0
      RETURN
      END

Output

Cumulative probabilities and indexes:
0.05  0.50  0.81  0.85  1.00  3.00  1.00  2.00  5.00

Example 2

This example, RNGDS is used to set up a table to generate binomial variates with parameters 20 and 0.5. The 
routine BINPR (see Chapter 17, “Probability Distribution Functions and Inverses” is used to compute the 
probabilities.

      USE RNGDS_INT 
      USE UMACH_INT

      IMPLICIT   NONE
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      INTEGER    LCUMPR
      PARAMETER  (LCUMPR=33)
!
      INTEGER    I, IMIN, N, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, P, PRF
      COMMON     /BINCOM/ N, P
      EXTERNAL   PRF
!
      CALL UMACH (2, NOUT)
      N    = 20
      P    = 0.5
      IMIN = 0
      NNDX = 12
      DEL  = 0.00001
      CALL RNGDS (PRF, DEL, NNDX, IMIN, NMASS, CUMPR)
      WRITE (NOUT,99998) IMIN, NMASS
99998 FORMAT (' The smallest point with positive probability using ', &
            /, ' the given DEL is ', I1, ' and all points after ', /, &
            ' point number ', I2, ' (counting from the input value ', &
            /, ' of IMIN) have zero probability.')
      WRITE (NOUT,99999) (CUMPR(I),I=1,NMASS+NNDX)
99999 FORMAT (' Cumulative probabilities and indexes: ', /, (5X,8F8.4))
      END
!
!                                 Compute binomial probabilities
      REAL FUNCTION PRF (IX)
      INTEGER    IX
!
      INTEGER    N
      REAL       BINPR, P
      COMMON     /BINCOM/ N, P
      EXTERNAL   BINPR
!
      PRF = BINPR(IX,N,P)
      RETURN
      END

Output

The smallest point with positive probability using
the given DEL is 1 and all points after
point number 19 (counting from the input value
of IMIN) have zero probability.
Cumulative probabilities and indexes:
      0.0000  0.0002  0.0013  0.0059  0.0207  0.0577  0.1316  0.2517
      0.4119  0.5881  0.7483  0.8684  0.9423  0.9793  0.9941  0.9987
      0.9998  1.0000  1.0000 11.0000  1.0000  7.0000  8.0000  9.0000
      9.0000 10.0000 11.0000 11.0000 12.0000 13.0000 19.0000
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RNGDT

Generates pseudorandom numbers from a general discrete distribution using a table lookup method.

Required Arguments
IMIN — Smallest value the random deviate can assume.  (Input)

This is the value corresponding to the probability in CUMPR(1).
NMASS — Number of mass points in the discrete distribution.  (Input)
CUMPR — Vector of length at least NMASS + 1 containing in the first NMASS positions the cumulative 

probabilities and, possibly, indexes to speed access to the probabilities.  (Input)
IMSL routine RNGDS can be used to initialize CUMPR properly. If no elements of CUMPR are used as 
indexes, CUMPR(NMASS + 1) is 0.0 on input. The value in CUMPR(1) is the probability of IMIN. The value 
in CUMPR(NMASS) must be exactly 1.0 (since this is the CDF at the upper range of the distribution).

IR — Vector of length NR containing the random discrete deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNGDT (IMIN, NMASS, CUMPR, IR [, …])
Specific: The specific interface names are S_RNGDT and D_RNGDT.

FORTRAN 77 Interface
Single: CALL RNGDT (NR, IMIN, NMASS, CUMPR, IR)
Double: The double precision name is DRNGDT.

Description

Routine RNGDT generates pseudorandom deviates from a discrete distribution, using the table CUMPR, which 
contains the cumulative probabilities of the distribution and, possibly, indexes to speed the search of the 
table. The routine RNGDS can be used to set up the table CUMPR. RNGDT uses the inverse CDF method to gen-
erate the variates.

Comments
1. Informational error
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2. In the interest of efficiency, this routine does only limited error checking. If CUMPR is generated by the 
routine RNGDS, the error checking is sufficient.

3. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.

Examples

Example 1

These examples are the same ones used for the routine RNGDS. In this first example, RNGDS is used to set up a 
table and then RNGDT is used to generate five pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

The cumulative probabilities are input directly in CUMPR, and three indexes are computed by RNGDS 
(NNDX = 4). Since the number of mass points is so small, the indexes would not have much effect on the speed 
of the generation of the random variates.

      USE UMACH_INT
      USE RNGDS_INT
      USE RNSET_INT
      USE RNGDT_INT

      IMPLICIT   NONE
      INTEGER    LCUMPR, NR
      PARAMETER  (LCUMPR=9, NR=5)
!
      INTEGER    IMIN, IOPT, IR(NR), ISEED, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, PRF
      EXTERNAL   PRF
!
      CALL UMACH (2, NOUT)
      IMIN     = 1
      NMASS    = 5
      CUMPR(1) = 0.05
      CUMPR(2) = 0.50
      CUMPR(3) = 0.81
      CUMPR(4) = 0.85
      CUMPR(5) = 1.00
      IOPT     = 1
      NNDX     = 4

Type Code Description

3 1 The value in CUMPR(NMASS) is not exactly 1.0, but it was considered close 
enough to 1.0 that is was set to that value.
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      DEL      = 0.00001
!                                 Set up table
      CALL RNGDS (PRF, DEL, NNDX, IMIN, NMASS, CUMPR, IOPT=IOPT)
      ISEED = 123457
      CALL RNSET (ISEED)
!                                 Generate variates
      CALL RNGDT (IMIN, NMASS, CUMPR, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (' Discrete random deviates: ', 5I4)
      END
!
!                                 Dummy function
      REAL FUNCTION PRF (IX)
      INTEGER    IX
!
      PRF = 0.0
      RETURN
      END

Output

Discrete random deviates:    5   2   3   3   4

Example 2

In this example, RNGDS is used to set up a table and then RNGDT is used to generate five pseudorandom vari-
ates from the binomial distribution with parameters 20 and 0.5. The routine BINPR (see Chapter 17, 
“Probability Distribution Functions and Inverses”) is used to compute the probabilities.

      USE UMACH_INT
      USE RNGDS_INT
      USE RNSET_INT
      USE RNGDT_INT

      IMPLICIT   NONE
      INTEGER    LCUMPR, NR
      PARAMETER  (LCUMPR=33, NR=5)
!

      INTEGER    IMIN, IR(NR), ISEED, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, PRF
      EXTERNAL   PRF
!
      CALL UMACH (2, NOUT)
      IMIN  = 0
      NMASS = 21
      NNDX  = 12
      DEL   = 0.00001
!                                 Set up table
      CALL RNGDS (PRF, DEL, NNDX, IMIN, NMASS, CUMPR)
      ISEED = 123457
      CALL RNSET (ISEED)
!                                 Generate variates
RNGDT         Chapter 18: Random Number Generation      1565



      CALL RNGDT (IMIN, NMASS, CUMPR, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (' Binomial (20, 0.5) random deviates: ', 5I4)
      END
!
!                                 Compute binomial probabilities
      REAL FUNCTION PRF (IX)
      USE BINPR_INT
      INTEGER    IX
!
      PRF = BINPR(IX,20,0.5)
      RETURN
      END

Output

Binomial (20, 0.5) random deviates:   14   9  12  10  12
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RNGEO

Generates pseudorandom numbers from a geometric distribution.

Required Arguments
P — Probability of success on each trial.  (Input)

P must be positive and less than 1.0.
IR — Vector of length NR containing the random geometric deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNGEO (P, IR [, …])
Specific: The specific interface name is S_RNGEO.

FORTRAN 77 Interface
Single: CALL RNGEO (NR, P, IR)

Description

Routine RNGEO generates pseudorandom numbers from a geometric distribution with parameter P, where P 
is the probability of getting a success on any trial. A geometric deviate can be interpreted as the number of 
trials until the first success (including the trial in which the first success is obtained). The probability function 
is

f(x) = P(1 – P)x−1

for x = 1, 2, … and 0 < P < 1

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than log(Ui)/log(1 - P ), where the Ui 
are independent uniform (0, 1) random numbers (see Knuth, 1981).

The geometric distribution is often defined on 0, 1, 2, …, with mean (1 - P)/P. Such deviates can be obtained 
by subtracting 1 from each element of IR.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNGEO is used to generate five pseudorandom deviates from a geometric distribution with 
parameter P equal to 0.3.

      USE RNGEO_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    IR(NR), ISEED, NOUT
      REAL       P
!
      CALL UMACH (2, NOUT)
      P     = 0.3
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNGEO (P, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (' Geometric(0.3) random deviates: ', 5I8)
      END

Output

Geometric(0.3) random deviates:        1       4       1       2       1
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RNHYP

Generates pseudorandom numbers from a hypergeometric distribution.

Required Arguments
N — Number of items in the sample.  (Input)

N must be positive.
M — Number of special items in the population, or lot.  (Input)

M must be positive.
L — Number of items in the lot.  (Input)

L must be greater than both N and M.
IR — Vector of length NR containing the random hypergeometric deviates.  (Output)

Each element of IR can be considered to be the number of special items in a sample of size N drawn 
without replacement from a population of size L that contains M such special items.

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNHYP (N, M, L, IR [, …])
Specific: The specific interface name is S_RNHYP.

FORTRAN 77 Interface
Single: CALL RNHYP (NR, N, M, L, IR)

Description

Routine RNHYP generates pseudorandom numbers from a hypergeometric distribution with parameters N, 
M, and L. The hypergeometric random variable X can be thought of as the number of items of a given type in 
a random sample of size N that is drawn without replacement from a population of size L containing M items 
of this type. The probability function is 

for x = max(0, N - L + M), 1, 2, …, min(N, M)
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If the hypergeometric probability function with parameters N, M, and L evaluated at N - L + M (or at 0 if this 
is negative) is greater than the machine epsilon (AMACH(4) (Reference Material)), and less than 1.0 minus the 
machine epsilon, then RNHYP uses the inverse CDF technique. The routine recursively computes the hyper-
geometric probabilities, starting at x = max(0, N - L + M) and using the ratio f(X = x + 1)/f(X = x) (see 
Fishman 1978, page 457).

If the hypergeometric probability function is too small or too close to 1.0, then RNHYP generates integer devi-
ates uniformly in the interval [1, L - i], for i = 0, 1, …; and at the i-th step, if the generated deviate is less than 
or equal to the number of special items remaining in the lot, the occurrence of one special item is tallied and 
the number of remaining special items is decreased by one. This process continues until the sample size or 
the number of special items in the lot is reached, whichever comes first. This method can be much slower 
than the inverse CDF technique. The timing depends on N. If N is more than half of L (which in practical 
examples is rarely the case), the user may wish to modify the problem, replacing N by L - N, and to consider 
the deviates in IR to be the number of special items not included in the sample.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNHYP is used to generate five pseudorandom deviates from a hypergeometric distribution 
to simulate taking random samples of size 4 from a lot containing 20 items of which 12 are defective. The 
resulting hypergeometric deviates represent the numbers of defectives in each of the five samples of size 4.

      USE RNHYP_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    IR(NR), ISEED, L, M, N, NOUT
!
      CALL UMACH (2, NOUT)
      N     = 4
      M     = 12
      L     = 20
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNHYP (N, M, L, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT ('   Hypergeometric random deviates: ', 5I8)
      END

Output

Hypergeometric random deviates:        4       2       3       3       3
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RNLGR

Generates pseudorandom numbers from a logarithmic distribution.

Required Arguments
A — Parameter of the logarithmic distribution.  (Input)

A must be positive and less than 1.0.
IR — Vector of length NR containing the random logarithmic deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNLGR (A, IR [, …])
Specific: The specific interface name is S_RNLGR.

FORTRAN 77 Interface
Single: CALL RNLGR (NR, A, IR)

Description

Routine RNLGR generates pseudorandom numbers from a logarithmic distribution with parameter A. The 
probability function is

for x = 1, 2, 3, …, and 0 < a < 1.

The methods used are described by Kemp (1981) and depend on the value of A. If A is less than 0.95, Kemp’s 
algorithm LS, which is a “chop-down” variant of an inverse CDF technique, is used. Otherwise, Kemp’s algo-
rithm LK, which gives special treatment to the highly probable values of 1 and 2, is used.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNLGR is used to generate 5 pseudo-random deviates from a logarithmic distribution with 
parameter A equal to 0.3.

      USE RNLGR_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    IR(NR), ISEED, NOUT
      REAL       A
!
      CALL UMACH (2, NOUT)
      A     = 0.3
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNLGR (A, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT ('  Logarithmic (0.3) random deviates: ', 5I8)
      END

Output

Logarithmic (0.3) random deviates:        2       1       1       1       2
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RNNBN

Generates pseudorandom numbers from a negative binomial distribution.

Required Arguments
RK — Negative binomial parameter.  (Input)

RK must be positive.
P — Probability of success on each trial.  (Input)

P must be greater than the machine epsilon, AMACH(4) (Reference Material) and less than 1.0.
IR — Vector of length NR containing the random negative binomial deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNNBN (RK, P, IR [, …])
Specific: The specific interface name is S_RNNBN.

FORTRAN 77 Interface
Single: CALL RNNBN (NR, RK, P, IR)

Description

Routine RNNBN generates pseudorandom numbers from a negative binomial distribution with parameters 
RK and P. RK and P must be positive and P must be less than 1. The probability function (with r = RK and 
p = P) is

for x = 0, 1, 2, ….

If r is an integer, the distribution is often called the Pascal distribution and can be thought of as modeling the 
length of a sequence of Bernoulli trials until r successes are obtained, where p is the probability of getting a 
success on any trial. In this form, the random variable takes values r, r + 1, r + 2, … and can be obtained from 
the negative binomial random variable defined above by adding r to the negative binomial variable. This lat-
ter form is also equivalent to the sum of r geometric random variables defined as taking values 1, 2, 3, … .

If rp/(1 - p) is less than 100 and (1 - p)r is greater than the machine epsilon, RNNBN uses the inverse CDF 
technique; otherwise, for each negative binomial deviate, RNNBN generates a gamma (r, p/(1 - p)) deviate Y 
and then generates a Poisson deviate with parameter Y.
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Comments
1. The routine RNSET can be used to initialize the seed of the random number generator. The routine 

RNOPT can be used to select the form of the generator.
2. If RK is an integer, the deviates in IR can be thought of as the number of failures in a sequence of Ber-

noulli trials before RK successes occur.

Example

In this example, RNNBN is used to generate five pseudorandom deviates from a negative binomial (Pascal) 
distribution with parameter r equal to 4 and p equal to 0.3.

      USE RNNBN_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    IR(NR), ISEED, NOUT
      REAL       P, RK
!
      CALL UMACH (2, NOUT)
      P     = 0.3
      RK    = 4.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNNBN (RK, P, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (' Negative binomial (4.0, 0.3) random deviates: ', 5I4)
      END

Output

Negative binomial (4.0, 0.3) random deviates:    5   1   3   2   3
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RNPOI

Generates pseudorandom numbers from a Poisson distribution.

Required Arguments
THETA — Mean of the Poisson distribution.  (Input)

THETA must be positive.
IR — Vector of length NR containing the random Poisson deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNPOI (THETA, IR [, …])
Specific: The specific interface name is S_RNPOI.

FORTRAN 77 Interface
Single: CALL RNPOI (NR, THETA, IR)

Description

Routine RNPOI generates pseudorandom numbers from a Poisson distribution with parameter THETA. 
THETA, which is the mean of the Poisson random variable, must be positive. The probability function (with 
θ = THETA) is

f(x) = e−θθx/x!

for x = 0, 1, 2, …

If THETA is less than 15, RNPOI uses an inverse CDF method; otherwise the PTPE method of Schmeiser and 
Kachitvichyanukul (1981) (see also Schmeiser 1983) is used.

The PTPE method uses a composition of four regions, a triangle, a parallelogram, and two negative exponen-
tials. In each region except the triangle, acceptance/rejection is used. The execution time of the method is 
essentially insensitive to the mean of the Poisson.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNPOI is used to generate five pseudorandom deviates from a Poisson distribution with 
mean equal to 0.5.

      USE RNPOI_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    IR(NR), ISEED, NOUT
      REAL       THETA
!
      CALL UMACH (2, NOUT)
      THETA = 0.5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNPOI (THETA, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT ('   Poisson(0.5) random deviates: ', 5I8)
      END

Output

   Poisson(0.5) random deviates:        2       0       1       0       1
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RNUND

Generates pseudorandom numbers from a discrete uniform distribution.

Required Arguments
K — Parameter of the discrete uniform distribution.  (Input)

The integers 1, 2, …, K occur with equal probability. K must be positive.
IR — Vector of length NR containing the random discrete uniform deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNUND (K, IR [, …])
Specific: The specific interface name is S_RNUND.

FORTRAN 77 Interface
Single: CALL RNUND (NR, K, IR)

Description

Routine RNUND generates pseudorandom numbers from a discrete uniform distribution over the integers 
1, 2, …, K. A random integer is generated by multiplying K by a uniform (0, 1) random number, adding 1.0, 
and truncating the result to an integer. This, of course, is equivalent to sampling with replacement from a 
finite population of size K. To do the equivalent of sampling without replacement, the routine RNSRI can be 
used.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNUND is used to generate five pseudorandom deviates from a discrete uniform distribution 
over the integers from 1 to 6.

      USE RNUND_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
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      INTEGER    IR(5), ISEED, K, NOUT, NR
!
      CALL UMACH (2, NOUT)
      K     = 6
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNUND (K, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT ('  Discrete uniform (1,6) random deviates: ', 5I7)
      END

Output

Discrete uniform (1,6) random deviates:       6      2      5      4      6
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RNBET

Generates pseudorandom numbers from a beta distribution.

Required Arguments
PIN — First beta distribution parameter.  (Input)

PIN must be positive.
QIN — Second beta distribution parameter.  (Input)

QIN must be positive.
R — Vector of length NR containing the random standard beta deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNBET (PIN, QIN, R [, …])
Specific: The specific interface names are S_RNBET and D_RNBET.

FORTRAN 77 Interface
Single: CALL RNBET (NR, PIN, QIN, R)
Double: The double precision name is DRNBET.

Description

Routine RNBET generates pseudorandom numbers from a beta distribution with parameters PIN and QIN, 
both of which must be positive. With p = PIN and q = QIN, the probability density function is

where Γ(·) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p = 1 or q = 1, in which the 
inverse CDF method is used, all of the methods use acceptance/rejection. If p and q are both less than 1, the 
method of Johnk (1964) is used; if either p or q is less than 1 and the other is greater than 1, the method of 
Atkinson (1979) is used; if both p and q are greater than 1, algorithm BB of Cheng (1978), which requires very 
little setup time, is used if NR is less than 4; and algorithm B4PE of Schmeiser and Babu (1980) is used if NR is 
greater than or equal to 4. Note that for p and q both greater than 1, calling RNBET in a loop getting less than 
4 variates on each call will not yield the same set of deviates as calling RNBET once and getting all the devi-
ates at once.
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The values returned in R are less than 1.0 and greater than ɛ, where ɛ  is the smallest positive number such 
that 1.0 - ɛ  is less than 1.0.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNBET is used to generate five pseudorandom beta (3, 2) variates.

      USE RNBET_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    ISEED, NOUT
      REAL       PIN, QIN, R(NR)
!
      CALL UMACH (2, NOUT)
      PIN   = 3.0
      QIN   = 2.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNBET (PIN, QIN, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('    Beta (3,2) random deviates: ', 5F7.4)
      END

Output

Beta (3,2) random deviates:  0.2814 0.9483 0.3984 0.3103 0.8296
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RNCHI

Generates pseudorandom numbers from a chi-squared distribution.

Required Arguments
DF — Degrees of freedom.  (Input)

DF must be positive.
R — Vector of length NR containing the random chi-squared deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNCHI (DF, R [, …])
Specific: The specific interface names are S_RNCHI and D_RNCHI.

FORTRAN 77 Interface
Single: CALL RNCHI (NR, DF, R)
Double: The double precision name is DRNCHI.

Description

Routine RNCHI generates pseudorandom numbers from a chi-squared distribution with DF degrees of free-
dom. If DF is an even integer less than 17, the chi-squared deviate r is generated as

where n = DF/2 and the ui are independent random deviates from a uniform (0, 1) distribution. If DF is an 
odd integer less than 17, the chi-squared deviate is generated in the same way, except the square of a normal 
deviate is added to the expression above. If DF is greater than 16 or is not an integer, and if it is not too large 
to cause overflow in the gamma random number generator, the chi-squared deviate is generated as a special 
case of a gamma deviate, using routine RNGAM. If overflow would occur in RNGAM, the chi-squared deviate is 
generated in the manner described above, using the logarithm of the product of uniforms, but scaling the 
quantities to prevent underflow and overflow.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT  
can be used to select the form of the generator.
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Example

In this example, RNCHI is used to generate five pseudorandom chi-squared deviates with 5 degrees of 
freedom.

      USE RNCHI_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       DF, R(5)
!
      CALL UMACH (2, NOUT)
      DF    = 5.0
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNCHI (DF, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  Chi-squared random deviates with 5 df: ', 5F7.3)
      END

Output

  Chi-squared random deviates with 5 df:  12.090  0.481  1.798 14.871  1.748
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RNCHY

Generates pseudorandom numbers from a Cauchy distribution.

Required Arguments
R — Vector of length NR containing the random Cauchy deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNCHY (R [, …])
Specific: The specific interface names are S_RNCHY and D_RNCHY.

FORTRAN 77 Interface
Single: CALL RNCHY (NR, R)
Double: The double precision name is DRNCHY.

Description

Routine RNCHY generates pseudorandom numbers from a standard Cauchy distribution. The probability 
density function is

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1) deviate, u, as 
tan[π(u - 5)]. Rather than evaluating a tangent directly, however, RNCHY generates two uniform (-1, 1) devi-
ates, x1 and x2. These values can be thought of as sine and cosine values. If

is less than or equal to 1, then x1/x2 is delivered as the Cauchy deviate; otherwise, x1 and x2 are rejected and 
two new uniform (–1, 1) deviates are generated. This method is also equivalent to taking the ratio of two 
independent normal deviates.

Deviates from the Cauchy distribution with median T and first quartile T - S, that is, with density
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can be obtained by scaling the output from RNCHY. The following statements (in single precision) would 
yield random deviates from this Cauchy distribution.

CALL RNCHY (NR, R)
CALL SSCAL (NR, S, R, 1)
CALL SADD (NR, T, R, 1)

The Cauchy distribution is a member of the symmetric stable family of distributions. The routine RNSTA can 
be used to generate deviates from this more general family of distributions or even from the stable family not 
requiring symmetry.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNCHY is used to generate five pseudorandom deviates from a Cauchy distribution.

      USE RNCHY_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNCHY (R)
      WRITE (NOUT,99999) R
99999 FORMAT ('      Cauchy random deviates: ', 5F8.4)
      END

Output

Cauchy random deviates:   3.5765  0.9353 15.5797  2.0815 -0.1333
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RNEXP

Generates pseudorandom numbers from a standard exponential distribution.

Required Arguments
R — Vector of length NR containing the random standard exponential deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNEXP (R [, …])
Specific: The specific interface names are S_RNEXP and D_RNEXP.

FORTRAN 77 Interface
Single: CALL RNEXP (NR, R)
Double: The double precision name is DRNEXP.

Description

Routine RNEXP generates pseudorandom numbers from a standard exponential distribution. The probability 

density function is f(x) = e-x for x > 0. RNEXP uses an antithetic inverse CDF technique; that is, a uniform ran-
dom deviate U is generated and the inverse of the exponential cumulative distribution function is evaluated 
at 1.0 - U to yield the exponential deviate.

Deviates from the exponential distribution with mean THETA can be generated by using RNEXP and then 
multiplying each entry in R by THETA. The following statements (in single precision using the routine SSCAL 
(Reference Material)) would yield random deviates from such a distribution:
USE IMSL_LIBRARIES
                 ⋮
CALL RNEXP (R, NR)
CALL SSCAL (NR, THETA, R, 1)

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNEXP is used to generate five pseudorandom deviates from a standard exponential 
distribution.

      USE RNEXP_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNEXP (R)
      WRITE (NOUT,99999) R
99999 FORMAT ('    Exponential random deviates: ', 5F8.4)
      END

Output

Exponential random deviates:   0.0344  1.3443  0.2662  0.5633  0.1686
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RNEXT

Generates pseudorandom numbers from a mixture of two exponential distributions.

Required Arguments
THETA1 —  Mean of the exponential distribution that has the larger mean.  (Input)
THETA2 — Mean of the exponential distribution that has the smaller mean.  (Input)

THETA2 must be positive and less than or equal to THETA1.
P — Mixing parameter.  (Input)

P must be nonnegative and less than or equal to THETA1/(THETA1 - THETA2).
R — Vector of length NR containing the random deviates from a mixture of exponentials.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNEXT (THETA1, THETA2, P, R [, …])
Specific: The specific interface names are S_RNEXT and D_RNEXT.

FORTRAN 77 Interface
Single: CALL RNEXT (NR, THETA1, THETA2, P, R)
Double: The double precision name is DRNEXT.

Description

Routine RNEXT generates pseudorandom numbers from a mixture of two exponential distributions. The 
probability density function is

where p = P, θ1 = THETA1, and θ2 = THETA2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p is interpretable as a proba-
bility; and RNEXT with probability p generates an exponential deviate with mean θ1, and with probability 
1 - p generates an exponential with mean θ2. When p is greater than 1, but less than θ1/(θ1 - θ2), then either 
an exponential deviate with mean θ1 or the sum of two exponentials with means θ1 and θ2 is generated. The 
probabilities are q = p - (p - 1)θ1/θ2 and 1 - q, respectively, for the single exponential and the sum of the two 
exponentials.
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Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNEXT is used to generate five pseudorandom deviates from a mixture of exponentials with 
means 2 and 1, respectively, and with mixing parameter 0.5.

      USE RNEXT_INT
      USE UMACH_INT
      USE RNSET_INT
    
      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       P, R(5), THETA1, THETA2
!
      CALL UMACH (2, NOUT)
      THETA1 = 2.0
      THETA2 = 1.0
      P      = 0.5
      NR     = 5
      ISEED  = 123457
      CALL RNSET (ISEED)
      CALL RNEXT (THETA1, THETA2, P, R)
      WRITE (NOUT,99999) R
99999 FORMAT (' Random deviates from a mixture of exponentials: ', /, &
            5X, 5F8.4)
      END

Output

Random deviates from a mixture of exponentials:
      0.0700  1.3024  0.6301  1.9756  0.3716
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RNEXV

Generates pseudorandom numbers from an extreme value distribution.

Required Arguments
AMU — The location parameter of the extreme value distribution.  (Input)
BETA — The scale parameter of the extreme value distribution.  (Input)
R — Vector of length NR containing the random extreme value deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNEXV (AMU, BETA, R [, …])
Specific: The specific interface names are S_RNEXV and D_RNEXV.

FORTRAN 77 Interface
Single: CALL RNEXV (NR, AMU, BETA, R)
Double: The double precision name is DRNEXV.

Description

Routine RNEXV generates pseudorandom numbers from an extreme value distribution generated by evaluat-

ing uniform variates , equating to the CDF, and then solving for  by first computing

Where μ = AMU and β = BETA.

The routine ALNREL is used to accurately evaluate the sub-expression log(1 - ui).

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNEXV is used to generate five pseudorandom deviates from an extreme value distribution 
with location parameter equal to 0.0, and scale parameter 1.0.

      USE UMACH_INT
      USE RNEXV_INT
      IMPLICIT NONE
      INTEGER NR
      PARAMETER (NR=5)
      INTEGER NOUT
      REAL AAMU, B, R(NR)
      CALL UMACH(2, NOUT)
      CALL RNSET(123457)
      AAMU = 0.0
      B   = 1.0
      CALL RNEXV(AAMU, B, R)
      WRITE (NOUT, 99999) R
99999 FORMAT (' Extreme value random deviates: ', 5F10.4)
      END

Output

Extreme value random deviates:    1.2202  -1.1971   0.3740  -0.1715  0.6223 
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RNFDF

Generates pseudorandom numbers from the F distribution.

Required Arguments
DFN — Numerator degrees of freedom.  (Input) 

DFN must be positive. 
DFD — Denominator degrees of freedom.  (Input)

DFD must be positive. 
R — Vector of length NR containing the random F deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNFDF (DFN, DFD, R [, …])
Specific: The specific interface names are S_RNFDF and D_RNFDF.

FORTRAN 77 Interface
Single: CALL RNFDF (NR, DFN, DFD, R)
Double: The double precision name is DRNFDF.

Description

Routine RNFDF generates pseudorandom numbers from an F distribution (see Chapter 17, “Probability Distri-
bution Functions and Inverses”, routine FDF).

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNFDF is used to generate five pseudorandom deviates from an F distribution with parame-
ters DFN = 2 and DFD = 3.

      USE UMACH_INT
      USE RNFDF_INT
      IMPLICIT NONE
      INTEGER NR
      PARAMETER (NR=5)
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      INTEGER NOUT
      REAL DFD, DFN, R(NR)

      CALL UMACH(2, NOUT)
      CALL RNSET(123457)

      DFN = 2.0e0
      DFD = 3.0e0
      CALL RNFDF(DFN, DFD, R)
      WRITE (NOUT, 99999) R
99999 FORMAT (' F Random deviates: ', 5F10.4)
      END

Output

F Random deviates:     0.0814    0.3639    0.1323    1.5415    1.0350 
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RNGAM

Generates pseudorandom numbers from a standard gamma distribution.

Required Arguments
A — The shape parameter of the gamma distribution.  (Input)

This parameter must be positive.
R — Vector of length NR containing the random standard gamma deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNGAM (A, R [, …])
Specific: The specific interface names are S_RNGAM and D_RNGAM.

FORTRAN 77 Interface
Single: CALL RNGAM (NR, A, R)
Double: The double precision name is DRNGAM.

Description

Routine RNGAM generates pseudorandom numbers from a gamma distribution with shape parameter a and 
unit scale parameter. The probability density function is

Various computational algorithms are used depending on the value of the shape parameter a. For the special 
case of a = 0.5, squared and halved normal deviates are used; and for the special case of a = 1.0, exponential 
deviates (from IMSL routine RNEXP) are used. Otherwise, if a is less than 1.0, an acceptance-rejection method 
due to Ahrens, described in Ahrens and Dieter (1974), is used; if a is greater than 1.0, a ten-region rejection 
procedure developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and scale parameter b can be 
generated by using RNGAM and then multiplying each entry in R by b. The following statements (in single pre-
cision) would yield random deviates from a gamma (a, b) distribution.

CALL RNGAM (NR, A, R)
CALL SSCAL (NR, B, R, 1)
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The Erlang distribution is a standard gamma distribution with the shape parameter having a value equal to a 
positive integer; hence, RNGAM generates pseudorandom deviates from an Erlang distribution with no modi-
fications required.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNGAM is used to generate five pseudorandom deviates from a gamma (Erlang) distribution 
with shape parameter equal to 3.0.

      USE RNGAM_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    ISEED, NOUT
      REAL       A, R(NR)
!
      CALL UMACH (2, NOUT)
      A     = 3.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNGAM (A, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  Gamma(3) random deviates: ', 5F8.4)
      END

Output

Gamma(3) random deviates:   6.8428  3.4452  1.8535  3.9992  0.7794
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RNGCS

Sets up table to generate pseudorandom numbers from a general continuous distribution.

Required Arguments
CDF — User-supplied FUNCTION to compute the cumulative distribution function. The form is CDF(X), 

where
X — Point at which the distribution function is to be evaluated.  (Input)
CDF — Value of the distribution function at X.  (Output)

CDF must be declared EXTERNAL in the calling program.
IOPT — Indicator of the extent to which TABLE is initialized prior to calling RNGCS.  (Input)

TABLE — NDATA by 5 table to be used for interpolation of the cumulative distribution function.  (Input 
and output)
The first column of TABLE contains abscissas of the cumulative distribution function in ascending 
order, the second column contains the values of the CDF (which must be strictly increasing), and the 
remaining columns contain values used in interpolation. The first row of TABLE corresponds to the left 
limit of the support of the distribution and the last row corresponds to the right limit of the support; 
that is, TABLE(1, 2) = 0.0 and TABLE(NDATA, 2) = 1.0.

Optional Arguments
NDATA — Number of points at which the CDF is evaluated for interpolation.  (Input)

NDATA must be greater than or equal to 4.
Default: NDATA = size (TABLE,1).

LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDTABL = size (TABLE,1).

FORTRAN 90 Interface
Generic: CALL RNGCS (CDF, IOPT, TABLE [, …])
Specific: The specific interface names are S_RNGCS and D_RNGCS.

FORTRAN 77 Interface
Single: CALL RNGCS (CDF, IOPT, NDATA, TABLE, LDTABL)
Double: The double precision name is DRNGCS.

IOPT Action

0 RNGCS fills the last four columns of TABLE. The user inputs the points at which the 
CDF is to be evaluated in the first column of TABLE. These must be in ascending order.

1 RNGCS fills the last three columns of TABLE. CDF is not used and may be a dummy 
function; instead, the cumulative distribution function is specified in the first two col-
umns of TABLE. The abscissas (in the first column) must be in ascending order and the 
function must be strictly monotonically increasing.
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Description

Routine RNGCS sets up a table that routine RNGCT can use to generate pseudorandom deviates from a contin-
uous distribution. The distribution is specified by its cumulative distribution function, which can be 
supplied either in tabular form in TABLE or by a FORTRAN function CDF. See the documentation for the rou-
tine RNGCT for a description of the method.

Comments
1. Informational error

2. The routine RNGCT uses the table set up by RNGCS to generate random numbers from the distribution 
with CDF represented in TABLE.

Example

In this example, RNGCS is used to set up a table to generate pseudorandom variates from a beta distribution. 
This example is continued in the documentation for routine RNGCT to generate the random variates.

      USE RNGCS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LDTABL
      PARAMETER  (LDTABL=100)
!
      INTEGER    I, IOPT, NINT, NOUT
      REAL       CDF, PIN, QIN, TABLE(LDTABL,5), X
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   CDF
!
      CALL UMACH (2, NOUT)
      PIN  = 3.0
      QIN  = 2.0
      IOPT = 0
      NINT = 100
      X    = 0.0
!                                 Fill the first column of the table
!                                 with abscissas for interpolation.
      DO 10  I=1, NINT
         TABLE(I,1) = X
         X          = X + 0.01
   10 CONTINUE
      CALL RNGCS (CDF, IOPT, TABLE)
      WRITE (NOUT,99999) (TABLE(I,1),TABLE(I,2),I=1,10)
99999 FORMAT ('   First few elements of the table: ', F4.2, F8.4, /, &
            (36X,F4.2,F8.4))

Type Code Description

3 1 The values in TABLE(1, 2) and/or TABLE(NDATA, 2) are not exactly 0.0 and 
1.0, respectively, but they are considered close enough to these values that 
they are set to these values.
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      END
!
!                                 Beta distribution function
      REAL FUNCTION CDF (X)
      REAL       X
!
      REAL       BETDF, PIN, QIN
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   BETDF
!
      CDF = BETDF(X,PIN,QIN)
      RETURN
      END

Output

*** WARNING  ERROR 1 from RNGCS.  The values of the CDF in the second 
***          column of TABLE did not begin at 0.0 and end at 1.0, but they 
***          have been adjusted. Prior to adjustment, 
***          TABLE(1,2) = 0.000000E+00 and TABLE(NDATA,2) = 9.994079E-01.
  First few elements of the table: 0.00  0.0000
                                   0.01  0.0000
                                   0.02  0.0000
                                   0.03  0.0001
                                   0.04  0.0002
                                   0.05  0.0005
                                   0.06  0.0008
                                   0.07  0.0013
                                   0.08  0.0019
                                   0.09  0.0027
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RNGCT

Generates pseudorandom numbers from a general continuous distribution.

Required Arguments
TABLE — NDATA by 5 table to be used for interpolation of the cumulative distribution function.  (Input)

The first column of TABLE contains abscissas of the cumulative distribution function in ascending 
order, the second column contains the values of the CDF (which must be strictly increasing beginning 
with 0.0 and ending at 1.0) and the remaining columns contain values used in interpolation. This table 
is set up using routine RNGCS.

R — Vector of length NR containing the random deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).
NDATA — Number of points at which the cumulative distribution function is evaluated for interpolation.  

(Input)
NDATA must be greater than or equal to 4.
Default: NDATA = size (TABLE,1).

LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling 
program.  (Input)
Default: LDTABL = size (TABLE,1).

FORTRAN 90 Interface
Generic: CALL RNGCT (TABLE, R [, …])
Specific: The specific interface names are S_RNGCT and D_RNGCT.

FORTRAN 77 Interface
Single: CALL RNGCT (NR, NDATA, TABLE, LDTABL, R)
Double: The double precision name is DRNGCT.

Description

Routine RNGCT generates pseudorandom numbers from a continuous distribution using the inverse CDF 
technique, by interpolation of points of the distribution function given in TABLE, which is set up by routine 
RNGCS. A strictly monotone increasing distribution function is assumed. The interpolation is by an algorithm 
attributable to Akima (1970), using piecewise cubics. The use of this technique for generation of random 
numbers is due to Guerra, Tapia, and Thompson (1976), who give a description of the algorithm and accu-
racy comparisons between this method and linear interpolation. The relative errors using the Akima 
interpolation are generally considered very good.
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Comments
1. The routine RNSET can be used to initialize the seed of the random number generator. The routine 

RNOPT can be used to select the form of the generator.
2. In the interest of efficiency, this routine does only limited error checking. If TABLE is generated by the 

routine RNGCS, the error checking is sufficient.

Example

In this example, RNGCS is used to set up a table for generation of beta pseudorandom deviates. The CDF for 
this distribution is computed by the routine BETDF (see Chapter 17, “Probability Distribution Function and 
Inverses”). The table contains 100 points at which the CDF is evaluated and that are used for interpolation.

      USE RNGCT_INT
      USE UMACH_INT
      USE RNGCS_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    LDTABL, NR
      PARAMETER  (LDTABL=100, NR=5)
!
      INTEGER    I, IOPT, ISEED, NINT, NOUT
      REAL       CDF, PIN, QIN, R(NR), TABLE(LDTABL,5), X
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   CDF
!
      CALL UMACH (2, NOUT)
      PIN  = 3.0
      QIN  = 2.0
      IOPT = 0
      NINT = 100
      X    = 0.0
!                                 Fill the first column of the table
!                                 with abscissas for interpolation.
      DO 10  I=1, NINT
         TABLE(I,1) = X
         X          = X + 0.01
   10 CONTINUE
      CALL RNGCS (CDF, IOPT, TABLE)
!                                 Initialize seed of random number
!                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
!                                 Now generate the random deviates.
      CALL RNGCT (TABLE, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  Beta (3,2) random deviates: ', 5F7.4)
      END
!
!                                 Beta distribution function
      REAL FUNCTION CDF (X)
      REAL       X
!
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      REAL       BETDF, PIN, QIN
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   BETDF
!
      CDF = BETDF(X,PIN,QIN)
      RETURN
      END

Output

*** WARNING  ERROR 1 from RNGCS.  The values of the CDF in the second 
***          column of TABLE did not begin at 0.0 and end at 1.0, but they 
***          have been adjusted. Prior to adjustment, 
***          TABLE(1,2) = 0.000000E+00 and TABLE(NDATA,2) = 9.994079E-01.
 Beta (3,2) random deviates:  0.9208 0.4641 0.7668 0.6536 0.8171
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RNLNL

Generates pseudorandom numbers from a lognormal distribution.

Required Arguments
XM — Mean of the underlying normal distribution.  (Input)
S — Standard deviation of the underlying normal distribution.  (Input)

S must be positive.
R — Vector of length NR containing the random lognormal deviates.  (Output)

The log of each element of R has a normal distribution with mean XM and standard deviation S.

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNLNL (XM, S, R [, …])
Specific: The specific interface names are S_RNLNL and D_RNLNL.

FORTRAN 77 Interface
Single: CALL RNLNL (NR, XM, S, R)
Double: The double precision name is DRNLNL.

Description

Routine RNLNL generates pseudorandom numbers from a lognormal distribution with parameters XM and S. 
The scale parameter in the underlying normal distribution, S, must be positive. The method is to generate 
normal deviates with mean XM and standard deviation S and then to exponentiate the normal deviates.

With µ = XM and σ = S, the probability density function for the lognormal distribution is

The mean and variance of the lognormal distribution are exp(µ + σ2/2) and exp(2µ + 2σ2) - exp(2µ + σ2), 
respectively.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNLNL is used to generate five pseudorandom lognormal deviates with µ = 0 and σ = 1.

      USE RNLNL_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    ISEED, NOUT
      REAL       R(NR), S, XM
!
      CALL UMACH (2, NOUT)
      XM    = 0.0
      S     = 1.0
      ISEED = 123457 
      CALL RNSET (ISEED)
      CALL RNLNL (XM, S, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  Lognormal random deviates: ', 5F8.4)
      END

Output

Lognormal random deviates:   7.7801  2.9543  1.0861  3.5885  0.2935
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RNNOA

Generates pseudorandom numbers from a standard normal distribution using an acceptance/rejection 
method.

Required Arguments
R — Vector of length NR containing the random standard normal deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNNOA (R [, …])
Specific: The specific interface names are S_RNNOA and D_RNNOA.

FORTRAN 77 Interface
Single: CALL RNNOA (NR, R)
Double: The double precision name is DRNNOA.

Description

Routine RNNOA generates pseudorandom numbers from a standard normal (Gaussian) distribution using an 
acceptance/rejection technique due to Kinderman and Ramage (1976). In this method, the normal density is 
represented as a mixture of densities over which a variety of acceptance/rejection methods due to Marsaglia 
(1964), Marsaglia and Bray (1964), and Marsaglia, MacLaren, and Bray (1964) are applied. This method is 
faster than the inverse CDF technique used in RNNOR to generate standard normal deviates.

Deviates from the normal distribution with mean XM and standard deviation XSTD can be obtained by scal-
ing the output from RNNOA. The following statements (in single precision) would yield random deviates 
from a normal (XM, XSTD**2) distribution.

CALL RNNOA (NR, R)
CALL SSCAL (NR, XSTD, R, 1)
CALL SADD (NR, XM, R, 1)

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNNOA is used to generate five pseudorandom deviates from a standard normal distribution.

      USE RNNOA_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNNOA (R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  Standard normal random deviates: ', 5F8.4)
      END

Output

Standard normal random deviates:   2.0516  1.0833  0.0826  1.2777 -1.2260
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RNNOF

This function generates a pseudorandom number from a standard normal distribution.

Function Return Value
RNNOF — Function value, a random standard normal deviate.  (Output)

See Comment 1.

Required Arguments
None.

FORTRAN 90 Interface
Generic: RNNOF ()
Specific: The specific interface names are S_RNNOF and D_RNNOF.

FORTRAN 77 Interface
Single: RNNOF ()
Double: The double precision name is DRNNOF.

Description

Routine RNNOF is the function form of RNNOR. If several standard normal deviates are needed, it may be 
more efficient to obtain them all at once by a call to RNNOR, rather than by several references to RNNOF.

Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before 

use in an expression. For example:
X = RNNOF()
Y = SQRT(X)

must be used rather than
Y = SQRT(RNNOF())

If this is too much of a restriction on the programmer, then the specific name can be used without this 
restriction.

2. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.

3. This function has a side effect: it changes the value of the seed, which is passed through a common 
block.
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Example

In this example, RNNOF is used to generate five pseudorandom standard normal numbers.

      USE UMACH_INT
      USE RNSET_INT
      USE RNNOF_INT

      IMPLICIT   NONE
      INTEGER    I, ISEED, NOUT, NR
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      ISEED = 123457
      CALL RNSET (ISEED)
      NR=5
      DO 10  I=1, NR
         R(I) = RNNOF()
   10 CONTINUE
      WRITE (NOUT,99999) R
99999 FORMAT ('  Standard normal random deviates: ', 5F8.4)
      END

Output

Standard normal random deviates:   1.8279  -0.6412  0.7266  0.1747  1.0145
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RNNOR

Generates pseudorandom numbers from a standard normal distribution using an inverse CDF method.

Required Arguments
R — Vector of length NR containing the random standard normal deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNNOR (R [, …])
Specific: The specific interface names are S_RNNOR and D_RNNOR.

FORTRAN 77 Interface
Single: CALL RNNOR (NR, R)
Double: The double precision name is DRNNOR.

Description

Routine RNNOR generates pseudorandom numbers from a standard normal (Gaussian) distribution using an 
inverse CDF technique. In this method, a uniform (0,1) random deviate is generated and then the inverse of 
the normal distribution function is evaluated at that point, using the routine ANORIN (see Chapter 17, “Proba-
bility Distribution Function and Inverses”). This method is slower than the acceptance/rejection technique used 
in the routine RNNOA to generate standard normal deviates. Deviates from the normal distribution with mean 
XM and standard deviation XSTD can be obtained by scaling the output from RNNOR. The following state-
ments (in single precision, using the routines SSCAL (IMSL MATH/LIBRARY) and SADD 
(IMSL MATH/LIBRARY).) would yield random deviates from a normal (XM, XSTD**2) distribution.

USE IMSL_LIBRARIES
         ⋮
CALL RNNOR (R, NR)
CALL SSCAL (NR, XSTD, R, 1)
CALL SADD (NR, XM, R, 1)

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNNOR is used to generate five pseudorandom deviates from a standard normal distribution.

      USE RNNOR_INT
      USE UMACH_INT
      USE RNSET_INT
      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNNOR (R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  Standard normal random deviates: ', 5F8.4)
      END

Output

Standard normal random deviates:   1.8279 -0.6412  0.7266  0.1747  1.0145
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RNRAL

Generates pseudorandom numbers from a Rayleigh distribution.

Required Arguments
ALPHA — Parameter of the Rayleigh distribution.  (Input)

ALPHA must be greater than 0.
R — Vector of length NR containing the random Rayleigh deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNRAL (ALPHA, R [, …])
Specific: The specific interface names are S_RNRAL and D_RNRAL.

FORTRAN 77 Interface
Single: CALL RNRAL (NR, ALPHA, R)
Double: The double precision name is DRNRAL.

Description

Routine RNRAL generates pseudorandom numbers from a Rayleigh distribution (see Chapter 17, “Probability 
Distribution Function and Inverses”, routine RALDF).

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNRAL is used to generate five pseudorandom deviates from a Rayleigh distribution with 
parameter ALPHA = 0.5. 

      USE UMACH_INT
      USE RNRAL_INT
      IMPLICIT NONE
      INTEGER NR
      PARAMETER (NR=5)
      INTEGER NOUT
      REAL ALPHA, R(NR)
      CALL UMACH(2, NOUT)
RNRAL         Chapter 18: Random Number Generation      1609



      CALL RNSET(123457)
      ALPHA = 0.5
      CALL RNRAL(ALPHA, R)
      WRITE (NOUT, 99999) R
99999 FORMAT (' Rayleigh random deviates: ', 5F10.4)
      END

Output

Rayleigh random deviates:     0.1311    0.8199    0.3648    0.5307    0.2904 
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RNSTA

Generates pseudorandom numbers from a stable distribution.

Required Arguments
ALPHA — Characteristic exponent of the stable distribution.  (Input)

This parameter must be positive and less than or equal to 2.
BPRIME — Skewness parameter of the stable distribution.  (Input)

When BPRIME = 0, the distribution is symmetric. Unless ALPHA = 1, BPRIME is not the usual skewness 
parameter of the stable distribution. BPRIME must be greater than or equal to – 1 and less than or 
equal to 1.

R — Vector of length NR containing the random stable deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNSTA (ALPHA, BPRIME, R [, …])
Specific: The specific interface names are S_RNSTA and D_RNSTA.

FORTRAN 77 Interface
Single: CALL RNSTA (NR, ALPHA, BPRIME, R)
Double: The double precision name is DRNSTA.

Description

Routine RNSTA generates pseudorandom numbers from a stable distribution with parameters ALPHA and 
BPRIME. ALPHA is the usual characteristic exponent parameter α and BPRIME is related to the usual skew-
ness parameter β of the stable distribution. With the restrictions 0 < α ≤ 2 and -1 ≤ β ≤ 1, the characteristic 
function of the distribution is

ϕ(t) = exp[–|t|α exp(–πiβ(1 - |1 - α|) sign(t)/2)]  for α ≠ 1

and

ϕ(t) = exp[–|t|(1 + 2iβln|t|sign(t)/π)]  for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is normal with mean 0 and 
variance 2; and if α = 1, the distribution is Cauchy.

The parameterization using BPRIME and the algorithm used here are due to Chambers, Mallows, and Stuck 
(1976). The relationship between BPRIME = βʹ and the standard β is

βʹ = -tan(π(1 - α)/2) tan(-πβ(1 - |1 - α|)/2)  for α ≠ 1
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and

βʹ = β  for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential random variate.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNSTA is used to generate five pseudorandom symmetric stable variates with characteristic 
exponent 1.5. The tails of this distribution are heavier than those of a normal distribution, but not so heavy as 
those of a Cauchy distribution. The variance of this distribution does not exist, however. (This is the case for 
any stable distribution with characteristic exponent less than 2.)

      USE RNSTA_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    ISEED, NOUT
      REAL       ALPHA, BPRIM, R(NR)
!
      CALL UMACH (2, NOUT)
      ALPHA = 1.5
      BPRIM = 0.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNSTA (ALPHA, BPRIM, R)
      WRITE (NOUT,99999) R
99999 FORMAT (' Stable random deviates: ', 5F9.4)
      END

Output

Stable random deviates:    4.4091   1.0564   2.5463   5.6724   2.1656
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RNSTT

Generates pseudorandom numbers from a Student’s t distribution.

Required Arguments
DF — Degrees of freedom.  (Input)

DF must be positive.
R — Vector of length NR containing the random Student’s t deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNSTT (DF, R [, …])
Specific: The specific interface names are S_RNSTT and D_RNSTT.

FORTRAN 77 Interface
Single: CALL RNSTT (NR, DF, R)
Double: The double precision name is DRNSTT.

Description

Routine RNSTT generates pseudo-random numbers from a Student’s t distribution with DF degrees of free-
dom, using a method suggested by Kinderman, Monahan, and Ramage (1977). The method (“TMX” in the 
reference) involves a representation of the t density as the sum of a triangular density over (–2, 2) and the dif-
ference of this and the t density. The mixing probabilities depend on the degrees of freedom of the t 
distribution. If the triangular density is chosen, the variate is generated as the sum of two uniforms; other-
wise, an acceptance/rejection method is used to generate a variate from the difference density.

For degrees of freedom less than 100, RNSTT requires approximately twice the execution time as routine 
RNNOA which generates pseudorandom normal deviates. The execution time of RNSTT increases very slowly 
as the degrees of freedom increase. Since for very large degrees of freedom the normal distribution and the t 
distribution are very similar, the user may find that the difference in the normal and the t does not warrant 
the additional generation time required to use RNSTT instead of RNNOA.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNSTT is used to generate 5 pseudo-random t variates with 10 degrees of freedom.

      USE RNSTT_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    ISEED, NOUT
      REAL       DF, R(NR)
!
      CALL UMACH(2, NOUT)
      DF = 10.0
      ISEED = 123457
      CALL RNSET(ISEED)
      CALL RNSTT(DF, R)
      WRITE(NOUT, 99999) R
99999 FORMAT ('  t (10) random deviates: ', 5F8.4)
      END

Output

t (10) random deviates:   0.6152  1.1528  0.0881  1.3382 -0.9893
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RNTRI

Generates pseudorandom numbers from a triangular distribution on the interval (0, 1).

Required Arguments
R — Vector of length NR containing the random triangular deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNTRI (R [, …])
Specific: The specific interface names are S_RNTRI and D_RNTRI.

FORTRAN 77 Interface
Single: CALL RNTRI (NR, R)
Double: The double precision name is DRNTRI.

Description

Routine RNTRI generates pseudorandom numbers from a triangular distribution over the unit interval. The 
probability density function is f(x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4(1 - x), for 0.5 < x ≤ 1. RNTRI uses an 
inverse CDF technique.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNTRI is used to generate five pseudorandom deviates from a triangular distribution.

      USE RNTRI_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      NR    = 5
RNTRI         Chapter 18: Random Number Generation      1615



      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNTRI (R)
      WRITE (NOUT,99999) R
99999 FORMAT ('    Triangular random deviates: ', 5F8.4)
      END

Output

Triangular random deviates:   0.8700  0.3610  0.6581  0.5360  0.7215
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RNVMS

Generates pseudorandom numbers from a von Mises distribution.

Required Arguments
C — Parameter of the von Mises distribution.  (Input) 

This parameter must be greater than one half of machine epsilon. (On many machines, the lower 
bound for C is 10-3.)

R — Vector of length NR containing the random von Mises deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNVMS (C, R [, …])
Specific: The specific interface names are S_RNVMS and D_RNVMS.

FORTRAN 77 Interface
Single: CALL RNVMS (NR, C, R)
Double: The double precision name is DRNVMS.

Description

Routine RNVMS generates pseudorandom numbers from a von Mises distribution with parameter C, which 
must be positive. With c = C, the probability density function is

where I0(c) is the modified Bessel function of the first kind of order 0. The probability density equals 0 out-
side the interval (–π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution as the majorizing 
distribution. It is due to Best and Fisher (1979).

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNVMS is used to generate five pseudorandom von Mises variates with c = 1.

      USE RNVMS_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NR
      PARAMETER  (NR=5)
!
      INTEGER    ISEED, NOUT
      REAL       C, R(NR)
!
      CALL UMACH (2, NOUT)
      C     = 1.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNVMS (C, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  Von Mises random deviates: ', 5F8.4)
      END

Output

Von Mises random deviates:   0.2472 -2.4326 -1.0216 -2.1722 -0.5029
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RNWIB

Generates pseudorandom numbers from a Weibull distribution.

Required Arguments
A — The shape parameter of the Weibull distribution.  (Input)

This parameter must be positive.
R — Vector of length NR containing the random Weibull deviates.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNWIB (A, R [, …])
Specific: The specific interface names are S_RNWIB and D_RNWIB.

FORTRAN 77 Interface
Single: CALL RNWIB (NR, A, R)
Double: The double precision name is DRNWIB.

Description

Routine RNWIB generates pseudorandom numbers from a Weibull distribution with shape parameter A and 
unit scale parameter. The probability density function is

Routine RNWIB uses an antithetic inverse CDF technique to generate a Weibull variate; that is, a uniform ran-
dom deviate U is generated and the inverse of the Weibull cumulative distribution function is evaluated at 
1.0 -  U to yield the Weibull deviate.

Deviates from the two-parameter Weibull distribution with shape parameter A and scale parameter B can be 
generated by using RNWIB and then multiplying each entry in R by B. The following statements (using rou-
tine SSCAL (IMSL MATH/LIBARY) in single precision) would yield random deviates from a two-parameter 
Weibull distribution.

CALL RNWIB (NR, A, R)

CALL SSCAL (NR, B, R, 1)

The Rayleigh distribution with probability density function,
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is the same as a Weibull distribution with shape parameter A equal to 2 and scale parameter B equal to 

hence, RNWIB and SSCAL (or simple multiplication) can be used to generate Rayleigh deviates.

Comments
1. Informational error

2. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.

Example

In this example, RNWIB is used to generate five pseudorandom deviates from a two-parameter Weibull distri-
bution with shape parameter equal to 2.0 and scale parameter equal to 6.0, a Rayleigh distribution with 
parameter 

      USE RNWIB_INT
      USE UMACH_INT
      USE RNSET_INT
      USE SSCAL_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, NR
      REAL       A, B, R(5)
!
      CALL UMACH (2, NOUT)
      A     = 2.0
      B     = 6.0
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNWIB (A, R)
      CALL SSCAL (NR, B, R, 1)
      WRITE (NOUT,99999) R
99999 FORMAT ('      Weibull(2,6) random deviates: ', 5F8.4)
      END

Type Code Description

3 1 The value of A is so small that the proportion of values from the Weibull that 
are too large to represent is greater than machine epsilon.
RNWIB         Chapter 18: Random Number Generation      1620



Output

Weibull(2,6) random deviates:   1.1122  6.9568  3.0959  4.5031  2.4638
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RNCOR

Generates a pseudorandom orthogonal matrix or a correlation matrix.

Required Arguments
A — N by N random orthogonal matrix.  (Output, if IOPT = 0; workspace if IOPT = 1; Input/Output, if 

IOPT = 2. If IOPT = 2, A is destroyed.)

Optional Arguments
N — The order of the matrices to be generated.  (Input)

N must be at least two.
Default: N = size (A,2).

IOPT — Option indicator.  (Input)
Default: IOPT = 0.

EV — If IOPT = 1 or 2, a vector of length N containing the eigenvalues of the correlation matrix to be gener-
ated.  (Input, if IOPT = 1 or 2; not used otherwise.)
The elements of EV must be positive, they must sum to N, and they cannot all be equal.

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDA = size (A,1).

COR — N by N random correlation matrix.  (Output, if IOPT = 1 or 2; not used otherwise.)
LDCOR — Leading dimension of COR exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDCOR=size(COR, 1)

FORTRAN 90 Interface
Generic: CALL RNCOR (A [, …])
Specific: The specific interface names are S_RNCOR and D_RNCOR.

FORTRAN 77 Interface
Single: CALL RNCOR (N, IOPT, EV, A, LDA, COR, LDCOR)
Double: The double precision name is DRNCOR.

IOPT Action

0 A random orthogonal matrix is generated in A.

1 A random correlation matrix is generated in COR. (A is used as workspace.)

2 A random correlation matrix is generated in COR using the orthogonal matrix input in 
A.
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Description

Routine RNCOR generates a pseudorandom orthogonal matrix A from the invariant Haar measure. For each 
column of A, a random vector from a uniform distribution on a hypersphere is selected and then is projected 
onto the orthogonal complement of the columns of A already formed. The method is described by Heiberger 
(1978). (See also Tanner and Thisted 1982.)

A correlation matrix is formed by applying a sequence of planar rotations to the matrix AT DA, where 
D = diag(EV(1), …, EV(N)), so as to yield ones along the diagonal. The planar rotations are applied in such an 
order that in the two by two matrix that determines the rotation, one diagonal element is less than 1.0 and 
one is greater than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not known. Bendel and Mickey 
(1978) and Johnson and Welch (1980) discuss the distribution.

For larger matrices, rounding can become severe; and the double precision results may differ significantly 
from single precision results.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2COR/DR2COR. The reference is:

CALL R2COR (N, IOPT, EV, A, LDA, COR, LDCOR, IWK, WK)
The additional arguments are as follows:

IWK — Work vector of length 3 * N.

WK — Work vector of length N.
2. Informational error

3. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.

Example

In this example, RNCOR is used to generate a 4 by 4 pseudorandom correlation matrix with eigenvalues in the 
ratio 1:2:3:4. (Note that the eigenvalues must sum to 4.) Routines MXTXF (IMSL MATH/LIBRARY) and 
EVCSF (IMSL MATH/LIBRARY) are used to check the output.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    I, IOPT, ISEED, J, LDA, LDCOR, N, NOUT
      REAL       A(4,4), COR(4,4), EV(4), EVAL(4), EVEC(4,4), FLOAT, &
                 SUM, XID(4,4)
      INTRINSIC  FLOAT
!

Type Code Description

3 1 Considerable loss of precision occurred in the rotations used to form the cor-
relation matrix. Some of the diagonals of COR differ from 1.0 by more than 
the machine epsilon.
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      CALL UMACH (2, NOUT)
      N     = 4
      LDA   = 4
      LDCOR = 4
      EV(1) = 1.0
      EV(2) = 2.0
      EV(3) = 3.0
      EV(4) = 4.0
!                                 Scale the eigenvalues to sum to N.
      SUM = SSUM(N,EV,1)
      CALL SSCAL (N, FLOAT(N)/SUM, EV, 1)
      ISEED = 123457
      CALL RNSET (ISEED)
!                                 Generate an orthogonal matrix.
      CALL RNCOR (A)
      WRITE (NOUT,99996) ((A(I,J),J=1,N),I=1,N)
99996 FORMAT (' A random orthogonal matrix: ', /, (5X,4F8.4))
!                                 Check it for orthogonality.
      CALL MXTXF (A, XID)
      WRITE (NOUT,99997) ((XID(I,J),J=1,N),I=1,N)
99997 FORMAT (' The identity matrix?:       ', /, (5X,4F8.4))
!
!                                 Now get a correlation matrix using
!                                 the orthogonal matrix in A, which
!                                 will be destroyed.
      IOPT = 2
      CALL RNCOR (A,IOPT=IOPT, EV=EV, COR=COR)
      WRITE (NOUT,99998) ((COR(I,J),J=1,N),I=1,N)
99998 FORMAT (' A random correlation matrix: ', /, (5X,4F8.4))
!                                 Check the eigenvalues.
      CALL EVCSF (COR, EVAL, EVEC)
      WRITE (NOUT,99999) (EVAL(I),I=1,N)
99999 FORMAT (' The computed eigenvalues:', 4F8.4)
      END

Output

A random orthogonal matrix:
      -0.8804 -0.2417  0.4065 -0.0351
       0.3088 -0.3002  0.5520  0.7141
      -0.3500  0.5256 -0.3874  0.6717
      -0.0841 -0.7584 -0.6165  0.1941
The identity matrix?:
       1.0000  0.0000  0.0000  0.0000
       0.0000  1.0000  0.0000  0.0000
       0.0000  0.0000  1.0000  0.0000
       0.0000  0.0000  0.0000  1.0000
A random correlation matrix:
       1.0000 -0.2358 -0.3258 -0.1101
      -0.2358  1.0000  0.1906 -0.0172
      -0.3258  0.1906  1.0000 -0.4353
      -0.1101 -0.0172 -0.4353  1.0000
The computed eigenvalues:  1.6000  1.2000  0.8000  0.4000
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RNDAT

Generates pseudorandom numbers from a multivariate distribution determined from a given sample.

Required Arguments
X — NSAMP by K matrix containing the given sample.  (Input/Output)

If IDO = 0 or 1, on output the rows of X are rearranged by routine QUADT to form a k-d tree.
NN — Number of nearest neighbors of the randomly selected point in X that are used to form the output 

point in R.  (Input)
R — NR by K matrix containing the random multivariate vectors in its rows.  (Output)

Optional Arguments
IDO — Generator option.  (Input)

Default: IDO = 0.

NR — Number of random multivariate vectors to generate.  (Input)
If NR = 0, only initialization or wrap up operations are performed. (This would make sense only if 
IDO = 1 or 3.)
Default: NR = size (R,1).

K — The length of the multivariate vectors, that is, the number of dimensions.  (Input)
Default: K = size (R,2).

NSAMP — Number of given data points from the distribution to be simulated.  (Input)
Default: NSAMP = size (X,1).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDX = size (X,1).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNDAT (X, NN, R [, …])
Specific: The specific interface names are S_RNDAT and D_RNDAT.

IDO Action

0 This is the only invocation of RNDAT with the sample in X and all desired pseudoran-
dom numbers are to be generated in this call.

1 This is the first invocation, and additional calls to RNDAT will be made to generate 
additional random numbers using the same given sample.

2 This is an intermediate invocation of RNDAT. The work vectors have been set up in a 
previous call, but they are not to be released because additional calls will be made.

3 This is the final invocation of RNDAT. The work vectors have been set up in a previous 
call and they are to be released.
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FORTRAN 77 Interface
Single: CALL RNDAT (IDO, NR, K, NSAMP, X, LDX, NN, R, LDR)
Double: The double precision name is DRNDAT.

Description

Given a sample of size n (= NSAMP) of observations of a k-variate random variable, RNDAT generates a pseu-
dorandom sample with approximately the same moments as the given sample. The sample obtained is 
essentially the same as if sampling from a Gaussian kernel estimate of the sample density. (See Thompson 
1989.) Routine RNDAT uses methods described by Taylor and Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of X. An observation, xj, is chosen randomly; 
its nearest m (= NN) neighbors,

are determined; and the mean

of those nearest neighbors is calculated. Next, a random sample

u1, u2, …, um is generated from a uniform distribution with lower bound

and upper bound

The random variate delivered is

The process is then repeated until NR such simulated variates are generated and stored in the rows of R.

When RNDAT is invoked for the first time for a given sample, a search tree is computed for the rows of X. 
During the generation process, this tree is used to find the nearest neighbors of the randomly selected row. 
The argument IDO is used to determine whether or not the tree must be computed and whether workspace 
has to be allocated to store the tree.
RNDAT         Chapter 18: Random Number Generation      1626



Comments
1. Workspace may be explicitly provided, if desired, by use of R2DAT/DR2DAT. The reference is:

CALL R2DAT (IDO, NR, K, NSAMP, X, LDX, NN, R, LDR, IWK, WK)
The additional arguments are as follows:

IWK — Work vector of length equal to 2 * NSAMP + 3 * LEN + K + NN.

WK — Work vector of length equal to 2 * NSAMP + 2 * K * LEN + K + 2 * NN.
R2DAT allows alternating calls for two different populations (see Comment 3). Warning: R2DAT does 
no error checking.

2. The rows of X are rearranged on output from either RNDAT or R2DAT.
3. When more than one call is to be made to RNDAT to generate more than one R matrix using the same 

sample in X, IDO should be set to 1 for the first call, to 2 for all subsequent calls except the last one, and 
to 3 for the last call. If more than one population is to be simulated (that is, there is more than one sam-
ple, X), it is necessary to generate all of the observations from each population at one time because data 
is stored in the work vectors. If the user provides work vectors for each population to be simulated, 
R2DAT can be used to simulate different population alternatively.

4. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.

Example

In this example, RNDAT is used to generate 5 pseudorandom vectors of length 4 using the initial and final sys-
tolic pressure and the initial and final diastolic pressure from Data Set A in Afifi and Azen (1979) as the fixed 
sample from the population to be modeled. (Values of these four variables are in the seventh, tenth, 
twenty-first, and twenty-fourth columns of data set number nine in routine GDATA).

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDR, LDRDAT, LDX, NDR, NDRDAT, NDX
      PARAMETER  (LDR=5, LDRDAT=113, LDX=113, NDR=4, NDRDAT=34, NDX=4)
!
      INTEGER    ISEED, NN, NRCOL, NRROW
      REAL       R(LDR,NDR), RDATA(LDRDAT,NDRDAT), X(LDX,NDX)
      CHARACTER * 6 NUMBER(1)
!                                 Afifi and Azen Data Set A
      DATA NUMBER(1)/'NUMBER'/
      CALL GDATA (9, RDATA, NRROW, NRCOL)
      CALL SCOPY (NRROW, RDATA(1:,7), 1,  X(1:,1), 1)
      CALL SCOPY (NRROW, RDATA(1:,10), 1, X(1:,2), 1)
      CALL SCOPY (NRROW, RDATA(1:,21), 1, X(1:,3), 1)
      CALL SCOPY (NRROW, RDATA(1:,24), 1, X(1:,4), 1)
!
      ISEED = 123457
      CALL RNSET (ISEED)
!                                 Set input values
      NN    = 5
!                                 Generate random variates
      CALL RNDAT (X, NN, R)
!                                 Print results
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      CALL WRRRL ('Random variates', R, NUMBER, NUMBER, FMT='(F15.4)')
!
      END

Output

                           Random variates
                 1                2                3                4
1         162.7668          90.5057         153.7173         104.8768
2         153.3533          78.3180         176.6643          85.2155
3          93.6958          48.1675         153.5495          71.3688
4         101.7508          54.1855         113.1215          56.2916
5          91.7403          58.7684          48.4368          28.0994
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RNMTN

Generates pseudorandom numbers from a multinomial distribution.

Required Arguments
N — Multinomial parameter indicating the number of independent trials.  (Input)
P — Vector of length K containing the probabilities of the possible outcomes.  (Input)

The elements of P must be positive and must sum to 1.0.
IR — NR by K matrix containing the random multinomial vectors in its rows.  (Output)

Optional Arguments
NR — Number of random multinomial vectors to generate.  (Input)

Default: NR = size (IR,1).
K — The number of mutually exclusive outcomes on any trial.  (Input)

K is the length of the multinomial vectors. K must be greater than or equal to 2.
Default: K = size (IR,2).

LDIR — Leading dimension of IR exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDIR = size (IR,1).

FORTRAN 90 Interface
Generic: CALL RNMTN (N, P, IR [, …])
Specific: The specific interface name is S_RNMTN.

FORTRAN 77 Interface
Single: CALL RNMTN (NR, N, K, P, IR, LDIR)

Description

Routine RNMTN generates pseudorandom numbers from a K-variate multinomial distribution with parame-
ters N and P. K and N must be positive. Each element of P must be positive and the elements must sum to 1. 
The probability function (with n = N, k = K, and pi = P(I)) is

for xi ≥ 0 and
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The deviate in each row of IR is produced by generation of the binomial deviate x1with parameters n and pi 
and then by successive generations of the conditional binomial deviates xj given x1, x2, …, xj−1 with parame-
ters n – x1 - x2 - … – xj−1 and pj /(1 - p1 - p2 - … - pj−1).

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNMTN is used to generate five pseudorandom 3-dimensional multinomial variates with 
parameters N = 20 and P = (0.1, 0.3, 0.6).

      USE RNMTN_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    K, LDIR
      PARAMETER  (K=3, LDIR=5)
!
      INTEGER    I, IR(LDIR,K), ISEED, J, N, NOUT, NR
      REAL       P(K)
!
      CALL UMACH (2, NOUT)
      N     = 20
      NR    = 5
      P(1)  = 0.1
      P(2)  = 0.3
      P(3)  = 0.6
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNMTN (N, P, IR)
      WRITE (NOUT,99999) ((IR(I,J),J=1,K),I=1,NR)
99999 FORMAT (' Multinomial random deviates: ', 3I4, /, (30X,3I4))
      END

Output

Multinomial random deviates:    5   4  11
                                3   6  11
                                3   3  14
                                5   5  10
                                4   5  11
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RNMVN

Generates pseudorandom numbers from a multivariate normal distribution.

Required Arguments
RSIG — Upper triangular matrix, K by K, containing the Cholesky factor of the variance-covariance 

matrix.  (Input)
The variance-covariance matrix is equal to the product of the transpose of RSIG and RSIG. RSIG can 
be obtained from the variance-covariance matrix using routine CHFAC.

R — NR by K matrix containing the random multivariate normal vectors in its rows.  (Output)

Optional Arguments
NR — Number of random multivariate normal vectors to generate.  (Input)

Default: NR = size (R,1).
K — Length of the multivariate normal vectors.  (Input)

Default: K = size (R,2).
LDRSIG — Leading dimension of RSIG exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDRSIG = size (RSIG,1).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDR = size (R,1).

FORTRAN 90 Interface
Generic: CALL RNMVN (RSIG, R [, …])
Specific: The specific interface names are S_RNMVN and D_RNMVN.

FORTRAN 77 Interface
Single: CALL RNMVN (NR, K, RSIG, LDRSIG, R, LDR)
Double: The double precision name is DRNMVN.

Description

Routine RNMVN generates pseudorandom numbers from a multivariate normal distribution with mean vector 
consisting of all zeroes and variance-covariance matrix whose Cholesky factor (or “square root”) is RSIG; 
that is, RSIG is an upper triangular matrix such that the transpose of RSIG times RSIG is the variance-covari-
ance matrix. First, independent random normal deviates with mean 0 and variance 1 are generated, and then 
the matrix containing these deviates is postmultiplied by RSIG. The independent normals are generated into 
the columns of a matrix, which has NR rows; hence, if RNSET is called with different values of NR, the output 
is different even if the seed is the same in the calls.

Deviates from a multivariate normal distribution with means other than zero can be generated by using 
RNMVN and then by adding the vector of means to each row of R.
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Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNMVN is used to generate five pseudorandom multivariate normal vectors of length 2 with 
variance-covariance matrix equal to

0.500  0.375

0.375  0.500

The routine CHFAC is first called to compute the Cholesky factorization of the variance-covariance matrix.

      USE RNMVN_INT
      USE UMACH_INT
      USE CHFAC_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    I, IRANK, ISEED, J, K, LDR, LDRSIG, NOUT, NR
      REAL       COV(2,2), R(5,2), RSIG(2,2)
!
      CALL UMACH (2, NOUT)
      NR       = 5
      K        = 2
      LDRSIG   = 2
      LDR      = 5
      COV(1,1) = 0.5
      COV(1,2) = 0.375
      COV(2,1) = 0.375
      COV(2,2) = 0.5
!                                 Obtain the Cholesky factorization.
      CALL CHFAC (COV, IRANK, RSIG)
!                                 Initialize seed of random number
!                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNMVN (RSIG, R)
      WRITE (NOUT,99999) ((R(I,J),J=1,K),I=1,NR)

99999 FORMAT ('    Multivariate normal random deviates: ', /, &
            (1X,2F8.4))
      END

Output

    Multivariate normal random deviates:
   1.4507  1.2463
   0.7660 -0.0429
   0.0584 -0.6692
   0.9035  0.4628
  -0.8669 -0.9334
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RNSPH

Generates pseudorandom points on a unit circle or K-dimensional sphere.

Required Arguments
Z — NR by K matrix containing the random Cartesian coordinates on the unit circle or sphere.  (Output)

Optional Arguments
NR — Number of random numbers to generate.  (Input)

Default: NR = size (Z,1).
K — Dimension of the circle (K = 2) or of the sphere.  (Input)

Default: K = size (Z,2).
LDZ — Leading dimension of Z exactly as specified in the dimension statement of the calling program.  

(Input) 
Default: LDZ = size (Z,1).

FORTRAN 90 Interface
Generic: CALL RNSPH (Z [, …])
Specific: The specific interface names are S_RNSPH and D_RNSPH.

FORTRAN 77 Interface
Single: CALL RNSPH (NR, K, Z, LDZ)
Double: The double precision name is DRNSPH.

Description

Routine RNSPH generates pseudorandom coordinates of points that lie on a unit circle or a unit sphere in 
K-dimensional space. For points on a circle (K = 2), pairs of uniform (– 1, 1) points are generated and accepted 
only if they fall within the unit circle (the sum of their squares is less than 1), in which case they are scaled so 
as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are used. For three dimensions, 
two independent uniform (– 1, 1) deviates U1 and U2 are generated and accepted only if the sum of their 
squares S1 is less than 1. Then, the coordinates

are formed. For four dimensions, U1, U2, and S1 are produced as described above. Similarly, U3, U4, and S2 
are formed. The coordinates are then
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and

For spheres in higher dimensions, K independent normal deviates are generated and scaled so as to lie on the 
unit sphere in the manner suggested by Muller (1959).

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNSPH is used to generate two uniform random deviates from the surface of the unit sphere 
in three space.

      USE UMACH_INT
      USE RNSET_INT
      USE RNSPH_INT

      IMPLICIT   NONE
      INTEGER    K, LDZ, NR
      PARAMETER  (K=3, LDZ=2)
!
      INTEGER    I, ISEED, J, NOUT
      REAL       Z(LDZ,K)
!
      CALL UMACH (2, NOUT)
      NR    = 2
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNSPH (Z)
      WRITE (NOUT,99999) ((Z(I,J),J=1,K),I=1,NR)
99999 FORMAT ('      Coordinates of first point: ', 3F8.4, /, &
            '      Coordinates of second point:', 3F8.4)
      END

Output

      Coordinates of first point:   0.8893  0.2316  0.3944
      Coordinates of second point:  0.1901  0.0396 -0.9810
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RNTAB

Generates a pseudorandom two-way table.

Required Arguments
NRTOT — Vector of length NROW containing the row totals.  (Input)
NCTOT — Vector of length NCOL containing the column totals.  (Input)

The elements of NRTOT and NCTOT must be nonnegative and must sum to the same quantity.
ITAB — NROW by NCOL random matrix with the given row and column totals.  (Output)

Optional Arguments
IDO — Generator option.  (Input)

Default: IDO = 0.

NROW — Number of rows in the table.  (Input)
Default: NROW = size (ITAB,1).

NCOL — Number of columns in the table.  (Input)
Default: NCOL = size (ITAB,2).

LDITAB — Leading dimension of ITAB exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDITAB = size (ITAB,1).

FORTRAN 90 Interface
Generic: CALL RNTAB (NRTOT, NCTOT, ITAB [, …])
Specific: The specific interface name is S_RNTAB.

FORTRAN 77 Interface
Single: CALL RNTAB (IDO, NROW, NCOL, NRTOT, NCTOT, ITAB, LDITAB)

IDO Action

0 This is the only invocation of RNTAB with these input specifications of the two-way 
table.

1 This is the first invocation, and additional calls to RNTAB will be made to generate ran-
dom tables with the same specifications.

2 This is an intermediate invocation of RNTAB. The work vectors have been set up in a 
previous call, but they are not to be released because additional calls will be made.

3 This is the final invocation of RNTAB. The work vectors have been set up in a previous 
call and they are to be released.
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Description

Routine RNTAB generates pseudorandom entries for a two-way contingency table with fixed row and col-
umn totals. The method depends on the size of the table and the total number of entries in the table. If the 
total number of entries is less than twice the product of the number of rows and columns, the method 
described by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In this method, a work vec-
tor is filled with row indices so that the number of times each index appears equals the given row total. This 
vector is then randomly permuted and used to increment the entries in each row so that the given row total is 
attained.

For tables with larger numbers of entries, the method of Patefield (1981) is used. This method can be consid-
erably faster in these cases. The method depends on the conditional probability distribution of individual 
elements, given the entries in the previous rows. The probabilities for the individual elements are computed 
starting from their conditional means.

On the first call to RNTAB with a given set of row and column totals, certain checking is done, and the work 
vector is allocated and initialized. On the final call, the work vector is released. The argument IDO indicates 
the nature of the call. In a simulation study, RNTAB would typically be called first with IDO = 1, then would 
be called several times with IDO = 2, and then finally would be called with IDO = 3. If only one table is 
needed, IDO should be set to 0.

Comments
1. Let IRSUM = the sum of the elements in NRTOT. If IRSUM + 1 is less than 2 * NROW * NCOL, automatic 

workspace usage is IRSUM; otherwise, automatic workspace usage is 2 * IRSUM + 1 because a differ-
ent algorithm is used. Workspace may be explicitly provided, if desired, by use of R2TAB. R2TAB 
allows selection of the algorithm to be used and it allows alternating calls for two different problems 
(see Comment 3). The reference is:

CALL R2TAB (IDO, NROW, NCOL, NRTOT, NCTOT, ITAB, LDITAB, IOPT, IRSUM, IWK, WK).
The additional arguments are as follows:

IOPT — Option indicator.  (Input)
If IOPT = 1, Boyette’s method is used.
If IOPT = 2, Patefield’s method is used.

IRSUM — Sum of the elements in NRTOT.  (Output)

IWK — Work vector of length equal to the sum of the elements in NRTOT.

WK — Work vector of length equal to the sum of the elements in NRTOT plus one, used only if 
IOPT = 2.
WARNING: R2TAB does no error checking.

2. Informational error

3. When more than one table with the same marginal totals is to be generated, IDO should be set to 1 for 
the first call, to 2 for all subsequent calls except the last one, and to 3 for the last call. If several tables of 
different sizes or with different marginal totals are to be generated, it is necessary to generate all of 

Type Code Description

3 1 The values of NRTOT and/or of NCTOT are such that the probability distribu-
tion of tables is degenerate, that is, only one such table is possible.
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each type together because of the data stored in the work vectors. If the user provides work vectors for 
each type of table to be generated, R2TAB can be used to generate different types of tables 
alternatively.

4. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.

Example

In this example, RNTAB is used to generate a two by three table with row totals 3 and 5, and column totals 
2, 4, and 2.

      USE RNTAB_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    I, ISEED, ITAB(2,3), IWK, J, NCTOT(3), NOUT,&
                 NRTOT(2), NROW, NCOL
!
      CALL UMACH (2, NOUT)
      NROW = 2
      NCOL = 3
      NRTOT(1) = 3
      NRTOT(2) = 5
      NCTOT(1) = 2
      NCTOT(2) = 4
      NCTOT(3) = 2
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNTAB (NRTOT, NCTOT, ITAB)
      WRITE (NOUT,99999) ((ITAB(I,J),J=1,NCOL),I=1,NROW)
99999 FORMAT (' A random contingency table with fixed marginal totals:' &
            , /, (5X,3I5))
      END

Output

A random contingency table with fixed marginal totals:
        0    2    1
        2    2    1
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RNMVGC

Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Gaussian 
Copula distribution.

Required Arguments
CHOL — Array of size n by n containing the upper-triangular Cholesky factorization of the correlation 

matrix of order n where n = size(CHOL,1).  (Input)
R — Array of length n containing the pseudorandom numbers from a multivariate Gaussian Copula dis-

tribution.  (Output)

FORTRAN 90 Interface
Generic: RNMVGC (CHOL, R)
Specific: The specific interface names are S_RNMVGC and D_RNMVGC.

Description

RNMVGC generates pseudorandom numbers from a multivariate Gaussian Copula distribution which are uni-
formly distributed on the interval (0,1) representing the probabilities associated with standard normal N(0,1) 
deviates imprinted with correlation information from input upper-triangular Cholesky matrix CHOL. Chole-
sky matrix CHOL is defined as the “square root” of a user-defined correlation matrix, that is CHOL is an upper 
triangular matrix such that the transpose of CHOL times CHOL is the correlation matrix. First, a length n array 
of independent random normal deviates with mean 0 and variance 1 is generated, and then this deviate array 
is post-multiplied by Cholesky matrix CHOL. Finally, the Cholesky-imprinted random N(0,1) deviates are 
mapped to output probabilities using the N(0,1) cumulative distribution function (CDF).

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information 
contained in Cholesky matrix CHOL can then be generated by inverting the output probabilities using 
user-specified inverse CDF functions.

Example: Using Copulas to Imprint and Extract Correlation Information

This example uses subroutine RNMVGC to generate a multivariate sequence gcdevt whose marginal distribu-
tions are user-defined and imprinted with a user-specified input correlation matrix corrin and then uses 
subroutine CANCOR to extract an output canonical correlation matrix corrout from this multivariate ran-
dom sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multi-
variate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a 
user-defined correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate 
deviate input sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. 
cumulative distribution function values representing the probability that each random variable has a value 
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less than or equal to the input deviate. The variates are then inverted, using the inverse standard normal CDF 
function, to N(0,1) deviates; and finally, a canonical covariance matrix is extracted from the multivariate 
N(0,1) sequence using the standard sum of products.

This example demonstrates that subroutine RNMVGC correctly imbeds the user-defined correlation informa-
tion into an arbitrary marginal distribution sequence by extracting the canonical correlation from these 
sequences and showing that they differ from the original correlation matrix by a small relative error, which 
generally decreases as the number of multivariate sequence vectors increases.

      use rnmvgc_int
      use cancor_int
      use anorin_int
      use chiin_int
      use fin_int
      use amach_int
      use rnopt_int
      use rnset_int
      use umach_int
      use chfac_int
      implicit none

      integer, parameter :: lmax=15000, nvar=3
      real corrin(nvar,nvar), tol, chol(nvar,nvar), gcvart(nvar), &
         gcdevt(lmax,nvar), corrout(nvar,nvar), relerr
      integer irank, k, kmax, kk, i, j, nout

      data corrin /&
        1.0, -0.9486832, 0.8164965, &
        -0.9486832, 1.0, -0.6454972, &
        0.8164965, -0.6454972,  1.0/

      call umach (2, nout)

      write(nout,*)
      write(nout,*) "Off-diagonal Elements of Input " // &
         "Correlation Matrix: "
      write(nout,*)

      do i = 2, nvar
         do j = 1, i-1
            write(nout,'(" CorrIn(",i2,",",i2,") = ", f10.6)') &
               i, j, corrin(i,j)
         end do
      end do

      write(nout,*)
      write(nout,*) "Off-diagonal Elements of Output Correlation " // &
         "Matrices calculated from"
      write(nout,*) "Gaussian Copula imprinted multivariate sequence:"

!     Compute the Cholesky factorization of CORRIN.
      tol=amach(4)
      tol=100.0*tol
      call chfac (corrin, irank, chol, tol=tol)
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      kmax = lmax/100
      do kk = 1, 3
         write (*, '(/" # vectors in multivariate sequence:  ", &
             i7/)') kmax

         call rnopt(1)
         call rnset (123457)

         do k = 1, kmax

!     Generate an array of Gaussian Copula random numbers.
            call rnmvgc (chol, gcvart)
            do j = 1, nvar
!     Invert Gaussian Copula probabilities to deviates.
               if (j .eq. 1) then
!     ChiSquare(df=10) deviates:
                  gcdevt(k, j) = chiin(gcvart(j), 10.e0)
               else if (j .eq. 2) then
!     F(dfn=15,dfd=10) deviates:
                  gcdevt(k, j) = fin(gcvart(j), 15.e0, 10.e0)
               else
!     Normal(mean=0,variance=1) deviates:
                  gcdevt(k, j) = anorin(gcvart(j))
               end if
            end do
         end do
         
!     Extract Canonical Correlation matrix.
         call cancor (gcdevt(:kmax,:), corrout)

         do i = 2, nvar
            do j = 1, i-1
               relerr = abs(1.0 - (corrout(i,j) / corrin(i,j)))
               write(nout,'(" CorrOut(",i2,",",i2,") = ", '// &
                 'f10.6, "; relerr = ", f10.6)') &
                 i, j, corrout(i,j), relerr
            end do
         end do
         kmax = kmax*10
      end do
      end

Output

Off-diagonal Elements of Input Correlation Matrix: 
 
 CorrIn( 2, 1) =  -0.948683
 CorrIn( 3, 1) =   0.816496
 CorrIn( 3, 2) =  -0.645497
 
 Off-diagonal Elements of Output Correlation Matrices calculated from
 Gaussian Copula imprinted multivariate sequence:

 # vectors in multivariate sequence:      150
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 CorrOut( 2, 1) =  -0.940215; relerr =   0.008926
 CorrOut( 3, 1) =   0.794511; relerr =   0.026927
 CorrOut( 3, 2) =  -0.616082; relerr =   0.045569

 # vectors in multivariate sequence:     1500

 CorrOut( 2, 1) =  -0.947443; relerr =   0.001308
 CorrOut( 3, 1) =   0.808307; relerr =   0.010031
 CorrOut( 3, 2) =  -0.635650; relerr =   0.015256

 # vectors in multivariate sequence:    15000

 CorrOut( 2, 1) =  -0.948267; relerr =   0.000439
 CorrOut( 3, 1) =   0.817261; relerr =   0.000936
 CorrOut( 3, 2) =  -0.646208; relerr =   0.001101
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RNMVTC

Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Student’s t 
Copula distribution.

Required Arguments
DF — Degrees of freedom.  (Input)

DF must be greater than 2.
CHOL — Array of size n by n containing the upper-triangular Cholesky factorization of the correlation 

matrix of order n.  (Input)
R — Array of length n containing the pseudorandom numbers from a multivariate a Student’s t Copula 

distribution.  (Output)

FORTRAN 90 Interface
Generic: RNMVTC (DF, CHOL, R)
Specific: The specific interface names are S_RNMVTC and D_RNMVTC.

Description

RNMVTC generates pseudorandom numbers from a multivariate Student’s t Copula distribution which are 
uniformly distributed on the interval (0,1) representing the probabilities associated with Student’s t deviates 
with DF degrees of freedom imprinted with correlation information from input upper-triangular Cholesky 
matrix CHOL. Cholesky matrix CHOL is defined as the “square root” of a user-defined correlation matrix. That 
is, CHOL is an upper triangular matrix such that the transpose of CHOL times CHOL is the correlation matrix. 
First, a length n array of independent random normal deviates with mean 0 and variance 1 is generated, and 
then this deviate array is post-multiplied by Cholesky matrix CHOL. Each of the n elements of the resulting 

vector of Cholesky-imprinted random deviates is then divided by , where = DF and s is a random 
deviate taken from a chi-squared distribution with DF degrees of freedom. Each element of the Cholesky-
imprinted standard normal N(0,1) array is a linear combination of normally distributed random numbers 

and is therefore itself normal, and the division of each element by  therefore insures that each element 
of the resulting array is Student’s t distributed. Finally, each element of the Cholesky-imprinted Student’s t 
array is mapped to an output probability using the Student’s t cumulative distribution function (CDF) with 
DF degrees of freedom.

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information 
contained in Cholesky matrix CHOL can then be generated by inverting the output probabilities using 
user-specified inverse CDF functions.
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Example: Using Student's t Copulas to Imprint and Extract Correlation 
Information

This example uses RNMVTC to generate a multivariate sequence tcdevt whose marginal distributions are 
user-defined and imprinted with a user-specified input correlation matrix corrin and then uses CANCOR to 
extract an output canonical correlation matrix  corrout from this multivariate random sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multi-
variate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a 
user-defined correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate 
deviate input sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. 
cumulative distribution function values representing the probability that each random variable has a value 
less than or equal to the input deviate. The variates are then inverted, using the inverse standard normal CDF 
function, to N(0,1) deviates; and finally, a canonical covariance matrix is extracted from the multivariate 
N(0,1) sequence using the standard sum of products.

This example demonstrates that subroutine RNMVTC correctly imbeds the user-defined correlation informa-
tion into an arbitrary marginal distribution sequence by extracting the canonical correlation from these 
sequences and showing that they differ from the original correlation matrix by a small relative error.

Recall that a Gaussian Copula array sequence, whose probabilities are mapped directly from Chole-
sky-imprinted N(0,1) deviates, has the property that the relative error between the input and output 
correlation matrices generally decreases as the number of multivariate sequence vectors increases. This is 
understandable because the correlation imprinting and extraction processes both act upon N(0,1) marginal 
distributions, and one would expect that a larger sample would therefore result in more accurate imprinting 
and extraction of correlation information.

In contrast, the imprinting of correlation information onto Student’s t vector sequence is accomplished by 
imprinting onto an N(0,1) array and then dividing the array components by a scaled chi-squared random 
deviate, thereby introducing noise into the imprinting process. (An array of Student’s t deviates cannot be 
Cholesky-imprinted directly, because a linear combination of Student’s t deviates is not Student’s t distrib-
uted.)  A larger sample would thus contain additional correlation information and additional noise, so the 
accuracy would be expected to plateau. This is illustrated in the following example, which should be com-
pared with the Gaussian Copula example given for FNL routine RNMVGC.

      use rnmvtc_int
      use cancor_int
      use anorin_int
      use chiin_int
      use fin_int
      use amach_int
      use rnopt_int
      use rnset_int
      use umach_int
      use chfac_int
      implicit none

      integer, parameter:: lmax=15000, nvar=3
      real corrin(nvar,nvar), tol, chol(nvar,nvar), &
         tcvart(nvar), tcdevt(lmax,nvar), corrout(nvar,nvar), &
         relerr, df
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      integer irank, k, kmax, kk, i, j, nout

      data corrin /&
        1.0, -0.9486832, 0.8164965, &
        -0.9486832, 1.0, -0.6454972, &
        0.8164965, -0.6454972,  1.0/
      
      call umach (2, nout)

      write(nout,*) "Off-diagonal Elements of Input " // &
         "Correlation Matrix: "
      write(nout,*)

      do i = 2, nvar
         do j = 1, i-1
            write(nout,'(" CorrIn(",i2,",",i2,") = ", f10.6)') &
               i, j, corrin(i,j)
         end do
      end do

      df = 5.0
      write(nout,'(/" Degrees of freedom df = ", f6.2/)') df
      write(nout,*) "Imprinted random sequences distributions:"
      write(nout,*) "1: Chi, 2: F, 3: Normal:"

      write(nout,*)
      write(nout,*) "Off-diagonal Elements of Output Correlation " //&
         "Matrices calculated from"
      write(nout,*) "Student's t Copula imprinted multivariate sequence:"

!     Compute the Cholesky factorization of CORRIN.
      tol=amach(4)
      tol=100.0*tol
      call chfac (corrin, irank, chol, tol=tol)

      kmax = lmax/100
      do kk = 1, 3
         write (nout, '(/" # vectors in multivariate sequence:  ", &
             i7/)') kmax

         call rnopt(1)
         call rnset (123457)

         do k = 1, kmax
!     Generate an array of Gaussian Copula random numbers.
            call rnmvtc (df, chol, tcvart)

            do j = 1, nvar
!     Invert Student's t Copula probabilities to deviates.

               if (j .eq. 1) then
!     ChiSquare(df=10) deviates:
                    tcdevt(k, j) = chiin(tcvart(j), 10.e0)
               else if (j .eq. 2) then
!     F(dfn=15,dfd=10) deviates:
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                    tcdevt(k, j) = fin(tcvart(j), 15.e0, 10.e0)
               else
!     Normal(mean=0,variance=1) deviates:
                    tcdevt(k, j) = anorin(tcvart(j))
               end if
            end do
         end do
!     Extract Canonical Correlation matrix.
         call cancor (tcdevt(:kmax,:), corrout)

         do i = 2, nvar
            do j = 1, i-1
               relerr = abs(1.0 - (corrout(i,j) / corrin(i,j)))
               write(nout,'(" CorrOut(",i2,",",i2,") = ",&
                 f10.6, "; relerr = ", f10.6)')&
                 i, j, corrout(i,j), relerr
            end do
         end do
         kmax = kmax*10
      end do
      end

Output

 Off-diagonal Elements of Input Correlation Matrix: 
 
 CorrIn( 2, 1) =  -0.948683
 CorrIn( 3, 1) =   0.816496
 CorrIn( 3, 2) =  -0.645497

 Degrees of freedom df =   5.00

 Imprinted random sequences distributions:
 1: Chi, 2: F, 3: Normal:
 
 Off-diagonal Elements of Output Correlation Matrices calculated from
 Student's t Copula imprinted multivariate sequence:

 # vectors in multivariate sequence:      150

 CorrOut( 2, 1) =  -0.953573; relerr =   0.005154
 CorrOut( 3, 1) =   0.774720; relerr =   0.051166
 CorrOut( 3, 2) =  -0.621419; relerr =   0.037302

 # vectors in multivariate sequence:     1500

 CorrOut( 2, 1) =  -0.944316; relerr =   0.004603
 CorrOut( 3, 1) =   0.810163; relerr =   0.007757
 CorrOut( 3, 2) =  -0.636348; relerr =   0.014174

 # vectors in multivariate sequence:    15000

 CorrOut( 2, 1) =  -0.946770; relerr =   0.002017
 CorrOut( 3, 1) =   0.808562; relerr =   0.009718
 CorrOut( 3, 2) =  -0.636322; relerr =   0.014215
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CANCOR

Given an input array of deviate values, generates a canonical correlation array.

Required Arguments
DEVT — Array of size m by n containing m sequence elements for each of n variables.  (Input)
CORR — Array of size n by n containing canonical correlation array.  (Output)

FORTRAN 90 Interface
Generic: CANCOR(DEVT, CORR)
Specific: The specific interface names are S_CANCOR and D_CANCOR.

Description

CANCOR generates a canonical correlation matrix from an arbitrarily distributed multivariate deviate 
sequence DEVT with n deviate variables, m elements in each deviate sequence, and a Gaussian Copula depen-
dence structure.

Subroutine CANCOR first maps each of the J=1…n input deviate sequences DEVT(K=1…m, J) into a corre-
sponding sequence of variates, say VKJ (where variates are values of the empirical cumulative probability 
function, CDF(x), defined as the probability that random deviate variable X < x). The variate matrix element 
VKJ is then mapped into standard normal N(0,1) distributed deviates  zkj using the inverse standard normal 
CDF ANORIN(VKJ) and then the standard covariance estimator

is used to calculate the canonical correlation matrix CORR, where Ci j = CORR(I,J).

If a multivariate distribution has Gaussian marginal distributions, then the standard “empirical” correlation 
matrix given above is “unbiased”, i.e. an accurate measure of dependence among the variables. But when the 
marginal distributions depart significantly from Gaussian, i.e. are skewed or flattened, then the empirical 
correlation may become biased. One way to remove such bias from dependence measures is to map the 
non-Gaussian-distributed marginal deviates to N(0,1) deviates (by mapping the non-Gaussian marginal 
deviates to empirically derived marginal CDF variate values, then inverting the variates to N(0,1) deviates as 
described above), and calculating the standard empirical correlation matrix from these N(0,1) deviates as in 
the equation above. The resulting “canonical correlation” matrix thereby avoids the bias that would occur if 
the empirical correlation matrix were extracted from the non-Gaussian marginal distributions directly.

The canonical correlation matrix may be of value in such applications as Markowitz portfolio optimization, 
where an unbiased measure of dependence is required to evaluate portfolio risk, defined in terms of the port-
folio variance which is in turn defined in terms of the correlation among the component portfolio 
instruments.
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The utility of the canonical correlation derives from the observation that a “copula” multivariate distribution 
with uniformly-distributed deviates (corresponding to the CDF probabilities associated with the marginal 
deviates) may be mapped to arbitrarily distributed marginals, so that an unbiased dependence estimator 
derived from one set of marginals (N(0,1) distributed marginals) can be used to represent the dependence 
associated with arbitrarily-distributed marginals. The “Gaussian Copula” (whose variate arguments are 
derived from N(0,1) marginal deviates) is a particularly useful structure for representing multivariate 
dependence.

Example: Using Copulas to Imprint and Extract Correlation Information

This example uses subroutine RNMVGC to generate a multivariate sequence gcdevt whose marginal distribu-
tions are user-defined and imprinted with a user-specified input correlation matrix corrin and then uses 
subroutine CANCOR to extract an output canonical correlation matrix corrout from this multivariate ran-
dom sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multi-
variate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a 
user-defined correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate 
deviate input sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. 
cumulative distribution function values representing the probability that each random variable has a value 
less than or equal to the input deviate. The variates are then inverted, using the inverse standard normal CDF 
function, to N(0,1) deviates; and finally, a canonical covariance matrix is extracted from the multivariate 
N(0,1) sequence using the standard sum of products.

This example demonstrates that subroutine RNMVGC correctly imbeds the user-defined correlation informa-
tion into an arbitrary marginal distribution sequence by extracting the canonical correlation from these 
sequences and showing that they differ from the original correlation matrix by a small relative error, which 
generally decreases as the number of multivariate sequence vectors increases.

      use rnmvgc_int
      use cancor_int
      use anorin_int
      use chiin_int
      use fin_int
      use amach_int
      use rnopt_int
      use rnset_int
      use umach_int
      use chfac_int
      implicit none

      integer, parameter :: lmax=15000, nvar=3
      real corrin(nvar,nvar), tol, chol(nvar,nvar), gcvart(nvar), &
         gcdevt(lmax,nvar), corrout(nvar,nvar), relerr
      integer irank, k, kmax, kk, i, j, nout

      data corrin /&
        1.0, -0.9486832, 0.8164965, &
        -0.9486832, 1.0, -0.6454972, &
        0.8164965, -0.6454972,  1.0/
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      call umach (2, nout)

      write(nout,*)
      write(nout,*) "Off-diagonal Elements of Input " // &
         "Correlation Matrix: "
      write(nout,*)

      do i = 2, nvar
         do j = 1, i-1
            write(nout,'(" CorrIn(",i2,",",i2,") = ", f10.6)') &
               i, j, corrin(i,j)
         end do
      end do

      write(nout,*)
      write(nout,*) "Off-diagonal Elements of Output Correlation " // &
         "Matrices calculated from"
      write(nout,*) "Gaussian Copula imprinted multivariate sequence:"

!     Compute the Cholesky factorization of CORRIN.
      tol=amach(4)
      tol=100.0*tol
      call chfac (corrin, irank, chol, tol=tol)

      kmax = lmax/100
      do kk = 1, 3
         write (*, '(/" # vectors in multivariate sequence:  ", &
             i7/)') kmax

         call rnopt(1)
         call rnset (123457)

         do k = 1, kmax

!     Generate an array of Gaussian Copula random numbers.
            call rnmvgc (chol, gcvart)
            do j = 1, nvar
!     Invert Gaussian Copula probabilities to deviates.
               if (j .eq. 1) then
!     ChiSquare(df=10) deviates:
                  gcdevt(k, j) = chiin(gcvart(j), 10.e0)
               else if (j .eq. 2) then
!     F(dfn=15,dfd=10) deviates:
                  gcdevt(k, j) = fin(gcvart(j), 15.e0, 10.e0)
               else
!     Normal(mean=0,variance=1) deviates:
                  gcdevt(k, j) = anorin(gcvart(j))
               end if
            end do
         end do
         
!     Extract Canonical Correlation matrix.
         call cancor (gcdevt(:kmax,:), corrout)

         do i = 2, nvar
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            do j = 1, i-1
               relerr = abs(1.0 - (corrout(i,j) / corrin(i,j)))
               write(nout,'(" CorrOut(",i2,",",i2,") = ", '// &
                 'f10.6, "; relerr = ", f10.6)') &
                 i, j, corrout(i,j), relerr
            end do
         end do
         kmax = kmax*10
      end do
      end

Output

Off-diagonal Elements of Input Correlation Matrix: 
 
 CorrIn( 2, 1) =  -0.948683
 CorrIn( 3, 1) =   0.816496
 CorrIn( 3, 2) =  -0.645497
 
 Off-diagonal Elements of Output Correlation Matrices calculated from
 Gaussian Copula imprinted multivariate sequence:

 # vectors in multivariate sequence:      150

 CorrOut( 2, 1) =  -0.940215; relerr =   0.008926
 CorrOut( 3, 1) =   0.794511; relerr =   0.026927
 CorrOut( 3, 2) =  -0.616082; relerr =   0.045569

 # vectors in multivariate sequence:     1500

 CorrOut( 2, 1) =  -0.947443; relerr =   0.001308
 CorrOut( 3, 1) =   0.808307; relerr =   0.010031
 CorrOut( 3, 2) =  -0.635650; relerr =   0.015256

 # vectors in multivariate sequence:    15000

 CorrOut( 2, 1) =  -0.948267; relerr =   0.000439
 CorrOut( 3, 1) =   0.817261; relerr =   0.000936
 CorrOut( 3, 2) =  -0.646208; relerr =   0.001101
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RNNOS

Generates pseudorandom order statistics from a standard normal distribution.

Required Arguments
IFIRST — First order statistic to generate.  (Input)
ILAST — Last order statistic to generate.  (Input)

ILAST must be greater than or equal to IFIRST. The full set of order statistics from IFIRST to ILAST 
is generated. If only one order statistic is desired, set ILAST = IFIRST.

N — Size of the sample from which the order statistics arise.  (Input)
R — Vector of length ILAST + 1 - IFIRST containing the random order statistics in ascending order.  

(Output)
The first element of R is the IFIRST-th order statistic in a random sample of size N from the standard 
normal distribution.

FORTRAN 90 Interface
Generic: CALL RNNOS (IFIRST, ILAST, N, R)
Specific: The specific interface names are S_RNNOS and D_RNNOS.

FORTRAN 77 Interface
Single: CALL RNNOS (IFIRST, ILAST, N, R)
Double: The double precision name is DRNNOS.

Description

Routine RNNOS generates the IFIRST through the ILAST order statistics from a pseudorandom sample of 
size N from a normal (0, 1) distribution. Routine RNNOS uses the routine RNUNO to generate order statistics 
from the uniform (0, 1) distribution and then obtains the normal order statistics using the inverse CDF 
transformation.

Each call to RNNOS yields an independent event so order statistics from different calls may not have the same 
order relations with each other.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNNOS is used to generate the fifteenth through the nineteenth order statistics from a sample 
of size twenty.

      USE RNNOS_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    IFIRST, ILAST, ISEED, N, NOUT
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      IFIRST = 15
      ILAST  = 19
      N      = 20
!                                 Initialize seed of random number
!                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNNOS (IFIRST, ILAST, N, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  The 15th through the 19th order statistics from a', &
            /, '  random sample of size 20 from a normal distribution' &
            , /, 5F8.4)
      END

Output

The 15th through the 19th order statistics from a
random sample of size 20 from a normal distribution
0.4056  0.4681  0.4697  0.9067  0.9362
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RNUNO

Generates pseudorandom order statistics from a uniform (0, 1) distribution.

Required Arguments
IFIRST — First order statistic to generate.  (Input)
ILAST — Last order statistic to generate.  (Input)

ILAST must be greater than or equal to IFIRST. The full set of order statistics from IFIRST to ILAST 
is generated. If only one order statistic is desired, set ILAST = IFIRST.

N — Size of the sample from which the order statistics arise.  (Input)
R — Vector of length ILAST + 1 - IFIRST containing the random order statistics in ascending order.  

(Output)
The first element of R is the IFIRST-th order statistic in a random sample of size N from the uniform 
(0, 1) distribution.

FORTRAN 90 Interface
Generic: CALL RNUNO (IFIRST, ILAST, N, R)
Specific: The specific interface names are S_RNUNO and D_RNUNO.

FORTRAN 77 Interface
Single: CALL RNUNO (IFIRST, ILAST, N, R)
Double: The double precision name is DRNUNO.

Description

Routine RNUNO generates the IFIRST through the ILAST order statistics from a pseudorandom sample of 
size N from a uniform (0, 1) distribution. Depending on the values of IFIRST and ILAST, different methods 
of generation are used to achieve greater efficiency. If IFIRST = 1 and ILAST = N, that is, if the full set of 
order statistics are desired, the spacings between successive order statistics are generated as ratios of expo-
nential variates. If the full set is not desired, a beta variate is generated for one of the order statistics, and the 
others are generated as extreme order statistics from conditional uniform distributions. Extreme order statis-
tics from a uniform distribution can be obtained by raising a uniform deviate to an appropriate power.

Each call to RNUNO yields an independent event. This means, for example, that if on one call the fourth order 
statistic is requested and on a second call the third order statistic is requested, the “fourth” may be smaller 
than the “third”. If both the third and fourth order statistics from a given sample are desired, they should be 
obtained from a single call to RNUNO (by specifying IFIRST less than or equal to 3 and ILAST greater than or 
equal to 4).

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Example

In this example, RNUNO is used to generate the fifteenth through the nineteenth order statistics from a sample 
of size twenty.

      USE RNUNO_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    IFIRST, ILAST, ISEED, N, NOUT
      REAL       R(5)
!
      CALL UMACH (2, NOUT)
      IFIRST = 15
      ILAST  = 19
      N      = 20
!                                 Initialize seed of random number
!                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNUNO (IFIRST, ILAST, N, R)
      WRITE (NOUT,99999) R
99999 FORMAT ('  The 15th through the 19th order statistics from a', &
            /, '  random sample of size 20 from a uniform ', &
            'distribution', /, 5F8.4)
      END

Output

  The 15th through the 19th order statistics from a
  random sample of size 20 from a uniform distribution
  0.6575  0.6802  0.6807  0.8177  0.8254
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RNARM

Generates a time series from a specified ARMA model.

Required Arguments
CNST — Overall constant.  (Input)

See Comments.
PAR — Vector of length NPAR containing the autoregressive parameters.  (Input)
LAGAR — Vector of length NPAR containing the order of the autoregressive parameters.  (Input)

The elements of LAGAR must be greater than or equal to one.
PMA — Vector of length NPMA containing the moving average parameters.  (Input)
LAGMA — Vector of length NPMA containing the order of the moving average parameters.  (Input)

The elements of LAGMA must be greater than or equal to one.
IADIST — Option for normally distributed innovations.  (Input)

AVAR — Variance of the normal distribution, if used.  (Input)
For IADIST = 0, AVAR is input; and for IADIST = 1, AVAR is unused.

A — Vector of length NW + max(LAGMA(j)) containing the innovations.  (Input or output)
For IADIST = 1, A is input; and for IADIST = 0, A is output.

WI — Vector of length max(LAGAR(i)) containing the initial values of the time series.  (Input)
W — Vector of length NW containing the generated time series.  (Output)

Optional Arguments
NW — Number of observations of the time series to generate.  (Input)

NW must be greater than or equal to one.
Default: NW = size (W,1).

NPAR — Number of autoregressive parameters.  (Input)
NPAR must be greater than or equal to zero.
Default: NPAR = size (PAR,1).

NPMA — Number of moving average parameters.  (Input)
NPMA must be greater than or equal to zero.
Default: NPMA = size (PMA,1).

FORTRAN 90 Interface
Generic: CALL RNARM (CNST, PAR, LAGAR, PMA, LAGMA, IADIST, AVAR, A, WI, 

W [, …])
Specific: The specific interface names are S_RNARM and D_RNARM.

IADIST Action

0 Innovations are generated from a normal distribution (white noise) with mean 0 and 
variance AVAR.

1 Innovations are specifed by the user.
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FORTRAN 77 Interface
Single: CALL RNARM (NW, CNST, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA, IADIST, AVAR, A, WI, W)
Double: The double precision name is DRNARM.

Description

Routine RNARM simulates an ARMA(p, q) process, {Wt} for t = 1, 2, …, n (with n = NW, p = NPAR, and 
q = NPMA). The model is

ɸ(B)Wt = θ0 + θ(B)At t ∈ ZZ

where B is the backward shift operator,

ɸ(B) = 1 - ɸ1B - ɸ2B2 - … - ɸpBp

θ(B) = 1 - θ1B - θ2B2 - … - θqBq

Let µ be the mean of the time series {Wt}. The overall constant θ0 (CNST) is

Comments
1. The time series is generated according to the following model:

X(i) = CNST + PAR(1) * X(i - LAGAR(1)) + … + PAR(NPAR) * X(i 
- LAGAR(NPAR)) + A(i) - PMA(1) * A(i - LAGMA(1)) - … - PMA(NPMA) * A(i - LAGAR(NPMA))

where

X(t) = W(t),t = 1, 2, …, NW
and

W(t) = WI(t + p),t = 1 - p, 2 - p, …, - 1, 0
with p = max(LAGAR(k)).
The constant is related to the mean of the series, WMEAN, as follows:

CNST = WMEAN * (1 - PAR(1) - … - PAR(NPAR))

2. Time series whose innovations have a nonnormal distribution may be simulated by setting 
IADIST = 1 and by providing the appropriate innovations in A and start values in WI.

3. The routine RNSET can be used to initialize the seed of the random number generator. The routine 
RNOPT can be used to select the form of the generator.
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Examples

Example 1

In this example, RNARM is used to generate a time series of length five, using an ARMA model with three 
autoregressive parameters and two moving average parameters. The start values are 0.1000, 0.0500, and 
0.0375.

      USE RNARM_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NPAR, NPMA, NW
      PARAMETER  (NPAR=3, NPMA=2, NW=5)
!
      INTEGER    I, IADIST, ISEED, LAGAR(NPAR), LAGMA(NPMA), NOUT
      REAL       A(NW+2), AVAR, CNST, PAR(NPAR), PMA(NPMA), W(NW), &
                 WI(3)
!
      CALL UMACH (2, NOUT)
      LAGAR(1) = 1
      LAGAR(2) = 2
      LAGAR(3) = 3
      PAR(1)   = 0.500
      PAR(2)   = 0.250
      PAR(3)   = 0.125
      LAGMA(1) = 1
      LAGMA(2) = 2
      PMA(1)   = -0.500
      PMA(2)   = -0.250
      IADIST   = 0
      CNST    = 1.0
      AVAR     = 0.1
      WI(1)    = 0.1
      WI(2)    = 0.05
      WI(3)    = 0.0375
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNARM (CNST, PAR, LAGAR, PMA, LAGMA, &
                 IADIST, AVAR, A, WI, W)
      WRITE (NOUT,99999) (W(I),I=1,NW)
99999 FORMAT ('   Simulated ARMA(3,2) series ', 5F7.4)
      END

Output

   Simulated ARMA(3,2) series  1.4033 2.2200 2.2864 2.8878 2.8322
RNARM         Chapter 18: Random Number Generation      1656



Example 2

In this example, 500 observations from an ARMA(2, 2) process are simulated using RNARM; and then routine 
NSPE is used to estimate the parameters of the model. The model is used as an example by Priestley (1981), 
page 139.

      USE RNARM_INT
      USE RNSET_INT
      USE NSPE_INT

      IMPLICIT   NONE
      INTEGER    NPAR, NPMA, NW
      PARAMETER  (NPAR=2, NPMA=2, NW=500)
!
      INTEGER    IADIST, ISEED, LAGAR(NPAR), LAGMA(NPMA)
      REAL       A(NW+2), AVAR, AVAR1, CNST, CNST1, PAR(NPAR), &
                 PAR1(NPAR), PMA(NPMA), PMA1(NPMA), W(NW), WI(2), WMEAN
!
      LAGAR(1) = 1
      LAGAR(2) = 2
      PAR(1)   = -1.4
      PAR(2)   = -0.5
      LAGMA(1) = 1
      LAGMA(2) = 2
      PMA(1)   = 0.2
      PMA(2)   = 0.1
      IADIST   = 0
      CNST    = 0.0
      AVAR     = 1.0
      WI(1)    = 0.0
      WI(2)    = 0.0
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNARM (CNST, PAR, LAGAR, PMA, LAGMA, &
                 IADIST, AVAR, A, WI, W) 
      CALL NSPE (W, CNST1, PAR1, PMA1, AVAR1, IPRINT=1)
      END

Output

Results from NSPE/N2PE
WMEAN =     .02192622
CONST =      .0695866
AVAR  =    1.0936457
       PAR
      1       2
 -1.533  -0.641
        PMA
       1        2
  0.0560   0.1294
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RNNPP

Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Required Arguments
TIMBEG — Lower endpoint of the time interval of the process.  (Input) 

TIMBEG must be nonnegative. Usually, TIMBEG = 0.
TIMEND — Upper endpoint of the time interval of the process.  (Input) 

TIMEND must be greater than TIMBEG.
FTHETA — User-supplied FUNCTION to provide the value of the rate of the process as a function of time. 

This function must be defined over the interval from TIMBEG to TIMEND and must be nonnegative in 
that interval. The form is FTHETA(TIME), 
where
TIME — Time at which the rate function is evaluated.  (Input)
FTHETA — Value of the rate function.  (Output)
FTHETA must be declared EXTERNAL in the calling program.

THEMIN — Minimum value of the rate function FTHETA in the interval (TIMBEG, TIMEND).  (Input)
If the actual minimum is unknown, set THEMIN = 0.0.

THEMAX — Maximum value of the rate function FTHETA in the interval (TIMBEG, TIMEND).  (Input)
If the actual maximum is unknown, set THEMAX to a known upper bound of the maximum. The effi-
ciency of RNNPP is less the greater THEMAX exceeds the true maximum.

NEUB — Upper bound on the number of events to be generated.  (Input)
In order to be reasonably sure that the full process through time TIMEND is generated, calculate NEUB 
as NEUB = X + 10.0 * SQRT(X), where X = THEMAX * (TIMEND - TIMBEG). The only penalty in setting 
NEUB too large is that the output vector must be dimensioned of length NEUB.

NE — Number of events actually generated.  (Output)
If NE is less that NEUB, the time TIMEND is reached before NEUB events are realized.

R — Vector of length NE containing the times to events.  (Output)
R must be dimensioned to be of length NEUB.

FORTRAN 90 Interface
Generic: CALL RNNPP (TIMBEG, TIMEND, FTHETA, THEMIN, THEMAX, NEUB, NE, R)
Specific: The specific interface names are S_RNNPP and D_RNNPP.

FORTRAN 77 Interface
Single: CALL RNNPP (TIMBEG, TIMEND, FTHETA, THEMIN, THEMAX, NEUB, NE, R)
Double: The double precision name is DRNNPP.

Description

Routine RNNPP simulates a one-dimensional nonhomogeneous Poisson process with rate function THETA in 
a fixed interval (TIMBEG, TIMEND].
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Let λ(t) be the rate function and t0 = TIMBEG and t1 = TIMEND. Routine RNNPP uses a method of thinning a 

nonhomogeneous Poisson process {N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1], where the number of 

events, N*, in the interval (t0, t1] has a Poisson distribution with parameter

The function

is called the integrated rate function. In RNNPP, λ*(t) is taken to be a constant λ*(= THEMAX) so that at time ti, the 
time of the next event ti+1 is obtained by generating and cumulating exponential random numbers 

with parameter λ*, until for the first time

where the uj,i are independent uniform random numbers between 0 and 1. This process is continued until the 
specified number of events, NEUB, is realized or until the time, TIMEND, is exceeded. This method is due to 
Lewis and Shedler (1979), who also review other methods. The most straightforward (and most efficient) 
method is by inverting the integrated rate function, but often this is not possible.

If THEMAX is actually greater than the maximum of λ(t) in (t0, t1], the routine will work, but less efficiently. 
Also, if λ(t) varies greatly within the interval, the efficiency is reduced. In that case, it may be desirable to 
divide the time interval into subintervals within which the rate function is less variable. This is possible 
because the process is without memory.

If no time horizon arises naturally, TIMEND must be set large enough to allow for the required number of 
events to be realized. Care must be taken, however, that FTHETA is defined over the entire interval.

After simulating a given number of events, the next event can be generated by setting TIMBEG to the time of 
the last event (the sum of the elements in R) and calling RNNPP again. Cox and Lewis (1966) discuss modeling 
applications of nonhomogeneous Poisson processes.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.
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Examples

Example 1

In this example, RNNPP is used to generate the first five events in the time 0 to 20 (if that many events are real-
ized) in a nonhomogeneous process with rate function

λ(t) = 0.6342 e0.001427t

for 0 < t ≤ 20.

Since this is a monotonically increasing function of t, the minimum is at t = 0 and is 0.6342, and the maximum 

is at t = 20 and is 0.6342 e0.02854 = 0.652561.

      USE RNNPP_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    NEUB
      PARAMETER  (NEUB=5)
!
      INTEGER    I, ISEED, NE, NOUT
      REAL       FTHETA, R(NEUB), THEMAX, THEMIN, TIMBEG, TIMEND
      EXTERNAL   FTHETA
!
      CALL UMACH (2, NOUT)
      TIMBEG = 0.0
      TIMEND = 20.0
      THEMIN = 0.6342
      THEMAX = 0.652561
      ISEED  = 123457
      CALL RNSET (ISEED)
      CALL RNNPP (TIMBEG, TIMEND, FTHETA, THEMIN, THEMAX, NEUB, NE, R)
      WRITE (NOUT,99999) NE, (R(I),I=1,NE)
99999 FORMAT ('   Inter-event times for the first ', I1, ' events', /, &
            '   in the process: ', 5F7.4)
      END
!
      REAL FUNCTION FTHETA (T)
      REAL       T
!
      REAL       EXP
      INTRINSIC  EXP
!
      FTHETA = 0.6342*EXP(0.001427*T)
      RETURN
      END

Output

Inter-event times for the first 5 events
in the process:  0.0527 0.4080 0.2584 0.0198 0.1676
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Example 2

As it turns out in the simulation above, the first five events are realized before time equals 20. If it is desired 
to continue the simulation to time equals 20, setting NEUB to 49 (that is,

would likely ensure that the time is reached. In the following example, we see that there are twelve events 
realized by time equals 20.

      USE UMACH_INT
      USE RNSET_INT
      USE RNNPP_INT
      USE SSUM_INT

      IMPLICIT   NONE
      INTEGER    NEUB
      PARAMETER  (NEUB=49)
!
      INTEGER    ISEED, NE, NOUT
      REAL       FTHETA, R(NEUB), T, THEMAX, THEMIN, TIMBEG, TIMEND 
      EXTERNAL   FTHETA
!
      CALL UMACH (2, NOUT)
      TIMBEG = 0.0
      TIMEND = 20.0
      THEMIN = 0.6342
      THEMAX = 0.652561
      ISEED  = 123457
      CALL RNSET (ISEED)
      CALL RNNPP (TIMBEG, TIMEND, FTHETA, THEMIN, THEMAX, NEUB, NE, R)
      T = TIMBEG + SSUM(NE,R,1)
      IF (NE .LT. NEUB) THEN
         WRITE (NOUT,99998) NE, T
99998    FORMAT ('   Only ', I2, ' events occurred before the time', &
               /, '   limit expired.  The last event occurred at', /, &
               '   time = ', F6.3)
      ELSE
         WRITE (NOUT,99999) NE, T
99999    FORMAT ('   Possibly more than ', I2, ' events would have', &
               /, '   occurred before the time limit expired.', /, &
               '   The last event occurred at time = ', F6.3)
      END IF
      END
!
      REAL FUNCTION FTHETA (T)
      REAL       T
!
      REAL       EXP
      INTRINSIC  EXP
!
      FTHETA = 0.6342*EXP(0.001427*T)
      RETURN
      END
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Output

   Only 12 events occurred before the time
   limit expired.  The last event occurred at
   time = 18.809
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RNPER

Generates a pseudorandom permutation.

Required Arguments
IPER — Vector of length K containing the random permutation of the integers from 1 to K.  (Output)

Optional Arguments
K — Number of integers to be permuted.  (Input)

Default: K = size (IPER,1).

FORTRAN 90 Interface
Generic: CALL RNPER (IPER [, …])
Specific: The specific interface name is S_RNPER.

FORTRAN 77 Interface
Single: CALL RNPER (K, IPER)

Description

Routine RNPER generates a pseudorandom permutation of the integers from 1 to K. It begins by filling a vec-
tor of length K with the consecutive integers 1 to K. Then, with M initially equal to K, a random index J 
between 1 and M (inclusive) is generated. The element of the vector with the index M and the element with 
index J swap places in the vector. M is then decremented by 1 and the process repeated until M = 1.

Comments
The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT 
can be used to select the form of the generator.

Example

In this example, RNPER is called to produce a pseudorandom permutation of the integers from 1 to 10.

      USE RNPER_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    IPER(10), ISEED, NOUT
!
      CALL UMACH (2, NOUT)
!                                 Initialize seed of random number
!                                 generator.
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      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNPER (IPER)
      WRITE (NOUT,99999) IPER
99999 FORMAT ('   Random permutation of the integers from 1 to 10', /, &
            10I5)
      END

Output

Random permutation of the integers from 1 to 10
 5    9    2    8    1    6    4    7    3   10
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RNSRI

Generates a simple pseudorandom sample of indices.

Required Arguments
NPOP — Number of items in the population.  (Input)
INDEX — Vector of length NSAMP containing the indices of the sample.  (Output)

INDEX is a random sample (without replacement) of the integers from 1 to NPOP, in increasing order.

Optional Arguments
NSAMP — Sample size desired.  (Input) 

Default: NSAMP = size (INDEX,1).

FORTRAN 90 Interface
Generic: CALL RNSRI (NPOP, INDEX [, …])
Specific: The specific interface name is S_RNSRI.

FORTRAN 77 Interface
Single: CALL RNSRI (NSAMP, NPOP, INDEX)

Description

Routine RNSRI generates the indices of a pseudorandom sample,without replacement, of size NSAMP num-
bers from a population of size NPOP. If NSAMP is greater than NPOP/2, the integers from 1 to NPOP are 
selected sequentially with a probability conditional on the number selected and the number remaining to be 
considered. If, when the i-th population index is considered, j items have been included in the sample, then 
the index i is included with probability 
(NSAMP - j)/(NPOP + 1 - i).

If NSAMP is not greater than NPOP/2, a O(NSAMP) algorithm due to Ahrens and Dieter (1985) is used. Of the 
methods discussed by Ahrens and Dieter, the one called SG* is used in RNSRI. It involves a preliminary 
selection of q indices using a geometric distribution for the distances between each index and the next one. If 
the preliminary sample size q is less than NSAMP, a new preliminary sample is chosen, and this is continued 
until a preliminary sample greater in size than NSAMP is chosen. This preliminary sample is then thinned 
using the same kind of sampling as described above for the case in which the sample size is greater than half 
of the population size. Routine RNSRI does not store the preliminary sample indices, but rather restores the 
state of the generator used in selecting the sample initially, and then passes through once again, making the 
final selection as the preliminary sample indices are being generated.
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Comments
1. The routine RNSET can be used to initialize the seed of the random number generator. If NSAMP is 

greater than NPOP/2, RNSRI uses two different generators in an algorithm due to Ahrens and Dieter 
(1985). The routine RNOPT can be used to select the form of the generator used for uniform deviates in 
the algorithm. The generator used for exponential deviates in the algorithm is a nonshuffled generator 
that is different from the one for the uniform. If IOPTU is the option indicator for the uniform genera-
tor (see documentation for RNOPT), then the option indicator for the exponential generator is 
MOD((2 * INT((IOPTU + 1)/2) + 1), 6).

2. The routine RNSRS can be used to select a sample from a population of unknown size.

Example

In this example, RNSRI is used to generate the indices of a pseudorandom sample of size 5 from a population 
of size 100.

      USE RNSRI_INT
      USE UMACH_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    INDEX(5), ISEED, NOUT, NPOP
!
      CALL UMACH (2, NOUT)
      NPOP  = 100
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNSRI (NPOP, INDEX)
      WRITE (NOUT,99999) INDEX
99999 FORMAT ('      Random sample: ', 5I4)
      END

Output

      Random sample:    2   22   53   61  79
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RNSRS

Generates a simple pseudorandom sample from a finite population.

Required Arguments
POP — NROW by NVAR matrix containing the population to be sampled.  (Input) If IDO = 0, POP contains 

the entire population; otherwise, POP contains a different part of the population on each invocation of 
RNSRS.

NPOP — The number of items in the population.  (Output, if IDO = 0 or 1; Input/Output, if IDO = 2.)
If IDO = 0, NPOP = NROW on output. If the population is input a few items at a time, it is not necessary 
to know the number of items in the population in advance. NPOP is used to cumulate the population 
size and should not be changed between calls to RNSRS. If, on output, NPOP is greater than or equal to 
NSAMP, the sampling can be considered complete for a population of size NPOP.

SAMP — NSAMP by NVAR matrix containing the sample.  (Output, if IDO = 0 or 1; Input/Output, if 
IDO = 2.)

INDEX — Vector of length NSAMP containing the indices of the sample in the population. (Output, if 
IDO = 0 or 1; Input/Output, if IDO = 2.) The INDEX(I)-th item in the population is the I-th item in the 
sample. INDEX is not necessarily in increasing order.

Optional Arguments
IDO — Processing option.  (Input)

Default: IDO = 0.

NROW — Number of rows of data currently input in POP.  (Input)
NROW must be nonnegative.
Default: NROW = size (POP,1).

NVAR — Number of variables in the population and in the sample.  (Input)
Default: NVAR = size (POP,2).

LDPOP — Leading dimension of POP exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDPOP = size (POP,1).

NSAMP — The sample size desired.  (Input)
Default: NSAMP = size (SAMP,1).

LDSAMP — Leading dimension of SAMP exactly as specified in the dimension statement in the calling pro-
gram.  (Input)
Default: LDSAMP = size (SAMP,1).

IDO Action

0 This is the only invocation of RNSRS for this data set, and the entire population is input 
at once.

1 This is the first invocation, and additional calls to RNSRS will be made. Initialization 
and updating for the subpopulation in POP are performed.

2 This is an additional invocation of RNSRS, and updating for the subpopulation in POP 
is performed.
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FORTRAN 90 Interface
Generic: CALL RNSRS (POP, NPOP, SAMP, INDEX [, …])
Specific: The specific interface names are S_RNSRS and D_RNSRS.

FORTRAN 77 Interface
Single: CALL RNSRS (IDO, NROW, NVAR, POP, LDPOP, NSAMP, NPOP, SAMP, LDSAMP, INDEX)
Double: The double precision name is DRNSRS.

Description

Routine RNSRS generates a pseudorandom sample from a given population, without replacement, using an 
algorithm due to McLeod and Bellhouse (1983).

The first NSAMP items in the population are included in the sample. Then, for each successive item from the 
population, a random item in the sample is replaced by that item from the population with probability equal 
to the sample size divided by the number of population items that have been encountered at that time.

Comments
1. The routine RNSET can be used to initialize the seed of the random number generator. The routine 

RNOPT can be used to select the form of the generator.
2. The routine RNSRI can be used to select a sample of indices in increasing order.

Examples

Example 1

In this example, RNSRS is used to generate a sample of size 5 from a population stored in the matrix POP. All 
of the data are available at once, so default IDO = 0 is used.

      USE RNSRS_INT
      USE UMACH_INT
      USE GDATA_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    I, INDEX(5), ISEED, J, NOUT, NPOP, NROW, NVAR
                
      REAL       POP(176,2), SAMP(5,2)
!
      CALL UMACH (2, NOUT)
!                                 Get Wolfer sunspot data to use
!                                 as “population”.
      CALL GDATA (2, POP, NROW, NVAR)
!                                 Initialize seed of random number
!                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
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      CALL RNSRS (POP, NPOP, SAMP, INDEX)
      WRITE (NOUT,99999) NPOP, INDEX, ((SAMP(I,J),I=1,5),J=1,2)
99999 FORMAT ('     The population size is ', I5, /, '   Indices of ', &
            'random sample: ', 5I8, /, '                 The sample: ' &
            , 5F8.0, /, '                             ', 5F8.0)
      END

Output

The population size is   176
Indices of random sample:       16      80     175      25      21
              The sample:    1764.   1828.   1923.   1773.   1769.
                               36.     62.      6.     35.    106.

Example 2

Routine RNSRS is now used to generate a sample of size 5 from the same population as in the example above 
except the data are input to RNSRS one observation at a time. This is the way RNSRS may be used to sample 
from a file on disk or tape. Notice that the number of records need not be known in advance.

      USE RNSRS_INT
      USE UMACH_INT
      USE GDATA_INT
      USE RNSET_INT

      IMPLICIT   NONE
      INTEGER    ISEED, NOUT, IDO, NROW, NVAR, NPOP, INDEX(5), I, J
      REAL       POP(176,2), SAMP(5,2), X(2, 1)
      CALL UMACH(2, NOUT)
!                                 Get Wolfer sunspot data to use
!                                 as “population”.
      CALL GDATA (2, POP, NROW, NVAR)
!                                 Initialize seed of random number
!                                 generator.
      ISEED = 123457
      CALL RNSET(ISEED)
      IDO = 1
      DO 10 I=1,176
!                                 In this DO-loop, the data would
!                                 generally be read from a file,
!                                 one observation at a time.  This
!                                 program simulates this by copying
!                                 the observations one at a time into
!                                 X from POP.
         X(1,1) = POP(I,1)
         X(2,1) = POP(I,2)
         CALL RNSRS (X, NPOP, SAMP, INDEX, IDO=IDO, &
                     NROW=1, NVAR=NVAR, LDPOP=1)
         IDO = 2
   10 CONTINUE
      WRITE(NOUT, 20) NPOP, INDEX, ((SAMP(I,J),I=1,5),J=1,2)
   20 FORMAT ('     The population size is ', I5,/, &
             '   Indices of random sample: ', 5I8,/, &
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             '                 The sample: ', 5F8.0,/, &
             '                             ', 5F8.0)
      END

Output

The population size is   176
Indices of random sample:       16      80     175      25      21
              The sample:    1764.   1828.   1923.   1773.   1769.
                               36.     62.      6.     35.    106.
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FAURE_INIT

Shuffled Faure sequence initialization.

Required Arguments
NDIM —   The dimension of the hyper-rectangle.  (Input)
STATE —   An IMSL_FAURE pointer for the derived type created by the call to FAURE_INIT. The output 

contains information about the sequence. Use ?_IMSL_FAURE as the type, where ?_ is S_ or D_ 
depending on precision.  (Output)

Optional Arguments
NBASE —  The base of the Faure sequence.  (Input)

Default: The smallest prime number greater than or equal to NDIM.
NSKIP — The number of points to be skipped at the beginning of the Faure sequence.  (Input)

Default: ⌊NBASEm/2-1⌋, where  m = ⌊log(B)/log(NBASE)⌋ and B is the largest machine representable 
integer. 

FORTRAN 90 Interface
Generic: CALL FAURE_INIT (NDIM, STATE [, …])
Specific: The specific interface names are S_FAURE_INIT and D_FAURE_INIT.
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FAURE_FREE

Frees the structure containing information about the Faure sequence.

Required Arguments
STATE  —  An IMSL_FAURE pointer containing the structure created by the call to FAURE_INIT.  

(Input/Output)

FORTRAN 90 Interface
Generic: CALL FAURE_FREE (STATE)
Specific: The specific interface names are S_FAURE_FREE and D_FAURE_FREE.
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FAURE_NEXT

Computes a shuffled Faure sequence.

Required Arguments
STATE —  An IMSL_FAURE pointer containing the structure created by the call to FAURE_INIT. The struc-

ture contains information about the sequence. The structure should be freed using FAURE_FREE after 
it is no longer needed.  (Input/Output)

NEXT_PT  —  Vector of length NDIM containing the next point in the shuffled Faure sequence, where NDIM 
is the dimension of the hyper-rectangle specified in FAURE_INIT.     (Output) 

Optional Arguments
IMSL_RETURN_SKIP — Returns the current point in the sequence. The sequence can be restarted by call-

ing FAURE_INIT using this value for NSKIP, and using the same value for NDIM.  (Input)

FORTRAN 90 Interface
Generic: CALL FAURE_NEXT (STATE, NEXT_PT [, …])
Specific: The specific interface names are S_FAURE_NEXT and D_FAURE_NEXT.

Description

Discrepancy measures the deviation from uniformity of a point set. 

The discrepancy of the point set x1, ..., xn ∈[0,1]d, d ≥1, is defined

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and  is the number of the xj contained in E. 

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a constant c(d), depending 
only on d, such that 

for all n > 1.
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Generalized Faure sequences can be defined for any prime base b ≥ d. The lowest bound for the discrepancy 
is obtained for the smallest prime b ≥ d, so the optional argument NBASE defaults to the smallest prime 
greater than or equal to the dimension.

The generalized Faure sequence x1, x2, …, is computed as follows: 

Write the positive integer n in its b-ary expansion, 

where ai(n) are integers, .

The j-th coordinate of xn is

The generator matrix for the series, ,  is defined to be

and ckd is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can be shown 
that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into the integer 
given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are in the three-dimensional unit 
cube.

Note that FAURE_INIT is used to create a structure that holds the state of the sequence. Each call to 
FAURE_NEXT returns the next point in the sequence and updates the IMSL_FAURE structure. The final call to 
FAURE_FREE frees data items, stored in the structure, that were allocated by FAURE_INIT.

        use faure_int
        implicit none
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        type (s_imsl_faure), pointer  :: state
        real(kind(1e0))          :: x(3)
        integer,parameter :: ndim=3
        integer           :: k
!                                  CREATE THE STRUCTURE THAT HOLDS
!                                  THE STATE OF THE SEQUENCE.
        call faure_init(ndim, state)
!                                  GET THE NEXT POINT IN THE SEQUENCE
        do k=1,5
           call faure_next(state, x)
           write(*,'(3F15.3)') x(1), x(2) , x(3)
        enddo
!                                   FREE DATA ITEMS STORED IN
!                                   state STRUCTURE
        call faure_free(state)
                     end

Output

     0.334      0.493       0.064
     0.667      0.826       0.397
     0.778      0.270       0.175
     0.111      0.604       0.509
     0.445      0.937       0.842
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Chapter 19: Utilities
Routines

19.1 Print

Real rectangular matrix with integer row and column labels . . . . . . . . . . . WRRRN     1679

Real rectangular matrix with given format and labels  . . . . . . . . . . . . . . . . WRRRL     1681

Integer rectangular matrix with integer row and column labels  . . . . . . . . . .WRIRN     1684

Integer rectangular matrix with given format and labels. . . . . . . . . . . . . . . . WRIRL     1686

Set or retrieve options for printing a matrix  . . . . . . . . . . . . . . . . . . . . . . . . WROPT     1689

Set or retrieve page width and length  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PGOPT     1695

19.2 Permute

Elements of a vector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PERMU     1697

Rows/Columns of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PERMA     1699

Rows/Columns of a symmetric matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . RORDM     1702

Move any rows with NaN to the last rows of the matrix . . . . . . . . . . . . . . . MVNAN     1704

19.3 Sort

Real vector by algebraic value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SVRGN     1708

Real vector by algebraic value and permutations returned . . . . . . . . . . . . .SVRGP     1710

Integer vector by algebraic value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SVIGN     1712

Integer vector by algebraic value and permutations returned . . . . . . . . . . . SVIGP     1714

Columns of a real matrix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SCOLR     1716

Rows of a real matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SROWR     1720

19.4 Search

Sorted real vector for a number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SRCH     1724

Sorted integer vector for a number  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISRCH     1726

Sorted character vector for a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SSRCH     1728

19.5 Character String Manipulation

Get the character corresponding to a given ASCII value . . . . . . . . . . . . . . .ACHAR     1730
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Get the integer ASCII value for a given character . . . . . . . . . . . . . . . . . . . IACHAR     1732

Get uppercase integer ASCII value for a character . . . . . . . . . . . . . . . . . . . ICASE     1733

Case-insensitive comparison of two strings. . . . . . . . . . . . . . . . . . . . . . . . . . IICSR     1735

Case-insensitive version of intrinsic function INDEX . . . . . . . . . . . . . . . . . . . IIDEX     1737

Convert a character string with digits to an integer . . . . . . . . . . . . . . . . . . . .CVTSI     1739

19.6 Time, Date, and Version

CPU time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CPSEC     1740

Time of day  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TIMDY     1741

Today’s date  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TDATE     1743

Number of days from January 1, 1900, to the given date  . . . . . . . . . . . . . .NDAYS     1744

Date for the number of days from January 1, 1900 . . . . . . . . . . . . . . . . . . . NDYIN     1746

Day of week for given date  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDYWK     1748

Version, system, and license numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . VERSL     1750

19.7 Retrieval of Data Sets

Get a particular standard data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GDATA     1752
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WRRRN

Prints a real rectangular matrix with integer row and column labels.

Required Arguments
TITLE — Character string specifying the title.  (Input) 

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /” within the title to 
create a new line. Long titles are automatically wrapped.

A — NRA by NCA matrix to be printed.  (Input)

Optional Arguments
NRA — Number of rows.  (Input)

Default: NRA = size (A,1).
NCA — Number of columns.  (Input)

Default: NCA = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

ITRING — Triangle option.  (Input) 
Default: ITRING = 0.

FORTRAN 90 Interface
Generic: CALL WRRRN (TITLE, A [, …])
Specific: The specific interface names are S_WRRRN and D_WRRRN for two dimensional arrays, and 

S_WRRRN1D and D_WRRRN1D for one dimensional arrays.

FORTRAN 77 Interface
Single: CALL WRRRN (TITLE, NRA, NCA, A, LDA, ITRING)
Double: The double precision name is DWRRRN.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

-1 Lower triangle of A is printed, including the diagonal.

-2 Lower triangle of A excluding the diagonal of A is printed.
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Description

Routine WRRRN prints a real rectangular matrix with the rows and columns labeled 1, 2, 3, and so on. WRRRN 
can restrict printing to the elements of the upper or lower triangles of matrices via the ITRING option. Gener-
ally, ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, set NRA to 
the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set NCA to the length of the array. In 
both cases, set LDA = NRA and set ITRING = 0.

Comments
1. A single D, E, or F format is chosen automatically in order to print 4 significant digits for the largest 

element of A in absolute value. Routine WROPT can be used to change the default format.
2. Horizontal centering, a method for printing large matrices, paging, printing a title on each page, and 

many other options can be selected by invoking WROPT.
3. A page width of 78 characters is used. Page width and page length can be reset by invoking PGOPT.
4. Output is written to the unit specified by UMACH (see the Reference Material).

Example

The following example prints all of a 3 × 4 matrix A where aij= i + j/10.

      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3)
!
      INTEGER    I, J
      REAL       A(LDA,NCA)
!
      DO 20  I=1, NRA
         DO 10  J=1, NCA
            A(I,J) = I + J*0.1
   10    CONTINUE
   20 CONTINUE
!                                 Write A matrix.
      CALL WRRRN ('A', A, NRA=NRA)
      END

Output

                  A
        1       2       3       4
1   1.100   1.200   1.300   1.400
2   2.100   2.200   2.300   2.400
3   3.100   3.200   3.300   3.400
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WRRRL

Print a real rectangular matrix with a given format and labels.

Required Arguments
TITLE — Character string specifying the title.  (Input) 

TITLE set equal to a blank character(s) suppresses printing of the title.
A — NRA by NCA matrix to be printed.  (Input)
RLABEL — CHARACTER * (*) vector of labels for rows of A.  (Input) 

If rows are to be numbered consecutively 1, 2, …, NRA, use RLABEL(1) = ’NUMBER’. If no row labels 
are desired, use RLABEL(1) = ’NONE’. Otherwise, RLABEL is a vector of length NRA containing the 
labels.

CLABEL — CHARACTER * (*) vector of labels for columns of A.  (Input) 
If columns are to be numbered consecutively 1, 2, …, NCA, use CLABEL(1) = ’NUMBER’. If no column 
labels are desired, use CLABEL(1) = ’NONE’. Otherwise, CLABEL(1) is the heading for the row labels, 
and either CLABEL(2) must be ’NUMBER’or ’NONE’, or CLABEL must be a vector of length NCA + 1 
with CLABEL(1 + j) containing the column heading for the j-th column.

Optional Arguments
NRA — Number of rows.  (Input)

Default: NRA = size (A,1).
NCA — Number of columns.  (Input)

Default: NCA = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

ITRING — Triangle option.  (Input)
Default: ITRING = 0.

FMT — Character string containing formats.  (Input) 
If FMT is set to a blank character(s), the format used is specified by WROPT. Otherwise, FMT must con-
tain exactly one set of parentheses and one or more edit descriptors. For example, FMT = ’(F10.3)’ 
specifies this F format for the entire matrix. FMT = ’(2E10.3, 3F10.3)’ specifies an E format for col-
umns 1 and 2 and an F format for columns 3, 4 and 5. If the end of FMT is encountered and if some 
columns of the matrix remain, format control continues with the first format in FMT. Even though the 
matrix A is real, an I format can be used to print the integer part of matrix elements of A. The most use-
ful formats are special formats, called the “V and W formats,” that can be used to specify pretty formats 

ITRING Action

0 Full matrix is printed.

1 Upper triangle of A is printed, including the diagonal.

2 Upper triangle of A excluding the diagonal of A is printed.

-1 Lower triangle of A is printed, including the diagonal.

-2 Lower triangle of A excluding the diagonal of A is printed.
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automatically. Set FMT = ’(V10.4)’ if you want a single D, E, or F format selected automatically with 
field width 10 and with 4 significant digits. Set FMT = ’(W10.4)’ if you want a single D, E, F, or I for-
mat selected automatically with field width 10 and with 4 significant digits. While the V format prints 
trailing zeroes and a trailing decimal point, the W format does not. See Comment 4 for general descrip-
tions of the V and W formats. FMT may contain only D, E, F, G, I, V, or W edit descriptors, e.g., the X 
descriptor is not allowed. 
Default: FMT = ‘ ‘.

FORTRAN 90 Interface
Generic: CALL WRRRL (TITLE, A, RLABEL, CLABEL [, …])
Specific: The specific interface names are S_WRRRL and D_WRRRL for two dimensional arrays, and 

S_WRRRL1D and D_WRRRL1D for one dimensional arrays. 

FORTRAN 77 Interface
Single: CALL WRRRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL)
Double: The double precision name is DWRRRL.

Description

Routine WRRRL prints a real rectangular matrix (stored in A) with row and column labels (specified by 
RLABEL and CLABEL, respectively) according to a given format (stored in FMT). WRRRL can restrict printing 
to the elements of upper or lower triangles of matrices via the ITRING option. Generally, ITRING ≠ 0 is used 
with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, set NRA to 
the length of the array and set NCA = 1. For a row vector, set NRA = 1 and set NCA to the length of the array. In 
both cases, set LDA = NRA, and set ITRING = 0.

Comments
1. Workspace may be explicitly provided, if desired, by use of W2RRL/DW2RRL. The reference is:

CALL W2RRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL, CHWK)
The additional argument is:

CHWK — CHARACTER * 10 work vector of length NCA. This workspace is referenced only if all 
three conditions indicated at the beginning of this comment are met. Otherwise, CHWK is not 
referenced and can be a CHARACTER * 10 vector of length one.

2. The output appears in the following form:

TITLE

3. Use “% /” within titles or labels to create a new line. Long titles or labels are automatically wrapped.

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) Xxxxx xxxxx Xxxxx

RLABEL(2) Xxxxx xxxxx Xxxxx
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4. For printing numbers whose magnitudes are unknown, the G format in FORTRAN is useful; however, 
the decimal points will generally not be aligned when printing a column of numbers. The V and W for-
mats are special formats used by this routine to select a D, E, F, or I format so that the decimal points 
will be aligned. The V and W formats are specified as Vn.d and Wn.d. Here, n is the field width and d is 
the number of significant digits generally printed. Valid values for n are 3, 4,…, 40. Valid values for d 
are 1, 2, …, n - 2. If FMT specifies one format and that format is a V or W format, all elements of the 
matrix A are examined to determine one FORTRAN format for printing. If FMT specifies more than one 
format, FORTRAN formats are generated separately from each V or W format.

5. A page width of 78 characters is used. Page width and page length can be reset by invoking PGOPT.
6. Horizontal centering, method for printing large matrices, paging, method for printing NaN (not a 

number), printing a title on each page, and many other options can be selected by invoking WROPT.
7. Output is written to the unit specified by UMACH (see the Reference Material).

Example

The following example prints all of a 3 × 4 matrix A where aij = (i + j/10)10j-3.

      USE WRRRL_INT
      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3)
!
      INTEGER    I, J
      REAL       A(LDA,NCA)
      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5
!
      DATA FMT/'(W10.6)'/
      DATA CLABEL/'   ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/
      DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/
!
      DO 20  I=1, NRA
         DO 10  J=1, NCA
            A(I,J) = (I+J*0.1)*10.0**(J-3)
   10    CONTINUE
   20 CONTINUE
!                                 Write A matrix.
      CALL WRRRL ('A', A, RLABEL, CLABEL, NRA=NRA, FMT=FMT)
      END

Output

                             A
            Col 1       Col 2       Col 3       Col 4
Row 1       0.011       0.120       1.300      14.000
Row 2       0.021       0.220       2.300      24.000
Row 3       0.031       0.320       3.300      34.000
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WRIRN

Prints an integer rectangular matrix with integer row and column labels.

Required Arguments
TITLE — Character string specifying the title.  (Input) 

TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /” within the title to 
create a new line. Long titles are automatically wrapped.

MAT — NRMAT by NCMAT matrix to be printed.  (Input)

Optional Arguments
NRMAT — Number of rows.  (Input)

Default: NRMAT = size (MAT,1).
NCMAT — Number of columns.  (Input)

Default: NCMAT = size (MAT,2).
LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDMAT = size (MAT,1).

ITRING — Triangle option.  (Input)
Default: ITRING = 0. 

FORTRAN 90 Interface
Generic: CALL WRIRN (TITLE, MAT [, …])
Specific: The specific interface name is S_WRIRN.

FORTRAN 77 Interface
Single: CALL WRIRN (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING).

Description

Routine WRIRN prints an integer rectangular matrix with the rows and columns labeled 1, 2, 3, and so on. 
WRIRN can restrict printing to elements of the upper and lower triangles of matrices via the ITRING option. 
Generally, ITRING ≠ 0 is used with symmetric matrices.

ITRING Action

0 Full matrix is printed.

1 Upper triangle of MAT is printed, including the diagonal.

2 Upper triangle of MAT excluding the diagonal of MAT is printed.

-1 Lower triangle of MAT is printed, including the diagonal.

-2 Lower triangle of MAT excluding the diagonal of MAT is printed.
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In addition, one-dimensional arrays can be printed as column or row vectors. For a column vector, set NRMAT 
to the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set NCMAT to the length of 
the array. In both cases, set LDMAT = NRMAT and set ITRING = 0.

Comments
1. All the entries in MAT are printed using a single I format. The field width is determined by the largest 

absolute entry.
2. Horizontal centering, a method for printing large matrices, paging, printing a title on each page, and 

many other options can be selected by invoking WROPT.
3. A page width of 78 characters is used. Page width and page length can be reset by invoking PGOPT.
4. Output is written to the unit specified by UMACH (see the Reference Material).

Example

The following example prints all of a 3 × 4 matrix A = MAT where aij = 10i + j.

      USE WRIRN_INT

      IMPLICIT   NONE
      INTEGER    ITRING, LDMAT, NCMAT, NRMAT
      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)
!
      INTEGER    I, J, MAT(LDMAT,NCMAT)
!
      DO 20  I=1, NRMAT
         DO 10  J=1, NCMAT
            MAT(I,J) = I*10 + J
   10    CONTINUE
   20 CONTINUE
!                                 Write MAT matrix.
      CALL WRIRN ('MAT', MAT, NRMAT=NRMAT)
      END

Output

         MAT
     1    2    3    4
1   11   12   13   14
2   21   22   23   24
3   31   32   33   34
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WRIRL

Print an integer rectangular matrix with a given format and labels.

Required Arguments
TITLE — Character string specifying the title.  (Input) 

TITLE set equal to a blank character(s) suppresses printing of the title.
MAT — NRMAT by NCMAT matrix to be printed.  (Input)
RLABEL — CHARACTER * (*) vector of labels for rows of MAT.  (Input) 

If rows are to be numbered consecutively 1, 2, …, NRMAT, use 
RLABEL(1) = ’NUMBER’. If no row labels are desired, use RLABEL(1) = ’NONE’. Otherwise, RLABEL is 
a vector of length NRMAT containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of MAT.  (Input) 
If columns are to be numbered consecutively 1, 2, …, NCMAT, use CLABEL(1) = ’NUMBER’. If no col-
umn labels are desired, use CLABEL(1) = ’NONE’. Otherwise, CLABEL(1) is the heading for the row 
labels, and either CLABEL(2) must be ’NUMBER’ or ’NONE’, or CLABEL must be a vector of length 
NCMAT + 1 with CLABEL(1 + j) containing the column heading for the j-th column.

Optional Arguments
NRMAT — Number of rows.  (Input)

Default: NRMAT = size (MAT,1).
NCMAT — Number of columns.  (Input)

Default: NCMAT = size (MAT,2).
LDMAT — Leading dimension of MAT exactly as specified in the dimension statement in the calling pro-

gram.  (Input)
Default: LDMAT = size (MAT,1).

ITRING — Triangle option.  (Input)
Default: ITRING = 0.

FMT — Character string containing formats.  (Input) 
 If FMT is set to a blank character(s), the format used is a single I format with field width determined 
by the largest absolute entry. Otherwise, FMT must contain exactly one set of parentheses and one or 
more I edit descriptors. For example, FMT = ’(I10)’ specifies this I format for the entire matrix. 
FMT = ’(2I10, 3I5)’ specifies an I10 format for columns 1 and 2 and an I5 format for columns 
3, 4 and 5. If the end of FMT is encountered and if some columns of the matrix remain, format control 

ITRING Action

0 Full matrix is printed.

1 Upper triangle of MAT is printed, including the diagonal.

2 Upper triangle of MAT excluding the diagonal of MAT is printed.

-1 Lower triangle of MAT is printed, including the diagonal.

-2 Lower triangle of MAT excluding the diagonal of MAT is printed.
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continues with the first format in FMT. FMT may only contain the I edit descriptor, e.g., the X edit 
descriptor is not allowed. 
Default: FMT = ‘ ‘.

FORTRAN 90 Interface
Generic: CALL WRIRL (TITLE, MAT, RLABEL, CLABEL [, …])
Specific: The specific interface name is S_WRIRL.

FORTRAN 77 Interface
Single: CALL WRIRL (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT, RLABEL, CLABEL)

Description

Routine WRIRL prints an integer rectangular matrix (stored in MAT) with row and column labels (specified by 
RLABEL and CLABEL, respectively), according to a given format (stored in FMT). WRIRL can restrict printing 
to the elements of upper or lower triangles of matrices via the ITRING option. Generally, ITRING ≠ 0 is used 
with symmetric matrices. In addition, one-dimensional arrays can be printed as column or row vectors. For a 
column vector, set NRMAT to the length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and 
set NCMAT to the length of the array. In both cases, set LDMAT = NRMAT, and set ITRING = 0.

Comments
1. The output appears in the following form:

TITLE

2. Use “% /” within titles or labels to create a new line. Long titles or labels are automatically wrapped.
3. A page width of 78 characters is used. Page width and page length can be reset by invoking PGOPT.
4. Horizontal centering, a method for printing large matrices, paging, printing a title on each page, and 

many other options can be selected by invoking WROPT.
5. Output is written to the unit specified by UMACH (see the Reference Material).

Example

The following example prints all of a 3 × 4 matrix A = MAT where aij= 10i + j.

      USE WRIRL_INT

      IMPLICIT   NONE
      INTEGER    ITRING, LDMAT, NCMAT, NRMAT

      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) Xxxxx xxxxx xxxxx

RLABEL(2) Xxxxx xxxxx xxxxx
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!
      INTEGER    I, J, MAT(LDMAT,NCMAT)
      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5
!
      DATA FMT/'(I2)'/
      DATA CLABEL/'     ', 'Col 1', 'Col 2', 'Col 3', 'Col 4'/
      DATA RLABEL/'Row 1', 'Row 2', 'Row 3'/
!
      DO 20  I=1, NRMAT
         DO 10  J=1, NCMAT
            MAT(I,J) = I*10 + J
   10    CONTINUE
   20 CONTINUE
!                                 Write MAT matrix.
      CALL WRIRL ('MAT', MAT, RLABEL, CLABEL, NRMAT=NRMAT)
      END

Output

                   MAT
        Col 1  Col 2  Col 3  Col 4
Row 1     11     12     13     14
Row 2     21     22     23     24
Row 3     31     32     33     34
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WROPT

Sets or retrieves an option for printing a matrix.

Required Arguments
IOPT — Indicator of option type.  (Input)

If IOPT is negative, ISET and ISCOPE are input and are saved in internal variables. If IOPT is posi-
tive, ISET is output and receives the currently active setting for the option (if ISCOPE = 0) or the last 
global setting for the option (if ISCOPE = 1). If IOPT = 0, ISET and ISCOPE are not referenced.

ISET — Setting for option selected by IOPT.  (Input, if IOPT is negative; output, if IOPT is positive; not ref-
erenced if IOPT = 0)

IOPT Description of Option Type

-1, 1 Horizontal centering or left justification of matrix to be printed

-2, 2 Method for printing large matrices

-3, 3 Paging

-4, 4 Method for printing NaN (not a number), and negative and positive 
machine infinity.

-5, 5 Title option

-6, 6 Default format for real and complex numbers

-7, 7 Spacing between columns

-8, 8 Maximum horizontal space reserved for row labels

-9, 9 Indentation of continuation lines for row labels

-10, 10 Hot zone option for determining line breaks for row labels

-11, 11 Maximum horizontal space reserved for column labels

-12, 12 Hot zone option for determining line breaks for column labels

-13, 13 Hot zone option for determining line breaks for titles

-14, 14 Option for the label that appears in the upper left hand corner that can be 
used as a heading for the row numbers or a label for the column head-
ings for WR**N routines

-15, 15 Option for skipping a line between invocations of WR**N routines, pro-
vided a new page is not to be issued

-16, 16 Option for vertical alignment of the matrix values relative to the associ-
ated row labels that occupy more than one line

0 Reset all the current settings saved in internal variables back to their last 
setting made with an invocation of WROPT with ISCOPE = 1. (This option 
is used internally by routines printing a matrix and is not useful 
otherwise.)
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IOPT ISET Meaning

-1, 1 0 Matrix is left justified

1 Matrix is centered horizontally on page

-2, 2 0 A complete row is printed before the next row is printed. Wrapping is 
used if necessary.

m Here, m is a positive integer. Let n1 be the maximum number of columns 
beginning with column 1 that fit across the page (as determined by the 
widths of the printing formats). First, columns 1 through n1 are printed 
for rows 1 through m. Let n2 be the maximum number of columns begin-
ning with column n1 + 1 that fit across the page. Second, columns n1 + 1 
through n1 + n2 are printed for rows 1 through m. This continues until the 
last columns are printed for rows 1 through m. Printing continues in this 
fashion for the next m rows, etc.

-3, 3 -2 Printing begins on the next line, and no paging occurs.

-1 Paging is on. Every invocation of a WR*** routine begins on a new page, 
and paging occurs within each invocation as is needed

0 Paging is on. The first invocation of a WR*** routine begins on a new page, 
and subsequent paging occurs as is needed. With this option, every invo-
cation of a WR*** routine ends with a call to WROPT to reset this option to k, 
a positive integer giving the number of lines printed on the current page.

k Here, k is a positive integer. Paging is on, and k lines have been printed on 
the current page. If k is less than the page length IPAGE (see PGOPT), then 
IPAGE - k lines are printed before a new page instruction is issued. If k is 
greater than or equal to IPAGE, then the first invocation of a WR*** routine 
begins on a new page. In any case, subsequent paging occurs as is needed. 
With this option, every invocation of a WR*** routine ends with a call to 
WROPT to reset the value of k.

-4, 4 0 NaN is printed as a series of decimal points, negative machine infinity is 
printed as a series of minus signs, and positive machine infinity is printed 
as a series of plus signs.

1 NaN is printed as a series of blank characters, negative machine infinity is 
printed as a series of minus signs, and positive machine infinity is printed 
as a series of plus signs.

2 NaN is printed as “NaN,” negative machine infinity is printed as “-Inf” 
and positive machine infinity is printed as “Inf.”

3 NaN is printed as a series of blank characters, negative machine infinity is 
printed as “-Inf,” and positive machine infinity is printed as “Inf.”

-5, 5 0 Title appears only on first page.

1 Title appears on the first page and all continuation pages.

-6, 6 0 Format is (W10.4). See Comment 2.

1 Format is (W12.6). See Comment 2.

2 Format is (1PE12.5 ).

3 Format is Vn.4 where the field width n is determined. See Comment 2.
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ISCOPE — Indicator of the scope of the option.  (Input if IOPT is nonzero; not referenced if IOPT = 0)

FORTRAN 90 Interface
Generic: CALL WROPT (IOPT, ISET, ISCOPE)
Specific: The specific interface name is S_WROPT.

4 Format is Vn.6 where the field width n is determined. See Comment 2.

5 Format is 1PEn.d where n = d + 7, and d + 1 is the maximum number of 
significant digits.

-7, 7 k1 Number of characters left blank between columns. k1 must be between 0 
and 5, inclusively.

-8, 8 k2 Maximum width (in characters) reserved for row labels. k2 = 0 means use 
the default.

-9, 9 k3 Number of characters used to indent continuation lines for row labels. k3 
must be between 0 and 10, inclusively.

-10, 10 k4 Width (in characters) of the hot zone where line breaks in row labels can 
occur. k4 = 0 means use the default. k4 must not exceed 50.

-11, 11 k5 Maximum width (in characters) reserved for column labels. k5 = 0 means 
use the default.

-12, 12 k6 Width (in characters) of the hot zone where line breaks in column labels 
can occur. k6 = 0 means use the default. k6 must not exceed 50.

-13, 13 k7 Width (in characters) of the hot zone where line breaks in titles can occur. 
k7 must be between 1 and 50, inclusively.

-14 0 There is no label in the upper left hand corner.

1 The label in the upper left hand corner is “Component” if a row vector or 
column vector is printed; the label is “Row/Column” if both the number 
of rows and columns are greater than one; otherwise, there is no label.

-15 0 A blank line is printed on each invocation of a WR**N routine before the 
matrix title provided a new page is not to be issued.

1 A blank line is not printed on each invocation of a WR**N routine before 
the matrix title.

-16, 16 0 The matrix values are aligned vertically with the last line of the associated 
row label for the case IOPT = 2 and ISET is positive.

1 The matrix values are aligned vertically with the first line of the associ-
ated row label.

ISCOPE Action

0 Setting is temporarily active for the next invocation of a WR*** matrix 
printing routine.

1 Setting is active until it is changed by another invocation of WROPT.

IOPT ISET Meaning
WROPT         Chapter 19: Utilities      1691



FORTRAN 77 Interface
Single: CALL WROPT (IOPT, ISET, ISCOPE)

Description

Routine WROPT allows the user to set or retrieve an option for printing a matrix. The options controlled by 
WROPT include the following: horizontal centering, a method for printing large matrices, paging, method for 
printing NaN (not a number) and positive and negative machine infinities, printing titles, default formats for 
numbers, spacing between columns, maximum widths reserved for row and column labels, indentation of 
row labels that continue beyond one line, widths of hot zones for breaking of labels and titles, the default 
heading for row labels, whether to print a blank line between invocations of routines, and vertical alignment 
of matrix entries with respect to row labels continued beyond one line. (NaN and positive and negative 
machine infinities can be retrieved by AMACH and DMACH that are documented in the section 
“Machine-Dependent Constants” in the Reference Material.) Options can be set globally  (ISCOPE = 1) or 
temporarily for the next call to a printing routine (ISCOPE = 0).

Comments
1. This program can be invoked repeatedly before using a WR*** routine to print a matrix. The matrix 

printing routines retrieve these settings to determine the printing options. It is not necessary to call 
WROPT if a default value of a printing option is desired. The defaults are as follows.

IOPT Default Value 
for ISET

Meaning

1 0 Left justified

2 1000000 Number lines before wrapping

3 -2 No paging

4 2 NaN is printed as “NaN,” negative machine infinity is 
printed as “-Inf” and positive machine infinity is printed 
as “Inf.”

5 0 Title only on first page.

6 3 Default format is Vn.4.

7 2 2 spaces between columns.

8 0 Maximum row label width MAXRLW = 2 * IPAGEW/3 if 
matrix has one column; MAXRLW = IPAGEW/4 otherwise.

9 3 3 character indentation of row labels continued beyond one 
line.

10 0 Width of row label hot zone is MAXRLW/3 characters.
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For IOPT = 8, the default depends on the current value for the page width, IPAGEW (see PGOPT).
2. The V and W formats are special formats that can be used to select a D, E, F, or I format so that the dec-

imal points will be aligned. The V and W formats are specified as Vn.d and Wn.d. Here, n is the field 
width and d is the number of significant digits generally printed. Valid values for n are 3, 4, …, 40. 
Valid values for d are 1, 2, …, n - 2. While the V format prints trailing zeroes and a trailing decimal 
point, the W format does not.

Example

The following example illustrates the effect of WROPT when printing a 3 × 4 real matrix A with WRRRN where 
aij = i + j/10. The first call to WROPT sets horizontal printing so that the matrix is first printed horizontally 
centered on the page. In the next invocation of WRRRN, the left-justification option has been set via routine 
WROPT so the matrix is left justified when printed. Finally, because the scope of left justification was only for 
the next call to a printing routine, the last call to WRRRN results in horizontally centered printing.

      USE WROPT_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3)
!
      INTEGER    I, IOPT, ISCOPE, ISETNG, J
      REAL       A(LDA,NCA)
!
      DO 20  I=1, NRA
         DO 10  J=1, NCA
            A(I,J) = I + J*0.1
   10    CONTINUE
   20 CONTINUE
!                                 Activate centering option.
!                                 Scope is global.

11 0 Maximum column label width 
MAXCLW = min{max (NW + NW/2, 15), 40} for integer and real 
matrices, where NW is the field width for the format corre-
sponding to the particular column. 
MAXCLW = min{max(NW + NW/2, 15), 83} for complex matri-
ces, where NW is the sum of the two field widths for the 
formats corresponding to the particular column plus 3.

12 0 Width of column label hot zone is MAXCLW/3 characters.

13 10 Width of hot zone for titles is 10 characters.

14 0 There is no label in the upper left hand corner.

15 0 Blank line is printed.

16 0 The matrix values are aligned vertically with the last line of 
the associated row label.

IOPT Default Value 
for ISET

Meaning
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      IOPT   = -1
      ISETNG = 1
      ISCOPE = 1
!
      CALL WROPT (IOPT, ISETNG, ISCOPE)
!                                 Write A matrix.
      CALL WRRRN ('A', A, NRA=NRA)
!                                 Activate left justification.
!                                 Scope is local.
      IOPT   = -1
      ISETNG   = 0
      ISCOPE = 0
      CALL WROPT (IOPT, ISETNG, ISCOPE)
      CALL WRRRN ('A', A, NRA=NRA)
      CALL WRRRN ('A', A, NRA=NRA)
      END

Output

                                       A
                               1       2       3       4
                       1   1.100   1.200   1.300   1.400
                       2   2.100   2.200   2.300   2.400
                       3   3.100   3.200   3.300   3.400

                A
        1       2       3       4
1   1.100   1.200   1.300   1.400
2   2.100   2.200   2.300   2.400
3   3.100   3.200   3.300   3.400

                                       A
                               1       2       3       4
                       1   1.100   1.200   1.300   1.400
                       2   2.100   2.200   2.300   2.400
                       3   3.100   3.200   3.300   3.400
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PGOPT

Sets or retrieves page width and length for printing.

Required Arguments
IOPT — Page attribute option.  (Input) 

Negative values of IOPT indicate the setting IPAGE is input. Positive values of IOPT indicate the set-
ting IPAGE is output.

IPAGE — Value of page attribute.  (Input, if IOPT is negative; output, if IOPT is positive.) 

FORTRAN 90 Interface
Generic: CALL PGOPT (IOPT, IPAGE)
Specific: The specific interface name is S_PGOPT.

FORTRAN 77 Interface
Single: CALL PGOPT (IOPT, IPAGE)

Description

Routine PGOPT is used to set or retrieve the page width or the page length for routines that perform printing.

Example

The following example illustrates the use of PGOPT to set the page width at 20 characters. Routine WRRRN is 
then used to print a 3 × 4 matrix A where aij= i + j/10.

      USE PGOPT_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=3, NCA=4, NRA=3)
!
      INTEGER    I, IOPT, IPAGE, J
      REAL       A(LDA,NCA)

IOPT Description of Attribute

-1, 1 Page width.

-2, 2 Page length.

IOPT Description of Attribute Settings for IPAGE

-1, 1 Page width (in characters) 10, 11, …
-2, 2 Page length (in lines)  10, 11, …
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!
      DO 20  I=1, NRA
         DO 10  J=1, NCA
            A(I,J) = I + J*0.1
   10    CONTINUE
   20 CONTINUE
!                                 Set page width.
      IOPT  = -1
      IPAGE = 20
      CALL PGOPT (IOPT, IPAGE)
!                                 Print the matrix A.
      CALL WRRRN (’A’, A)
      END

Output

         A
        1       2
1   1.100   1.200
2   2.100   2.200
3   3.100   3.200

        3       4
1   1.300   1.400
2   2.300   2.400
3   3.300   3.400  
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PERMU

Rearranges the elements of an array as specified by a permutation.

Required Arguments
X — Real vector of length N containing the array to be permuted.  (Input)
IPERMU — Integer vector of length N containing a permutation

IPERMU(1), …, IPERMU(N) of the integers 1, …, N.  (Input)
XPERMU — Real vector of length N containing the array X permuted.  (Output) 

If X is not needed, X and XPERMU can share the same storage locations.

Optional Arguments
N — Length of the arrays X and XPERMU.  (Input)

Default: N = size (X,1).
IPATH — Integer flag.  (Input) 

Default: IPATH = 1.
IPATH = 1 means IPERMU represents a forward permutation, i.e., X(IPERMU(I)) is moved to 
XPERMU(I). IPATH = 2 means IPERMU represents a backward permutation, i.e., X(I) is moved to 
XPERMU(IPERMU(I)).

FORTRAN 90 Interface
Generic: CALL PERMU (X, IPERMU, XPERMU [, …])
Specific: The specific interface names are S_PERMU and D_PERMU.

FORTRAN 77 Interface
Single: CALL PERMU (N, X, IPERMU, IPATH, XPERMU)
Double: The double precision name is DPERMU.

Description

Routine PERMU rearranges the elements of an array according to a permutation vector. It has the option to do 
both forward and backward permutations.

Example

This example rearranges the array X using IPERMU; forward permutation is performed.

      USE PERMU_INT
      USE UMACH_INT
    
      IMPLICIT   NONE
!                                 Declare variables
      INTEGER    IPATH, N
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      PARAMETER  (IPATH=1, N=4)
!
      INTEGER    IPERMU(N), J, NOUT
      REAL       X(N), XPERMU(N)
!                                 Set values for  X, IPERMU
!
!                           X = ( 5.0  6.0  1.0  4.0 )
!                           IPERMU = ( 3 1 4 2 )
!
      DATA X/5.0, 6.0, 1.0, 4.0/, IPERMU/3, 1, 4, 2/
!                                 Permute X into XPERMU
      CALL PERMU (X, IPERMU, XPERMU)
!                                 Get output unit number
      CALL UMACH (2, NOUT)
!                                 Print results
      WRITE (NOUT,99999) (XPERMU(J),J=1,N)
!
99999 FORMAT ('  The output vector is:', /, 10(1X,F10.2))
      END

Output

The Output vector is:
1.00       5.00       4.00       6.00
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PERMA

Permutes the rows or columns of a matrix.

Required Arguments
A — NRA by NCA matrix to be permuted.  (Input)
IPERMU — Vector of length K containing a permutation IPERMU(1), …, IPERMU(K) of the integers 1, …, K 

where K = NRA if the rows of A are to be permuted and K = NCA if the columns of A are to be permuted.  
(Input)

APER — NRA by NCA matrix containing the permuted matrix.  (Output) 
If A is not needed, A and APER can share the same storage locations.

Optional Arguments
NRA — Number of rows.  (Input)

Default: NRA = size (A,1).
NCA — Number of columns.  (Input)

Default: NCA = size (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.  

(Input)
Default: LDA = size (A,1).

IPATH — Option parameter.  (Input) 
IPATH = 1 means the rows of A will be permuted. IPATH = 2 means the columns of A will be per-
muted.
Default: IPATH = 1.

LDAPER — Leading dimension of APER exactly as specified in the dimension statement of the calling pro-
gram.  (Input)
Default: LDAPER = size (APER,1).

FORTRAN 90 Interface
Generic: CALL PERMA (A, IPERMU, APER [, …])
Specific: The specific interface names are S_PERMA and D_PERMA.

FORTRAN 77 Interface
Single: CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER)
Double: The double precision name is DPERMA.

Description

Routine PERMA interchanges the rows or columns of a matrix using a permutation vector such as the one 
obtained from routines SVRBP (see the Utilities chapter in Math Library manual) or SVRGP.
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The routine PERMA permutes a column (row) at a time by calling PERMU. This process is continued until all 
the columns (rows) are permuted. On completion, let B = APER and pi = IPERMU(I), then

for all i, j.

Comments
1. Workspace may be explicitly provided, if desired, by use of P2RMA/DP2RMA. The reference is:

CALL P2RMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER, WORK)
The additional argument is:

WORK — Real work vector of length NCA.

Example

This example permutes the columns of a matrix A.

      USE PERMA_INT
      USE UMACH_INT

      IMPLICIT   NONE
!                                 Declare variables
      INTEGER    IPATH, LDA, LDAPER, NCA, NRA
      PARAMETER  (IPATH=2, LDA=3, LDAPER=3, NCA=5, NRA=3)
!
      INTEGER    I, IPERMU(5), J, NOUT
      REAL       A(LDA,NCA), APER(LDAPER,NCA)
!                                 Set values for  A, IPERMU
!                                 A = ( 3.0  5.0  1.0  2.0  4.0 )
!                                     ( 3.0  5.0  1.0  2.0  4.0 )
!                                     ( 3.0  5.0  1.0  2.0  4.0 )
!
!                                 IPERMU = ( 3 4 1 5 2 )
!
      DATA A/3*3.0, 3*5.0, 3*1.0, 3*2.0, 3*4.0/, IPERMU/3, 4, 1, 5, 2/
!                                 Perform column permutation on A,
!                                 giving APER
      CALL PERMA (A, IPERMU, APER, IPATH=IPATH)
!                                 Get output unit number
      CALL UMACH (2, NOUT)
!                                 Print results
      WRITE (NOUT,99999) ((APER(I,J),J=1,NCA),I=1,NRA)
!
99999 FORMAT ('  The output matrix is:', /, 3(5F8.1,/))
      END

Output

The Output matrix is:
1.0     2.0     3.0     4.0     5.0
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1.0     2.0     3.0     4.0     5.0
1.0     2.0     3.0     4.0     5.0
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RORDM

Reorders rows and columns of a symmetric matrix.

Required Arguments
AA — NAA by NAA symmetric matrix to be reordered.  (Input)

Only elements in the upper triangle of AA are referenced.
INDAA — Index vector of length NA containing the indices of the rows/columns of AA that are being 

selected for inclusion into A.  (Input)
INDAA(I) = J means the J-th row and column of AA will be the I-th row and column of A.

A — NAA by NAA matrix containing the reordered AA.  (Output)
The first NA rows and columns of A are those specified by INDAA. The remaining elements of A contain 
the rows and columns not specified in INDAA 

Optional Arguments
NAA — Order of the matrix AA.  (Input)

Default: NAA = size (AA,2).
LDAA — Leading dimension of AA exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDAA = size (AA,1).

NA — Order of the reordered matrix A.  (Input)
NA must be less than or equal to NAA.
Default: NA = size (INDAA,1).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL RORDM (AA, INDAA, A [, …])
Specific: The specific interface names are S_RORDM and D_RORDM.

FORTRAN 77 Interface
Single: CALL RORDM (NAA, AA, LDAA, NA, INDAA, A, LDA)
Double: The double precision name is DRORDM.

Description

Routine RORDM reorders the rows and columns of a symmetric matrix. Frequently in practice a sum of 
squares and crossproducts matrix is first computed for all variables in a data set. Then, a sum of squares and 
crossproducts matrix is needed for some subset of the data set variables. Alternatively, a specific order for the 
selected variables may be required for input into an analysis routine. For example, in regression, IMSL rou-
tine RCOV requires the sum of squares and crossproducts matrix for the independent variables and the 
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dependent variables. Sums of squares and crossproducts for the independent variables must appear first, fol-
lowed by entries for the dependent variables. Variables not in the regression analysis, but in the data set, can 
appear last. RORDM can be used to reorder the sum of squares and crossproducts matrix for input to RCOV.

Comments
Workspace may be explicitly provided, if desired, by use of R2RDM/DR2RDM. The reference is:

CALL R2RDM (NAA, AA, LDAA, NA, INDAA, A, LDA, IWK)
The additional argument is

IWK — Work vector of length NAA indicating how the entire AA matrix has been reordered and 
returned in A. IWK(I) = J means the J-th row and column of AA are returned as the I-th row 
and column of A.

Example

A 4 x 4 symmetric matrix AA is reordered so that row/column 4, 3, and 1 of AA correspond to row/column 
1, 2, and 3 of A, respectively.

      USE RORDM_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDA, LDAA, NA, NAA, J
      PARAMETER  (NA=3, NAA=4, LDA=NAA, LDAA=NAA)
!
      INTEGER    INDAA(NA)
      REAL       A(LDA,NAA), AA(LDAA,NAA)
!
      DATA (AA(1,J),J=1,NAA)/10., 20., 40., 70./
      DATA (AA(2,J),J=1,NAA)/20., 30., 50., 80./
      DATA (AA(3,J),J=1,NAA)/40., 50., 60., 90./
      DATA (AA(4,J),J=1,NAA)/70., 80., 90., 100./
      DATA INDAA/4, 3, 1/
!
      CALL RORDM (AA, INDAA, A)
      CALL WRRRN ('A', A)
      END

Output

                A
        1       2       3       4
1   100.0    90.0    70.0    80.0
2    90.0    60.0    40.0    50.0
3    70.0    40.0    10.0    20.0
4    80.0    50.0    20.0    30.0
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MVNAN

Moves any rows of a matrix with the IMSL missing value code NaN (not a number) in the specified columns 
to the last rows of the matrix.

Required Arguments
IIND — Index vector option.  (Input)

IND — Index vector of length IIND containing the column numbers of X that are to be checked for NaN.  
(Input if IIND is positive)
If IIND is negative, IND is not referenced and can be a vector of length one.

X — NROW by NCOL matrix whose rows are checked for NaN (not a number).  (Input/Output)
On output, the rows of X containing NaN are the last NRMISS rows of X.

ISWP — Vector of length NROW specifying the rows that were exchanged (swapped).  (Output)
The number of nonzero elements in ISWP is the number of swaps that took place. ISWP(I) = J (J 
greater than zero) means that rows I and J of X were swapped, i.e., row I of the input X is row J of the 
output X and row J of the input X is row I of the output X.

Optional Arguments
NROW — Number of rows.  (Input)

Default: NROW = size (X,1).
NCOL — Number of columns.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement of the calling program.  

(Input)
Default: LDX = size (X,1).

NRMISS — Number of rows that contained NaN in the specified columns of X.  (Output)

FORTRAN 90 Interface
Generic: CALL MVNAN (IIND, IND, X, ISWP [, …])
Specific: The specific interface names are S_MVNAN and D_MVNAN.

FORTRAN 77 Interface
Single: CALL MVNAN (NROW, NCOL, IIND, IND, X, LDX, ISWP, NRMISS)
Double: The double precision name is DMVNAN.

IIND Meaning

< 0 The first –IIND columns of X are checked for NaN.

> 0 The IIND columns of X given by IND are checked for NaN.
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Examples

Example 1

In this example, MVNAN is used to move rows containing NaN in columns 1 and 2 of a 5 by 3 matrix X to the 
last rows.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDX, NCOL, NROW, J
      PARAMETER  (NCOL=3, NROW=5, LDX=NROW)
!
      INTEGER    IIND, IND(1), ISWP(NROW), NOUT, NRMISS
      REAL       X(LDX,NCOL)
!
      DATA (X(1,J),J=1,NCOL)/1.0, 10.0, 100.0/
      DATA (X(2,J),J=1,NCOL)/2.0, 20.0, 200.0/
      DATA (X(3,J),J=1,NCOL)/3.0, 30.0, 300.0/
      DATA (X(4,J),J=1,NCOL)/4.0, 40.0, 400.0/
      DATA (X(5,J),J=1,NCOL)/5.0, 50.0, 500.0/
!
      X(2,2) = AMACH(6)
      X(4,1) = AMACH(6)
      IIND   = -2
      CALL WRRRN ('Input X', X)
      CALL MVNAN (IIND, IND, X, ISWP, NRMISS=NRMISS)
      CALL WRRRN ('Output X', X)
      CALL WRIRN ('ISWP', ISWP)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Output

         Input X
        1       2       3
1     1.0    10.0   100.0
2     2.0     NaN   200.0
3     3.0    30.0   300.0
4     NaN    40.0   400.0
5     5.0    50.0   500.0

        Output X
        1       2       3
1     1.0    10.0   100.0
2     5.0    50.0   500.0
3     3.0    30.0   300.0
4     NaN    40.0   400.0
5     2.0     NaN   200.0

ISWAP
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1   0
2   5
3   0
4   0
5   0
NRMISS =   2

Example 2

In this example, MVNAN is used to move rows containing NaN in column 1 and 3 of a 5 by 3 matrix X to the 
last rows.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDX, NCOL, NROW, J
      PARAMETER  (NCOL=3, NROW=5, LDX=NROW)
!
      INTEGER    IIND, IND(2), ISWP(NROW), NOUT, NRMISS
      REAL       X(LDX,NCOL)
!
      DATA (X(1,J),J=1,NCOL)/1.0, 10.0, 100.0/
      DATA (X(2,J),J=1,NCOL)/2.0, 20.0, 200.0/
      DATA (X(3,J),J=1,NCOL)/3.0, 30.0, 300.0/
      DATA (X(4,J),J=1,NCOL)/4.0, 40.0, 400.0/
      DATA (X(5,J),J=1,NCOL)/5.0, 50.0, 500.0/
      DATA IND/1, 3/
!
      X(2,2) = AMACH(6)
      X(4,1) = AMACH(6)
      IIND   = 2
      CALL WRRRN ('Input X', X)
      CALL MVNAN (IIND, IND, X, ISWP, NRMISS=NRMISS)
      CALL WRRRN ('Output X', X)
      CALL WRIRN ('ISWP', ISWP)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Output

         Input X
        1       2       3
1     1.0    10.0   100.0
2     2.0     NaN   200.0
3     3.0    30.0   300.0
4     NaN    40.0   400.0
5     5.0    50.0   500.0

        Output X
        1       2       3
1     1.0    10.0   100.0
2     2.0     NaN   200.0
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3     3.0    30.0   300.0
4     5.0    50.0   500.0
5     NaN    40.0   400.0

ISWP
1   0
2   0
3   0
4   5
5   0
NRMISS =   1
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SVRGN

Sorts a real array by algebraically increasing value.

Required Arguments
RA — Vector of length N containing the array to be sorted.  (Input)
RB — Vector of length N containing the sorted array.  (Output) 

If RA is not needed, RA and RB can share the same storage locations.

Optional Arguments
N — Number of elements in the array to be sorted.  (Input)

Default: N = size (RA,1).

FORTRAN 90 Interface
Generic: CALL SVRGN (RA, RB [, …])
Specific: The specific interface names are S_SVRGN and D_SVRGN.

FORTRAN 77 Interface
Single: CALL SVRGN (N, RA, RB)
Double: The double precision name is DSVRGN.

Description

Routine SVRGN sorts the elements of an array, A, into ascending order by algebraic value. The array A is 
divided into two parts by picking a central element T of the array. The first and last elements of A are com-
pared with T and exchanged until the three values appear in the array in ascending order. The elements of 
the array are rearranged until all elements greater than or equal to the central element appear in the second 
part of the array and all those less than or equal to the central element appear in the first part. The upper and 
lower subscripts of one of the segments are saved, and the process continues iteratively on the other seg-
ment. When one segment is finally sorted, the process begins again by retrieving the subscripts of another 
unsorted portion of the array. On completion, Aj ≤ Ai for j < i. For more details, see Singleton (1969), Griffin 
and Redish (1970), and Petro (1970).

Example

This example sorts the 10-element array RA algebraically.

      USE SVRGN_INT
      USE UMACH_INT

      IMPLICIT   NONE
!                                 Declare variables
      INTEGER    J
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      PARAMETER  (N=10)
      REAL       RA(N), RB(N)
!                                 Set values for  RA
!     RA = ( -1.0  2.0  -3.0  4.0  -5.0  6.0  -7.0  8.0  -9.0  10.0 )
!
      DATA RA/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0, -9.0, 10.0/
!                                 Sort RA by algebraic value into RB
      CALL SVRGN (RA, RB)
!                                 Print results
      CALL UMACH (2,NOUT)
      WRITE (NOUT, 99999) (RB(J),J=1,N)
!
99999 FORMAT (’  The output vector is:’, /, 10(1X,F5.1))
      END

Output

The Output vector is:
-9.0  -7.0  -5.0  -3.0  -1.0   2.0   4.0   6.0   8.0  10.0
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SVRGP

Sorts a real array by algebraically increasing value and return the permutation that rearranges the array.

Required Arguments
RA — Vector of length N containing the array to be sorted.  (Input)
RB — Vector of length N containing the sorted array.  (Output) 

If RA is not needed, RA and RB can share the same storage locations.
IPERM — Vector of length N.  (Input/Output) 

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM contains a record of 
permutations made on the vector RA.

Optional Arguments
N — Number of elements in the array to be sorted.  (Input)

Default: N = size (IPERM,1).

FORTRAN 90 Interface
Generic: CALL SVRGP (RA, RB, IPERM [, …])
Specific: The specific interface names are S_SVRGP and D_SVRGP.

FORTRAN 77 Interface
Single: CALL SVRGP (N, RA, RB, IPERM)
Double: The double precision name is DSVRGP.

Description

Routine SVRGP sorts the elements of an array, A, into ascending order by algebraic value, keeping a record in 
P of the permutations to the array A. That is, the elements of P are moved in the same manner as are the ele-
ments in A as A is being sorted. The routine SVRGP uses the algorithm discussed in SVRGN. On completion, 
Aj ≤ Ai for j < i.

Comments
For wider applicability, integers (1, 2, …, N) that are to be associated with RA(I) for I = 1, 2, …, N may 
be entered into IPERM(I) in any order. Note that these integers must be unique.

Example

This example sorts the 10-element array RA algebraically.

      USE SVRGP_INT
      USE UMACH_INT
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      IMPLICIT   NONE
!                                 Declare variables
      INTEGER    N, J, NOUT
      PARAMETER  (N=10)
      REAL       RA(N), RB(N)
      INTEGER    IPERM(N)
!                                 Set values for  RA and IPERM
!     RA    = ( 10.0  -9.0  8.0  -7.0  6.0  5.0  4.0  -3.0  -2.0  -1.0 )
!
!     IPERM = ( 1  2  3  4  5  6  7  8  9  10)
!
      DATA RA/10.0, -9.0, 8.0, -7.0, 6.0, 5.0, 4.0, -3.0, -2.0, -1.0/
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
!                                 Sort RA by algebraic value into RB
      CALL SVRGP (RA, RB, IPERM)
!                                 Print results
      CALL UMACH (2,NOUT)
      WRITE (NOUT, 99998) (RB(J),J=1,N)
      WRITE (NOUT, 99999) (IPERM(J),J=1,N)
!
99998 FORMAT ('  The output vector is:', /, 10(1X,F5.1))
99999 FORMAT ('  The permutation vector is:', /, 10(1X,I5))
      END

Output

The output vector is:
-9.0  -7.0  -3.0  -2.0  -1.0   4.0   5.0   6.0   8.0  10.0

The permutation vector is:
2     4     8     9    10     7     6     5     3     1
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SVIGN

Sorts an integer array by algebraically increasing value.

Required Arguments
IA — Integer vector of length N containing the array to be sorted.  (Input)
IB — Integer vector of length N containing the sorted array.  (Output) 

If IA is not needed, IA and IB can share the same storage locations.

Optional Arguments
N — Number of elements in the array to be sorted.  (Input)

Default: N = size (IA,1).

FORTRAN 90 Interface
Generic: CALL SVIGN (IA, IB [, …])
Specific: The specific interface name is S_SVIGN .

FORTRAN 77 Interface
Single: CALL SVIGN (N, IA, IB)

Description

Routine SVIGN sorts the elements of an integer array, A, into ascending order by algebraic value. The routine 
SVIGN uses the algorithm discussed in SVRGN. On completion, Aj ≤ Ai for j < i.

Example

This example sorts the 10-element array IA algebraically.

      USE SVIGN_INT
      USE UMACH_INT

      IMPLICIT   NONE
!                                 Declare variables
      INTEGER    N, J, NOUT
      PARAMETER  (N=10)
      INTEGER    IA(N), IB(N)
!                                 Set values for  IA
!     IA = ( -1  2  -3  4  -5  6  -7  8  -9  10 )
!
      DATA IA/-1, 2, -3, 4, -5, 6, -7, 8, -9, 10/
!                                 Sort IA by algebraic value into IB
      CALL SVIGN (IA, IB)
!                                 Print results
      CALL UMACH (2,NOUT)
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      WRITE (NOUT, 99999) (IB(J),J=1,N)
!
99999 FORMAT ('  The output vector is:', /, 10(1X,I5))
      END

Output

The Output vector is:
-9    -7    -5    -3    -1     2     4     6     8    10
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SVIGP

Sorts an integer array by algebraically increasing value and return the permutation that rearranges the array.

Required Arguments
IA — Integer vector of length N containing the array to be sorted.  (Input)
IB — Integer vector of length N containing the sorted array.  (Output) 

If IA is not needed, IA and IB can share the same storage locations.
IPERM — Vector of length N.  (Input/Output) 

On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM contains a record of 
permutations made on the vector IA.

Optional Arguments
N — Number of elements in the array to be sorted.  (Input)

Default: N = size (IPERM,1).

FORTRAN 90 Interface
Generic: CALL SVIGP (IA, IB, IPERM [, …])
Specific: The specific interface name is S_SVIGP.

FORTRAN 77 Interface
Single: CALL SVIGP (N, IA, IB, IPERM)

Description

Routine SVIGP sorts the elements of an integer array, A, into ascending order by algebraic value, keeping a 
record in P of the permutations to the array A. That is, the elements of P are moved in the same manner as are 
the elements in A as A is being sorted. The routine SVIGP uses the algorithm discussed in SVRGN. On com-
pletion, Aj ≤ Ai for j < i.

Comments
For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I) for I = 1, 2, …, N may be 

entered into IPERM(I) in any order. Note that these integers must be unique.

Example

This example sorts the 10-element array IA algebraically.

      USE SVIGP_INT
      USE UMACH_INT

      IMPLICIT   NONE
SVIGP         Chapter 19: Utilities      1714



!                                 Declare variables
      INTEGER    N, J, NOUT
      PARAMETER  (N=10)
      INTEGER    IA(N), IB(N), IPERM(N)
!                                 Set values for  IA and IPERM
!     IA    = ( 10  -9  8  -7  6  5  4  -3  -2  -1 )
!
!     IPERM = ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 )
!
      DATA IA/10, -9, 8, -7, 6, 5, 4, -3, -2, -1/
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
!                                 Sort IA by algebraic value into IB
      CALL SVIGP (IA, IB, IPERM)
!                                 Print results
      CALL UMACH (2,NOUT)
      WRITE (NOUT, 99998) (IB(J),J=1,N)
      WRITE (NOUT, 99999) (IPERM(J),J=1,N)
!
99998 FORMAT (' The output vector is:', /, 10(1X,I5))
99999 FORMAT (' The permutation vector is:', /, 10(1X,I5))
      END

Output

The Output vector is:
-9    -7    -3    -2    -1     4     5     6     8    10

The permutation vector is:
2     4     8     9    10     7     6     5     3     1
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SCOLR

Sorts columns of a real rectangular matrix using keys in rows.

Required Arguments
X — NRX by NCX matrix.  (Input, if IRET = 1; input/output if IRET = 0)

On input, X contains the matrix to be sorted. If IRET = 0, the output X contains the sorted matrix.
INDKEY — Vector of length NKEY giving the row numbers of X which are to be used in the sort.  (Input)
IPERM — Permutation vector of length NCX specifying the rearrangement of the columns.  (Output)

IPERM (I) = J means column I of the sorted X is column J of the unsorted X.
NGROUP — Number of groups.  (Output)

The columns of the sorted X are partitioned into groups. A group contains columns that are equal with 
respect to the method of comparison. NGROUP is the number of groups of different columns.

NI — Vector of length NGROUP containing the number of columns in each group.  (Output)
The first NI(1) columns of the sorted X are group number 1; the next NI(2) columns of the sorted X are 
group number 2; … the last NI(NGROUP) columns of the sorted X are group number NGROUP. If 
NGROUP is not known prior to the invocation of this routine, NCX(an upper bound for NGROUP) can be 
used as the dimension of NI.

Optional Arguments
NRX — Number of rows of X.  (Input)

Default: NRX = size (X,1).
NCX — Number of columns of X.  (Input)

Default: NCX = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

ICOMP — Option giving the method of comparison of the column vectors.  (Input)
Default: ICOMP = 0.

IORDR — Option giving the sorting order.  (Input)
Default: IORDR = 0.

ICOMP Action

0 Elementwise, by algebraic values

1 Elementwise, by absolute values

IORDR Action

0 Ascending

1 Descending
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IRET — Option for determining whether the columns of X are to be permuted.  (Input)
Default: IRET = 0.

NKEY — Number of rows of X on which to sort.  (Input)
Default: NKEY = size (INDKEY,1).

FORTRAN 90 Interface
Generic: CALL SCOLR (X, INDKEY, IPERM, NGROUP, NI [, …])
Specific: The specific interface names are S_SCOLR and D_SCOLR.

FORTRAN 77 Interface
Single: CALL SCOLR (NRX, NCX, X, LDX, ICOMP, IORDR, IRET, NKEY, INDKEY, IPERM, NGROUP, 

NI)
Double: The double precision name is DSCOLR.

Description

Routine SCOLR sorts the columns of a real matrix X using particular rows in X as the keys. One of two meth-
ods for comparing the columns can be used for sorting.

1. Algebraic with the first key as the most significant, the second key next most significant and so forth.
2. Absolute values with the first key as the most significant, the second key next most significant and so 

forth.

The columns of X can be put in ascending or descending order.

The routine is useful for data containing classification variables. Routine CSTAT (see Chapter 1, “Basic Statis-
tics”) can be used to form the cells and frequency counts for a multi-way table from data. The columns of the 
output matrix contain the values of each combination of values of the classification variables along with the 
tallies. SCOLR can then be used to sort the columns of this output matrix using the classification variables as 
keys.

SCOLR is based on a quicksort method given by Singleton (1969). Modifications by Griffin and Redish (1970) 
and Petro (1970) are incorporated.

Comments
1. Workspace may be explicitly provided, if desired, by use of S2OLR/DS2OLR. The reference is:

CALL S2OLR (NRX, NCX, X, LDX, ICOMP, IORDR, IRET, NKEY, INDKEY, IPERM, NGROUP, NI, WK, 
IWK)

The additional arguments are as follows:

WK — Work vector of length 2 * m.

IRET Action

0 The columns of X are sorted.

1 X is unchanged (detached key sort).
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IWK — Work vector of length m + INT(2.8854 ln(m)) + 2.
2. When X is sorted by algebraic value (ICOMP = 0) in ascending order, the resulting array X is such that:

For i = 1, 2, …, NCX – 1, X(INDKEY(1), i) ≤ X(INDKEY(1), i + 1)
For k = 2, …, NKEY, if X(INDKEY(j), i) = X(INDKEY(j), i + 1) for j = 1, 2, …, k - 1, then 
X(INDKEY (k), i) ≤ X(INDKEY(k), i + 1).
When ICOMP = 1, the absolute values are compared instead.

Example

The columns of a 5 x 10 matrix X are sorted in descending order by absolute value using rows 1, 2, 3, and 5 as 
the keys. The permutations to put the columns of X in order are returned. The input matrix X is not changed.

      USE SCOLR_INT
      USE WRRRL_INT
      USE WRIRL_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    LDX, NCX, NKEY, NRX
      PARAMETER  (NCX=10, NKEY=4, NRX=5, LDX=NRX)
!
      INTEGER    ICOMP, INDKEY(NKEY), IORDR, IPERM(NCX), IRET, NI(NCX), &
                NGROUP, NOUT
      REAL       X(LDX,NCX)
      CHARACTER  CLABEL(1)*10, FMT*10, RLABEL(1)*23
!
      DATA CLABEL(1)/'NONE'/, RLABEL(1)/'NONE'/
      DATA X/-1.0, -10.0, -11.0, 10.0, -1.0, 2.0, 20.0, 22.0, -20.0, &
           -2.0, -3.0, -30.0, 33.0, 30.0, -3.0, 4.0, 40.0, 44.0, &
           -40.0, -4.0, -5.0, -50.0, 55.0, 50.0, -5.0, -1.0, 60.0, &
           -66.0, -60.0, 6.0, 2.0, -70.0, -77.0, 70.0, 7.0, -3.0, &
           -30.0, -88.0, 80.0, 8.0, 4.0, 40.0, -99.0, -90.0, 9.0, &
           -5.0, -50.0, -100.0, 100.0, 10.0/
      DATA INDKEY/1, 2, 3, 5/
!
      ICOMP = 1
      IORDR = 1
      IRET  = 1
      CALL SCOLR (X, INDKEY, IPERM, NGROUP, NI, ICOMP=ICOMP, &
                  IORDR=IORDR, IRET=IRET)
!
      FMT       = '(F6.1)'
      RLABEL(1) = 'NONE'
      CALL WRRRL ('X', X, RLABEL, CLABEL)
!
      FMT       = '(I4)'
      RLABEL(1) = 'IPERM = '
      CALL WRIRL ('%/', IPERM, RLABEL, CLABEL, 1, NCX, 1, FMT='(I4)')
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'NGROUP = ', NGROUP
!
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      RLABEL(1) = 'NI = '
      CALL WRIRL ('%/', NI, RLABEL, CLABEL, 1, NGROUP, 1, FMT='(I4)')
!
      END

Output

                                       X
 -1.0    2.0   -3.0     4.0    -5.0    -1.0     2.0    -3.0     4.0    -5.0
-10.0   20.0  -30.0    40.0   -50.0    60.0   -70.0   -30.0    40.0   -50.0
-11.0   22.0   33.0    44.0    55.0   -66.0   -77.0   -88.0   -99.0  -100.0
 10.0  -20.0   30.0   -40.0    50.0   -60.0    70.0    80.0   -90.0   100.0
 -1.0   -2.0   -3.0    -4.0    -5.0     6.0     7.0     8.0     9.0    10.0
IPERM =    10     5     9     4     8     3     7     2     6     1
NGROUP =   10
NI =     1     1     1     1     1     1     1     1     1     1
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SROWR

Sorts rows of a real rectangular matrix using keys in columns.

Required Arguments
X — NROW by NCOL matrix.  (Input, if IRET = 1; input/output if IRET = 0)

On input, X contains the matrix to be sorted. If IRET = 0, the output X contains the sorted matrix.
INDKEY — Vector of length NKEY giving the column numbers of X which are to be used in the sort.  

(Input)
IPERM — Permutation vector of length NROW specifying the rearrangement of the rows.  (Output)

IPERM(I) = J means row I of the sorted X is row J of the unsorted X.
NGROUP — Number of groups.  (Output, if IRET ≤ 1)

The rows of the sorted X are partitioned into groups. A group contains rows that are equal with respect 
to the method of comparison. NGROUP is the number of groups of different rows.

NI — Vector of length NGROUP containing the number of rows in each group.  (Output, if IRET ≤ 1)
The first NI(1) rows of the sorted X are group number 1. The next NI(2) rows of the sorted X are group 
number 2. … The last NI(NGROUP) rows of the sorted X are group number NGROUP. If NGROUP is not 
known prior to the invocation of this routine, NROW(an upper bound for NGROUP) can be used as the 
dimension of NI. If IRET ≥ 2, NI is not referenced and can be a vector of length one.

Optional Arguments
NROW — Number of rows of X.  (Input)

Default: NROW = size (X,1).
NCOL — Number of columns of X.  (Input)

Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement of the calling program.  

(Input)
Default: LDX = size (X,1).

ICOMP — Option giving the method of comparison of the row vectors.  (Input) 
Default: ICOMP = 0.

IORDR — Option giving the sorting order.  (Input)
Default: IORDR = 0.

IRET — Option to indicate information returned.  (Input)
Default: IRET = 0.

ICOMP Action

0 Elementwise, by algebraic values

1 Elementwise, by absolute values

IORDR Action

0 Ascending

1 Descending
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NKEY — Number of columns of X on which to sort.  (Input)
Default: NKEY = size (INDKEY,1).

NRMISS — Number of rows that contained NaN in the columns of X used in the sort.  (Output)
These rows are considered as a separate group from the other NGROUP groups and are put as the last 
NRMISS rows of the sorted X.

FORTRAN 90 Interface
Generic: CALL SROWR (X, INDKEY, IPERM, NGROUP, NI [, …])
Specific: The specific interface names are S_SROWR and D_SROWR.

FORTRAN 77 Interface
Single: CALL SROWR (NROW, NCOL, X, LDX, ICOMP, IORDR, IRET, NKEY, INDKEY, IPERM, NGROUP, 

NI, NRMISS)
Double: The double precision name is DSROWR.

Description

Routine SROWR sorts the rows of a real matrix X using particular rows in X as the keys. One of two methods 
for comparing the rows can be used for sorting.

1. Algebraic with the first key as the most significant, the second key next most significant and so forth.
2. Absolute values with the first key as the most significant, the second key next most significant and so 

forth.

The rows of X can be put in ascending or descending order.

The routine is useful for grouping data based on values of specified variables. The rows of X containing the 
IMSL missing value code NaN (not a number) in at least one of the specified columns are considered as an 
additional group of NRMISS rows. These rows are moved to the end of the sorted X. SROWR is based on a 
quicksort method given by Singleton (1969). Modifications by Griffin and Redish (1970) and Petro (1970) are 
incorporated.

Comments
1. Workspace may be explicitly provided, if desired, by use of S2OWR/DS2OWR. The reference is:

CALL S2OWR (NROW, NCOL, X, LDX, ICOMP, IORDR, IRET, NKEY, INDKEY, IPERM, NGROUP, NI, 
NRMISS, WK, IWK)

The additional arguments are as follows:

IRET Action

0 The sorted X is returned along with NGROUP and NI.

1 X is unchanged (detached key sort) and NGROUP and NI are returned.

2 The sorted X is returned, but NGROUP and NI are not returned.

3 X is unchanged (detached key sort) and NGROUP and NI are not returned.
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WK — Work vector of length 2 * m.

IWK — Work vector of length m + INT(2.8854 * ln(m)) + 2.
2. When X is sorted by algebraic values (ICOMP = 0), in ascending order, the resulting array X is such that:

For i = 1, 2, …, NROW – 1, X(i, INDKEY(1)) ≤ X(i + 1, INDKEY(1)).
For k = 2, …, NKEY, if X(i, INDKEY(j)) = X(i + 1, INDKEY(j)) for j = 1, 2, …, k – 1; then 
X(i, INDKEY(k)) ≤ X(i + 1, INDKEY(k)).
When ICOMP = 1, the absolute values are compared instead.

Example

The rows of a 10 x 3 matrix X are sorted in ascending order by algebraic value using columns 2 and 3 as the 
keys. The permutations to put the rows of the input X into sorted order are returned along with the sorted X.

      USE IMSL_LIBRARIES

      IMPLICIT   NONE
      INTEGER    LDX, NCOL, NKEY, NROW, J
      PARAMETER  (NCOL=3, NKEY=2, NROW=10, LDX=NROW)
!
      INTEGER    ICOMP, INDKEY(NKEY), IORDR, IPERM(NROW), IRET, &
                 NGROUP, NI(NROW), NOUT, NRMISS
      REAL       X(LDX,NCOL)
!
      DATA (X(1,J),J=1,3)/1.0, 1., 1./
      DATA (X(2,J),J=1,3)/2.0, 2., 1./
      DATA (X(3,J),J=1,3)/3.0, 1., 1./
      DATA (X(4,J),J=1,3)/4.0, 1., 1./
      DATA (X(5,J),J=1,3)/5.0, 2., 2./
      DATA (X(6,J),J=1,3)/6.0, 1., 2./
      DATA (X(7,J),J=1,3)/7.0, 1., 2./
      DATA (X(8,J),J=1,3)/8.0, 1., 1./
      DATA (X(9,J),J=1,3)/9.0, 2., 2./
      DATA (X(10,J),J=1,3)/9.0, 1., 1./
      DATA INDKEY/2, 3/
!
      X(5,3) = AMACH(6)
      X(7,2) = AMACH(6)
      CALL SROWR (X, INDKEY, IPERM, NGROUP, NI, NRMISS=NRMISS)
      CALL WRRRN ('X', X)
      CALL WRIRN ('IPERM', IPERM)
      CALL WRIRN ('NI', NI, NGROUP, 1, NGROUP)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ' '
      WRITE (NOUT,*) 'NRMISS = ', NRMISS
      END

Output

              X
         1       2       3
 1   1.000   1.000   1.000
 2   9.000   1.000   1.000
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 3   3.000   1.000   1.000
 4   4.000   1.000   1.000
 5   8.000   1.000   1.000
 6   6.000   1.000   2.000
 7   2.000   2.000   1.000
 8   9.000   2.000   2.000
 9   7.000     NaN   2.000
10   5.000   2.000     NaN

 IPERM
 1    1
 2   10
 3    3
 4    4
 5    8
 6    6
 7    2
 8    9
 9    7
10    5

  NI
 1   5
 2   1
 3   1
 4   1
NRMISS =   2
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SRCH

Searches a sorted vector for a given scalar and return its index.

Required Arguments
VALUE — Scalar to be searched for in Y.  (Input)
X — Vector of length N * INCX.  (Input)

Y is obtained from X for I = 1, 2, …, N by Y(I) = X(1 + (I - 1) * INCX). Y(1), Y(2), …, Y(N) must be in 
ascending order.

INDEX — Index of Y pointing to VALUE.  (Output) 
If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not found in Y. 

Optional Arguments
N — Length of vector Y.  (Input)

Default: N = (size (X,1)) / INCX.
INCX — Displacement between elements of X.  (Input) 

INCX must be greater than zero.
Default: INCX = 1.

FORTRAN 90 Interface
Generic: CALL SRCH (VALUE, X, INDEX [, …])
Specific: The specific interface names are S_SRCH and D_SRCH.

FORTRAN 77 Interface
Single: CALL SRCH (N, VALUE, X, INCX, INDEX)
Double: The double precision name is DSRCH.

Description

Routine SRCH searches a real vector x (stored in X), whose n elements are sorted in ascending order for a real 
number c (stored in VALUE). If c is found in x, its index i (stored in INDEX) is returned so that xi = c. Other-
wise, a negative number i is returned for the index. Specifically,

INDEX Location of VALUE

1 thru N VALUE = Y(INDEX)

-1 VALUE < Y(1) or N = 0

-N thru -2 Y(-INDEX - 1) < VALUE < Y(INDEX)

-(N + 1) VALUE > YN
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The argument INCX is useful if a row of a matrix, for example, row number I of a matrix X, must be searched. 
The elements of row I are assumed to be in ascending order. In this case, set INCX equal to the leading 
dimension of X exactly as specified in the dimension statement in the calling program. With X declared

REAL X(LDX,N)

the invocation

CALL SRCH (VALUE, X(I, 1), INDEX, N=N, INCX=LDX)

returns an index that will reference a column number of X.

Routine SRCH performs a binary search. The routine is an implementation of algorithm B discussed by Knuth 
(1973, pages 407-411).

Example

This example searches a real vector sorted in ascending order for the value 653.0. The problem is discussed 
by Knuth (1973, pages 407-409).

      USE SRCH_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    N
      PARAMETER  (N=16)
!
      INTEGER    INDEX, NOUT
      REAL       VALUE, X(N)
!
      DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0, &
          512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/
!
      VALUE = 653.0
      CALL SRCH (VALUE, X, INDEX)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'INDEX = ', INDEX
      END

Output

INDEX =   11

if 1 ≤ i ≤ n then xi = c

if i = -1 then c < x1 or n = 0

if -n ≤ i ≤ -2 then x-i−1< c < x-i

if i = -(n + 1) then c > xn
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ISRCH

Searches a sorted integer vector for a given integer and return its index.

Required Arguments
IVALUE — Scalar to be searched for in IY.  (Input)
IX — Vector of length N * INCX.  (Input) 

IY is obtained from IX for I = 1, 2, …, N by IY(I) = IX(1 + (I - 1) * INCX). IY(1), IY(2), …, IY(N) 
must be in ascending order.

INDEX — Index of IY pointing to IVALUE.  (Output) 
If INDEX is positive, IVALUE is found in IY. If INDEX is negative, IVALUE is not found in IY.

Optional Arguments
N — Length of vector IY.  (Input)

Default: N = size (IX,1) / INCX.
INCX — Displacement between elements of IX.  (Input) 

INCX must be greater than zero.
Default: INCX = 1.

FORTRAN 90 Interface
Generic: CALL ISRCH (IVALUE, IX, INDEX [, …])
Specific: The specific interface name is S_ISRCH.

FORTRAN 77 Interface
Single: CALL ISRCH (N, IVALUE, IX, INCX, INDEX)

Description

Routine ISRCH searches an integer vector x (stored in IX), whose n elements are sorted in ascending order 
for an integer c (stored in IVALUE). If c is found in x, its index i (stored in INDEX) is returned so that xi = c. 
Otherwise, a negative number i is returned for the index. Specifically,

INDEX Location of VALUE

1 thru N IVALUE = IY(INDEX)

-1 IVALUE < IY(1) or N = 0

-N thru -2 IY(-INDEX - 1) < IVALUE < IY (- INDEX)

-(N + 1) IVALUE> Y(N)

if 1 ≤ i ≤ n Then xi = c

if i = -1 Then c < x1 or n = 0
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The argument INCX is useful if a row of a matrix, for example, row number I of a matrix IX, must be 
searched. The elements of row I are assumed to be in ascending order. Here, set INCX equal to the leading 
dimension of IX exactly as specified in the dimension statement in the calling program. With IX declared

INTEGER IX(LDIX,N)

the invocation

CALL ISRCH (VALUE, X(I, 1), INDEX, N=N, INCX=LDIX)

returns an index that will reference a column number of IX.

The routine ISRCH performs a binary search. The routine is an implementation of algorithm B discussed by 
Knuth (1973, pages 407-411).

Example

This example searches an integer vector sorted in ascending order for the value 653. The problem is dis-
cussed by Knuth (1973, pages 407-409).

      USE ISRCH_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    N
      PARAMETER  (N=16)
!
      INTEGER    INDEX, NOUT
      INTEGER    IVALUE, IX(N)
!
      DATA IX/61, 87, 154, 170, 275, 426, 503, 509, 512, 612, 653, 677, &
             703, 765, 897, 908/
!
      IVALUE = 653
      CALL ISRCH (IVALUE, IX, INDEX)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'INDEX = ', INDEX
      END

Output

INDEX =   11

if -n ≤ i ≤ -2 Then x-i-1< c < x-i

if i = -(n + 1) Then c > xn
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SSRCH

Searches a character vector, sorted in ascending ASCII order, for a given string and return its index.

Required Arguments
N — Length of vector CHY.  (Input)

Default: N = size (CHX,1) / INCX.
STRING — Character string to be searched for in CHY.  (Input)
CHX — Vector of length N * INCX containing character strings.  (Input) 

CHY is obtained from CHX for I = 1, 2, …, N by CHY(I) = CHX(1 + (I - 1) * INCX). CHY(1), CHY(2), …, 
CHY(N) must be in ascending ASCII order.

INCX — Displacement between elements of CHX.  (Input) 
INCX must be greater than zero.
Default: INCX = 1.

INDEX — Index of CHY pointing to STRING.  (Output) 
If INDEX is positive, STRING is found in CHY. If INDEX is negative, STRING is not found in CHY.

FORTRAN 90 Interface
Generic: CALL SSRCH (N, STRING, CHX, INCX, INDEX)
Specific: The specific interface name is SSRCH.

FORTRAN 77 Interface
Single: CALL SSRCH (N, STRING, CHX, INCX, INDEX)

Description

Routine SSRCH searches a vector of character strings x (stored in CHX), whose n elements are sorted in 
ascending ASCII order, for a character string c (stored in STRING). If c is found in x, its index i (stored in 
INDEX) is returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically,

INDEX  Location of STRING

1 thru N  STRING = CHY(INDEX)

-1  STRING < CHY(1) or N = 0

-N thru -2  CHY(-INDEX - 1) < STRING < CHY(-INDEX)

-(N + 1)  STRING > CHY(N)

if 1 ≤ i ≤ n Then xi = c

if i = -1 Then c < x1 or n = 0

if -n ≤ i ≤ -2 Then x-i-1< c < x-i

if i = -(n + 1) Then c > xn
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Here, “<“ and “>” are in reference to the ASCII collating sequence. For comparisons made between character 
strings c and xi with different lengths, the shorter string is considered as if it were extended on the right with 
blanks to the length of the longer string. (SSRCH uses FORTRAN intrinsic functions LLT and LGT.)

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix CHX, must be 
searched. The elements of row I are assumed to be in ascending ASCII order. In this case, set INCX equal to 
the leading dimension of CHX exactly as specified in the dimension statement in the calling program. With 
CHX declared

CHARACTER * 7 CHX(LDCHX,N)

the invocation

CALL SSRCH (STRING, CHX(I:,1), INDEX, N=N, INCX=LDCHX)

returns an index that will reference a column number of CHX.

Routine SSRCH performs a binary search. The routine is an implementation of algorithm B discussed by 
Knuth (1973, pages 407-411).

Example

This example searches a CHARACTER * 2 vector containing 9 character strings, sorted in ascending ASCII 
order, for the value ’CC’.

      USE SSRCH_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    N, INCX
      PARAMETER  (N=9)

!
      INTEGER    INDEX, NOUT
      CHARACTER  CHX(N)*2, STRING*2
!
      DATA CHX/'AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG', 'HH', &
          'II'/
!
      INCX   = 1
      STRING = 'CC'
      CALL SSRCH (N, STRING, CHX, INCX, INDEX)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'INDEX = ', INDEX
      END

Output

INDEX =   3
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ACHAR

This function returns a character given its ASCII value.

Function Return Value
ACHAR — CHARACTER * 1 string containing the character in the I-th position of the ASCII collating 

sequence.  (Output)

Required Arguments
I — Integer ASCII value of the character desired.  (Input) 

I must be greater than or equal to zero and less than or equal to 127.

FORTRAN 90 Interface
Generic: ACHAR (I)
Specific: The specific interface name is ACHAR.

FORTRAN 77 Interface
Single: ACHAR (I)

Description

Routine ACHAR returns the character of the input ASCII value. The input value should be between 0 and 127. 
If the input value is out of range, the value returned in ACHAR is machine dependent.

Example

This example returns the character of the ASCII value 65.

      USE ACHAR_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    I, NOUT
!
      CALL UMACH (2, NOUT)
!                                 Get character for ASCII value
!                                 of 65 ('A')
      I = 65
      WRITE (NOUT,99999) I, ACHAR(I)
!
99999 FORMAT (' For the ASCII value of ', I2, ', the character is : ', &
            A1)
      END
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Output

For the ASCII value of 65, the character is : A
ACHAR         Chapter 19: Utilities      1731



IACHAR

This function returns the integer ASCII value of a character argument.

Function Return Value
IACHAR — Integer ASCII value for CH.  (Output) 

The character CH is in the IACHAR-th position of the ASCII collating sequence.

Required Arguments
CH — Character argument for which the integer ASCII value is desired.  (Input)

FORTRAN 90 Interface
Generic: IACHAR (CH)
Specific: The specific interface name is IACHAR.

FORTRAN 77 Interface
Single: IACHAR (CH)

Description

Routine IACHAR returns the ASCII value of the input character.

Example

This example gives the ASCII value of character A.

      USE IACHAR_INT

      IMPLICIT   NONE
      INTEGER    NOUT
      CHARACTER  CH
!
      CALL UMACH (2, NOUT)
!                                 Get ASCII value for the character
!                                 'A'.
      CH = 'A'
      WRITE (NOUT,99999) CH, IACHAR(CH)
!
99999 FORMAT (' For the character  ', A1, '  the ASCII value is : ', &
            I3)
      END

Output

For the character  A  the ASCII value is :  65
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ICASE

This function returns the ASCII value of a character converted to uppercase.

Function Return Value
ICASE — Integer ASCII value for CH without regard to the case of CH.  (Output) 

Routine ICASE returns the same value as IACHAR for all but lowercase letters. For these, it returns the 
IACHAR value for the corresponding uppercase letter.

Required Arguments
CH — Character to be converted.  (Input)

FORTRAN 90 Interface
Generic: ICASE (CH)
Specific: The specific interface name is ICASE.

FORTRAN 77 Interface
Single: ICASE (CH)

Description

Routine ICASE converts a character to its integer ASCII value. The conversion is case insensitive; that is, it 
returns the ASCII value of the corresponding uppercase letter for a lowercase letter.

Example

This example shows the case insensitive conversion.

      USE ICASE_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOUT
      CHARACTER  CHR
!                                 Get output unit number
      CALL UMACH (2, NOUT)
!                                 Get ASCII value for the character
!                                 'a'.
      CHR = 'a'
      WRITE (NOUT,99999) CHR, ICASE(CHR)
!
99999 FORMAT (' For the character  ', A1, '  the ICASE value is : ', &
            I3)
      END
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Output
For the character  a  the ICASE value is :  65
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IICSR

This function compares two character strings using the ASCII collating sequence but without regard to case.

Function Return Value
IICSR — Comparison indicator.  (Output) 

Let USTR1 and USTR2 be the uppercase versions of STR1 and STR2, respectively. The following table 
indicates the relationship between USTR1 and USTR2 as determined by the ASCII collating sequence. 

Required Arguments
STR1 — First character string.  (Input)
STR2 — Second character string.  (Input)

FORTRAN 90 Interface
Generic: IICSR (STR1, STR2)
Specific: The specific interface name is IICSR.

FORTRAN 77 Interface
Single: IICSR (STR1, STR2)

Description

Routine IICSR compares two character strings. It returns -1 if the first string is less than the second string, 0 
if they are equal, and 1 if the first string is greater than the second string. The comparison is case insensitive.

Comments

If the two strings, STR1 and STR2, are of unequal length, the shorter string is considered as if it were 
extended with blanks to the length of the longer string.

Example

This example shows different cases on comparing two strings.

      USE IICSR_INT
      USE UMACH_INT

IICSR Meaning

-1 USTR1 precedes USTR2

0 USTR1 equals USTR2

1 USTR1 follows USTR2
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      IMPLICIT   NONE
      INTEGER    NOUT
      CHARACTER  STR1*6, STR2*6
!                                 Get output unit number
      CALL UMACH (2, NOUT)
!                                 Compare String1 and String2
!                                 String1 is 'bigger' than String2
      STR1 = 'ABc 1'
      STR2 = ' '
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
!
!                                 String1 is 'equal' to String2
      STR1 = 'AbC'
      STR2 = 'ABc'
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
!
!                                 String1 is 'smaller' than String2
      STR1 = 'ABc'
      STR2 = 'aBC 1'
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
!
99999 FORMAT (' For String1 = ', A6, 'and String2 = ', A6, &
            ' IICSR = ', I2, /)
      END

Output

For String1 = ABc 1 and String2 =        IICSR =  1

For String1 = AbC   and String2 = ABc    IICSR =  0

For String1 = ABc   and String2 = aBC 1  IICSR = -1
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IIDEX

This function determines the position in a string at which a given character sequence begins without regard 
to case.

Function Return Value
IIDEX — Position in CHRSTR where KEY begins.  (Output) 

If KEY occurs more than once in CHRSTR, the starting position of the first occurrence is returned. If KEY 
does not occur in CHRSTR, then IIDEX returns a zero.

Required Arguments
CHRSTR — Character string to be searched.  (Input)
KEY — Character string that contains the key sequence.  (Input)

FORTRAN 90 Interface
Generic: IIDEX (CHRSTR, KEY)
Specific: The specific interface name is S_IIDEX.

FORTRAN 77 Interface
Single: IIDEX (CHRSTR, KEY)

Description

Routine IIDEX searches for a key string in a given string and returns the index of the starting element at 
which the key character string begins. It returns 0 if there is no match. The comparison is case insensitive. For 
a case-sensitive version, use the FORTRAN 77 intrinsic function INDEX.

Comments

If the length of KEY is greater than the length CHRSTR, IIDEX returns a zero.

Example

This example locates a key string.

      USE IIDEX_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOUT
      CHARACTER  KEY*5, STRING*10
!                                 Get output unit number
      CALL UMACH (2, NOUT)
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!                                 Locate KEY in STRING
      STRING = 'a1b2c3d4e5'
      KEY    = 'C3d4E'
      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)
!
      KEY = 'F'
      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)
!
99999 FORMAT (' For STRING = ', A10, ' and KEY = ', A5, ' IIDEX = ', I2, &
            /)
      END

Output

For STRING = a1b2c3d4e5 and KEY = C3d4E IIDEX =  5

For STRING = a1b2c3d4e5 and KEY = F     IIDEX =  0
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CVTSI

Converts a character string containing an integer number into the corresponding integer form.

Required Arguments
STRING — Character string containing an integer number.  (Input)
NUMBER — The integer equivalent of STRING.  (Output)

FORTRAN 90 Interface
Generic: CALL CVTSI (STRING, NUMBER)
Specific: The specific interface name is CVTSI.

FORTRAN 77 Interface
Single: CALL CVTSI (STRING, NUMBER)

Description

Routine CVTSI converts a character string containing an integer to an INTEGER variable. Leading and trail-
ing blanks in the string are ignored. If the string contains something other than an integer, a terminal error is 
issued. If the string contains an integer larger than can be represented by an INTEGER variable as determined 
from routine IMACH (see the Reference Material), a terminal error is issued.

Example

The string “12345” is converted to an INTEGER variable.

      USE CVTSI_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    NOUT, NUMBER
      CHARACTER  STRING*10
!
      DATA STRING/'12345'/
!
      CALL CVTSI (STRING, NUMBER)
!
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'NUMBER = ', NUMBER
      END

Output

NUMBER =   12345
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CPSEC

This fuction returns CPU time used in seconds.

Function Return Value
CPSEC — CPU time used (in seconds) since first call to CPSEC.  (Output)

Required Arguments
None

FORTRAN 90 Interface
Generic: CPSEC ()
Specific: The specific interface name is CPSEC.

FORTRAN 77 Interface
Single: CPSEC ()

Comments
1. The first call to CPSEC returns 0.0.
2. The accuracy of this routine depends on the hardware and the operating system. On some systems, 

identical runs can produce timings differing by more than 10 percent.
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TIMDY

Gets time of day.

Required Arguments
IHOUR — Hour of the day.  (Output) 

IHOUR is between 0 and 23 inclusive.
MINUTE — Minute within the hour.  (Output) 

MINUTE is between 0 and 59 inclusive.
ISEC — Second within the minute.  (Output) 

ISEC is between 0 and 59 inclusive.

FORTRAN 90 Interface
Generic: CALL TIMDY (IHOUR, MINUTE, ISEC)
Specific: The specific interface name is TIMDY.

FORTRAN 77 Interface
Single: CALL TIMDY (IHOUR, MINUTE, ISEC)

Description
Routine TIMDY is used to retrieve the time of day.

Example

The following example uses TIMDY to return the current time. Obviously, the output is dependent upon the 
time at which the program is run.

      USE TIMDY_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IHOUR, IMIN, ISEC, NOUT
!
      CALL TIMDY (IHOUR, IMIN, ISEC)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'Hour:Minute:Second = ', IHOUR, ':', IMIN, &
                   ':', ISEC
      IF (IHOUR .EQ. 0) THEN
         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &
                      ' second(s) past midnight.'
      ELSE IF (IHOUR .LT. 12) THEN
         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &
                      ' second(s) past ', IHOUR, ' am.'
      ELSE IF (IHOUR .EQ. 12) THEN
         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &
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                      ' second(s) past noon.'
      ELSE
         WRITE (NOUT,*) 'The time is ', IMIN, ' minute(s), ', ISEC, &
                      ' second(s) past ', IHOUR-12, ' pm.'
      END IF
      END

Output

Hour:Minute:Second =   16:  52:  29
The time is   52 minute(s),   29 second(s) past   4 pm.
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TDATE

Gets today’s date.

Required Arguments
IDAY — Day of the month.  (Output) 

IDAY is between 1 and 31 inclusive.
MONTH — Month of the year.  (Output) 

MONTH is between 1 and 12 inclusive.
IYEAR — Year.  (Output) 

For example, IYEAR = 1985.

FORTRAN 90 Interface
Generic: CALL TDATE (IDAY, MONTH, IYEAR)
Specific: The specific interface name is TDATE.

FORTRAN 77 Interface
Single: CALL TDATE (IDAY, MONTH, IYEAR)

Description

Routine TDATE is used to retrieve today’s date. Obviously, the output is dependent upon the date the pro-
gram is run.

Example

The following example uses TDATE to return today’s date.

      USE TDATE_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IDAY, IYEAR, MONTH, NOUT
!
      CALL TDATE (IDAY, MONTH, IYEAR)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'Day-Month-Year = ', IDAY, '-', MONTH, &
                   '-', IYEAR
      END

Output

Day-Month-Year =   2-  4-  1991
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NDAYS

This function computes the number of days from January 1, 1900, to the given date.

Function Return Value
NDAYS — Function value.  (Output) 

If NDAYS is negative, it indicates the number of days prior to January 1, 1900.

Required Arguments
IDAY — Day of the input date.  (Input)
MONTH — Month of the input date.  (Input)
IYEAR — Year of the input date.  (Input) 

1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50 A.D.

FORTRAN 90 Interface
Generic: NDAYS (IDAY, MONTH, IYEAR)
Specific: The specific interface name is NDAYS.

FORTRAN 77 Interface
Single: NDAYS (IDAY, MONTH, IYEAR)

Description

Function NDAYS returns the number of days from January 1, 1900, to the given date. The function NDAYS 
returns negative values for days prior to January 1, 1900. A negative IYEAR can be used to specify B.C. Input 
dates in year 0 and for October 5, 1582, through October 14, 1582, inclusive, do not exist; consequently, in 
these cases, NDAYS issues a terminal error.

Comments
1. Informational error

2. The number of days from one date to a second date can be computed by two references to NDAYS and 
then calculating the difference.

3. The beginning of the Gregorian calendar was the first day after October 4, 1582, which became Octo-
ber 15, 1582. Prior to that, the Julian calendar was in use. NDAYS makes the proper adjustment for the 
change in calendars.

Type Code Description

1 1 The Julian calendar, the first modern calendar, went into use in 45 B.C. No 
calendar prior to 45 B.C. was as universally used nor as accurate as the 
Julian. Therefore, it is assumed that the Julian calendar was in use prior to 45 
B.C.
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Example

The following example uses NDAYS to compute the number of days from January 15, 1986, to February 
28, 1986:

      USE NDAYS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IDAY, IYEAR, MONTH, NDAY0, NDAY1, NOUT
!
      IDAY  = 15
      MONTH = 1
      IYEAR = 1986
      NDAY0 = NDAYS(IDAY,MONTH,IYEAR)
      IDAY  = 28
      MONTH = 2
      IYEAR = 1986
      NDAY1 = NDAYS(IDAY,MONTH,IYEAR)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'Number of days = ', NDAY1 - NDAY0
      END

Output

Number of days =   44
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NDYIN

Gives the date corresponding to the number of days since January 1, 1900.

Required Arguments
NDAYS — Number of days since January 1, 1900.  (Input)
IDAY — Day of the input date.  (Output)
MONTH — Month of the input date.  (Output)
IYEAR — Year of the input date.  (Output) 

1950 would correspond to the year 195 A.D. and -50 would correspond to year 50 B.C.

FORTRAN 90 Interface
Generic: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)
Specific: The specific interface name is NDYIN.

FORTRAN 77 Interface
Single: CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)

Description

Routine NDYIN computes the date corresponding to the number of days since January 1, 1900. For an input 
value of NDAYS that is negative, the date computed is prior to January 1, 1900. The routine NDYIN is the 
inverse of NDAYS.

Comments

The beginning of the Gregorian calendar was the first day after October 4, 1582, which became October 
15, 1582. Prior to that, the Julian calendar was in use. Routine NDYIN makes the proper adjustment for the 
change in calendars.

Example

The following example uses NDYIN to compute the date for the 100th day of 1986. This is accomplished by 
first using NDAYS to get the “day number” for December 31, 1985.

      USE NDYIN_INT
      USE NDAYS_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IDAY, IYEAR, MONTH, NDAYO, NOUT, NDAY0
!
      NDAY0 = NDAYS(31,12,1985)
      CALL NDYIN (NDAY0+100, IDAY, MONTH, IYEAR)
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      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'Day 100 of 1986 is (day-month-year) ', IDAY, &
                   '-', MONTH, '-', IYEAR
      END

Output

Day 100 of 1986 is (day-month-year)   10-  4-  1986
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IDYWK

This function computes the day of the week for a given date.

Function Return Value
IDYWK — Function value.  (Output) 

The value of IDYWK ranges from 1 to 7, where 1 corresponds to Sunday and 7 corresponds to Saturday.

Required Arguments
IDAY — Day of the input date.  (Input)
MONTH — Month of the input date.  (Input)
IYEAR — Year of the input date.  (Input) 

1950 would correspond to the year 1950 A.D. and 50 would correspond to year 50 A.D.

FORTRAN 90 Interface
Generic: IDYWK (IDAY, MONTH, IYEAR)
Specific: The specific interface name is IDYWK.

FORTRAN 77 Interface
Single: IDYWK (IDAY, MONTH, IYEAR)

Description

Function IDYWK returns an integer code that specifies the day of week for a given date. Sunday corresponds 
to 1, Monday corresponds to 2, and so forth.

A negative IYEAR can be used to specify B.C. Input dates in year 0 and for October 5, 1582, through October 
14, 1582, inclusive, do not exist; consequently, in these cases, IDYWK issues a terminal error.

Comments
1. Informational error

2. The beginning of the Gregorian calendar was the first day after October 4, 1582, which became Octo-
ber 15, 1582. Prior to that, the Julian calendar was in use. Function IDYWK makes the proper 
adjustment for the change in calendars.

Type Code Description

1 1 The Julian calendar, the first modern calendar, went into use in 45 B.C. No 
calendar prior to 45 B.C. was as universally used nor as accurate as the 
Julian. Therefore, it is assumed that the Julian calendar was in use prior to 45 
B.C.
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Example

The following example uses IDYWK to return the day of the week for February 24, 1963.

      USE IDYWK_INT
      USE UMACH_INT

      IMPLICIT   NONE
      INTEGER    IDAY, IYEAR, MONTH, NOUT
!
      IDAY  = 24
      MONTH = 2
      IYEAR = 1963
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'IDYWK (index for day of week) = ', &
                    IDYWK(IDAY,MONTH,IYEAR)
      END

Output

IDYWK (index for day of week) =   1
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VERSL

This function obtains STAT/LIBRARY-related version, system and serial numbers.

Function Return Value
VERSL — CHARACTER string containing information.  (Output)

Required Arguments
ISELCT — Option for the information to retrieve.  (Input)

FORTRAN 90 Interface
Generic: VERSL (ISELCT)
Specific: The specific interface name is S_VERSL.

FORTRAN 77 Interface
Single: VERSL (ISELCT)

Example

In this example, we print all of the information returned by VERSL on a particular machine. The output is 
omitted because the results are system dependent.

      USE UMACH_INT
      USE VERSL_INT

      IMPLICIT   NONE
      INTEGER    ISELCT, NOUT
      CHARACTER  STRING(4)*50, TEMP*32
!
      STRING(1) = '('' IMSL STAT/LIBRARY Version Number:  '', A)'
      STRING(2) = '('' Operating System ID Number:  '', A)'
      STRING(3) = '('' Fortran Compiler Version Number:  '', A)'
      STRING(4) = '('' IMSL STAT/LIBRARY Serial Number:  '', A)'
!                                 Print the versions and numbers.
      CALL UMACH (2, NOUT)
      DO 10  ISELCT=1, 4
         TEMP = VERSL(ISELCT)
         WRITE (NOUT,STRING(ISELCT)) TEMP

ISELCT VERSL

1 IMSL STAT/LIBRARY version number

2 Operating system (and version number) for which the library was produced.

3 Fortran compiler (and version number) for which the library was produced.

4 IMSL STAT/LIBRARY serial number
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   10 CONTINUE
      END
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GDATA

Retrieves a commonly analyzed data set.

Required Arguments
IDATA — Data set indicator.  (Input)

Set IDATA = 0 to print a description of all the data sets above. In this case, the remaining arguments are 
not referenced.

X — NOBS by NVAR matrix containing the data set.  (Output)
NOBS — Number of observations or rows in the output matrix.  (Output)
NVAR — Number of variables or columns in the output matrix.  (Output)

Optional Arguments
IPRINT — Printing option.  (Input)

Default: IPRINT = 0.

When printing is performed, a header listing the data set name and a reference is printed.
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

NDX — Second dimension of the matrix X exactly as specified in the dimension statement of the calling 
program.  (Input)
Default: NDX = size (X,2).

IDATA NOBS NVAR Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins Series G

5 13 5 Draper and Smith Appendix B

6 197 1 Box and Jenkins Series A

7 296 2 Box and Jenkins Series J

8 100 4 Robinson Multichannel Time Series

9 113 34 Afifi and Azen Data Set A

IPRINT Action

0 No printing is performed.

1 Rows 1 through 10 of X are printed.

2 All rows of X are printed.
GDATA         Chapter 19: Utilities      1752



FORTRAN 90 Interface
Generic: CALL GDATA (IDATA, X, NOBS, NVAR,[, …])
Specific: The specific interface names are S_GDATA and D_GDATA.

FORTRAN 77 Interface
Single: CALL GDATA (IDATA, IPRINT, NOBS, NVAR, X, LDX, NDX)
Double: The double precision name is DGDATA.

Description

Routine GDATA retrieves a standard data set frequently cited in statistics textbooks or in this manual. The fol-
lowing table gives the references for each data set:

Example

GDATA is used to copy the Longley data set into the matrix X.

      USE GDATA_INT

      IMPLICIT   NONE
      INTEGER    LDX, NDX
      PARAMETER  (LDX=200, NDX=10)
!
      INTEGER    IDATA, IPRINT, NOBS, NVAR
      REAL       X(LDX,NDX)
!
      IDATA  = 1
      IPRINT = 2
      CALL GDATA (IDATA, X, NOBS, NVAR, IPRINT=IPRINT)
!
      END

IDATA Reference

1 Longley (1967)

2 Anderson (1971, page 660)

3 Fisher (1936); Mardia, Kent, and Bibby (1979, Table 1.2.2 )

4 Box and Jenkins (1976, page 531)

5 Draper and Smith (1981, pages 629-630)

6 Box and Jenkins (1976, page 525)

7 Box and Jenkins (1976, page 532-533)

8 Robinson (1967, page 204)

9 Afifi and Azen (1979, pages 16-22)
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Output

The Longley data.
Longley, James W. (1967), An appraisal of least squares programs for the electronic 
computer from the point of view of the user, Journal of the American Statistical 
Association, 62, 819-841. 
This data set consists of 16 observations on 7 variables.
                                  X
            1          2          3          4          5          6
 1       83.0   234289.0     2356.0     1590.0   107608.0     1947.0
 2       88.5   259426.0     2325.0     1456.0   108632.0     1948.0
 3       88.2   258054.0     3682.0     1616.0   109773.0     1949.0
 4       89.5   284599.0     3351.0     1650.0   110929.0     1950.0
 5       96.2   328975.0     2099.0     3099.0   112075.0     1951.0
 6       98.1   346999.0     1932.0     3594.0   113270.0     1952.0
 7       99.0   365385.0     1870.0     3547.0   115094.0     1953.0
 8      100.0   363112.0     3578.0     3350.0   116219.0     1954.0
 9      101.2   397469.0     2904.0     3048.0   117388.0     1955.0
10      104.6   419180.0     2822.0     2857.0   118734.0     1956.0
11      108.4   442769.0     2936.0     2798.0   120445.0     1957.0
12      110.8   444546.0     4681.0     2637.0   121950.0     1958.0
13      112.6   482704.0     3813.0     2552.0   123366.0     1959.0
14      114.2   502601.0     3931.0     2514.0   125368.0     1960.0
15      115.7   518173.0     4806.0     2572.0   127852.0     1961.0
16      116.9   554894.0     4007.0     2827.0   130081.0     1962.0

            7
 1    60323.0
 2    61122.0
 3    60171.0
 4    61187.0
 5    63221.0
 6    63639.0
 7    64989.0
 8    63761.0
 9    66019.0
10    67857.0
11    68169.0
12    66513.0
13    68655.0
14    69564.0
15    69331.0
16    70551.0
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GIRTS

Solves a triangular (possibly singular) set of linear systems and/or compute a generalized inverse of an 
upper triangular matrix.

Required Arguments
R - N by N upper triangular matrix.  (Input)

If R contains a zero along the diagonal, the remaining elements of the row must also be zero. Only the 
upper triangle of R is referenced.

B - N by NB matrix containing the right hand sides of the linear system.  (Input, if NB > 0)
If NB = 0, B is not referenced and can be a vector length one.

IRANK - Rank of R.  (Output)
X - N by NB matrix containing the solution matrix corresponding to the right hand side B.  (Output, if 

NB > 0)
If B is not needed, then X and B can share the same storage locations. If NB = 0, x is not referenced and 
can be a vector of length one.

Optional Arguments
N - Order of the upper triangular matrix R.  (Input) 

Default: N = size (R,2).
LDR - Leading dimension of R exactly as specified in the dimension statement of the calling program.  

(Input)
Default: LDR = size (R,1).

NB - Number of columns in B.  (Input)
NB must be nonnegative. If NB is zero, no linear systems are solved.
Default: NB = size (B,2).

LDB - Leading dimension of B exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDB = size (B,1).

IPATH - Path option.  (Input) 
Default: IPATH = 1.

LDX - Leading dimension of X exactly as specified in the dimension statement of the calling program.  
(Input)
Default: LDX = size (X,1).

IPATH Action

1 Solve R * X = B.

2 Solve RT * X = B.

3 Solve R * X = B and compute RINV.

4 Solve RT * X = B and compute RINV.
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RINV - N by N upper triangular matrix that is the inverse of R when R is nonsingular.  (Output, if IPATH 
equals 3 or 4)
(When R is singular, RINV is g3 inverse. See the Algorithm section for an explanation of g3 inverses.) If 
IPATH = 1 or 2, RINV is not referenced and can be a 1x1 array. If IPATH = 3 or 4 and R is not needed, 
then R and RINV can share the same storage locations.

LDRINV - Leading dimension of RINV exactly as specified in the dimension statement of the calling pro-
gram.  (Input)

FORTRAN 90 Interface
Generic: CALL GIRTS (R, B, IRANK, X [, …])
Specific: The specific interface names are S_GIRTS and D_GIRTS.

FORTRAN 77 Interface
Single: CALL GIRTS (N, R, LDR, NB, B, LDB, IPATH, IRANK, X, LDX, RINV, LDRINV)
Double: The double precision name is DGIRTS.

Description

Routine GIRTS solves systems of linear algebraic equations with a triangular coefficient matrix. Inversion of 
the coefficient matrix is an option. The coefficient matrix can contain a zero diagonal element, but if so, the 
remaining elements in the row must be zero also. (A terminal error message is issued if a nonzero element 
appears in the row of the coefficient matrix where a zero diagonal element appears.)

If solution of a linear system is requested (i.e., NB > 0) and row i of the coefficient matrix contains elements all 
equal to zero, the following action is taken:

The i-th row of the solution X is set to zero.
If IPATH is 1 or 3, a warning error is issued when the i-th row of the right-hand side B is not zero.
If IPATH is 2 or 4, a warning error is issued when the i-th row of the reduced 

right-hand side (obtained after the first i – 1 variables are eliminated from row i) is not zero within a 
computed tolerance.

If an inverse of the coefficient matrix is requested and row i contains elements all equal to zero, row i and col-
umn i elements of RINV are set to zero. The resulting inverse is a g3 inverse of R. For a matrix G to be g3 
inverse of a matrix A, G must satisfy Conditions 1, 2, and 3 for the Moore-Penrose inverse but generally fail 
Condition 4. The four conditions for G to be a Moore-Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric
4. GA is symmetric

For a detailed description of the algorithm, see Section 2 in Sallas and Lionti (1988).
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Comments
1. Informational error

2. Routine GIRTS assumes that a singular R is represented by zero rows in R. No other forms of singular-
ity in R are allowed.

Example

The following example is taken from Maindonald (1984, pp. 102-105). A linear system Rx = B is solved, and a 
g3 inverse of R is computed.

      USE GIRTS_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    LDB, LDR, LDRINV, LDX, N, NB, J
      PARAMETER  (N=4, NB=1, LDB=N, LDR=N, LDRINV=N, LDX=N)
!
      INTEGER    IPATH, IRANK
      REAL       B(LDB,NB), R(LDR,N), RINV(LDRINV,N), X(LDX,NB) 
!
      DATA (R(1,J),J=1,N)/6.0, 2.0, 5.0, 1.0/, B(1,1)/3.0/
      DATA (R(2,J),J=1,N)/0.0, 4.0,-2.0, 2.0/, B(2,1)/4.0/
      DATA (R(3,J),J=1,N)/0.0, 0.0, 0.0, 0.0/, B(3,1)/0.0/
      DATA (R(4,J),J=1,N)/0.0, 0.0, 0.0, 3.0/, B(4,1)/3.0/
!
      IPATH = 3
      CALL GIRTS (R, B, IRANK, X, IPATH=IPATH, RINV=RINV)
!
      CALL WRRRN ('RINV', RINV)
      CALL WRRRN ('X', X)
      END

Output

              RINV
         1        2        3        4
1   0.1667  -0.0833   0.0000   0.0000
2   0.0000   0.2500   0.0000  -0.1667
3   0.0000   0.0000   0.0000   0.0000
4   0.0000   0.0000   0.0000   0.3333

    X
1   0.167
2   0.500
3   0.000
4   1.000

Type Code Description

3 1 The linear system of equations is inconsistent.
GIRTS         Chapter 20: Mathematical Support      1758



CHFAC

Computes an upper triangular factorization of a real symmetric nonnegative definite matrix.

Required Arguments
A - N by N symmetric nonnegative definite matrix for which an upper triangular factorization is desired.  

(Input) 
Only elements in the upper triangle of A are referenced.

IRANK - Rank of A.  (Output) 
N - IRANK is the number of effective zero pivots.

R - N by N upper triangular matrix containing the R matrix from a Cholesky decomposition RTR of A.  
(Output) 
The elements of the appropriate rows of R are set to 0.0 if linear dependence of the columns of A is 
declared. (There are N - IRANK rows of R whose elements are set to 0.0.) If A is not needed, then R and 
A can share the same storage locations.

Optional Arguments
N - Order of the matrix.  (Input)

Default: N = size (A,2).
LDA - Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

TOL - Tolerance used in determining linear dependence.  (Input) 
TOL = 100 * AMACH(4) is a common choice. See documentation for routine AMACH.
Default: TOL = 1.19e –5 for single precision and 2.2d –14 for double precision.

LDR - Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

FORTRAN 90 Interface
Generic: CALL CHFAC (A, IRANK, R [, …])
Specific: The specific interface names are S_CHFAC and D_CHFAC.

FORTRAN 77 Interface
Single: CALL CHFAC (N, A, LDA, TOL, IRANK, R, LDR)
Double: The double precision name is DCHFAC.

Description

Routine CHFAC computes a Cholesky factorization RTR = A of an n × n symmetric nonnegative definite 
matrix A. The matrix R is taken to be an upper triangular matrix. The diagonal elements of R are taken to be 
nonnegative. If A is singular and has rank r, n - r rows of R have all their elements taken to be zero.
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The algorithm is based on the work of Healy (1968). The algorithm proceeds sequentially by columns. The 
i-th column is declared to be linearly dependent on the first i - 1 columns if

where ɛ (stored in TOL) is the input tolerance. When a linear dependence is declared, all elements in the i-th 
row of R are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for checking for matrices 
that are not nonnegative definite are also incorporated. Routine CHFAC declares A to not be nonnegative defi-
nite and issues an error message with an error code of 1 if either of the 
following conditions is satisfied:

Healy’s (1968) algorithm and CHFAC permit the matrices A and R to occupy the same storage locations. Bar-
rett and Healy (1978) in their remark neglect this fact. Routine CHFAC uses 

for aii in the Condition 2 above to remedy this problem.

Comments
1. Informational error

2. Elements of row i of R are set to 0.0 if a linear dependence is declared. Linear dependence is declared if

Example

A Cholesky factorization of a 5 × 5 symmetric nonnegative definite matrix is computed. Maindonald (1984, 
pages 85-86) discusses in detail the computations for this problem.

!                                 SPECIFICATIONS FOR PARAMETERS
      USE IMSL_LIBRARIES

Type Code Description

3 1 The input matrix is not nonnegative definite within the tolerance defined by 
TOL.
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      IMPLICIT   NONE
      INTEGER    LDA, LDR, N, J
      PARAMETER  (N=5, LDA=N, LDR=N)
!
      INTEGER    IRANK, NOUT
      REAL       A(LDA,N), R(LDR,N), TOL
!
      DATA (A(1,J),J=1,N)/36.0, 12.0, 30.0,  6.0, 18.0/
      DATA (A(2,J),J=1,N)/12.0, 20.0,  2.0, 10.0, 22.0/
      DATA (A(3,J),J=1,N)/30.0,  2.0, 29.0,  1.0,  7.0/
      DATA (A(4,J),J=1,N)/ 6.0, 10.0,  1.0, 14.0, 20.0/
      DATA (A(5,J),J=1,N)/ 8.0, 22.0,  7.0, 20.0, 40.0/
!
      CALL CHFAC (A, IRANK, R)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) 'IRANK = ', IRANK
      CALL WRRRN ('R', R)
      END

Output

IRANK =   4

                    R
        1       2       3       4       5
1   6.000   2.000   5.000   1.000   3.000
2   0.000   4.000  -2.000   2.000   4.000
3   0.000   0.000   0.000   0.000   0.000
4   0.000   0.000   0.000   3.000   3.000
5   0.000   0.000   0.000   0.000   2.449
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MCHOL

Computes an upper triangular factorization of a real symmetric matrix A plus a diagonal matrix D, where D 
is determined sequentially during the Cholesky factorization in order to make A + D nonnegative definite.

Required Arguments
A - N by N symmetric matrix for which a Cholesky factorization is attempted.  (Input) 

Only elements in the upper triangle and diagonal of A are referenced.
IRANK - Rank of A + D.  (Output)

R - N by N upper triangular matrix containing the R matrix from a Cholesky decomposition RTR of A + D.  
(Output) 
The lower triangle of R is not referenced. If A is not needed, then R and A can share the same storage 
locations.

DMAX - Largest diagonal element of D.  (Output) 
If DMAX equals 0.0, then A is nonnegative definite, and R is a Cholesky factorization of A. If DMAX is 
positive, then A is indefinite, i.e., A has at least one negative eigenvalue. In this case, DMAX is an upper 
bound on the absolute value of the minimum eigenvalue.

IND - Index for subsequent computation of a descent direction in the case of a saddle point.  (Output) 
If IND = 0, then A is nonnegative definite. For positive IND, let e be a unit vector with IND-th element 1 
and remaining elements 0. The solution s of Rs = e is a direction of negative curvature, i.e., sT As is 
negative.

Optional Arguments
N - Order of the matrix.  (Input)

Default: N = size (A,2).
LDA - Leading dimension of A exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDA = size (A,1).

TOL - Tolerance used in determining linear dependence.  (Input) 
TOL = 100 * AMACH(4) is a common choice. See documentation for routine AMACH.
Default: TOL = 1.e-5 for single precision and 2.d –14 for double precision.

LDR - Leading dimension of R exactly as specified in the dimension statement in the calling program.  
(Input)
Default: LDR = size (R,1).

FORTRAN 90 Interface
Generic: CALL MCHOL (A, IRANK, R, DMAX, IND [, …])
Specific: The specific interface names are S_MCHOL and D_MCHOL.

FORTRAN 77 Interface
Single: CALL MCHOL (N, A, LDA, TOL, IRANK, R, LDR, DMAX, IND)
Double: The double precision name is DMCHOL.
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Description

Routine MCHOL computes a Cholesky factorization, RTR, of A + D where A is symmetric and D is a diagonal 
matrix with sufficiently large diagonal elements such that A + D is nonnegative definite. The routine is simi-
lar to one described by Gill, Murray, and Wright (1981, pages 108-111). Here, though, we allow A + D to be 
singular. 

The algorithm proceeds sequentially by rows. If A + D is singular, the Cholesky factor R is taken to have 
some rows that are entirely zero. The i-th row of A + D is declared to be linearly dependent on the first i - 1 
rows if the following two conditions are satisfied:

where ɛ is the input argument TOL.

The routine MCHOL is often used to find a descent direction in a minimization problem. Let A and g be the 
current Hessian and gradient, respectively, associated with the minimization problem. The solution s of 
As = -g may not give a descent direction if A is not nonnegative definite. Instead, in order to guarantee a 
descent direction, a solution s of (A + D)s = -g can be found where A + D is nonnegative definite. Routine 
MCHOL is useful for computing the upper triangular Cholesky factor R of A + D so that routine GIRTS can be 
invoked to compute the descent direction s by solving successively the two triangular linear systems 

RTx = -g and Rs = x for x and then s. Also if g = 0 and A is not nonnegative definite, i.e., the current solution 
is a saddle point, GIRTS can be used to compute a descent direction s from the linear system Rs = e where e is 
a unit vector with

Examples

Example 1

A Cholesky factorization of a 5 × 5 symmetric nonnegative definite matrix is computed. Maindonald (1984, 
pages 85-86) discusses the example.

!                                 SPECIFICATIONS FOR PARAMETERS
      USE MCHOL_INT
      USE UMACH_INT
      USE WRRRN_INT

      IMPLICIT   NONE

      INTEGER    LDA, LDR, N, J
      PARAMETER  (N=5, LDA=N, LDR=N)
!
      INTEGER    IND, IRANK, NOUT
      REAL       A(LDA,N), DMAX, R(LDR,N), TOL
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!
      DATA (A(1,J),J=1,N)/36.0, 12.0, 30.0, 6.0, 18.0/
      DATA (A(2,J),J=1,N)/12.0, 20.0, 2.0, 10.0, 22.0/
      DATA (A(3,J),J=1,N)/30.0, 2.0, 29.0, 1.0, 7.0/
      DATA (A(4,J),J=1,N)/6.0, 10.0, 1.0, 14.0, 20.0/
      DATA (A(5,J),J=1,N)/8.0, 22.0, 7.0, 20.0, 40.0/
!
      TOL = 0.00001
      CALL MCHOL (A, IRANK, R, DMAX, IND, TOL=TOL)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99998) ' IRANK = ', IRANK
      WRITE (NOUT,99999) ' DMAX =  ', DMAX
      WRITE (NOUT,99998) ' IND =   ', IND
99998 FORMAT (A, I3)
99999 FORMAT (A, 1PE10.3)
      CALL WRRRN ('R', R)
      END

Output

IRANK =   4
DMAX =   0.000E+00
IND =     0

                    R
        1       2       3       4       5
1   6.000   2.000   5.000   1.000   3.000
2   0.000   4.000  -2.000   2.000   4.000
3   0.000   0.000   0.000   0.000   0.000
4   0.000   0.000   0.000   3.000   3.000
5   0.000   0.000   0.000   0.000   2.449

Example 2

A modified Cholesky factorization of a 3 × 3 symmetric indefinite matrix A is computed. A solution of 

Rs = e3 is also obtained using routine GIRTS. Note that sT As is negative as verified by using routine BLINF 
(IMSL MATH/LIBRARY). Gill, Murray, and Wright (1981, page 111) discuss the example.

!                                 SPECIFICATIONS FOR PARAMETERS
      USE IMSL_LIBRARIES

      IMPLICIT   NONE

      INTEGER    LDA, LDR, N, J
      PARAMETER  (N=3, LDA=N, LDR=N)
!
      INTEGER    IND, IRANK, NOUT
      REAL       A(LDA,N), DMAX, E(N,1), R(LDR,N), S(N, 1), SPAS, TOL
!
      DATA (A(1,J),J=1,N)/1, 1, 2/
      DATA (A(2,J),J=1,N)/1, 1, 3/
      DATA (A(3,J),J=1,N)/2, 3, 1/
!
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      TOL = 0.00001
      CALL MCHOL (A, IRANK, R, DMAX, IND, TOL=TOL)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99998) ' IRANK = ', IRANK
      WRITE (NOUT,99999) ' DMAX  = ', DMAX
      WRITE (NOUT,99998) ' IND   = ', IND
      CALL WRRRN ('R', R)
      IF (IND .GT. 0) THEN
         E= 0.0
         E(IND, 1) = 1.0
         CALL GIRTS (R, E, IRANK, S)
         SPAS = BLINF(A, S(:,1), S(:,1))
         WRITE (NOUT,*) ' '
         WRITE (NOUT,99999) ' trans(s)*A*s = ', SPAS
      END IF
99998 FORMAT (A, I3)
99999 FORMAT (A, F10.3)
      END

Output

IRANK =   3
DMAX  =      5.016
IND   =   3

            R
        1       2       3
1   1.942   0.515   1.030
2   0.000   2.398   1.030
3   0.000   0.000   1.059

trans(s)*A*s =     -2.254
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ENOS

This function evaluates the expected value of a normal order statistic.

Function Return Value
ENOS - Function value, the expected value of the I-th order statistic in a sample of size N from the stan-

dard normal distribution.  (Output)
See Comment 1.

Required Arguments
I - Rank of the order statistic.  (Input)
N - Sample size.  (Input)

FORTRAN 90 Interface
Generic: ENOS (I, N)
Specific: The specific interface names are S_ENOS and D_ENOS.

FORTRAN 77 Interface
Single: ENOS (I, N)
Double: The double precision name is DENOS.

Description

Let X1 ≤ X2 ≤ … ≤ Xn be the order statistics of a random sample of size n from a standard normal distribu-
tion. The expected value of Xi is given by

where ɸ(x) and (x) are the standard normal density and cumulative distribution functions respectively 
(David 1981). 

Function ENOS evaluates the integral using a trapezoidal rule after first making a logarithmic transformation. 
This is the method used by Harter (1961). Although the method permits computations for any value of n, 
extremely large values of n cannot be guaranteed to be as accurate as smaller values of n. For n > 2500, the 
method is inappropriate.

Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before 

use in an expression. For example:
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X = ENOS(I, N)
Y = SQRT(X)

must be used rather than
Y = SQRT(ENOS(I, N))

If this is too much of a restriction on the programmer, then the specific name can be used without this 
restriction.

2. Informational errors 

Example

In this example, we compute the expected value of the first order statistic in a sample of size 5 from a stan-
dard normal distribution.

      USE UMACH_INT
      USE ENOS_INT

      IMPLICIT   NONE
      INTEGER    I, N, NOUT
      REAL       EX
!
      CALL UMACH (2, NOUT)
      I  = 1
      N  = 5
      EX = ENOS(I,N)
      WRITE (NOUT,99999) EX
99999 FORMAT (' The expected value of the smallest order statistic', &
            /, ' in a normal sample of size 5 is ', F9.5)
      END

Output

The expected value of the smallest order statistic
in a normal sample of size 5 is  -1.16296

Type Code Description

3 1 The rank of the order statistic is less than 1. A rank of 1 is assumed.

3 2 The rank of the order statistic is greater than sample size (N). A rank of N is 
assumed.
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AMILLR

This functon evaluates Mill’s ratio (the ratio of the ordinate to the upper tail area of the standardized normal 
distribution).

Function Return Value
AMILLR - Function value, Mill’s ratio.  (Output)

Required Arguments
X - Value at which Mill’s ratio is evaluated.  (Input) 

In order to avoid overflow, X must be less than a bound that is machine dependent. On most machines, 
the bound is greater than –13. The function underflows (and is set to 0.0) for small values of X. On 
most machines, the underflow does not occur unless X is less than -13.

FORTRAN 90 Interface
Generic: AMILLR (X)
Specific: The specific interface names are S_AMILLR and D_AMILLR.

FORTRAN 77 Interface
Single: AMILLR (X)
Double: The double precision name is DMILLR.

Description

Function AMILLR evaluates Mill’s ratio, the hazard rate for the standard normal distribution. It is computed as 
the ratio of the ordinate to the upper tail area of the standard normal distribution, that is, ɸ(x)/(1 - Φ(x)), 
where ɸ(x) and Φ(x) are the standard normal density and cumulative distribution functions, respectively. 
The reciprocal of Mill’s ratio is called the failure rate in reliability and life testing applications. As x becomes 
small, the ratio goes to zero. For large x (how large is machine dependent), the ratio cannot be computed. 
Function AMILLR computes 1 - Φ(x) using the complementary error function (IMSL 1991) rather than as one 
minus the normal distribution function, which would underflow sooner as x gets small.

Comments

Informational Error

Type Code Description

2 1 The function underflows because X is too small.
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Example

In this example, we compute Mill’s ratio at x = -1.0.

      USE UMACH_INT      
      USE AMILLR_INT

      IMPLICIT   NONE
      INTEGER    NOUT
      REAL       R, X
!
      CALL UMACH (2, NOUT)
      X = -1.0
      R = AMILLR(X)
      WRITE (NOUT,99999) R
99999 FORMAT (' Mill''s ratio at -1.0 is ', F8.5)
      END

Output

Mill’s ratio at -1.0 is  0.28760
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QUADT

Forms a k-d tree.

Required Arguments
X - NROW by NCOL matrix containing the data to be used on this call.  (Input/Output) 

On output the rows of X have been rearranged to form the k-d tree. X must not contain missing values 
(NaN).

IND - Vector of length NVAR containing the column numbers in X to be used in the forming the k-d tree.  
(Input)

NBUCK - Bucket size.  (Input) 
NBUCK gives the maximum number of observations in a leaf of the k-d tree. NBUCK = 3 is a common 
choice. NBUCK should be small when compared to NROW.

IDISCR - Vector of length NROW containing the element number in IND that points to the column of X to 
be used as the discriminator in the k-d tree.  (Output) 
IDISCR(I) = 0 if the observation is a terminal node. IND(IDISCR(I)) is the column number in X to be 
used as the discriminator.

PART - Vector of length NROW containing the value to be used in the partition for this observation.  
(Output)

Optional Arguments
NROW - Number of rows of X to be used in forming the k-d tree.  (Input)

Default: NROW = size (X,1).
NVAR - Number of variables to be used in forming the tree.  (Input)

Default: NVAR = size (IND,1).
NCOL - Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX - Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

FORTRAN 90 Interface
Generic: CALL QUADT (X, IND, NBUCK, IDISCR, PART [, …])
Specific: The specific interface names are S_QUADT and D_QUADT.

FORTRAN 77 Interface
Single: CALL QUADT (NROW, NVAR, NCOL, X, LDX, IND, NBUCK, IDISCR, PART)
Double: The double precision name is DQUADT.
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Description

Routine QUADT creates the data structure required for a k-d tree. A k-d tree is a multivariate form of B-tree that 
is especially useful for finding nearest neighbors but may be of use in other situations. Once the k-d tree has 
been formed, routine NGHBR may be used to find the nearest neighbors for any point in logarithmic time.

The basic algorithm is given by Friedman, Bentley, and Finkel (1977) and can be summarized as follows:

1. Let l = 1 and h = NROW.
2. Let k = (l + h)/2.
3. Each column in X to be used in forming the k-d tree is examined over the range [l, h] in order to find the 

column with the maximum spread. Let j equal this column number.
4. The k-th element of PART is set to the median value in the range [l, h] of the j-th column in X while 

IDISCR(k) is set to the element in IND that points to this column.
5. The rows of X are interchanged so that all rows of X with values in column j less than or equal to the 

median value computed in Step 4 occur before (or at) the k-th element.
6. Go to Step 2 repeatedly with zero, one, or two submatrices in X. Go to Step 2 with the submatrix 

formed from rows l to k of X if k - l is greater than NBUCK. Go to Step 2 with the submatrix formed from 
rows k + 1 to h of X if h - k - 1 is greater than NBUCK.

The bucket size, NBUCK, is the maximum number of observations allowed in the lowest level of the k-d tree, 
i.e., in the leaves of the tree. The choice of NBUCK can affect the speed with which nearest neighbors are 
found. A value of 3 or 5 is a common choice, but if the number of nearest neighbors to be obtained is large, a 
larger value for NBUCK should probably be used.

Comments
Workspace may be explicitly provided, if desired, by use of Q2ADT/DQ2ADT. The reference is:

CALL Q2ADT (NROW, NVAR, NCOL, X, LDX, IND, NBUCK, IDISCR, PART, ILOW, IHIGH, WK, IWK)
The additional arguments are as follows:

ILOW - Work vector of length log2 (NROW) + 3.

IHIGH - Work vector of length log2 (NROW) + 3.

WK - Work vector of length NROW.

IWK - Work vector of length NROW.

Example

The following example creates a k-d tree from financial data collected for firms approximately 2 years prior to 
bankruptcy and for financially sound firms at about the same point in time. The data on five variables, 
X1 = (population), X2 = (cash flow)/(total debt), X3 = (net income)/(total assets), X4 = (current assets)/(cur-
rent liabilities), and X5 = (current assets)/(net sales) are taken from Johnson and Wichern (1988, page 536).

      USE QUADT_INT
      USE WRRRN_INT
      USE WRIRN_INT

      IMPLICIT   NONE
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      INTEGER    LDX, NBUCK, NCOL, NROW, NVAR, I
      PARAMETER  (LDX=47, NBUCK=3, NCOL=5, NROW=47, NVAR=4)
!
      INTEGER    IDISCR(NROW), IND(NVAR)
      REAL       PART(NROW), X(LDX,NCOL)
!
      DATA IND/2, 3, 4, 5/
      DATA (X(I,1),I=1,47)/1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., &
          1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., &
          2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., &
          2., 2., 2., 2., 2., 2./
      DATA (X(I,2),I=1,47)/-0.4485, -0.5633, 0.0643, -0.0721, -0.1002, &
          -0.1421, 0.0351, -0.0653, 0.0724, -0.1353, -0.2298, 0.0713, &
          0.0109, -0.2777, 0.1454, 0.3703, -0.0757, 0.0451, 0.0115, &
          0.1227, -0.2843, 0.5135, 0.0769, 0.3776, 0.1933, 0.3248, &
          0.3132, 0.1184, -0.0173, 0.2169, 0.1703, 0.1460, -0.0985, &
          0.1398, 0.1379, 0.1486, 0.1633, 0.2907, 0.5383, -0.3330, &
          0.4785, 0.5603, 0.2029, 0.2029, 0.4746, 0.1661, 0.5808/ 
      DATA (X(I,3),I=1,47)/-0.4106, -0.3114, -0.3114, -0.0930, &
          -0.0917, -0.0651, 0.0147, -0.0566, -0.0076, -0.1433, &
          -0.2961, 0.0205, 0.0011, -0.2316, 0.0500, 0.1098, -0.0821, &
          0.0263, -0.0032, 0.1055, -0.2703, 0.1001, 0.0195, 0.1075, &
          0.0473, 0.0718, 0.0511, 0.0499, 0.0233, 0.0779, 0.0695, &
          0.0518, -0.0123, -0.0312, 0.0728, 0.0564, 0.0486, 0.0597, &
          0.1064, -0.0854, 0.0910, 0.1112, 0.0792, 0.0792, 0.1380, &
          0.0351, 0.0371/
      DATA (X(I,4),I=1,47)/1.0865, 1.5134, 1.0077, 1.4544, 1.5644, &
          0.7066, 1.5046, 1.3737, 1.3723, 1.4196, 0.3310, 1.3124, &
          2.1495, 1.1918, 1.8762, 1.9941, 1.5077, 1.6756, 1.2602, &
          1.1434, 1.2722, 2.4871, 2.0069, 3.2651, 2.2506, 4.2401, &
          4.4500, 2.5210, 2.0538, 2.3489, 1.7973, 2.1692, 2.5029, &
          0.4611, 2.6123, 2.2347, 2.3080, 1.8381, 2.3293, 3.0124, &
          1.2444, 4.2918, 1.9936, 1.9936, 2.9166, 2.4527, 5.0594/ 
      DATA (X(I,5),I=1,47)/0.4526, 0.1642, 0.3978, 0.2589, 0.6683, &
          0.2794, 0.7080, 0.4032, 0.3361, 0.4347, 0.1824, 0.2497, &
          0.6969, 0.6601, 0.2723, 0.3828, 0.4215, 0.9494, 0.6038, &
          0.1655, 0.5128, 0.5368, 0.5304, 0.3548, 0.3309, 0.6279, &
          0.6852, 0.6925, 0.3483, 0.3970, 0.5174, 0.5500, 0.5778, &
          0.2643, 0.5151, 0.5563, 0.1978, 0.3786, 0.4835, 0.4730, &
          0.1847, 0.4443, 0.3018, 0.3018, 0.4487, 0.1370, 0.1268/
!
      CALL QUADT (X, IND, NBUCK, IDISCR, PART)
      CALL WRRRN ('first 10 rows of X after QUADT', X, 10, NCOL, LDX)
      CALL WRRRN ('PART', PART, 1, NROW, 1)
      CALL WRIRN ('IDISCR', IDISCR, 1, NROW, 1)
!
      END

Output

      first 10 rows of X after QUADT
         1       2       3       4       5
 1   1.000  -0.230  -0.296   0.331   0.182
 2   2.000   0.140  -0.031   0.461   0.264
 3   1.000  -0.142  -0.065   0.707   0.279
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 4   1.000  -0.449  -0.411   1.087   0.453
 5   1.000   0.064  -0.311   1.008   0.398
 6   1.000   0.123   0.105   1.143   0.166
 7   1.000  -0.284  -0.270   1.272   0.513
 8   1.000  -0.278  -0.232   1.192   0.660
 9   1.000   0.012  -0.003   1.260   0.604
10   1.000   0.071   0.021   1.312   0.250

                                   PART
    1      2      3       4       5       6       7       8       9      10
0.000  0.461  0.857   0.000   0.064   1.168   0.000  -0.278   0.041   0.000

   11     12     13      14      15      16      17      18      19      20
0.072  1.373  0.000  -0.072   0.412   0.000   0.435  -0.015   0.000   1.876

   21     22     23      24      25      26      27      28      29      30
0.448  0.000   .708   1.994   0.000   0.203   2.152   0.000   2.308   0.390

   31     32     33      34      35      36      37      38      39      40
0.000   .550  0.147   0.000   0.217   2.453   0.000   2.521   0.128   0.000

   41      42      43      44      45      46      47
2.612   3.012   0.000   4.240   4.292   4.755   0.000

                                    IDISCR
 1  2  3  4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
 0  3  3  0   1   3   0   1   1   0   1   3   0   1   4   0   4   1   0   3

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 4  0  4  3   0   1   3   0   3   4   0   4   1   0   1   3   0   3   1   0

41  42  43  44  45  46  47
 3   3   0   3   3   3   0
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NGHBR

Search’s a k-d tree for the k nearest neighbors of a key.

Required Arguments
XKEY - Vector of length NVAR containing the key for which nearest neighbors are desired.  (Input) 

Note that the elements in XKEY are not arranged in the same manner as the columns in X.
K - Number of nearest neighbors to find.  (Input)
X - NROW by NCOL matrix containing the data used to form the k-d tree as output from routine QUADT.  

(Input) 
X must not contain missing values (NaN).

IND - Vector of length NVAR containing the column numbers in X used in forming the 
k-d tree.  (Input)

NBUCK - Bucket size.  (Input) 
NBUCK is the maximum number of observations in a leaf of the k-d tree. The value of NBUCK should be 
the same as the value used in forming the k-d tree (i.e. as input to the routine QUADT).

IDISCR - Vector of length NROW containing the element number in IND that points to the column of X to 
be used as the discriminator in the k-d tree, as output from routine QUADT.  (Input) 
IDISCR(I) = 0 if the observation is a terminal node. IND(IDISCR(I)) is the column number in X to be 
used as the discriminator.

PART - Vector of length NROW containing the median value to be used for the partition, as output from 
routine QUADT.  (Input)

IPQR - Vector of length K containing the indices of the nearest neighbors.  (Output)
PQD - Vector of length K containing the nearest neighbor distances.  (Output)

Optional Arguments
NVAR - Number of variables used to form the k-d tree. (Input)

Default: NVAR = size (XKEY,1).
NROW - Number of rows of X used to form the k-d tree.  (Input)

Default: NROW = size (X,1).
NCOL - Number of columns in X.  (Input)

Default: NCOL = size (X,2).
LDX - Leading dimension of X exactly as specified in the dimension statement in the calling program.  

(Input)
Default: LDX = size (X,1).

METRIC - Metric to use in computing the k nearest neighbors.  (Input) 
Default: METRIC = 0.

METRIC Metric used

0 Euclidean distance

1 L1 norm

2 L∞ norm
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FORTRAN 90 Interface 
Generic: CALL NGHBR (XKEY, K, X, IND, NBUCK, IDISCR, PART, IPQR, PQD [, …])
Specific: The specific interface names are S_NGHBR and D_NGHBR.

FORTRAN 77 Interface
Single: CALL NGHBR (NVAR, XKEY, K, NROW, NCOL, X, LDX, IND, NBUCK, IDISCR, PART, METRIC, 

IPQR)
Double: The double precision name is DNGHBR.

Description

Routine NGHBR finds the k nearest neighbors in an input k-d tree for an arbitrary key, XKEY in logarithmic 
time. A k-d tree is a form of B-tree that is especially useful for finding nearest neighbors. The k-d tree input 
into routine NGHBR should be produced by routine QUADT. Three metrics, Euclidean, L1, and L∞, are avail-
able for defining the nearest neighbors. The user should note that if the input key is a row of the k-d tree, then 
the row will be returned as one of the nearest neighbors. In this case, only k - 1 nearest neighbors will be 
found. 

The algorithm is given by Friedman, Bentley, and Finkel (1977) and is summarized in the following. The 
basic idea is to traverse the k-d tree in order to determine which leaves of the tree need to be examined for the 
nearest neighbor. The algorithm is efficient because most leaves are not examined.

1. Let l = 1 and h = NROW.
2. Let k = (l + h)/2, and j and p be the k-th elements of IDISCR and PART, respectively.
3. If (h - l) is less than NBUCK, then go to Step 4. Otherwise, let m be the j-th element of IND. If the 

(k, m)-th element of X is greater than p, then let l = k + 1 and go to Step 2. Otherwise, set h = k and go to 
Step 2.

4. Examine each row in X from row l to row h to determine if it is a nearest neighbor. Check to see if rows 
in X (leaves of the tree) adjacent to these rows need to be examined (see Friedman, Bentley, and Finkel 
(1977)). If necessary, examine the adjacent rows for nearest neighbors.

The value used for the bucket size, NBUCK, must be the same value as was used in routine QUADT when the k-
d tree was created. A common choice for NBUCK is three.

Comments
1. Workspace may be explicitly provided, if desired, by use of N2HBR/DN2HBR. The reference is:

CALL N2HBR (NVAR, XKEY, K, NROW, NCOL, X, LDX, IND, IDISCR, PART, METRIC, IPQR, PQD, ILOW, 
IHIGH, ISIDE, BNDL, BNDH)

The additional arguments are as follows:

ILOW - Work vector of length log2 (NROW) + 3.

IHIGH - Work vector of length log2 (NROW) + 3.

ISIDE - Work vector of length log2 (NROW) + 3.

BNDL - Work vector of length NVAR * (log2 (NROW) + 3).
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BNDH - Work vector of length NVAR * (log2 (NROW) + 3).

2. Informational error

Example

The following example creates a k-d tree from financial data collected for firms approximately 2 years prior to 
bankruptcy and for financially sound firms at about the same point in time. The data on five variables, 
X1 = (population), X2 = (cash flow)/(total dept), X3 = (net income)/(total assets), X4 = (current assets)/(cur-
rent liabilities), and X5 = (current assets)/(net sales) are taken from Johnson and Wichern, page 536. Routine 
NGHBR is then used to determine the 5 nearest neighbors of the first row in X. As expected, one of the nearest 
neighbors found is the key (the first row in X).

      USE QUADT_INT
      USE NGHBR_INT
      USE WRIRN_INT
      USE WRRRN_INT

      IMPLICIT   NONE
      INTEGER    K, LDX, METRIC, NBUCK, NCOL, NROW, NVAR
      PARAMETER  (K=5, LDX=47, METRIC=1, NBUCK=3, NCOL=5, NROW=47, &
                 NVAR=4)
!
      INTEGER    I, IDISCR(NROW), IND(NVAR), IPQR(K)
      REAL       PART(NROW), PQD(K), X(LDX,NCOL), XKEY(NVAR)
!
      DATA IND/2, 3, 4, 5/
      DATA (X(I,1),I=1,47)/1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., &
          1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., &
          2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., &
          2., 2., 2., 2., 2., 2./
      DATA (X(I,2),I=1,47)/-0.4485, -0.5633, 0.0643, -0.0721, -0.1002, & 
          -0.1421, 0.0351, -0.0653, 0.0724, -0.1353, -0.2298, 0.0713, &
          0.0109, -0.2777, 0.1454, 0.3703, -0.0757, 0.0451, 0.0115, &
          0.1227, -0.2843, 0.5135, 0.0769, 0.3776, 0.1933, 0.3248, &
          0.3132, 0.1184, -0.0173, 0.2169, 0.1703, 0.1460, -0.0985, &
          0.1398, 0.1379, 0.1486, 0.1633, 0.2907, 0.5383, -0.3330, &
          0.4785, 0.5603, 0.2029, 0.2029, 0.4746, 0.1661, 0.5808/
      DATA (X(I,3),I=1,47)/-0.4106, -0.3114, -0.3114, -0.0930, &
          -0.0917, -0.0651, 0.0147, -0.0566, -0.0076, -0.1433, &
          -0.2961, 0.0205, 0.0011, -0.2316, 0.0500, 0.1098, -0.0821, &
          0.0263, -0.0032, 0.1055, -0.2703, 0.1001, 0.0195, 0.1075, &
          0.0473, 0.0718, 0.0511, 0.0499, 0.0233, 0.0779, 0.0695, &
          0.0518, -0.0123, -0.0312, 0.0728, 0.0564, 0.0486, 0.0597, &
          0.1064, -0.0854, 0.0910, 0.1112, 0.0792, 0.0792, 0.1380, &
          0.0351, 0.0371/
      DATA (X(I,4),I=1,47)/1.0865, 1.5134, 1.0077, 1.4544, 1.5644, &
          0.7066, 1.5046, 1.3737, 1.3723, 1.4196, 0.3310, 1.3124, &
          2.1495, 1.1918, 1.8762, 1.9941, 1.5077, 1.6756, 1.2602, &

Type Code Description

4 1 The data structure input is not a k-d tree. Use routine QUADT to create the k-d 
tree.
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          1.1434, 1.2722, 2.4871, 2.0069, 3.2651, 2.2506, 4.2401, &
          4.4500, 2.5210, 2.0538, 2.3489, 1.7973, 2.1692, 2.5029, &
          0.4611, 2.6123, 2.2347, 2.3080, 1.8381, 2.3293, 3.0124, &
          1.2444, 4.2918, 1.9936, 1.9936, 2.9166, 2.4527, 5.0594/
      DATA (X(I,5),I=1,47)/0.4526, 0.1642, 0.3978, 0.2589, 0.6683,&
          0.2794, 0.7080, 0.4032, 0.3361, 0.4347, 0.1824, 0.2497, &
          0.6969, 0.6601, 0.2723, 0.3828, 0.4215, 0.9494, 0.6038, &
          0.1655, 0.5128, 0.5368, 0.5304, 0.3548, 0.3309, 0.6279, &
          0.6852, 0.6925, 0.3483, 0.3970, 0.5174, 0.5500, 0.5778, &
          0.2643, 0.5151, 0.5563, 0.1978, 0.3786, 0.4835, 0.4730, &
          0.1847, 0.4443, 0.3018, 0.3018, 0.4487, 0.1370, 0.1268/
!
!                                 Create the k-d tree
!
      CALL QUADT (X, IND, NBUCK, IDISCR, PART)
!
      DO 10  I=1, NVAR
         XKEY(I) = X(1,IND(I))
   10 CONTINUE
!
      CALL NGHBR (XKEY, K, X, IND, NBUCK, IDISCR, PART, IPQR, PQD, &
                  METRIC=METRIC)
!
      CALL WRIRN ('Indices of the nearest neighbors, IPQR.', IPQR, 1, K, 1)
      CALL WRRRN ('Nearest neighbor distances, PQD.', PQD, 1, K, 1)
!
      END

Output

Indices of the nearest neighbors, IPQR.
          1   2   3   4   5
          1   3   2   5   7

  Nearest neighbor distances, PQD.
    1       2       3       4       5
0.000   0.791   0.847   1.201   1.352
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User Errors

IMSL routines attempt to detect user errors and handle them in a way that provides as much information to 
the user as possible. To do this, we recognize various levels of severity of errors, and we also consider the 
extent of the error in the context of the purpose of the routine; a trivial error in one situation may be serious 
in another. IMSL routines attempt to report as many errors as they can reasonably detect. Multiple errors 
present a difficult problem in error detection because input is interpreted in an uncertain context after the 
first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of limitations of the computer 
arithmetic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the 
assessed degree of accuracy determines the severity of the error. In cases where the routine computes several 
output quantities, if some are not computable but most are, an error condition exists. The severity depends 
on an assessment of the overall impact of the error.

Terminal errors

If the user’s input is regarded as meaningless, such as N = -1 when “N” is the number of equations, the rou-
tine prints a message giving the value of the erroneous input argument(s) and the reason for the erroneous 
input. The routine will then cause the user’s program to stop. An error in which the user’s input is meaning-
less is the most severe error and is called a terminal error. Multiple terminal error messages may be printed 
from a single routine.

Informational errors

In many cases, the best way to respond to an error condition is simply to correct the input and rerun the pro-
gram. In other cases, the user may want to take actions in the program itself based on errors that occur. An 
error that may be used as the basis for corrective action within the program is called an informational error. If 
an informational error occurs, a user-retrievable code is set. A routine can return at most one informational 
error for a single reference to the routine. The codes for the informational error codes are printed in the error 
messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for which no 
user-retrievable code is set. Multiple error messages for this kind of error may be printed. These errors, 
which generally are not described in the documentation, include terminal errors as well as less serious errors. 
Corrective action within the calling program is not possible for these errors.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the STAT/LIBRARY. Each level has an associated PRINT attri-
bute and a STOP attribute. These attributes have default settings (YES or NO), but they may also be set by the 
user. The purpose of having multiple error severity levels is to provide independent control of actions to be 
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taken for errors of different severity. Upon return from an IMSL routine, exactly one error state exists. (A 
code 0 “error” is no informational error.) Even if more than one informational error occurs, only one message 
is printed (if the PRINT attribute is YES). Multiple errors for which no corrective action within the calling 
program is reasonable or necessary result in the printing of multiple messages (if the PRINT attribute for 
their severity level is YES). Errors of any of the severity levels except level 5 may be informational errors.

The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error Handling.”

Errors in Lower-Level Routines

It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of 
lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the lower-level 
routine cannot pass the information up to the original user- called routine, then a traceback of the routines is 
produced. The only common situation in which this can occur is when an IMSL routine calls a user-supplied 
routine that in turn calls another IMSL routine.

Level Type

1 Note. A note is issued to indicate the possibility of a trivial error or simply to pro-
vide information about the computations. Default attributes: PRINT = NO, 
STOP = NO

2 Alert. An alert indicates that the user should be advised about events occurring in 
the software. Default attributes: PRINT = NO, STOP = NO

3 Warning. A warning indicates the existence of a condition that may require correc-
tive action by the user or calling routine. A warning error may be issued because 
the results are accurate to only a few decimal places, because some of the output 
may be erroneous but most of the output is correct, or because some assumptions 
underlying the analysis technique are violated. Often no corrective action is neces-
sary and the condition can be ignored. Default attributes: PRINT = YES, 
STOP = NO

4 Fatal. A fatal error indicates the existence of a condition that may be serious. In 
most cases, the user or calling routine must take corrective action to recover. 
Default attributes: PRINT = YES, STOP = YES

5 Terminal. A terminal error is serious. It usually is the result of an incorrect specifica-
tion, such as specifying a negative number as the number of equations. These 
errors may also be caused by various programming errors impossible to diagnose 
correctly in FORTRAN. The resulting error message may be perplexing to the user. 
In such cases, the user is advised to compare carefully the actual arguments passed 
to the routine with the dummy argument descriptions given in the documentation. 
Special attention should be given to checking argument order and data types.
A terminal error is not an informational error because corrective action within the 
program is generally not reasonable. In normal usage, execution is terminated 
immediately when a terminal error occurs. Messages relating to more than one ter-
minal error are printed if they occur. Default attributes: PRINT = YES, STOP = YES
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Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling system: (1) to change the 
default actions, (2) to retrieve the integer code of an informational error so as to take corrective action, and (3) 
to determine the severity level of an error. The routines to use are ERSET, IERCD, and N1RTY, respectively.
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ERSET

Change the default printing or stopping actions when errors of a particular error severity level occur.

Required Arguments
IERSVR — Error severity level indicator.  (Input)

If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for errors of the speci-
fied severity level.

IPACT — Printing action.  (Input)

ISACT — Stopping action.  (Input)

FORTRAN 90 Interface
Generic: CALL ERSET  (IERSVR, IPACT, ISACT)
Specific: The specific interface name is ERSET.

FORTRAN 77 Interface
Single: CALL ERSET (IERSVR, IPACT, ISACT)

IPACT Action

-1 Do not change current setting(s).

 0 Do not print.

 1 Print.

 2 Restore the default setting(s).

ISACT Action

-1 Do not change current setting(s).

 0 Do not stop.

 1 Stop.

 2 Restore the default setting(s).
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IERCD and N1RTY

The last two routines for interacting with the error handling system, IERCD and N1RTY, are INTEGER func-
tions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be used in the 
following way:

ICODE = IERCD( )

The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the following way:

ITYPE = N1RTY(1)

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3 and ITYPE = 6 
are both warning errors, error severity level 3. While ITYPE = 3 errors are informational errors 
(IERCD( ) ≠ 0), ITYPE = 6 errors are not informational errors (IERCD( ) = 0).

For software developers requiring additional interaction with the IMSL error handling system, see Aird and 
Howell (1991).

Examples

Changes to default actions

Some possible changes to the default actions are illustrated below. The default actions remain in effect for the 
kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3, 0, -1)

To stop if warning errors occur:
CALL ERSET (3, -1, 1)

To print all error messages:
CALL ERSET (0, 1, -1)

To restore all default settings:
CALL ERSET (0, 2, 2)

Use of informational error to determine program action

In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is determined 
that the matrix is not nonnegative definite (and often this is not immediately obvious), the program is to take 
a different branch.
                                     .
                                     .
                                     .
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      CALL CHFAC (A, IRANK, R)
      IF (IERCD() .EQ. 1) THEN
!            Handle matrix that is not nonnegative definite
                                     .
                                     .
                                     .
      END IF

Examples of All Types of Errors

The program below illustrates each of the different types of errors detected by the STAT/LIBRARY routines. 
If the call to ERSET was not made, messages for errors of levels 1 and 2 would not be printed.

The error messages refer to the argument names that are used in the documentation for the routine, rather 
than the user’s name of the variable used for the argument. In the messages generated by IMSL routine 
CHFAC in this example, references are made to LDA and LDR, whereas in the program literals were used for 
these arguments. Note that error codes are printed as part of the messages for informational errors.

      USE IMSL_LIBRARIES
!                                    Specifications for local variables
      INTEGER   IDO, IOPT, IRANK, N, NMISS, NOBS, NPOP, NROW, NUM 
      REAL      A(2,2), CHSQ, CONPER, DF, PR, R(2,2), RCOEF, STAT(20), &
                SUMRY(11), TOL, X(10), XMEAN, Y(10)
!
      DATA X/-5.0, -4.0, -3.0, -2.0, -1.0, 1.0, 2.0, 3.0, 4.0, 5.0/
      DATA Y/3.0, 5.0, 4.0, 5.0, 6.0, 7.0, 6.0, 8.0, 7.0, 9.0/
      DATA A/2.0, 0.0, 0.0, -3.0/
!                                     Turn on printing and turn off
!                                     stopping for all error types.
      CALL ERSET (0, 1, 0)
!                                     Generate level 1 informational error.
      DF = 1000.0
      CHSQ = -1.0
      PR = CHIDF(CHSQ,DF)
!                                     Generate level 2 informational error.
      DF = 1000.0
      CHSQ = 10.0
      PR = CHIDF(CHSQ,DF)
!                                     Generate level 3 informational error.
      NUM = 11
      CALL LETTR (X, SUMRY, NMISS, NUM=NUM)
!                                     Generate level 4 informational error.
      N = 2
      TOL = 0.0001
      CALL CHFAC (A, IRANK, R, TOL=TOL)
!                                     Generate several level 5 errors.
      CALL CHFAC (A, IRANK, R, TOL=TOL, LDR = -2)
!                                     Generate several warning errors that
!                                     do not allow corrective action
!                                     (because no codes are listed for
!                                     these errors in the document for the 
!                                     routine).
      NROW = 10
      NPOP = 100
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      IOPT = 1
      CONPER = 0.95
      CALL SMPRR (NROW, X, Y, NPOP, XMEAN, STAT, IOPT=IOPT, CONPER=CONPER)
      END

Output

*** NOTE      ERROR 1 from CHIDF. Since CHSQ = -1.000000E+00 is less than 
***           zero, the distribution function is zero at CHSQ.
*** ALERT     ERROR 3 from CHIDF. The normal distribution is used for large 
***           degrees of freedom. However, it has produced underflow.
***           Therefore, the probability is set to 0.
*** WARNING   ERROR 3 from LETTR. NUM = 11 and the number of observations = 
***           10. Since NUM is greater than the number of observations, it 
***           is likely that the results are not useful.
*** WARNING   ERROR 1 from CHFAC. The leading 2 by 2 submatrix of the input 
***           matrix is not nonnegative definite within the tolerance 
***           definedby TOL = 1.000000E-04.
*** TERMINAL  ERROR 3 from CHFAC. N = 2 and LDA = 1. N must be less than or 
***           equal to LDA.
*** TERMINAL  ERROR 5 from CHFAC. LDR = -2. LDR must be greater than or
***           equal to 1.
*** WARNING   ERROR 1 from SMPRR. CONPER = 9.500000E-01. The confidence
***           percentage is less than 50.0. Commonly used confidence
***           percentages are: 90.0, 95.0 or 99.0.
*** WARNING   ERROR 3 from SMPRR. The sample size, STAT(19) = 10. This is 
***           less than 30. The confidence limits, which are computed using
***           a normal approximation, may not be very accurate.
*** WARNING   ERROR 7 from SMPRR. The coefficient of variation of one or
***           both of the variables exceeds 10%. The confidence limits,
***           which are computed using a normal approximation, may not be
***           very accurate.

Example of Traceback

The next program illustrates a situation in which a traceback is produced. Although the traceback shows an 
error code associated with a terminal error, this code has no meaning to the user; the printed message con-
tains all relevant information and it is not assumed that the user would take corrective action based on 
knowledge of the code.

      USE IMSL_LIBRARIES
!                                 Specifications for local variables
      REAL       A, B, ERRABS, ERRREL, RESULT, ERREST
!                                 Specifications for common variables
      REAL       PIN, QIN, SAMP
      COMMON     PIN, QIN, SAMP
!                                 Specifications for functions
      EXTERNAL F
      REAL F
!                                 Compute the expected value of the
!                                 maximum order statistic in a sample
!                                 of size SAMP from a beta distribution.
      A = 0.0
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      B = 1.0
      ERRABS = 0.0
      ERRREL = 0.001
!                                 Initialize parameters for the beta
!                                 order statistic of interest.
      SAMP = 10.0
      PIN = 2.0
      QIN = -3.0
!                                 The parameters for the beta must be
!                                 nonnegative -- hence, the preceeding
!                                 assignment causes an error.
      CALL QDAGS (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST)
!
      WRITE (*, *) RESULT, ERREST
      END
!
      REAL FUNCTION F (X)
      USE BETDF_INT    
      REAL       X, PIN, QIN, SAMP
      COMMON     PIN, QIN, SAMP
!
      F = X*BETDF(X,PIN,QIN)**(SAMP-1.0)
      RETURN
      END

Output

*** TERMINAL ERROR 4 from BETDF.   QIN = -3.000000E+00 must be greater than 
***          0.0.
    Here is a traceback of subprogram calls in reverse order:
    Routine name                      Error type Error code
    ------------                      ---------- ----------
    BETDF                                  5          4
    Q2AGS                                  0          0 (Called internally)
    QDAGS                                  0          0
    USER                                   0          0
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Machine-Dependent Constants

The function subprograms in this section return machine-dependent information and can be used to enhance 
portability of programs between different computers. The routines IMACH, and AMACH describe the com-
puter’s arithmetic. The routine UMACH describes the input, ouput, and error output unit numbers.
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IMACH

This function retrieves machine integer constants that define the arithmetic used by the computer.

Function Return Value
IMACH(1) = Number of bits per integer storage unit.
IMACH(2) = Number of characters per integer storage unit:
Integers are represented in M-digit, base A form as

where σ is the sign and 0 ≤ xk < A, k = 0, …, M.

Then,
IMACH(3) = A, the base.
IMACH(4) = M, the number of base-A digits.

IMACH(5) = AM – 1, the largest integer.
The machine model assumes that floating-point numbers are represented in normalized N-digit base B 

form as

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, …, N and E∃ ≤ E ≤ E∀. 

Then,
IMACH(6) = , the base.

IMACH(7) = , the number base-B-digits in single precision.

IMACH(8) = , the smallest single precision exponent.

IMACH(9) = , the largest single precision exponent.

IMACH(10) = , the number base-B-digits in double precision.

IMACH(11) = , the smallest double precision exponent.

IMACH(12) = , largest double precision exponent.

Required Arguments
I — Index of the desired constant. (Input) 

FORTRAN 90 Interface
Generic: IMACH (I)
Specific: The specific interface name is IMACH.
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FORTRAN 77 Interface
Single: IMACH (I)
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AMACH

The function subprogram AMACH retrieves machine constants that define the computer’s single-precision or 
double precision arithmetic. Such floating-point numbers are represented in normalized N-digit, base B form 
as

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, …, N and 

Function Return Value

AMACH(1) = BEmin-1, the smallest normalized positive number.

AMACH(2) = BEmax(1 -  B-N), the largest number.

AMACH(3) = B-N, the smallest relative spacing.

AMACH(4) = B1-N, the largest relative spacing.
AMACH(5) = log10(B).

AMACH(6) = NaN (quiet not a number).
AMACH(7) = positive machine infinity.
AMACH(8) = negative machine infinity.
See Comment 1 for a description of the use of the generic version of this function.
See Comment 2 for a description of min, max, and N. 

Required Arguments
I — Index of the desired constant. (Input) 

FORTRAN 90 Interface
Generic: AMACH (I)
Specific: The specific interface names are S_AMACH and D_AMACH.

FORTRAN 77 Interface
Single: AMACH (I)
Double: The double precision name is DMACH.

Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before 

use in an expression. For example:
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X = AMACH(I)
Y = SQRT(X)
must be used rather than
Y = SQRT(AMACH(I)).
If this is too much of a restriction on the programmer, then the specific name can be used without this 
restriction.

2. Note that for single precision B = IMACH(6),  N = IMACH(7).
 Emin = IMACH(8), and Emax = IMACH(9). 
For double precision B = IMACH(6),  N = IMACH(10). 
Emin = IMACH(11), and Emax = IMACH(12). 

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a number) as the 
result of various invalid or ambiguous operations, such as 0/0. The intent is that AMACH(6) return a 
quiet NaN. On computers that do not support a quiet NaN, a special value near AMACH(2) is returned 
for AMACH(6). On computers that do not have a special representation for infinity, AMACH(7) returns the 
same value as AMACH(2).
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DMACH

See AMACH. 
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IFNAN(X)

This logical function checks if the argument X is NaN (not a number). 

Function Return Value
IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise,  False is 

returned. (Output)

Required Arguments
X – Argument for which the test for NAN is desired. (Input) 

FORTRAN 90 Interface
Generic: IFNAN(X)
Specific: The specific interface names are S_IFNAN and D_IFNAN.

FORTRAN 77 Interface
Single: IFNAN (X)
Double: The double precision name is DIFNAN.

Description

The logical function IFNAN checks if the single or double precision argument X is NAN (not a number). The 
function IFNAN is provided to facilitate the transfer of programs across computer systems. This is because 
the check for NaN can be tricky and not portable across computer systems that do not adhere to the IEEE 
standard. For example, on computers that support the IEEE standard for binary arithmetic (see IEEE 1985), 
NaN is specified as a bit format not equal to itself. Thus, the check is performed as

IFNAN = X .NE. X

On other computers that do not use IEEE floating-point format, the check can be performed as:

IFNAN = X .EQ. AMACH(6)

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix, (IEEE 
1985). The above example illustrates the use of IFNAN. If X is NaN, a message is printed instead of X. (Rou-
tine UMACH, which is described in the following section, is used to retrieve the output unit number for 
printing the message.)

Example

      USE IFNAN_INT
      USE AMACH_INT
      USE UMACH_INT  
      INTEGER      NOUT
IFNAN(X)          Reference Material      1794



      REAL         X 
!
      CALL UMACH (2, NOUT) 
!
      X = AMACH(6)
      IF (IFNAN(X)) THEN
         WRITE (NOUT,*) ’ X is NaN (not a number).’
      ELSE 
         WRITE (NOUT,*) ’ X = ’, X 
      END IF 
!
      END

Output

X is NaN (not a number).
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UMACH

Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

Required Arguments
N  —  Integer value indicating the action desired. If the value of N is negative, the input, output, or error 

output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error output 
unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N. (Input)

NUNIT  —  The unit number that is either retrieved or set, depending on the value of input argument N. 
(Input/Output)

The arguments are summarized by the following table:

FORTRAN 90 Interface
Generic: CALL UMACH (N, NUNIT)
Specific: The specific interface name is UMACH.

FORTRAN 77 Interface
Single: CALL UMACH (N, NUNIT)

Description

Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is set auto-
matically so that the default FORTRAN unit numbers for standard input, standard output, and standard 
error are used. These unit numbers can be changed by inserting a call to UMACH at the beginning of the main 
program that calls MATH/LIBRARY routines. If these unit numbers are changed from the standard values, 
the user should insert an appropriate OPEN statement in the calling program.

N Effect

1 Retrieves input unit number in NUNIT.

2 Retrieves output unit number in NUNIT.

3 Retrieves error output unit number in 
NUNIT.

–1 Sets the input unit number to NUNIT.

–2 Sets the output unit number to NUNIT.

–3 Sets the error output unit number to 
NUNIT.
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Example

In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function since the 
argument is invalid. With a call to UMACH, the error message will be written to a local file named 
“CHECKERR”.

      USE AMACH_INT
      USE UMACH_INT
      INTEGER     N, NUNIT
      REAL        X
!                                      Set Parameter
      N = 0
!
      NUNIT = 9
      CALL UMACH (-3, NUNIT)
      OPEN (UNIT=9,FILE=’CHECKERR’)
      X = AMACH(N)
      END

Output

The output from this example, written to “CHECKERR” is:
*** TERMINAL ERROR 5 from AMACH.  The argument must be between 1 and 8
***           inclusive. N = 0
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Matrix Storage Modes

In this section, the word matrix will be used to refer to a mathematical object, and the word array will be used 
to refer to its representation as a FORTRAN data structure.

General Mode

A general matrix is an N × N matrix A. It is stored in a FORTRAN array that is declared by the following 
statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL general matrix 
subprograms only refer to values Aij for i = 1, …, N and j = 1, …, N. The data type of a general array can be 
one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN compiler allows, the nonstandard data 
type DOUBLE COMPLEX can also be declared.

Rectangular Mode

A rectangular matrix is an M × N matrix A. It is stored in a FORTRAN array that is declared by the following 
statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as M. IMSL rectangular 
matrix subprograms only refer to values Aij for i = 1, …, M and j = 1, …, N. The data type of a rectangular 
array can be REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN compiler allows, you can declare 
the nonstandard data type DOUBLE COMPLEX.

Symmetric Mode

A symmetric matrix is a square N × N matrix A, such that AT = A. (AT is the transpose of A.) It is stored in a 
FORTRAN array that is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL symmetric 
matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij for i = 1, …, N and 
j = i, …, N, or Aij for j = 1, …, N and i = j, …, N). The data type of a symmetric array can be one of REAL or 
DOUBLE PRECISION. Use of the upper half of the array is denoted in the BLAS that compute with symmetric 
matrices, see Chapter 9, “Programming Notes for BLAS” in the Math Library using the CHARACTER*1 flag 
UPLO = ’U’. Otherwise, UPLO = ’L’ denotes that the lower half of the array is used.
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Hermitian Mode

A Hermitian matrix is a square N × N matrix A, such that

The matrix

is the complex conjugate of A and 

is the conjugate transpose of A. For Hermitian matrices, AH = A. The matrix is stored in a FORTRAN array 
that is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as N. IMSL Hermitian 
matrix subprograms only refer to the upper or to the lower half of A (i.e., to values Aij for i = 1, …, N and 
j = i, …, N, or Aij for j = 1, …, N and i = j, …, N). Use of the upper half of the array is denoted in the BLAS that 
compute with Hermitian matrices, see Chapter 9, “Programming Notes for BLAS” in the Math Library, using the 
CHARACTER*1 flag UPLO = ’U’. Otherwise, UPLO = ’L’ denotes that the lower half of the array is used. The 
data type of a Hermitian array can be COMPLEX or, if your FORTRAN compiler allows, the nonstandard data 
type DOUBLE COMPLEX.

Triangular Mode

A triangular matrix is a square N × N matrix A such that values Aij = 0 for i < j or Aij = 0 for i > j. The first con-
dition defines a lower triangular matrix while the second condition defines an upper triangular matrix. A 
lower triangular matrix A is stored in the lower triangular part of a FORTRAN array A. An upper triangular 
matrix is stored in the upper triangular part of a FORTRAN array. Triangular matrices are called unit triangu-
lar whenever Ajj = 1, j = 1, …, N. For unit triangular matrices, only the strictly lower or upper parts of the 
array are referenced. This is denoted in the BLAS that compute with triangular matrices, see Chapter 9, “Pro-
gramming Notes for BLAS” in the Math Library, using the CHARACTER*1 flag DIAG = ’U’. Otherwise, 
DIAG = ’N’ denotes that the diagonal array terms should be used. For unit triangular matrices, the diago-
nal terms are each used with the mathematical value 1. The array diagonal term does not need to be 1.0 in 
this usage. Use of the upper half of the array is denoted in the BLAS that compute with triangular matrices, 
see Chapter 9, “Programming Notes for BLAS” in the Math Library, sing the CHARACTER*1 flag UPLO = ’U’. 
Otherwise, UPLO = ’L’ denotes that the lower half of the array is used. The data type of an array that con-
tains a triangular matrix can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN compiler 
allows, the nonstandard data type DOUBLE COMPLEX can also be declared.
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Band Storage Mode

A band matrix is an M × N matrix A with all of its nonzero elements “close” to the main diagonal. Specifically, 
values Aij = 0 if i - j > NLCA or j - i > NUCA. The integers NLCA and NUCA are the lower and upper band widths. 
The integer m = NLCA + NUCA + 1 is the total band width. The diagonals, other than the main diagonal, are 
called codiagonals. While any M × N matrix is a band matrix, the band matrix mode is most useful only when 
the number of nonzero codiagonals is much less than m.

In the band storage mode, the NLCA lower codiagonals and NUCA upper codiagonals are stored in the rows of 
a FORTRAN array of dimension m × N. The elements are stored in the same column of the array as they are 
in the matrix. The values Aij inside the band width are stored in array positions (i – j + NUCA + 1, j). This array 
is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as m. The data type of a 
band matrix array can be one of REAL, DOUBLE PRECISION, COMPLEX or, if your FORTRAN compiler 
allows, the nonstandard data type DOUBLE COMPLEX. Use of the CHARACTER*1 flag TRANS=’N’ in the 
BLAS, see Chapter 9, “Programming Notes for BLAS” in the Math Library, specifies that the matrix A is used. 
The flag value

while

For example, consider a real 5 × 5 band matrix with 1 lower and 2 upper codiagonals, stored in the FOR-
TRAN array declared by the following statements:

    PARAMETER (N=5, NLCA=1, NUCA=2)
    REAL A(NLCA+NUCA+1, N)

The matrix A has the form
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As a FORTRAN array, it is

The entries marked with an x in the above array are not referenced by the IMSL band subprograms.

Band Symmetric Storage Mode

A band symmetric matrix is a band matrix that is also symmetric. The band symmetric storage mode is similar 
to the band mode except only the lower or upper codiagonals are stored. 

In the band symmetric storage mode, the NCODA upper codiagonals are stored in the rows of a FORTRAN 
array of dimension (NCODA + 1) × N. The elements are stored in the same column of the array as they are in 
the matrix. Specifically, values Aij, j ≤ i inside the band are stored in array positions i - j + NCODA + 1, j). This 
is the storage mode designated by using the CHARACTER*1 flag UPLO = ’U’ in Level 2 BLAS that compute 
with band symmetric matrices, see Chapter 9, “Programming Notes for BLAS” in the Math Library. Alterna-
tively, Aij, j ≤ i, inside the band, are stored in array positions (i - j + 1, j). This is the storage mode designated 
by using the CHARACTER*1 flag UPLO = ’L’ in these Level 2 BLAS, see Chapter 9, “Programming Notes for 
BLAS” in the Math Library. The array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as NCODA + 1. The data type 
of a band symmetric array can be REAL or DOUBLE PRECISION.

For example, consider a real 5 × 5 band matrix with 2 codiagonals. Its FORTRAN declaration is

    PARAMETER (N=5, NCODA=2)
    REAL A(NCODA+1, N)

The matrix A has the form
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Since A is symmetric, the values Aij = Aji. In the FORTRAN array, it is 

The entries marked with an × in the above array are not referenced by the IMSL band symmetric 
subprograms.

An alternate storage mode for band symmetric matrices is designated using the CHARACTER*1 flag 
UPLO = ’L’ in Level 2 BLAS that compute with band symmetric matrices, see Chapter 9, “Programming 
Notes for BLAS” in the Math Library. In that case, the example matrix is represented as 

Band Hermitian Storage Mode

A band Hermitian matrix is a band matrix that is also Hermitian. The band Hermitian mode is a complex ana-
logue of the band symmetric mode.

In the band Hermitian storage mode, the NCODA upper codiagonals are stored in the rows of a FORTRAN 
array of dimension (NCODA + 1) × N. The elements are stored in the same column of the array as they are in 
the matrix. In the Level 2 BLAS, see Chapter 9, “Programming Notes for BLAS” in the Math Library, this is 
denoted by using the CHARACTER*1 flag UPLO =’U’. The array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as 
(NCODA + 1). The data type of a band Hermitian array can be COMPLEX or, if your FORTRAN compiler 
allows, the nonstandard data type DOUBLE COMPLEX.

For example, consider a complex 5 × 5 band matrix with 2 codiagonals. Its FORTRAN declaration is

    PARAMETER (N=5, NCODA = 2)
    COMPLEX A(NCODA + 1, N)
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The matrix A has the form

where the value

is the complex conjugate of Aij. This matrix represented as a FORTRAN array is

The entries marked with an × in the above array are not referenced by the IMSL band Hermitian 
subprograms.

An alternate storage mode for band Hermitian matrices is designated using the CHARACTER*1 flag 
UPLO = ’L’ in Level 2 BLAS that compute with band Hermitian matrices, see Chapter 9, “Programming 
Notes for BLAS” in the Math Library. In that case, the example matrix is represented as

Band Triangular Storage Mode

A band triangular matrix is a band matrix that is also triangular. In the band triangular storage mode, the 
NCODA codiagonals are stored in the rows of a FORTRAN array of dimension (NCODA + 1) × N. The elements 
are stored in the same column of the array as they are in the matrix. For usage in the Level 2 BLAS, see Chap-
ter 9, “Programming Notes for BLAS” in the Math Library, the CHARACTER*1 flag DIAG has the same meaning 
as used in section “Triangular Storage Mode”. The flag UPLO has the meaning analogous with its usage in the 
section “Banded Symmetric Storage Mode”. This array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as large as (NCODA + 1).
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For example, consider a 5 × 5 band upper triangular matrix with 2 codiagonals. Its FORTRAN declaration is

    PARAMETER (N = 5, NCODA = 2)
    COMPLEX A(NCODA + 1, N)

The matrix A has the form

This matrix represented as a FORTRAN array is

This corresponds to the CHARACTER*1 flags DIAG = ’N’ and UPLO = ’U’. The matrix AT is represented 
as the FORTRAN array

This corresponds to the CHARACTER*1 flags DIAG = ’N’ and UPLO = ’L’. In both examples, the entries 
indicated with an × are not referenced by IMSL subprograms.

Codiagonal Band Symmetric Storage Mode

This is an alternate storage mode for band symmetric matrices. It is not used by any of the BLAS, see Chapter 
9, “Programming Notes for BLAS” in the Math Library. Storing data in a form transposed from the Band Sym-
metric Storage Mode maintains unit spacing between consecutive referenced array elements. This data 
structure is used to get good performance in the Cholesky decomposition algorithm that solves positive defi-
nite symmetric systems of linear equations Ax = b. The data type can be REAL or DOUBLE PRECISION. In the 
codiagonal band symmetric storage mode, the NCODA upper codiagonals and right-hand-side are stored in 
columns of this FORTRAN array. This array is declared by the following statement:

DIMENSION A(LDA, NCODA + 2)

The parameter LDA is the leading positive dimension of A. It must be at least as large as N + NCODA.
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Consider a real symmetric 5 × 5 matrix with 2 codiagonals

and a right-hand-side vector

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is

    PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
    REAL A(LDA, NCODA + 2)

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows:

Entries marked with an × do not need to be defined. Certain of the IMSL band symmetric subprograms will 
initialize and use these values during the solution process. When a solution is computed, the bi, i = 1, …, 5, 
are replaced by xi, i = 1, …, 5.

The nonzero Aij, j ≥ i, are stored in array locations A(j + NCODA, (j - i) + 1) . The right-hand-side entries bj are 
stored in locations A(j + NCODA, NCODA + 2). The solution entries xj are returned in A(j + NCODA, NCODA + 2).
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Codiagonal Band Hermitian Storage Mode

This is an alternate storage mode for band Hermitian matrices. It is not used by any of the BLAS, see Chapter 
9, “Programming Notes for BLAS” in the Math Library. In the codiagonal band Hermitian storage mode, the 
real and imaginary parts of the 2 * NCODA + 1 upper codiagonals and right-hand-side are stored in columns 
of a FORTRAN array. Note that there is no explicit use of the COMPLEX or the nonstandard data type DOUBLE 
COMPLEX data type in this storage mode.

For Hermitian complex matrices,

where U and V are real matrices. They satisfy the conditions U = UT and V = -VT. The right-hand-side

where c and d are real vectors. The solution vector is denoted as

where u and v are real. The storage is declared with the following statement

DIMENSION A(LDA, 2*NCODA + 3)

The parameter LDA is the leading positive dimension of A. It must be at least as large as N + NCODA.

The diagonal terms Ujj are stored in array locations A (j + NCODA, 1). The diagonal Vjj are zero and are not 
stored. The nonzero Uij, j > i, are stored in locations A(j + NCODA, 2 * (j - i)).

The nonzero Vij are stored in locations A(j + NCODA, 2*(j - i) + 1). The right side vector b is stored with cj and 
dj in locations A(j + NCODA, 2*NCODA + 2) and A(j + NCODA, 2*NCODA + 3) respectively. The real and imagi-
nary parts of the solution, uj and vj, respectively overwrite cj and dj.

Consider a complex hermitian 5 × 5 matrix with 2 codiagonals
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and a right-hand-side vector

A FORTRAN declaration for the array to hold this matrix and right-hand-side vector is

    PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
    REAL A(LDA,2*NCODA + 3)

The matrix and right-hand-side entries are placed in the FORTRAN array A as follows:

Entries marked with an × do not need to be defined.

Sparse Matrix Storage Mode

The sparse linear algebraic equation solvers in Chapter 1, “Basic Statistics” accept the input matrix in sparse 
storage mode. This structure consists of INTEGER values N and NZ, the matrix dimension and the total number 
of nonzero entries in the matrix. In addition, there are two INTEGER arrays IROW(*) and JCOL(*) that con-
tain unique matrix row and column coordinates where values are given. There is also an array A(*) of values. 
All other entries of the matrix are zero. Each of the arrays IROW(*), JCOL(*), A(*) must be of size NZ. The cor-
respondence between matrix and array entries is given by

AIROW(i),JCOL(i) = A(i), i = 1, …, NZ

The data type for A(*) can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your FORTRAN compiler 
allows, the nonstandard data type DOUBLE COMPLEX can also be declared.
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For example, consider a real 5 × 5 sparse matrix with 11 nonzero entries. The matrix A has the form

Declarations of arrays and definitions of the values for this sparse matrix are
       PARAMETER (NZ = 11, N = 5)
       DIMENSION IROW(NZ), JCOL(NZ), A(NZ)
       DATA IROW /1,1,1,2,2,3,3,3,4,5,5/
       DATA JCOL /1,3,4,1,2,2,3,4,3,4,5/
       DATA A    /A11,A13,A14,A21,A22,A32,A33,A34, &
                 A43,A54,A55/
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Reserved Names

When writing programs accessing the STAT LIBRARY, the user should choose FORTRAN names that do not 
conflict with names of IMSL subroutines, functions, or named common blocks, such as the workspace com-
mon block WORKSP. The user needs to be aware of two types of name conflicts that can arise. The first type of 
name conflict occurs when a name (technically a symbolic name) is not uniquely defined within a program 
unit (either a main program or a subprogram). For example, such a name conflict exists when the name 
RCURV is used to refer both to a type REAL variable and to the IMSL subroutine RCURV in a single program 
unit. Such errors are detected during compilation and are easy to correct. The second type of name conflict, 
which can be more serious, occurs when names of program units and named common blocks are not unique. 
For example, such a name conflict would be caused by the user defining a subroutine named WORKSP and 
also referencing an STAT/LIBRARY subroutine that uses the named common block WORKSP. Likewise, the 
user must not define a subprogram with the same name as a subprogram in the STAT/LIBRARY, that is ref-
erenced directly by the user’s program or is referenced indirectly by other STAT/LIBRARY subprograms.

The STAT/LIBRARY consists of many routines, some that are described in the User’s Manual and others that 
are not intended to be called by the user and, hence, that are not documented. If the choice of names were 
completely random over the set of valid FORTRAN names, and if a program uses only a small subset of the 
STAT/LIBRARY, the probability of name conflicts is very small. Since names are usually chosen to be mne-
monic, however, the user may wish to take some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the routine. For exam-
ple, the IMSL single precision subroutine for fitting a polynomial by least squares has the name RCURV, 
which is the root name, and the corresponding IMSL double precision routine has the name DRCURV. Associ-
ated with these two routines are R2URV and DR2URV. RCURV and DRCURV are listed in the Alphabetical Index 
of Routines, but R2URV and DR2URV are not. The user of RCURV must consider both names RCURV and 
R2URV to be reserved; likewise, the user of DRCURV must consider both names DRCURV and DR2URV to be 
reserved. The names of all routines and named common blocks that are used by the STAT/LIBRARY and that 
do not have a numeral in the second position of the root name are listed in the Alphabetical Summary of 
Routines.

The careful user can avoid any conflicts with IMSL names if the following rules are observed:

 Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s 
Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.

 Do not choose a name of three or more characters with a numeral in the second or third 
position.

These simplified rules include many combinations that are, in fact, allowable. However, if the user selects 
names that conform to these rules, no conflict will be encountered.
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Deprecated Features and Renamed Routines

Automatic Workspace Allocation

FORTRAN subroutines that work with arrays as input and output often require extra arrays for use as work-
space while doing computations or moving around data. IMSL routines generally do not require the user 
explicitly to allocate such arrays for use as workspace. On most systems the workspace allocation is handled 
transparently. The only limitation is the actual amount of memory available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in a named 
common block WORKSP. A very similar use of a workspace stack is described by Fox et al. (1978, pages 
116-121). (For compatiblity with older versions of the IMSL Libraries, space is allocated from the COMMON 
block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL routine FREQ 
(see Chapter 1, “Basic Statistics”), which computes frequency tabulations, needs arrays for workspace. FREQ 
allocates arrays from the common area and passes them to the lower-level routine F2EQ, which does the 
computations. In the “Comments” section of the documentation for FREQ, the amount of workspace is noted, 
and the call to F2EQ is described. This scheme for using lower-level routines is followed throughout the 
IMSL Libraries. The names of these routines have a “2” in the second position (or in the third position in dou-
ble precision routines having a “D” prefix). The user can provide workspace explicitly and call directly the 
“2-level” routine, which is documented along with the main routine. In a very few cases, the 2-level routine 
allows additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates that space, 
so that it becomes available for use in other routines. There are some exceptions to this, as noted in the sec-
tion “IDO Routines” which follows later in this chapter.

Changing the Amount of Space Allocated

This section is relevant only to those systems on which the transparent workspace allocator is not available.

By default, the total amount of space allocated in the common area for storage of numeric data is 5000 
numeric storage units. (A numeric storage unit is the amount of space required to store an integer or a real 
number. By comparison, a double precision unit is twice this amount. Therefore the total amount of space 
allocated in the common area for storage of numeric data is 2500 double precision units.) This space is allo-
cated as needed for INTEGER, REAL, or other numeric data. For larger problems in which the default amount 
of workspace is insufficient, the user can change the allocation by supplying the FORTRAN statements to 
define the array in the named common block and by informing the IMSL workspace allocation system of the 
new size of the common array. To request 7000 units, the statements are

    COMMON /WORKSP/ RWKSP
    REAL RWKSP(7000)
    CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount available in the common stack, the 
routine issues a fatal error message that indicates how much space is needed and prints statements like those 
above to guide the user in allocating the necessary amount. The program below uses IMSL routine PERMA 
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(Chapter 19, “Utilities”) to permute rows or columns of a matrix. This routine requires workspace equal to the 
number of columns, which in this example is too large. (Note that the work vector RWKSP must also provide 
extra space for bookkeeping.)

!                                  Specifications for local variables
      INTEGER    NRA, NCA, LDA, IPERMU(6000), IPATH
      REAL A(2,6000)
!                                  Specifications for subroutines
      EXTERNAL PERMA
!
      NRA = 2
      NCA = 6000
      LDA = 2
!                                  Initialize permutation index
      DO 10 I = 1, NCA
         IPERMU(I) = NCA + 1 - I
   10 CONTINUE
      IPATH = 2
      CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, A, LDA)
      END

Output

*** TERMINAL ERROR 10 from PERMA.  Insufficient workspace for current
***          allocation(s). Correct by calling IWKIN from main program with
***          the three following statements: (REGARDLESS OF PRECISION)
***                COMMON /WORKSP/ RWKSP
***                REAL RWKSP(6018)
***                CALL IWKIN(6018)
*** TERMINAL ERROR 10 from PERMA.  Workspace allocation was based on NCA = 
***          6000.

In most cases, the amount of workspace is dependent on the parameters of the problem so the amount 
needed is known exactly. In a few cases, however, the amount of workspace is dependent on the data (for 
example, if it is necessary to count all of the unique values in a vector), so the IMSL routine cannot tell in 
advance exactly how much workspace is needed. In such cases the error message printed is an estimate of 
the amount of space required.

IDO Routines

Some routines with an argument named “IDO” allocate workspace automatically and store intermediate 
results in elements of workspace that are referenced in subsequent calls. Typically, these routines are called in 
a loop. With each call, some rows of the data set are input to the routine and statistics stored in workspace are 
updated. In this case, the workspace must be preserved between calls.

For these routines, when IDO indicates this is the first call, the routine allocates workspace; when IDO indi-
cates this is the last call, the routine deallocates the workspace. Because of the way this workspace is 
allocated and deallocated, no IMSL routine requiring additional automatic workspace can be used between 
these two calls. If it is necessary to call additional routines requiring workspace, use the 2-level routines and 
explicitly allocate the work arrays. 
Deprecated Features and Renamed Routines          Reference Material      1811



Not all IDO routines require workspace to be preserved between their first and last call. Some may not even 
use workspace. Others may allocate and deallocate workspace with each call. The statement “workspace 
should not be changed between calls” will be in the description of the “IDO” routine that requires that work-
space be preserved. (This statement will occur in the description of one or more of the workspace arguments 
for the 2-level routine.)

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate named common block 
WKSPCH is provided for character workspace. In most respects this stack is managed in the same way as the 
numeric stack. The default size of the character workspace is 2000 character units. (A character unit is the 
amount of space required to store one character.) The routine analogous to IWKIN used to change the default 
allocation is IWKCIN.

The routines in the following list are being deprecated in Version 2.0 of STAT/LIBRARY. A deprecated rou-
tine is one that is no longer used by anything in the library but is being included in the product for those 
users who may be currently referencing it in their application. However, any future versions of 
STAT/LIBRARY will not include these routines. If any of these routines are being called within an applica-
tion, it is recommended that you change your code or retain the deprecated routine before replacing this 
library with the next version. Most of these routines were called by users only when they needed to set up 
their own workspace. Thus, the impact of these changes should be limited.

DHOUAP

DHOUTR

DG2DF

DG2IN

DG3DF

G2DF

G2IN

G3DF

SHOUAP

SHOUTR

The following routines have been renamed due to naming conflicts with other software manufacturers.

CTIME — replaced with CPSEC

DTIME — replaced with TIMDY

PAGE — replaced with PGOPT
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Appendix A: Alphabetical 
Summary of Routines
Links to Sections

[ A  ] [ B  ] [ C  ] [ D  ] [ E  ] [ F  ] [ G  ] [ H  ] [ I  ] [ K  ] [ L  ] [ M  ] [ N  ] [ O  ] [ P  ] 
[ Q  ] [ R  ] [ S  ] [ T  ] [ U  ] [ V  ] [ W  ] 

A

Function Purpose Statement

ABALD Analyzes a balanced complete experimental design for a fixed, ran-
dom, or mixed model.

ABIBD Analyzes a balanced incomplete block design or a balanced lattice 
design.

ACF Computes the sample autocorrelation function of a stationary time 
series.

ACHAR Returns a character given its ASCII value

ACTBL Produces population and cohort life tables.

ADNRM Performs an Anderson-Darling test for normality.

AKS1DF Evaluates the cumulative distribution function of the one-sided 
Kolmogorov-Smirnov goodness-of-fit D+ or D− test statistic based 
on continuous data for one sample.

AKS2DF Evaluates the cumulative distribution function of the 
Kolmogorov-Smirnov goodness-of-fit D test statistic based on con-
tinuous data for two samples

ALATN Analyzes a Latin square design.

ALNDF Evaluates the lognormal cumulative probability distribution 
function.
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ALNIN This function evaluates the inverse of the lognormal cumulative 
probability distribution function.

ALNPR Evaluates the lognormal probability density function.

AMACH Retrieves machine constants.

AMILLR Evaluates Mill's ratio (the ratio of the ordinate to the upper tail area 
of the standardized normal distribution).

ANEST Analyzes a completely nested random model with possibly 
unequal numbers in the subgroups.

ANORPR Evaluates the normal probability density function.

ANORDF Evaluates the standard normal (Gaussian) cumulative distribution 
function.

ANORIN Evaluates the inverse of the standard normal (Gaussian) cumula-
tive distribution function.

ANWAY Analyzes a balanced n-way classification model with fixed effects.

AONEC Analyzes a one-way classification model with covariates.

AONEW Analyzes a one-way classification model.

ARMA_SPEC Calculates the rational power spectrum for an ARMA model.

ARMME Computes method of moments estimates of the autoregressive 
parameters of an ARMA model.

ATWOB Analyzes a randomized block design or a two-way balanced 
design.

AUTO_ARIMA Automatically identifies time series outliers, determines parame-
ters of a multiplicative seasonal ARIMA (p,0,q) × (0,d,0)s model, 
and produces forecasts that incorporate the effects of outliers 
whose effects persist beyond the end of the series.

AUTO_FPE_MUL_AR Automatic selection and fitting of a multivariate autoregressive 
time series model using Akaike’s Multivariate Final Prediction 
Error (MFPE) criteria.

AUTO_FPE_UNI_AR Automatic selection and fitting of a univariate autoregressive time 
series model using Akaike’s Final Prediction Error (FPE) criteria.

AUTO_MUL_AR Automatic selection and fitting of a multivariate autoregressive 
time series model.

AUTO_PARM Estimates structural breaks in non-stationary univariate time series.

AUTO_UNI_AR Automatic selection and fitting of a multivariate autoregressive 
time series model.

Function Purpose Statement
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B

C

Function Purpose Statement

BAY_SEA Allows for a decomposition of a time series into trend, seasonal, 
and an error component.

BCTR Performs a forward or an inverse Box-Cox (power) transformation.

BETDF Evaluates the beta cumulative distribution function.

BETIN Evaluates the inverse of the beta cumulative distribution function.

BETNDF This function evaluates the noncentral beta cumulative distribution 
function (CDF) .

BETNIN This function evaluates the inverse of the noncentral beta cumula-
tive distribution function (CDF).

BETNPR This function evaluates the noncentral beta probability density 
function.

BETPR Evaluates the beta probability density function.

BHAKV Performs a Bhapkar V test.

BINDF Evaluates the binomial cumulative distribution function.

BINES Estimates the parameter p of the binomial distribution.

BINPR Evaluates the binomial probability density function.

BNRDF Evaluates the bivariate normal cumulative distribution function.

BOXP Prints boxplots for one or more samples.

BSCAT Computes the biserial correlation coefficient for a dichotomous 
variable and a classification variable.

BSPBS Computes the biserial and point-biserial correlation coefficients for 
a dichotomous variable and a numerically measurable classifica-
tion variable.

Function Purpose Statement

CANCOR Given an input array of deviate values, generates a canonical cor-
relation array.

CANCR Performs canonical correlation analysis from a data matrix.

CANVC Performs canonical correlation analysis from a variance-covariance 
matrix or a correlation matrix.
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CCF Computes the sample cross-correlation function of two stationary 
time series.

CDF2P Prints a plot of two sample cumulative distribution functions.

CDFP Prints a sample cumulative distribution function (CDF), a theoreti-
cal CDF, and confidence band information.

CDIST Computes a matrix of dissimilarities (or similarities) between the 
columns (or rows) of a matrix.

CESTI Constructs an equivalent completely testable multivariate general 
linear hypothesis HBU = G from a partially testable hypothesis 
HpBU = Gp.

CHFAC Computes an upper triangular factorization of a real symmetric 
nonnegative definite matrix.

CHIDF Evaluates the chi-squared cumulative distribution function.

CHIGF Performs a chi-squared goodness-of-fit test.

CHIIN Evaluates the inverse of the chi-squared cumulative distribution 
function.

CHIPR Evaluates the chi-squared probability density function.

CIDMS Computes a confidence interval on a variance component esti-
mated as proportional to the difference in two mean squares in a 
balanced complete experimental design.

CLINK Performs a hierarchical cluster analysis given a distance matrix.

CNCRD Calculates and tests the significance of the Kendall coefficient of 
concordance.

CNUMB Computes cluster membership for a hierarchical cluster tree.

CORVC Computes the variance-covariance or correlation matrix.

COVPL Computes a pooled variance-covariance matrix from the 
observations.

CPFFT Computes the cross periodogram of two stationary time series 
using a fast Fourier transform.

CPSEC Returns CPU time used in seconds.

CSNDF Evaluates the noncentral chi-squared cumulative distribution 
function.

CSNIN Evaluates the inverse of the noncentral chi-squared cumulative 
function.

CSNPR This function evaluates the noncentral chi-squared probability den-
sity function.

CSSWD Estimates the nonnormalized cross-spectral density of two station-
ary time series using a spectral window given the time series data.

CSSWP Estimates the nonnormalized cross-spectral density of two station-
ary time series using a spectral window given the spectral densities 
and cross periodogram.

Function Purpose Statement
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CSTAT Computes cell frequencies, cell means, and cell sums of squares for 
multivariate data.

CSWED Estimates the nonnormalized cross-spectral density of two station-
ary time series using a weighted cross periodogram given the time 
series data.

CSWEP Estimates the nonnormalized cross-spectral density of two station-
ary time series using a weighted cross periodogram given the 
spectral densities and cross periodogram.

CTASC Computes partial association statistics for log-linear models in a 
multidimensional contingency table.

CTCHI Performs a chi-squared analysis of a two-way contingency table.

CTEPR Computes Fisher’s exact test probability and a hybrid approxima-
tion to the Fisher exact test probability for a contingency table using 
the network algorithm.

CTGLM Analyzes categorical data using logistic, Probit, Poisson, and other 
generalized linear models.

CTLLN Computes model estimates and associated statistics for a hierarchi-
cal log-linear model.

CTPAR Computes model estimates and covariances in a fitted log-linear 
model.

CTPRB Computes exact probabilities in a two-way contingency table.

CTRAN Performs generalized Mantel-Haenszel tests in a stratified contin-
gency table.

CTRHO Estimates the bivariate normal correlation coefficient using a con-
tingency table.

CTRST Computes contrast estimates and sums of squares.

CTSTP Builds hierarchical log-linear models using forward selection, back-
ward selection, or stepwise selection.

CTTWO Performs a chi-squared analysis of a 2 by 2 contingency table.

CTWLS Performs a generalized linear least squares analysis of transformed 
probabilities in a two-dimensional contingency table.

CVMNRM Performs a Cramer-von Mises test for normality.

CVTSI Converts a character string containing an integer number into the 
corresponding integer form.

Function Purpose Statement
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D

E

Function Purpose Statement

DCUBE Performs a triplets test.

DESKN Performs nonparametric probability density function estimation by 
the kernel method.

DESPL Performs nonparametric probability density function estimation by 
the penalized likelihood method.

DESPT Estimates a probability density function at specified points using 
linear or cubic interpolation.

DIFF Difference a time series.

DIRIC Computes the Dirichlet kernel.

DMACH See AMACH.

DMSCR Uses Fisher’s linear discriminant analysis method to reduce the 
number of variables.

DNFFT Computes Gaussian kernel estimates of a univariate density via the 
fast Fourier transform over a fixed interval.

DSCRM Performs a linear or a quadratic discriminant function analysis 
among several known groups.

DSQAR Performs a D-square test.

Function Purpose Statement

ENOS Evaluates the expected value of a normal order statistic.

EQTIL Computes empirical quantiles.

ERSET Sets error handler default print and stop actions.

ESTIMATE_MISSING Estimates missing values in a time series.

EXPDF Evaluates the exponential cumulative distribution function.

EXPIN Evaluates the inverse of the exponential cumulative distribution 
function.

EXPPR This function evaluates the exponential probability density 
function.

EXVDF Evaluates the extreme value cumulative distribution function.
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F

EXVIN Evaluates the inverse of the extreme value cumulative distribution 
function.

EXVPR Evaluates the extreme value probability density function.

Function Purpose Statement

FACTR Extracts initial factor-loading estimates in factor analysis.

FAURE_FREE Frees the structure containing information about the Faure 
sequence.

FAURE_INIT Computes a shuffled Faure sequence.

FAURE_NEXT Shuffled Faure sequence initialization.

FCOEF Computes a matrix of factor score coefficients for input to the fol-
lowing IMSL routine (FSCOR).

FDF Evaluates the F cumulative distribution function.

FDOBL Computes a direct oblimin rotation of a factor-loading matrix.

FEJER Computes the Fejér kernel.

FGCRF Computes direct oblique rotation according to a generalized 
fourth-degree polynomial criterion.

FHARR Computes an oblique rotation of an unrotated factor-loading 
matrix using the Harris-Kaiser method.

FIMAG Computes the image transformation matrix.

FIN Evaluates the inverse of the F cumulative distribution function.

FNDF Noncentral F cumulative distribution function.

FNIN This function evaluates the inverse of the noncentral F cumulative 
distribution function (CDF).

FNPR This function evaluates the noncentral F cumulative distribution 
function (CDF).

FOPCS Computes an orthogonal Procrustes rotation of a factor-loading 
matrix using a target matrix.

FPR Evaluates the F probability density function.

FPRMX Computes an oblique Promax or Procrustes rotation of a factor-load-
ing matrix using a target matrix, including pivot and power vector 
options.

FRDMN Performs Friedman’s test for a randomized complete block design.

FREQ Tallies multivariate observations into a multi-way frequency table.

Function Purpose Statement
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G

FRESI Computes commonalities and the standardized factor residual cor-
relation matrix

FROTA Computes an orthogonal rotation of a factor-loading matrix using a 
generalized orthomax criterion, including quartimax, varimax, and 
equamax rotations.

FRVAR Computes the factor structures and the variance explained by each 
factor.

FSCOR Computes a set of factor scores given the factor score coefficient 
matrix.

Function Purpose Statement

GAMDF Evaluates the gamma cumulative distribution function.

GAMIN Evaluates the inverse of the gamma cumulative distribution 
function.

GAMPR Evaluates the gamma probability density function.

GARCH Computes estimates of the parameters of a GARCH (p,q) model.

GCDF Evaluates a general continuous cumulative distribution function 
given ordinates of the density.

GCIN Evaluates the inverse of a general continuous cumulative distribu-
tion function given ordinates of the density.

GCLAS Gets the unique values of each classification variable.

GCSCP Generates centered variables, squares, and crossproducts.

GDATA Retrieves a commonly analyzed data set.

GEODF Evaluates the geometric cumulative probability distribution 
function.

GEOIN Evaluates the inverse of the geometric cumulative probability dis-
tribution function.

GEOPR Evaluates the geometric probability density function.

GFNIN Evaluates the inverse of a general continuous cumulative distribu-
tion function given in a subprogram.

GIRTS Solves a triangular (possibly singular) set of linear systems and/or 
compute a generalized inverse of an upper triangular matrix.

GRGLM Generates regressors for a general linear model.

Function Purpose Statement
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H

I

GRPES Computes basic statistics from grouped data.

GSWEP Performs a generalized sweep of a row of a nonnegative definite 
matrix.

Function Purpose Statement

HAZEZ Performs nonparametric hazard rate estimation using kernel func-
tions. Easy-to-use version of the previous IMSL subroutine 
(HAZRD).

HAZRD Performs nonparametric hazard rate estimation using kernel func-
tions and quasi-likelihoods.

HAZST Performs hazard rate estimation over a grid of points using a kernel 
function.

HHSTP Prints a horizontal histogram

HYPDF Evaluates the hypergeometric cumulative distribution function.

HYPPR Evaluates the hypergeometric probability function.

Function Purpose Statement

IACHAR Returns the integer ASCII value of a character argument.

ICASE Returns the ASCII value of a character converted to uppercase.

IDYWK Computes the day of the week for a given date.

IERCD and N1RTY Retrieves the code for an informational error.

IFNAN(X) Checks if a floating-point number is NaN (not a number).

IICSR Compares two character strings using the ASCII collating sequence 
without regard to case.

IIDEX Determines the position in a string at which a given character 
sequence begins without regard to case.

IMACH Retrieves integer machine constants.

INCLD Performs an includance test.

Function Purpose Statement
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K

L

IRNSE Computes estimates of the impulse response weights and noise 
series of a univariate transfer function model.

ISRCH Searches a sorted integer vector for a given integer and returns its 
index.

Function Purpose Statement

KALMN Performs Kalman filtering and evaluate the likelihood function for 
the state-space model.

KAPMR Computes Kaplan-Meier estimates of survival probabilities in strat-
ified samples.

KENDL Computes and tests Kendall’s rank correlation coefficient.

KENDP Computes the frequency distribution of the total score in Kendall’s 
rank correlation coefficient.

KMEAN Performs a K-means (centroid) cluster analysis.

KPRIN Maximum likelihood or least-squares estimates for principle com-
ponents from one or more matrices.

KRSKL Performs a Kruskal-Wallis test for identical population medians.

KSONE Performs a Kolmogorov-Smirnov one-sample test for continuous 
distributions.

KSTWO Performs a Kolmogorov-Smirnov two-sample test.

KTBLE Prints Kaplan-Meier estimates of survival probabilities in stratified 
samples.

KTRND Performs a k-sample trends test against ordered alternatives.

Function Purpose Statement

LETTR Produces a letter value summary.

LILLF Performs Lilliefors test for an exponential or normal distribution.

LOFCF Performs lack-of-fit test for a univariate time series or transfers 
function given the appropriate correlation function.

Function Purpose Statement
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M

Function Purpose Statement

MAMME Computes method of moments estimates of the moving average 
parameters of an ARMA model.

MAX_ARMA Exacts maximum likelihood estimation of the parameters in a uni-
variate ARMA (auto-regressive, moving average) time series 
model.

MCCF Computes the multichannel cross-correlation function of two 
mutually stationary multichannel time series.

MCHOL Computes an upper triangular factorization of a real symmetric 
matrix A plus a diagonal matrix D, where D is determined sequen-
tially during the Cholesky factorization in order to make A + D 
nonnegative definite.

MEDPL Computes a median polish of a two-way table.

MLSE Computes least squares estimates of a linear regression model for a 
multichannel time series with a specified base channel.

MLE Calculates maximum likelihood estimates for the parameters of one 
of several univariate probability distributions.

MSDBL Obtains normalized product-moment (double centered) matrices 
from dissimilarity matrices.

MSDST Computes distances in a multidimensional scaling model.

MSIDV Performs individual-differences multidimensional scaling for met-
ric data using alternating least squares.

MSINI Computes initial estimates in multidimensional scaling models.

MSSTN Transforms dissimilarity/similarity matrices and replace missing 
values by estimates to obtain standardized dissimilarity matrices.

MSTRS Computes various stress criteria in multidimensional scaling.

MVIND Computes a test for the independence of k sets of multivariate nor-
mal variables.

MVMMT Computes Mardia’s multivariate measures of skewness and kurto-
sis and tests for multivariate normality.

MVNAN Moves any rows of a matrix with the IMSL missing value code 
NaN (not a number) in the specified columns to the last rows of the 
matrix.

MWFE Computes least squares estimates of the multichannel Wiener filter 
coefficients for two mutually stationary multichannel time series.
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O

Function Purpose Statement

IERCD and N1RTY Retrieves an error type for the most recently called IMSL routine.

NCTRD Performs the Noether test for cyclical trend.

NDAYS Computes the number of days from January 1, 1900, to the given 
date.

NDYIN Gives the date corresponding to the number of days since January 
1, 1900.

NGHBR Searches a k-d tree for the k nearest neighbors of a key.

NNBRD Performs a k nearest neighbor discrimination.

NRCES Computes maximum likelihood estimates of the mean and variance 
from grouped and/or censored normal data.

NSBJF Computes Box-Jenkins forecasts and their associated probability 
limits for a nonseasonal ARMA model.

NSLSE Computes least squares estimates of parameters for a nonseasonal 
ARMA model.

NSPE Computes preliminary estimates of the autoregressive and moving 
average parameters of an ARMA model.

NTIES Computes tie statistics for a sample of observations.

Function Purpose Statement

OPOLY Generates orthogonal polynomials with respect to x values and 
specified weights.

OPT_DES Allows for multiple channels for both the controlled and manipu-
lated variables.

ORDST Determines order statistics.

OWFRQ Tallies observations into a one-way frequency table.
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Q

Function Purpose Statement

PACF Computes the sample partial autocorrelation function of a station-
ary time series.

PAIRS Performs a pairs test.

PCORR Computes partial correlations or covariances from the covariance 
or correlation matrix.

PERMA Permutes the rows or columns of a matrix.

PERMU Rearranges the elements of an array as specified by a permutation.

PFFT Computes the periodogram of a stationary time series using a fast 
Fourier transform.

PGOPT Sets or retrieves page width and length for printing.

PHGLM Analyzes time event data via the proportional hazards model.

PLOTP Prints a plot of up to ten sets of points.

PLSR Performs partial least squares regression for one or more response 
variables and a set of one or more predictor variables.

POIDF Evaluates the Poisson cumulative distribution function.

POIES Estimates the parameter of the Poisson distribution.

POIPR Evaluates the Poisson probability density function.

PRINC Computes principal components from a variance-covariance matrix 
or a correlation matrix.

PROBP Prints a probability plot.

PRPFT Performs iterative proportional fitting of a contingency table using 
a loglinear model.

Function Purpose Statement

QTEST Performs a Cochran Q test for related observations.

QUADT Forms a k-d tree.
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R

Function Purpose Statement

RALDF Evaluates the Rayleigh cumulative distribution function.

RALIN Evaluates the inverse of the Rayleigh cumulative distribution 
function.

RALPR Evaluates the Rayleigh probability density function.

RANKS Computes the ranks, normal scores, or exponential scores for a vec-
tor of observations.

RBCOV Computes a robust estimate of a covariance matrix and mean 
vector.

RBEST Selects the best multiple linear regression models.

RCASE Computes case statistics and diagnostics given data points, coeffi-

cient estimates , and the R matrix for a fitted general linear model.

RCASP Computes case statistics for a polynomial regression model given 
the fit based on orthogonal polynomials.

RCOMP Generates an orthogonal central composite design.

RCOV Fits a multiple linear regression model given the variance-covari-
ance matrix.

RCOVB Computes the estimated variance-covariance matrix of the esti-
mated regression coefficients given the R matrix.

RCURV Fits a polynomial curve using least squares.

REG_ARIMA Fits a univariate, non seasonal ARIMA time series model with the 
inclusion of one or more regression variables. 

RFORP Fits an orthogonal polynomial regression model.

RGIVN Fits a multivariate linear regression model via fast Givens 
transformations.

RGLM Fits a multivariate general linear model.

RHPSS Computes the matrix of sums of squares and crossproducts for the 
multivariate general linear hypothesis HBU = G given the coeffi-

cient estimates  and the R matrix.

RHPTE Performs tests for a multivariate general linear hypothesis HBU = G 
given the hypothesis sums of squares and crossproducts matrix SH 
and the error sums of squares and crossproducts matrix SE.

RINCF Performs response control given a fitted simple linear regression 
model.

RINPF Performs inverse prediction given a fitted simple linear regression 
model.
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RLAV Fits a multiple linear regression model using the least absolute val-
ues criterion.

RLEQU Fits a multivariate linear regression model with linear equality 
restrictions HΒ = G imposed on the regression parameters given 
results from IMSL routine RGIVN after IDO = 1 and IDO = 2 and 
prior to IDO = 3.

RLINE Fits a line to a set of data points using least squares.

RLLP Fits a multiple linear regression model using the Lp norm criterion.

RLMV Fits a multiple linear regression model using the minimax criterion.

RLOFE Computes a lack-of-fit test based on exact replicates for a fitted 
regression model.

RLOFN Computes a lack-of-fit test based on near replicates for a fitted 
regression model.

RLSE Fits a multiple linear regression model using least squares.

RNARM Generates a time series from a specified ARMA model.

RNBET Generates pseudorandom numbers from a beta distribution.

RNBIN Generates pseudorandom numbers from a binomial distribution.

RNCHI Generates pseudorandom numbers from a chi-squared 
distribution.

RNCHY Generates pseudorandom numbers from a Cauchy distribution.

RNCOR Generates a pseudorandom orthogonal matrix or a correlation 
matrix.

RNDAT Generates pseudorandom numbers from a multivariate distribu-
tion determined from a given sample.

RNEXP Generates pseudorandom numbers from a standard exponential 
distribution.

RNEXT Generates pseudorandom numbers from a mixture of two expo-
nential distributions.

RNEXV Generates pseudorandom numbers from an extreme value 
distribution.

RNFDF Generates pseudorandom numbers from the F distribution.

RNGAM Generates pseudorandom numbers from a standard gamma 
distribution.

RNGCS Sets up table to generate pseudorandom numbers from a general 
continuous distribution.

RNGCT Generates pseudorandom numbers from a general continuous 
distribution.

RNGDA Generates pseudorandom numbers from a general discrete distri-
bution using an alias method.

Function Purpose Statement
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RNGDS Sets up table to generate pseudorandom numbers from a general 
discrete distribution.

RNGDT Generates pseudorandom numbers from a general discrete distri-
bution using a table lookup method.

RNGEF Retrieves the current value of the array used in the IMSL GFSR ran-
dom number generator.

RNGEO Generates pseudorandom numbers from a geometric distribution.

RNGES Retrieves the current value of the table in the IMSL random number 
generators that use shuffling.

RNGET Retrieves the current value of the seed used in the IMSL random 
number generators.

RNHYP Generates pseudorandom numbers from a hypergeometric 
distribution.

RNIN32 Initializes the 32-bit Mersenne Twister generator using an array.

RNGE32 Retrieves the current table used in the 32-bit Mersenne Twister 
generator.

RNSE32 Sets the current table used in the 32-bit Mersenne Twister generator.

RNIN64 Initializes the 32-bit Mersenne Twister generator using an array.

RNGE64 Retrieves the current table used in the 64-bit Mersenne Twister 
generator

RNSE64 Sets the current table used in the 64-bit Mersenne Twister generator.

RNISD Determines a seed that yields a stream beginning 100,000 numbers 
beyond the beginning of the stream yielded by a given seed used in 
IMSL multiplicative congruential generators (with no shufflings).

RNKSM Performs the Wilcoxon rank sum test.

RNLGR Generates pseudorandom numbers from a logarithmic distribution.

RNLIN Fits a nonlinear regression model.

RNLNL Generates pseudorandom numbers from a lognormal distribution.

RNMTN Generates pseudorandom numbers from a multinomial 
distribution.

RNMVGC Generates pseudorandom numbers from a multivariate Gaussian 
Copula distribution.

RNMVTC Generates a length N output vector R of pseudorandom numbers 
from a Student’s t Copula distribution.

RNMVN Generates pseudorandom numbers from a multivariate normal 
distribution.

RNNBN Generates pseudorandom numbers from a negative binomial 
distribution.

RNNOA Generates pseudorandom numbers from a standard normal distri-
bution using an acceptance/rejection method.

Function Purpose Statement
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RNNOF Generates a pseudorandom number from a standard normal 
distribution.

RNNOR Generates pseudorandom numbers from a standard normal distri-
bution using an inverse CDF method.

RNNOS Generates pseudorandom order statistics from a standard normal 
distribution.

RNNPP Generates pseudorandom numbers from a nonhomogeneous 
Poisson process.

RNOPG Retrieves the indicator of the type of uniform random number 
generator.

RNOPT Selects the uniform (0, 1) multiplicative congruential pseudoran-
dom number generator.

RNPER Generates a pseudorandom permutation.

RNPOI Generates pseudorandom numbers from a Poisson distribution.

RNRAL Generates pseudorandom numbers from a Rayleigh distribution.

RNSEF Initializes the array used in the IMSL GFSR random number 
generator.

RNSES Initializes the table in the IMSL random number generators that use 
shuffling.

RNSET Initializes a random seed for use in the IMSL random number 
generators.

RNSPH Generates pseudorandom points on a unit circle or K-dimensional 
sphere.

RNSRI Generates a simple pseudorandom sample of indices.

RNSRS Generates a simple pseudorandom sample from a finite 
population.

RNSTA Generates pseudorandom numbers from a stable distribution.

RNSTT Generates pseudorandom numbers from a Student’s t distribution.

RNTAB Generates a pseudorandom two-way table.

RNTRI Generates pseudorandom numbers from a triangular distribution 
on the interval (0,1).

RNUN Generates pseudorandom numbers from a uniform (0,1) 
distribution.

RNUND Generates pseudorandom numbers from a discrete uniform 
distribution.

RNUNF Generates a pseudorandom number from a uniform (0, 1) 
distribution.

RNUNO Generates pseudorandom order statistics from a uniform (0, 1) 
distribution.

RNVMS Generates pseudorandom numbers from a von Mises distribution.

Function Purpose Statement
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RNWIB Generates pseudorandom numbers from a Weibull distribution.

RONE Analyzes a simple linear regression model.

RORDM Reorders rows and columns of a symmetric matrix.

ROREX Reorders the responses from a balanced complete experimental 
design.

ROTIN Computes diagnostics for detection of outliers and influential data 
points given residuals and the R matrix for a fitted general linear 
model.

RPOLY Analyzes a polynomial regression model.

RSTAP Computes summary statistics for a polynomial regression model 
given the fit based on orthogonal polynomials.

RSTAT Computes statistics related to a regression fit given the coefficient 

estimates  and the R matrix.

RSTEP Builds multiple linear regression models using forward selection, 
backward selection, or stepwise selection.

RSUBM Retrieves a symmetric submatrix from a symmetric matrix.

RUNS Performs a runs up test.

Function Purpose Statement

SCIPM Computes simultaneous confidence intervals on all pairwise differ-
ences of means.

SCOLR Sorts columns of a real rectangular matrix using keys in rows.

SCTP Prints a scatterplot of several groups of data.

SDPLC Performs the Cox and Stuart sign test for trends in dispersion and 
location.

SEASONAL_FIT Determines an optimal differencing for seasonal adjustments of a 
time series.

SIGNT Performs a sign test of the hypothesis that a given value is a speci-
fied quantile of a distribution.

SMPPR Computes statistics for inferences regarding the population propor-
tion and total, given proportion data from a simple random sample.

SMPPS Computes statistics for inferences regarding the population propor-
tion and total, given proportion data from a stratified random 
sample.

Function Purpose Statement
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SMPRR Computes statistics for inferences regarding the population mean 
and total using ratio or regression estimation, or inferences regard-
ing the population ratio, given a simple random sample.

SMPRS Computes statistics for inferences regarding the population mean 
and total using ratio or regression estimation, given continuous 
data from a stratified random sample.

SMPSC Computes statistics for inferences regarding the population mean 
and total using single-stage cluster sampling with continuous data.

SMPSR Computes statistics for inferences regarding the population mean 
and total, given data from a simple random sample.

SMPSS Computes statistics for inferences regarding the population mean 
and total, given data from a stratified random sample.

SMPST Computes statistics for inferences regarding the population mean 
and total, given continuous data from a two-stage sample with 
equisized primary units.

SNKMC Performs Student-Newman-Keuls multiple comparison test.

SNRNK Performs a Wilcoxon signed rank test.

SPWF Computes the Wiener forecast operator for a stationary stochastic 
process.

SPWLK Performs a Shapiro-Wilk W-test for normality.

SRCH Searches a sorted vector for a given scalar and return its index.

SROWR Sorts rows of a real rectangular matrix using keys in columns.

SSRCH Searches a character vector, sorted in ascending ASCII order, for a 
given string and return its index.

SSWD Estimates the nonnormalized spectral density of a stationary time 
series using a spectral window given the time series data.

SSWP Estimates the nonnormalized spectral density of a stationary time 
series using a spectral window given the periodogram.

STBLE Estimates survival probabilities and hazard rates for various para-
metric models.

STMLP Prints a stem-and-leaf plot.

SVGLM Analyzes censored survival data using a generalized linear model.

SVIGN Sorts an integer array by algebraic value.

SVIGP Sorts an integer array by algebraic value and returns the 
permutations.

SVRGN Sorts a real array by algebraic value.

SVRGP Sorts a real array by algebraic value and returns the permutations.

Function Purpose Statement
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SWED Estimation of the nonnormalized spectral density of a stationary 
time series based on specified periodogram weights given the time 
series data.

SWEP Estimation of the nonnormalized spectral density of a stationary 
time series based on specified periodogram weights given the 
periodogram.

Function Purpose Statement

TCSCP Transforms coefficients from a quadratic regression model gener-
ated from squares and crossproducts of centered variables to a 
model using uncentered variables.

TDATE Gets today’s date.

TDF Evaluates the Student’s t cumulative distribution function.

TETCC Categorizes bivariate data and compute the tetrachoric correlation 
coefficient.

TFPE Computes preliminary estimates of parameters for a univariate 
transfer function model.

TIMDY Gets time of day.

TIN Evaluates the inverse of the Student’s t distribution function.

TNDF Evaluates the noncentral Student’s t cumulative distribution 
function.

TNIN Evaluates the inverse of the noncentral Student’s t cumulative dis-
tribution function.

TNPR This function evaluates the noncentral Student's t probability den-
sity function.

TPR This function evaluates the Student’s t probability density function.

TREEP Prints a binary tree.

TRNBL Computes Turnbull’s generalized Kaplan-Meier estimates of sur-
vival probabilities in samples with interval censoring.

TS_OUTLIER_FORECAST Detects and determines outliers and simultaneously estimates the 
model parameters in a time series.

TS_OUTLIER_IDENTIFICATION Computes forecasts for an outlier contaminated time series.

TWFRQ Tallies observations into a two-way frequency table.

TWOMV Computes statistics for mean and variance inferences using sam-
ples from two normal populations.

Function Purpose Statement
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V

W

Function Purpose Statement

UMACH Sets or retrieves input or output device unit numbers.

UNDDF Evaluates the discrete uniform cumulative distribution function.

UNDF Evaluates the uniform cumulative distribution function.

UNDIN Evaluates the inverse of the discrete uniform cumulative distribu-
tion function.

UNDPR Evaluates the discrete uniform probability density function.

UNIN Evaluates the inverse of the uniform cumulative distribution 
function.

UNPR Evaluates the uniform probability density function.

UVSTA Computes basic univariate statistics.

Function Purpose Statement

VERSL Obtains STAT/LIBRARY-related version, system and license 
numbers.

VHS2P Prints a vertical histogram with every bar subdivided into two 
parts.

VHSTP Prints a vertical histogram.

Function Purpose Statement

WBLDF Evaluates the Weibull cumulative distribution function.

WBLIN Evaluates the inverse of the Weibull cumulative distribution 
function.

WBLPR Evaluates the Weibull probability density function.

WRIRL Prints an integer rectangular matrix with a given format and labels.
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WRIRN Prints an integer rectangular matrix with integer row and column 
labels.

WROPT Sets or retrieves an option for printing a matrix.

WRRRL Prints a real rectangular matrix with a given format and labels.

WRRRN Prints a real rectangular matrix with integer row and column labels.

Function Purpose Statement
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Appendix C: Product Support
Contacting IMSL Support

Users within support warranty may contact Rogue Wave Software regarding the use of the IMSL Fortran 
Numerical Library. IMSL Support can consult on the following topics:

 Clarity of documentation

 Possible IMSL-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of your program.

Refer to the following for IMSL Product Support contact information:

http://www.roguewave.com/support/contact-support.aspx.

The following describes the procedure for consultation with IMSL Support:

1. Include your IMSL license number
2. Include the product name and version number: IMSL Fortran Numerical Library Version 7.0
3. Include compiler and operating system version numbers
4. Include the name of the routine for which assistance is needed and a description of the problem
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